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FUNCTIONAL CENTRAL LIMIT THEOREM FOR HEAVY TAILED
STATIONARY INFINITELY DIVISIBLE PROCESSES GENERATED

BY CONSERVATIVE FLOWS1

BY TAKASHI OWADA AND GENNADY SAMORODNITSKY

Cornell University

We establish a new class of functional central limit theorems for par-
tial sum of certain symmetric stationary infinitely divisible processes with
regularly varying Lévy measures. The limit process is a new class of sym-
metric stable self-similar processes with stationary increments that coincides
on a part of its parameter space with a previously described process. The nor-
malizing sequence and the limiting process are determined by the ergodic-
theoretical properties of the flow underlying the integral representation of
the process. These properties can be interpreted as determining how long
the memory of the stationary infinitely divisible process is. We also estab-
lish functional convergence, in a strong distributional sense, for conservative
pointwise dual ergodic maps preserving an infinite measure.

1. Introduction. Let X= (X1,X2, . . .) be a discrete time stationary stochas-
tic process. A (functional) central limit theorem for such a process is a statement
of the type (

1

cn

�nt�∑
k=1

Xk − hnt,0≤ t ≤ 1

)
⇒ (

Y(t),0≤ t ≤ 1
)
.(1.1)

Here, (cn) is a positive sequence growing to infinity, (hn) a real sequence, and
(Y (t),0≤ t ≤ 1) is a nondegenerate (i.e., nondeterministic) process. Convergence
in (1.1) is at least in finite-dimensional distributions, but preferably it is a weak
convergence in the space D[0,1] equipped with an appropriate topology. Not every
stochastic process satisfies a central limit theorem, and for those that do, it is well
known that both the rate of growth of the scaling constant cn and the nature of the
limiting process Y= (Y (t),0≤ t ≤ 1) are determined both by the marginal tails of
the stationary process X and its dependence structure. The limiting process (under
very minor assumptions) is necessarily self-similar with stationary increments; this
is known as the Lamperti theorem; see Lamperti (1962).
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If, say, X1 has a finite second moment, and X is an i.i.d. sequence then, clearly,
one can choose cn = n1/2, and then Y is a Brownian motion. With equally light
marginal tails, if the memory is sufficiently short, then one expects the situation to
remain, basically, the same, and this turns out to be the case. When the variance is
finite, the basic tool to measure dependence is, obviously, the correlations, which
have to decay fast enough. It is well known, however, that a fast decay of correla-
tions is alone not sufficient for this purpose, and, in general, certain strong mixing
conditions have to be assumed. See, for example, Rosenblatt (1956) and, more
recently, Merlevède, Peligrad and Utev (2006). If the memory is not sufficiently
short, then both the rate of growth of cn can be different from n1/2, and the limiting
process can be different from the Brownian motion. In fact, the limiting process
may fail to be Gaussian at all; see, for example, Dobrushin and Major (1979) and
Taqqu (1979).

If the marginal tails of the process are heavy, which in this case means that X1 is
in the domain of attraction of an α-stable law, 0 < α < 2, and X is an i.i.d. sequence
then clearly one can choose cn to be the inverse of the marginal tail (this makes cn

vary regularly with exponent 1/α), and then Y is an α-stable Lévy motion. Again,
one expects the situation to remain similar if the memory is sufficiently short.
Since correlations do not exist under heavy tails, statements of this type have been
established for special models, often for moving average models; see, for example,
Davis and Resnick (1985), Avram and Taqqu (1992) and Paulauskas and Surgailis
(2007). Once again, as the memory gets longer, then both the rate of growth of cn

can be different from that obtained by inverting the marginal tail, and the limiting
process will no longer have independent increments (i.e., be an α-stable Lévy mo-
tion). It is here, however, that the picture gets more interesting than in the case of
light tails. First of all, in absence of correlations there is no canonical way of mea-
suring how much longer the memory gets. Even more importantly, certain types of
memory turn out to result in the limiting process Y being a self-similar α-stable
process with stationary increments of a canonical form, the so-called linear frac-
tional stable motion; see, for example, Maejima (1983) for an example of such
a situation, and Samorodnitsky and Taqqu (1994) for information on self-similar
processes. However, when the memory gets even longer, linear fractional stable
motions disappear as well, and even more “unusual” limiting processes Y may
appear. This phenomenon may qualify as change from short to long memory; see
Samorodnitsky (2006).

In this paper, we consider a functional central limit theorem for a class of heavy
tailed stationary processes exhibiting long memory in this sense. It is particularly
interesting both because of the manner in which memory in the process is mea-
sured, and because the limiting process Y that happens to be an extension of a very
recently discovered self-similar stable process with stationary increments. Specif-
ically, we will assume that X is a stationary infinitely divisible process (satisfying
certain assumptions, described in detail in Section 2). That is, all finite-dimensional
distributions of X are infinitely divisible; we refer the reader to Rajput and Rosiński
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(1989) for more information on infinitely divisible processes and their integral rep-
resentations we will work with in the sequel.

The class of central limit theorems we consider involves a significant interaction
of probabilistic and ergodic-theoretical ideas and tools. To make the discussion
more transparent, we will only consider symmetric infinitely divisible processes
without a Gaussian component (but there is no doubt that results of this type will
hold in a greater generality as well). The law of such a process is determined by its
(function level) Lévy measure. This is a (uniquely determined) symmetric measure
κ on R

N satisfying

κ
(
x= (x1, x2, . . .) ∈R

N :xj = 0 for all j ∈N
)= 0

and ∫
RN

min
(
1, x2

j

)
κ(dx) <∞ for each j ∈N,

such that for each finite subset {j1, . . . , jk} of N, the k-dimensional Lévy measure
of the infinitely divisible random vector (Xj1, . . . ,Xjk

) is given by the projection
of κ on the appropriate coordinates of x; see Maruyama (1970).

Because of the stationarity of the process X, its Lévy measure μ is invariant
under the left shift θ on R

N,

θ(x1, x2, x3, . . .)= (x2, x3, . . .).

It has been noticed in the last several years that the ergodic-theoretical properties
of the shift operator with respect to the Lévy measure have a profound effect on
the memory of the stationary process X. The Lévy measure of the process is of-
ten described via an integral representation of the process, and in some cases the
shift operator with respect to the Lévy measure can be related to an operator acting
on the space on which the integrals are taken. Thus, Rosiński and Samorodnitsky
(1996) and Samorodnitsky (2005) dealt with the ergodicity and mixing of sta-
tionary stable processes, while Roy (2007) dealt with general stationary infinitely
divisible processes. The effect of the ergodic-theoretical properties of the shift op-
erator with respect to the Lévy measure on the partial maxima of stationary stable
processes was discussed in Samorodnitsky (2004).

In the present paper, we consider stationary symmetric infinitely divisible pro-
cesses without a Gaussian component given via an integral representation de-
scribed in Section 2. This representation naturally includes a measure-preserving
operator on a measurable space, and we related its ergodic-theoretical properties
to the kind of central limit theorem the process satisfies. We consider the so-called
conservative operators that turn out to lead to nonstandard limit theorems of the
type that, to the best of our knowledge, have not been observed before.

We describe our setup in Section 2. In Section 3, we introduce the limiting sym-
metric α-stable (henceforth, SαS) self-similar process with stationary increments
and discuss its properties. In Section 4, we present the ergodic-theoretical notions
that we use in the paper. The exact assumptions in the central limit theorem are
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stated in Section 5. In this section, we also present the statement of the theorem
and several examples. The proof of the theorem uses several distributional ergodic-
theoretical results we present and prove in Section 6. These results may be of in-
dependent interest in ergodic theory. Finally, the proof of the central limit theorem
is completed in Section 7.

2. The setup. We consider infinitely divisible processes of the form

Xn =
∫
E

fn(x) dM(x), n= 1,2, . . . ,(2.1)

where M is an infinitely divisible random measure on a measurable space (E,E),
and the functions fn,n= 1,2, . . . are deterministic functions of the form

fn(x)= f ◦ T n(x)= f
(
T nx

)
, x ∈E,n= 1,2, . . . ,(2.2)

where f :E → R is a measurable function, and T :E → E a measurable map.
The (independently scattered) infinitely divisible random measure M is assumed
to be a homogeneous symmetric infinitely divisible random measure without a
Gaussian component, with control measure μ and local Lévy measure ρ. That is,
μ is a σ -finite measure on E, which we will assume to be infinite. Further, ρ is a
symmetric Lévy measure on R, and for every A ∈ E with μ(A) <∞, M(A) is a
(symmetric) infinitely divisible random variable such that

EeiuM(A) = exp
{
−μ(A)

∫
R

(
1− cos(ux)

)
ρ(dx)

}
, u ∈R.(2.3)

It is clear that, in order for the process X to be well defined, the functions fn,n=
1,2, . . . have to satisfy certain integrability assumptions; the assumptions we will
impose below will be sufficient for that. Once the process X is well defined, it is,
automatically, symmetric and infinitely divisible, without a Gaussian component,
with the function level Lévy measure given by

κ = (ρ ×μ) ◦K−1(2.4)

with K :R×E→ R
N given by K(x, s)= x(f1(s), f2(s), . . .), s ∈ E,x ∈ R. For

details, see Rajput and Rosiński (1989).
We will assume that the measurable map T preserves the control measure μ. It

follows immediately from (2.4) and the form of the functions (fn) given in (2.2)
that the Lévy measure κ is invariant under the left shift θ , and hence, the process X
is stationary. We intend to relate the ergodic-theoretical properties of the map T to
the dependence properties of the process X, and subsequently, to the kind of central
limit theorem the process satisfies. We refer the reader to Aaronson (1997) for
more details on the ergodic-theoretical notions used in the sequel. A short review
of what we need will be given in Section 4 below.

Our basic assumption is that the map T is conservative. This property has al-
ready been observed to be related to long memory in the process X; see, for exam-
ple, Samorodnitsky (2004) and Roy (2007). We will quantify the resulting length
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of memory by assuming further that the map T is ergodic and pointwise dual
ergodic, with a regularly varying normalizing sequence. We will see that the expo-
nent of regular variation plays a major role in the central limit theorem.

The second major “player” in the central limit theorem is the heaviness of the
marginal tail of the process X. We will assume that the local Lévy measure ρ has
a regularly varying tail with index −α, 0 < α < 2, that is,

ρ(·,∞) ∈RV−α at infinity.(2.5)

With a proper integrability assumption on the function f in (2.2), the process X
has regularly varying marginal (and even finite-dimensional) distributions, with
the same tail exponent −α; see Rosiński and Samorodnitsky (1993). That is, all
the finite-dimensional distributions of the process are in the domain of attraction
of a SαS law.

This leads to a rather satisfying picture, in which the kind of the central limit
theorem that holds for the process X depends both on the marginal tails of the
process and on the length of memory in it, and both are clearly parameterized.

In fact, in order to obtain the central limit theorem for the process X, we will
need to impose more specific assumptions on the map T . We will also, clearly,
need specific integrability assumptions on the kernel in the integral representation
of the process. These assumptions are presented in Section 5.

We proceed, first, with a description of the limiting process we will eventually
obtain.

3. The limiting process. In this section, we will introduce a class of self-
similar SαS processes with stationary increments. These processes will later ap-
pear as weak limits in the central limit theorem. We will see this process is an ex-
tension (to a wider range of parameters) of a class recently introduced by Dombry
and Guillotin-Plantard (2009). Before introducing this process, we need to do some
preliminary work.

For 0 < β < 1, let (Sβ(t), t ≥ 0) be a β-stable subordinator, that is, a Lévy
process with increasing sample paths, satisfying Ee−θSβ(t) = exp{−tθβ} for
θ ≥ 0 and t ≥ 0; see, for example, Chapter III of Bertoin (1996). Define its inverse
process by

Mβ(t)= S←β (t)= inf
{
u≥ 0 :Sβ(u)≥ t

}
, t ≥ 0.(3.1)

Recall that the marginal distributions of the process (Mβ(t), t ≥ 0) are the Mittag–
Leffler distributions, with the Laplace transform

E exp
{
θMβ(t)

}= ∞∑
n=0

(θtβ)n

�(1+ nβ)
, θ ∈R;(3.2)

see Proposition 1(a) in Bingham (1971). We will call this process the Mittag–
Leffler process. This process has a continuous and nondecreasing version; we will
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always assume that we are working with such a version. It follows from (3.2)
(or simply from the definition) that the Mittag–Leffler process is self-similar with
exponent β . Further, all of its moments are finite. Recall, however, that this process
has neither stationary nor independent increments; see, for example, Meerschaert
and Scheffler (2004).

We are now ready to introduce the new class of self-similar SαS processes with
stationary increments announced at the beginning of this section. Let 0 < α < 2
and 0 < β < 1, and let (	′,F ′,P ′) be a probability space. We define

Yα,β(t)=
∫
	′×[0,∞)

Mβ

(
(t − x)+,ω′

)
dZα,β

(
ω′, x

)
, t ≥ 0,(3.3)

where Zα,β is a SαS random measure on 	′ × [0,∞) with control measure P ′ ×
ν, with ν a measure on [0,∞) given by ν(dx) = (1 − β)x−β dx, x > 0. Here,
Mβ is a Mittag–Leffler process defined on (	′,F ′,P ′). The random measure Zα,β

itself, and hence, also the process Yα,β , are defined on some generic probability
space (	,F,P ). We refer the reader to Samorodnitsky and Taqqu (1994) for more
information on integrals with respect to stable random measures.

In Theorem 3.1 below, we prove that the process (Yα,β(t), t ≥ 0) is a well-
defined self-similar SαS processes with stationary increments. We call it the
β-Mittag–Leffler (or β-ML) fractional SαS motion.

THEOREM 3.1. The β-ML fractional SαS motion is a well-defined self-
similar SαS processes with stationary increments. It is also self-similar with expo-
nent of self-similarity H = β + (1− β)/α.

PROOF. By the monotonicity of the process Mβ we have, for any t ≥ 0,∫
[0,∞)

∫
	′

Mβ

(
(t − x)+,ω′

)α
P ′(dω)ν(dx)≤ t1−βE′Mβ(t)α <∞,

which proves that the process (Yα,β(t), t ≥ 0) is well defined. Further, by the
β-self-similarity of the process Mβ , we have for any k ≥ 1, t1, . . . , tk ≥ 0, and
c > 0, for all real θ1, . . . , θk ,

E exp

{
i

k∑
j=1

θjYα,β(ctj )

}

= exp

{
−
∫ ∞

0
E′
∣∣∣∣∣

k∑
j=1

θjMβ

(
(ctj − x)+

)∣∣∣∣∣
α

(1− β)x−β dx

}

= exp

{
−
∫ ∞

0
E′
∣∣∣∣∣

k∑
j=1

θj c
HMβ

(
(tj − y)+

)∣∣∣∣∣
α

(1− β)y−β dy

}

=E exp

{
i

k∑
j=1

θj c
HYα,β(tj )

}
,
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which shows the H -self-similarity of the β-ML fractional SαS motion.
For the proof of stationary increment property, it suffices to check that

E exp

{
i

k∑
j=1

θj

(
Yα,β(tj + s)− Yα,β(s)

)}=E exp

{
i

k∑
j=1

θjYα,β(tj )

}

for all k ≥ 1, t1, . . . , tk ≥ 0, s ≥ 0, and θ1, . . . , θk ∈R. This is equivalent to verify-
ing the equality in∫ ∞

0
E′
∣∣∣∣∣

k∑
j=1

θj

{
Mβ

(
(tj + s − x)+

)−Mβ

(
(s − x)+

)}∣∣∣∣∣
α

x−β dx

=
∫ ∞

0
E′
∣∣∣∣∣

k∑
j=1

θjMβ

(
(tj − x)+

)∣∣∣∣∣
α

x−β dx.

Changing variable by r = s − x in the left-hand side and rearranging the terms
shows that we need to check the equality in∫ s

0
E′
∣∣∣∣∣

k∑
j=1

θj

(
Mβ(tj + r)−Mβ(r)

)∣∣∣∣∣
α

(s − r)−β dr

(3.4)

=
∫ ∞

0
E′
∣∣∣∣∣

k∑
j=1

θjMβ

(
(tj − x)+

)∣∣∣∣∣
α(

x−β − (s + x)−β)dx.

Let δr = Sβ(Mβ(r)) − r be the overshoot of the level r > 0 by the β-stable
subordinator (Sβ(t), t ≥ 0) related to (Mβ(t), t ≥ 0) by (3.1). The law of δr is
known to be given by

P(δr ∈ dx)= sinβπ

π
rβ(r + x)−1x−β dx, x > 0;(3.5)

see, for example, Exercise 5.6 in Kyprianou (2006). Further, by the strong Markov
property of the stable subordinator we have(

Sβ

(
Mβ(r)+ t

)
, t ≥ 0

) d= (
r + δr + Sβ(t), t ≥ 0

)
,

where Sβ and δr in the right-hand side are independent. Therefore,(
Mβ(t + r)−Mβ(r), t ≥ 0

)
= (

inf
{
u≥ 0 :Sβ

(
Mβ(r)+ u

)≥ t + r
}
, t ≥ 0

)
d= (

inf
{
u≥ 0 :Sβ(u)≥ t − δr

}
, t ≥ 0

)
= (

Mβ

(
(t − δr)+

)
, t ≥ 0

);
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once again, Mβ and δr in the right-hand side are independent. We conclude that∫ s

0
E′
∣∣∣∣∣

k∑
j=1

θj

(
Mβ(tj + r)−Mβ(r)

)∣∣∣∣∣
α

(s − r)−β dr

= sinβπ

π

∫ ∞
0

∫ s

0
E′
∣∣∣∣∣

k∑
j=1

θjMβ

(
(tj − x)+

)∣∣∣∣∣
α

(3.6)

× rβ(r + x)−1x−β(s − r)−β dr dx.

Using the integration formula,∫ 1

0

(
t

1− t

)β 1

t + y
dt = π

sinβπ

[
1−

(
y

1+ y

)β]
, y > 0,

given on page 338 of Gradshteyn and Ryzhik (1994), shows that (3.6) is equivalent
to (3.4). This completes the proof. �

Recall that, when 0 < β ≤ 1/2, the Mittag–Leffler process of (3.1) is distri-
butionally equivalent to the local time at zero of a symmetric stable Lévy process
with index of stability β̂ = (1−β)−1. Specifically, let (W

β̂
(t), t ≥ 0) be a symmet-

ric β̂-stable Lévy process, such that Ee
irW

β̂
(t) = exp{−t |r|β̂} for r ∈R and t ≥ 0.

This process has a jointly continuous local time process, Lt(x), t ≥ 0, x ∈ R; see,
for example, Getoor and Kesten (1972). Then(

Mβ(t), t ≥ 0
) d= (

cβLt(0), t ≥ 0
)

(3.7)

for some cβ > 0; see Section 11.1.1 in Marcus and Rosen (2006). Therefore, in the
range 0 < β ≤ 1/2, the β-ML fractional SαS motion (3.3) can be represented in
law as

Yα,β(t)= cβ

∫
	′×[0,∞)

L(t−x)+
(
0,ω′

)
dZα,β

(
ω′, x

)
, t ≥ 0,(3.8)

where (Lt (x)) is the local time of a symmetric β̂-stable Lévy process defined
on (	′,F ′,P ′). Recall also the β̂-stable local time fractional SαS motion intro-
duced in Dombry and Guillotin-Plantard (2009) [see also Cohen and Samorodnit-
sky (2006)]. That process can be defined by

Ŷα,β(t)=
∫
	′×R

Lt

(
x,ω′

)
dẐα

(
ω′, x

)
, t ≥ 0,(3.9)

where Ẑα is a SαS random measure on 	′ × R with control measure P ′ × Leb.
We claim that, in fact, if 0 < β ≤ 1/2,(

Yα,β(t)t ≥ 0
) d= c

(1)
β

(
Ŷα,β(t)t ≥ 0

)
(3.10)
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for some multiplicative constant c
(1)
β . Therefore, one can view the ML frac-

tional SαS motion as an extension of the β̂-stable local time fractional SαS motion
from the range 1 < β̂ ≤ 2 to the range 1 < β̂ <∞. It is interesting to note that the
central limit theorem in Section 5 is of a very different type from the random walk
in random scenery situation of Cohen and Samorodnitsky (2006) and Dombry and
Guillotin-Plantard (2009).

To check (3.10), let

Hx = inf
{
t ≥ 0 :W

β̂
(t)= x

}
, x ∈R.

Since 1 < β̂ ≤ 2, Hx is a.s. finite for any x ∈ R; see, for example, Remark 43.12
in Sato (1999). Further, by the strong Markov property, for every x ∈ R, the
conditional law of (LHx+t (x), t ≥ 0) given F ′Hx

, coincides a.s. with the law of
(Lt (0), t ≥ 0). We conclude that for any k ≥ 1, t1, . . . , tk ≥ 0, and real θ1, . . . , θk ,

− logE exp

{
k∑

j=1

θj Ŷα,β(tj )

}
=
∫
R

E′
∣∣∣∣∣

k∑
j=1

θjLtj (x)

∣∣∣∣∣
α

dx

=
∫
R

∫ ∞
0

E′
∣∣∣∣∣

k∑
j=1

θjL(tj−y)+(0)

∣∣∣∣∣
α

Fx(dy) dx,

where Fx is the law of Hx . Using the obvious fact that Hx
d= |x|β̂H1, an easy

calculation shows that the mixture
∫
R

Fx dx is, up to a multiplicative constant,

equal to the measure ν in (3.3). Therefore, for some constant c
(1)
β ,

− logE exp

{
k∑

j=1

θj c
(1)
β Ŷα,β(tj )

}
=− logE exp

{
k∑

j=1

θjYα,β(tj )

}

and (3.10) follows.

REMARK 3.2. It is interesting to observe that, for a fixed 0 < α < 2, the range
of the exponent of self-similarity H = β + (1− β)/α of the β-ML fractional SαS
motion, as β varies between 0 and 1, is a proper subset of the feasible range of
the exponent of self-similarity of stationary increment self-similar SαS processes,
which is 0 < H ≤max(1,1/α); see Samorodnitsky and Taqqu (1994).

It was shown in Dombry and Guillotin-Plantard (2009) that the stable local time
fractional SαS motion is Hölder continuous. We extend this statement to the ML
fractional SαS motion.

THEOREM 3.3. The β-ML fractional SαS motion satisfies, with probability 1,

sup
0≤s<t≤1/2

|Yα,β(t)− Yα,β(s)|
(t − s)β | log(t − s)|1−β

<∞
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if 0 < α < 1, and

sup
0≤s<t≤1/2

|Yα,β(t)− Yα,β(s)|
(t − s)β | log(t − s)|3/2−β

<∞

if 1≤ α < 2.

PROOF. The statement of the theorem follows from Lemma 3.4 and the argu-
ment in Theorem 5.1 in Cohen and Samorodnitsky (2006); see also Theorem 1.5
in Dombry and Guillotin-Plantard (2009). �

The next lemma establishes Hölder continuity of the Mittag–Leffler pro-
cess (3.1). The statement might be known, but we could not find a reference, so
we present a simple argument. In the case 0 < β ≤ 1/2 (most of) the statement is
in Theorem 2.1 in Ehm (1981), through the relation with the local time (3.7).

LEMMA 3.4. For B > 0, let

K = sup
0≤s<t<s+1/2≤B

|Mβ(t)−Mβ(s)|
(t − s)β | log(t − s)|1−β

.

Then K is an a.s. finite random variable with all finite moments.

PROOF. Because of the self-similarity of the Mittag–Leffler process, it is
enough to consider B = 1/2. In the course of the proof, we will use the nota-
tion c(β) for a finite positive constant that may depend on β , and that may change
from one appearance to another. Recall the lower tail estimate of a positive β-stable
random variable:

P
(
Sβ(1)≤ θ

)≤ exp
{−c(β)θ−β/(1−β)}, 0 < θ ≤ 1;(3.11)

see Zolotarev (1986). Let λ≥ 1. We have

P(K > λ) ≤
∞∑

n=1

P
(

sup
0≤s<t≤1/2

2−(n+1)≤t−s≤2−n

Mβ(t)−Mβ(s) > c(β)λn1−β2−nβ
)

:=
∞∑

n=1

qn(λ).

For n= 1,2, . . . , we use the following decomposition:

qn(λ) ≤ P
(
Sβ(λ logn)≤ 1/2

)
+ P

[
for some 0 < t ≤ λ logn,Sβ

(
t + c(β)λn1−β2−nβ)− Sβ(t)≤ 2−n]

:= q(1)
n (λ)+ q(2)

n (λ).
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Using (3.11) and self-similarity of the stable subordinator, we obtain

∞∑
n=1

q(1)
n (λ)≤ c(β)−1 exp

{−c(β)λ1/(1−β)}.
On the other hand,

q(2)
n (λ)≤ P

(
Sβ

(
2−1(i + 1)c(β)λn1−β2−nβ)

− Sβ

(
2−1ic(β)λn1−β2−nβ)≤ 2−n, some i = 0, . . . ,Kn

)
with Kn ≤ 2c(β)−1nβ−12nβ logn. Switching to the complements, and using once
again (3.11) together with the independence of the increments and self-similarity
of the stable subordinator, we conclude, after some straightforward calculus, that
for all λ≥ λ(β) ∈ (0,∞),

∞∑
n=1

q(2)
n (λ)≤ c(β)−1 exp

{−c(β)λ1/(1−β)}.
The resulting bound on the tail probability P(K > λ) is sufficient for the statement
of the lemma. �

Recall that the only self-similar Gaussian process with stationary incre-
ments is the Fractional Brownian motion (FBM), whose law is, apart from
the scale, uniquely determined by the self-similarity parameter H ∈ (0,1); see
Samorodnitsky and Taqqu (1994). This parameter of self-similarity also deter-
mines the dependence properties of the increment process of the FBM, the so-
called fractional Gaussian noise, with the case H > 1/2 regarded as the long
memory case. In contrast, the self-similarity parameter almost never determines
the dependence properties of the increment processes of stable self-similar pro-
cesses with stationary increments; see Samorodnitsky (2006). Therefore, it is in-
teresting and important to discuss the memory properties of the increment process

V (α,β)
n = Yα,β(n+ 1)− Yα,β(n), n= 0,1,2, . . . .(3.12)

We refer the reader to Rosiński (1995) and Samorodnitsky (2005) for some of the
notions used in the statement of the following theorem.

THEOREM 3.5. The stationary process (V
(α,β)
n ) is generated by a conserva-

tive null flow and is mixing.

PROOF. Note that the increment process has the integral representation

V (α,β)
n =

∫
	′×[0,∞)

(
Mβ

(
(n+ 1− x)+,ω′

)−Mβ

(
(n− x)+,ω′

))
dZα,β

(
ω′, x

)
,

n= 0,1,2, . . . .
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Since for every x > 0, on a set of P ′ probability 1, by the strong Markov property
of the stable subordinator we have

lim sup
n→∞

Mβ

(
(n+ 1− x)+

)−Mβ

(
(n− x)+

)
> 0,

we see that
∞∑

n=1

(
Mβ

(
(n+ 1− x)+,ω′

)−Mβ

(
(n− x)+,ω′

))α =∞, P ′ × ν a.e.

By Corollary 4.2 in Rosiński (1995), we conclude that the increment process is
generated by a conservative flow.

It remains to prove that the increment process is mixing, since mixing implies
ergodicity which, in turn, implies that the increment process is generated by a null
flow; see Samorodnitsky (2005). By Theorem 5 of Rosiński and Żak (1996), it is
enough to show that for every ε > 0,(

P ′ × ν
){(

ω′, x
)
:Mβ

(
(1− x)+,ω′

)
> ε,

Mβ

(
(n+ 1− x)+,ω′

)−Mβ

(
(n− x)+,ω′

)
> ε

}→ 0 as n→∞.

However, an obvious upper bound on the expression in the left-hand side is∫ 1

0
P ′
(
Mβ(n+ 1− x)−Mβ(n− x) > ε

)
(1− β)x−β dx

=
∫ 1

0
P ′
(
Mβ

(
(1− δn−x)+

)
> ε

)
(1− β)x−β dx,

where for r > 0, δr is a random variable, independent of the Mittag–Leffler pro-
cess, with the distribution given by (3.5). Since δr converges weakly to infinity as
r →∞, by the dominated convergence theorem, the above expression converges
to zero as n→∞. �

REMARK 3.6. Two extreme cases deserve mentioning. A formal substitution
of β = 0 into (3.2) leads to a well-defined process M0(0) = 0 and M0(t) = E,
the same standard exponential random variable for all t > 0. This process is no
longer the inverse of a stable subordinator. It can, however, be used in (3.3). It
is elementary to see that the resulting SαS process Yα,0 is, in fact, a SαS Lévy
motion.

On the other hand, a formal substitution of β = 1 into (3.2) leads to the degen-
erate process M1(t) = t for all t ≥ 0 [which can be viewed as the inverse of the
degenerate 1-stable subordinator S1(t)= t for t ≥ 0]. Once again, this process can
be used in (3.3), if one interprets the measure ν as the unit point mass at the origin.
The resulting SαS process Yα,1 is now the degenerate process Yα,1(t) = tYα,1(1)

for all t ≥ 0, where Yα,1(1) is a SαS random variable.
Both limiting cases, Yα,0 and Yα,1, are processes of a very different nature from

the β-ML fractional SαS motion with 0 < β < 1.



252 T. OWADA AND G. SAMORODNITSKY

4. Some ergodic theory. In this section, we present some elements of ergodic
theory used in this paper. The main reference for these notions is Aaronson (1997);
see also Zweimüller (2009).

Let (E,E,μ) be a σ -finite measure space. We will often use the notation A= B

mod μ for A,B ∈ E when μ(A
B)= 0.
Let T :E → E be a measurable map that preserves the measure μ. When the

entire sequence T ,T 2, T 3, . . . of iterates of T is involved, we will sometimes refer
to it as a flow. The map T is called ergodic if the only sets A in E for which
A = T −1A mod μ are those for which μ(A) = 0 or μ(Ac) = 0. The map T is
called conservative if

∞∑
n=1

1A ◦ T n =∞ a.e. on A

for every A ∈ E with μ(A) > 0. If T is ergodic, then the qualification “on A” above
is not needed.

The dual operator T̂ is an operator L1(μ)→ L1(μ) defined by

T̂ f = d(νf ◦ T −1)

dμ

with νf a signed measure on (E,E) given by νf (A)= ∫
A f dμ, A ∈ E . The dual

operator satisfies the relation∫
E
(T̂ f ) · g dμ=

∫
E

f · (g ◦ T )dμ(4.1)

for f ∈ L1(μ), g ∈ L∞(μ). For any nonnegative measurable function f on E, a
similar definition gives a nonnegative measurable function T̂ f , and (4.1) holds for
any two nonnegative measurable functions f and g.

An ergodic conservative measure preserving map T is called pointwise dual
ergodic if there is a sequence of positive constants an→∞ such that

1

an

n∑
k=1

T̂ kf →
∫
E

f dμ a.e.(4.2)

for every f ∈ L1(μ). If the measure μ is infinite, pointwise dual ergodicity rules
out invertibility of the map T ; in fact, no factor of T can be invertible; see page 129
of Aaronson (1997).

Sometimes the convergence of the type described in the definition (4.2) of
pointwise dual ergodicity is uniform on certain sets. Let A ∈ E be a set with
0 < μ(A) <∞. We say that A is a Darling–Kac set for an ergodic conservative
measure preserving map T if for some sequence of positive constants an→∞,

1

an

n∑
k=1

T̂ k1A→ μ(A) uniformly, a.e. on A(4.3)
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[i.e., the convergence in (4.3) is uniform on a measurable subset B of A with
μ(B)= μ(A)]. By Proposition 3.7.5 of Aaronson (1997), existence of a Darling–
Kac set implies pointwise dual ergodicity of T , so it is legitimate to use the same
sequence (an) in (4.2) and (4.3).

Given a set A ∈ E , the map ϕ :E → N ∪ {∞} defined by ϕ(x) = inf{n ≥
1 :T nx ∈ A}, x ∈ E is called the first entrance time to A. If T is conservative
and ergodic (in addition to being measure preserving), and μ(A) > 0, then ϕ <∞
a.e. on E. It is natural to measure how often the set A is visited by the flow (T n)

by the wandering rate sequence

wn = μ

(
n−1⋃
k=0

T −kA

)
, n= 1,2, . . . .

There are several alternative expressions for the wandering rate sequence, the last
two following from the fact that T is measure preserving:

wn =
n−1∑
k=0

μ(Ak)=
n−1∑
k=0

μ
(
A∩ {ϕ > k})

(4.4)

=
∞∑

k=1

min(k, n)μ
(
A∩ {ϕ = k}).

Here, A0 = A and Ak = Ac ∩ {ϕ = k} for k ≥ 1. If μ is an infinite measure, T is
conservative and ergodic, and 0 < μ(A) <∞, then it follows from (4.4) that

wn ∼ μ(ϕ < n) as n→∞.(4.5)

Let T be a conservative ergodic measure preserving map. If a set A is a Darling–
Kac set, then there is a precise connection between the return sequence (wn) and
the normalizing sequence (an) in (4.3) [and hence, also in (4.2)], assuming regular
variation. Specifically, if either (wn) ∈ RV1−β or (an) ∈ RVβ for some β ∈ [0,1],
then

an ∼ 1

�(2− β)�(1+ β)

n

wn

as n→∞.(4.6)

Proposition 3.8.7 in Aaronson (1997) gives one direction of this statement, but the
argument is easily reversed.

We will also have an opportunity to use a variation of the notion of a Darling–
Kac set. Let T be an ergodic conservative measure preserving map. A set A ∈ E
with 0 < μ(A) < ∞ is said to be a uniform set for a nonnegative function
g ∈ L1(μ) if

1

an

n∑
k=1

T̂ kg→
∫
E

g dμ uniformly, a.e. on A.(4.7)

If g = 1A, then a uniform set is just a Darling–Kac set.
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5. Central limit theorem associated with conservative null flows. In this
section, we state and discuss a functional central limit theorem for stationary in-
finitely divisible processes generated by certain conservative flows. Throughout,
T is an ergodic conservative measure preserving map on an infinite σ -finite mea-
sure space (E,E,μ), and M a symmetric homogeneous infinitely divisible random
measure on (E,E) with control measure μ and local Lévy measure ρ, satisfying
the regular variation with index −α, 0 < α < 2 at infinity condition (2.5). We
will impose an extra assumption on the lower tail of the local Lévy measure: for
some p0 < 2

xp0ρ(x,∞)→ 0 as x→ 0.(5.1)

Let f :E → R be a measurable function. We will assume that f is supported
by a set of finite μ-measure, and has the following integrability properties:

f ∈
⎧⎪⎨⎪⎩

L1∨p(μ) for some p > p0, if 0 < α < 1,
L∞(μ), if α = 1,
L2(μ), if 1 < α < 2.

(5.2)

We will, further, assume that

μ(f )=
∫
E

f (s)μ(ds) �= 0.(5.3)

We consider a stochastic process X= (X1,X2, . . .) of the form (2.1)–(2.2). The
integral is well defined under the condition∫

E

∫
R

min
(
1, x2fn(s)

2)ρ(dx)μ(ds) <∞.

It is not difficult to verify that this condition holds due to the assumptions on the
Lévy measure ρ and the integrability conditions (5.2) on f . Therefore, the process
X is a well-defined infinitely divisible stochastic process. It is automatically sta-
tionary. The Lévy measure of each Xn is given by νmarg = (ρ ×μ) ◦H−1, where
H :R×E→ R is given by H(x, s)= xf (s). The assumptions on the Lévy mea-
sure ρ and the integrability conditions (5.2) on f imply that

νmarg(λ,∞)∼
(∫

E

∣∣f (s)
∣∣αμ(ds)

)
ρ(λ,∞)

as λ→∞. It follows that the marginal tail of the process itself is the same:

P(Xn > λ)∼
(∫

E

∣∣f (s)
∣∣αμ(ds)

)
ρ(λ,∞)

as λ→∞; see Rosiński and Samorodnitsky (1993). In particular, the marginal
distributions of the process X are in the domain of attraction of a SαS law; its
memory is determined by the operator T through (2.2).

We will assume that the operator T has a Darling–Kac set A [recall (4.3)], and
that the normalizing sequence (an) is regularly varying with exponent β ∈ (0,1).



FUNCTIONAL CENTRAL LIMIT THEOREM 255

We will also assume that the function f is supported by A. We will add an extra
assumption on the set A. Recall the definition of the set An in (4.4) as being the
collection of those points outside of A that enter A for the first time after n steps,
n= 1,2, . . . . We will assume that there exists a measurable function K :E→R+
such that

T̂ n1An

μ(An)
→K uniformly, a.e. on A.(5.4)

This condition is an extension of the property shared by certain operators T , the
so-called Markov shifts [see Chapter 4 in Aaronson (1997)], to a more general
class of operators. See Examples 5.5 and 5.6 below.

Let ρ←(y)= inf{x ≥ 0 :ρ(x,∞) ≤ y}, y > 0 be the left continuous inverse of
the tail of the local Lévy measure. The regular variation of the tail implies that
ρ← ∈RV−1/α at zero. Define

cn = �(1+ β)C−1/α
α anρ

←(1/wn), n= 1,2, . . . ,(5.5)

where Cα is the α-stable tail constant [see Samorodnitsky and Taqqu (1994)],
(an) is the normalizing sequence in the Darling–Kac property (4.3) [or, equiva-
lently, in the pointwise dual ergodicity property (4.2)], and (wn) is the wandering
rate sequence for the set A [related to the sequence (an) via (4.6)]. It follows im-
mediately that

cn ∈RVβ+(1−β)/α.(5.6)

The sequence (cn) is the normalizing sequence in the functional central limit the-
orem below. We will see that under the conditions of that theorem we have the
asymptotic relation

ρ(cn/an,∞)

∼ Cα

(
Cα,β/�(1+ β)

)α∣∣μ(f )
∣∣αaα

n

(∫
E

∣∣∣∣∣
n∑

k=1

f ◦ T k(x)

∣∣∣∣∣
α

μ(dx)

)−1

(5.7)

as n→∞
with

Cα,β = �(1+ β)
(
(1− β)B(1− β,1+ αβ)E

(
Mβ(1)

)α)1/α
.(5.8)

Here, B is the standard beta function, and Mβ the Mittag–Leffler process defined
in (3.1). The following is our functional central limit theorem.

THEOREM 5.1. Let T be an ergodic conservative measure preserving map
on an infinite σ -finite measure space (E,E,μ), possessing a Darling–Kac set A

whose normalizing sequence (an) is regularly varying with exponent β ∈ (0,1).
Assume that (5.4) holds. Let M be a symmetric homogeneous infinitely divisible
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random measure on (E,E) with control measure μ and local Lévy measure ρ, sat-
isfying the regular variation with index −α, 0 < α < 2 at infinity condition (2.5).
Assume further that (5.1) holds for some p0 < 2.

Let f be a measurable function supported by A and satisfying (5.2) and (5.3).
If 1 < α < 2, assume further that either:

(i) A is a uniform set for |f |, or
(ii) f is bounded.

Then the stationary infinitely divisible stochastic process X = (X1,X2, . . .)

given by (2.1) and (2.2) satisfies

1

cn

�n·�∑
k=1

Xk ⇒ μ(f )Yα,β in D[0,∞),(5.9)

where (cn) is defined by (5.5), and {Yα,β} is the β-Mittag–Leffler fractional SαS
motion defined by (3.3).

REMARK 5.2. The type of the limiting process obtained in Theorem 5.1 is an
indication of the long memory in the process X. On the other hand, the Darling–
Kac assumption (4.3) and the duality relation (4.1) imply that

1

an

n∑
k=1

μ
(
A∩ T −kA

)= 1

an

n∑
k=1

∫
E

1A · 1A ◦ T kdμ

=
∫
A

1

an

n∑
k=1

T̂ k1A dμ→ μ(A)2 ∈ (0,∞)

as n→∞. Since an = o(n), and f is supported by A, we see that for every ε > 0,

1

n

n∑
k=1

μ
{
x ∈E :

∣∣f (x)
∣∣> ε,

∣∣f ◦ T k(x)
∣∣> ε

}≤ 1

n

n∑
k=1

μ
(
A∩ T −kA

)→ 0

and it follows immediately, for example, from Theorem 2 in Rosiński and Żak
(1997) that the process X is ergodic.

Under certain additional assumptions on the map T , one can check that the
process X is, in fact, mixing. We skip the details. See, however, Examples 5.5
and 5.6 below.

REMARK 5.3. The statement of Theorem 5.1 makes sense in the limiting
cases β = 0 and β = 1 of Remark 3.6 (in the case β = 1 the constant Cα,1 needs
to be interpreted as C

1/α
α ). Most of the argument in the proof of Theorem 5.1 au-

tomatically works in these cases. The limiting processes would then turn out to
be, correspondingly, a SαS Lévy motion and the straight line process; see Re-
mark 3.6. This case β = 0 corresponds to short memory in the process X, while
the case β = 1 corresponds to extremely long memory.
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REMARK 5.4. When 0 < α < 1, the argument we will use in the proof of The-
orem 5.1 can be used to establish a “positive” version of the theorem. Specifically,
assume now that the local Lévy measure ρ is concentrated on (0,∞), and that the
function f is nonnegative. Then

1

cn

�n·�∑
k=1

Xk ⇒ μ(f )Y+α,β in D[0,∞),(5.10)

where {Y+α,β} is a positive β-Mittag–Leffler fractional α-stable motion defined as
in (3.3), but with SαS random measure Zα,β replaced by a positive α-stable ran-
dom measure with the same control measure.

We finish this section with two examples of different situations where Theo-
rem 5.1 applies. The first example is close to the heart of a probabilist.

EXAMPLE 5.5. Consider an irreducible null recurrent Markov chain with state
space Z and transition matrix P = (pij ). Let {πj , j ∈ Z} be the unique invariant
measure of the Markov chain that satisfies π0 = 1. We define a σ -finite measure
on (E,E)= (ZN,B(ZN)) by

μ(·)=∑
i∈Z

πiPi(·)

with the usual notation of Pi(·) being the probability law of the Markov chain
starting in state i ∈ Z. Since

∑
j πj =∞, μ is an infinite measure.

Let T :ZN→ Z
N be the left shift map T (x0, x1, . . .)= (x1, x2, . . .) for {xk, k =

0,1, . . .} ∈ Z
N. Obviously, T preserves the measure μ. Since the Markov chain is

irreducible and null recurrent, the flow {T n} is conservative and ergodic; see Harris
and Robbins (1953).

Consider the set A= {x ∈ Z
N :x0 = 0} and the corresponding first entrance time

ϕ(x)=min{n≥ 1 :xn = 0}, x ∈ Z
N. Assume that

n∑
k=1

P0(ϕ ≥ k) ∈RV1−β(5.11)

for some β ∈ (0,1). Since μ(ϕ = k) = P0(ϕ ≥ k) for k ≥ 1 [see Lemma 3.3 in
Resnick, Samorodnitsky and Xue (2000)], we see that μ(ϕ ≤ n) ∈ RV1−β , and
hence, by (4.5), the wandering rates (wn) have the same property,

wn ∈RV1−β.(5.12)

In this example,

T̂ k1A(x)= P0(xk = 0) constant for x ∈A;
see Section 4.5 in Aaronson (1997). In particular, the set A is a Darling–Kac set,
and by (5.12) and (4.6), we see that the corresponding normalizing sequence (an)
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is regularly varying with exponent β . Assumption (5.4) is easily seen to hold in
this example. Indeed, applying the explicit expression for the dual operator given
on page 156 in Aaronson (1997) to the function

g(x0, x1, . . .)= 1(xj �= 0, j = 0, . . . , n− 1, xn = 0),

we see that

T̂ n1An(x0, x1, . . .)= 1(x0 = 0)
∑
i0 �=0

πi0

∑
i1 �=0

pi0i1 · · ·
∑

in−1 �=0

pin−2in−1pin−10

is constant on A and vanishes outside of A. Therefore, the ratio in (5.4) is identi-
cally equal to 1 on A.

We conclude that Theorem 5.1 applies in this case if we choose any measurable
function f supported by A and satisfying the conditions of the theorem.

It is easy to see that the stationary infinitely divisible process X in this example
is mixing. Indeed, by Theorem 5 of Rosiński and Żak (1996) it is enough to check
that

μ
{
x :
∣∣f (x)

∣∣> ε,
∣∣f ◦ T n(x)

∣∣> ε
}→ 0

for every ε > 0. However, since f vanishes outside of A, null recurrence implies
that as n→∞,

μ
{
x :
∣∣f (x)

∣∣> ε,
∣∣f ◦ T n(x)

∣∣> ε
}≤ μ

(
A∩ T −nA

)= P0(xn = 0)→ 0.

The next example is less familiar to probabilists, but is well known to ergodic
theorists.

EXAMPLE 5.6. We start with a construction of the so-called AFN-system,
studied in, for example, Zweimüller (2000) and Thaler and Zweimüller (2006).
Let E be the union of a finite family of disjoint bounded open intervals in R and
let E be the Borel σ -field on E. Let λ be the one-dimensional Lebesgue measure.

Let ξ be a (possibly, infinite) collection of nonempty disjoint open subintervals
(of the intervals in E) such that λ(E \ ⋃Z∈ξ Z) = 0. Let T :E → E be a map
that is twice differentiable on (each interval of) E. We assume that T is strictly
monotone on each Z ∈ ξ .

Map T is further assumed to satisfy the following three conditions, (A), (F)
and (N), (giving rise to the name AFN-system).

(A) Adler’s condition:

T ′′/
(
T ′
)2 is bounded on

⋃
Z∈ξ

Z.

(F) Finite image condition:

the collection T ξ = {T Z :Z ∈ ξ} is finite.
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(N) A possibility of nonuniform expansion: there exists a finite subset ζ ⊆ ξ

such that each Z ∈ ζ has an indifferent fixed-point xZ as one of its end points. That
is,

lim
x→xZ,x∈Z

T x = xZ and lim
x→xZ,x∈Z

T ′x = 1.

Moreover, we suppose, for each Z ∈ ζ ,

either T ′ decreases on (−∞, xZ)∩Z or T ′ increases on (xZ,∞)∩Z,

depending on whether xZ is the left endpoint or the right endpoint of Z. Finally,
we assume that T is uniformly expanding away from {xZ :Z ∈ ζ }, that is, for each
ε > 0, there is ρ(ε) > 1 such that∣∣T ′∣∣≥ ρ(ε) on E

∖ ⋃
Z∈ζ

(
(xZ − ε, xZ + ε)∩Z

)
.

If the conditions (A), (F), and (N) are satisfied, the triplet (E,T , ξ) is called an
AFN-system, and the map T is called an AFN-map. If T is also conservative and
ergodic with respect to λ, and the collection ζ is nonempty, then the AFN-map
T is said to be basic; we will assume this property in the sequel. Finally, we will
assume that T admits nice expansions at the indifferent fixed points. That is, for
every Z ∈ ζ there is 0 < βZ < 1 such that

T x = x + aZ|x − xZ|1/βZ+1 + o
(|x − xZ|1/βZ+1) as x→ xZ in Z(5.13)

for some aZ �= 0.
It is shown in Zweimüller (2000) that every basic AFN-map has an infinite in-

variant measure μ� λ with the density given by dμ/dλ(x)= h0(x)G(x), x ∈E,
where

G(x)=
⎧⎪⎨⎪⎩

(x − xZ)
(
x − (T |Z)−1(x)

)−1
, if x ∈ Z ∈ ζ ,

1, if x ∈E
∖ ⋃

Z∈ζ

Z

and h0 is a function of bounded variation bounded away from both 0 and infin-
ity. We view T as a conservative ergodic measure-preserving map on the infinite
measure space (E,E,μ).

An example of a basic AFN-map is Boole’s transformation placed on E =
(0,1/2)∪ (1/2,1), defined by

T (x)= x(1− x)

1− x − x2 , x ∈ (0,1/2),

T (x)= 1− T (1− x), x ∈ (1/2,1).

It admits nice expansions at the indifferent fixed points xZ = 0 and xZ = 1 with
βZ = 1/2 in both cases. The invariant measure μ satisfies

dμ

dλ
(x)= 1

x2 +
1

(1− x)2 , x ∈E.

See Thaler (2001).
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Let T be a basic AFN-map. We put

A=E
∖ ⋃

Z∈ζ

(
(xZ − ε, xZ + ε)∩Z

)
for some ε > 0 small enough so that the set A is nonempty. Since λ(∂A) = 0
and A is bounded away from the indifferent fixed points {xZ :Z ∈ ζ }, it follows
from Corollary 3 of Zweimüller (2000) that A is a Darling–Kac set. Moreover, the
corresponding normalizing sequence (an) is regularly varying with exponent β =
minZ∈ζ βZ in the notation of (5.13); see Theorems 3 and 4 in Zweimüller (2000).
The assumption (5.4) also holds; see (2.6) in Thaler and Zweimüller (2006).

Once again, Theorem 5.1 applies if we choose any measurable function f sup-
ported by A and satisfying the conditions of Theorem 5.1. Note that, by Theorem 9
in Zweimüller (2000), Riemann integrability of |f | on A suffices for the unifor-
mity of the set A for |f |.

The stationary infinitely divisible process X in this example is also mixing. In-
deed, the basic AFN-map T is exact, that is, the σ -field

⋂∞
n=1 T −nE is trivial; see,

for example, page 1522 in Zweimüller (2000). The exactness of T implies that

μ
(
A∩ T −nA

)= ∫
A

T̂ n1A dμ→ 0

as n→∞; see page 12 in Thaler (2001). Now mixing of the process X follows
from the fact that f is supported by A, as in Example 5.5.

6. Distributional results in ergodic theory. In this section, we prove two
distributional ergodic-theoretical results that will be used in the proof of Theo-
rem 5.1. These results may be of interest on their own as well. We call our first
result a generalized Darling–Kac theorem, because the first result of this type was
proved in Darling and Kac (1957) as a distributional limit theorem for the occupa-
tion times of Markov processes and chains under a certain uniformity assumption
on the transition law. The limiting law is the Mittag–Leffler distribution described
in (3.2). Under the same setup and assumptions, Bingham (1971) extended the re-
sult to weak convergence in the space D[0,∞) endowed with the Skorohod J1
topology, and the limiting process is the Mittag–Leffler process defined in (3.1).

The result of Darling and Kac (1957) was put into ergodic-theoretic context by
Aaronson (1981) who established the one-dimensional convergence for abstract
conservative infinite measure preserving maps under the assumption of pointwise
dual ergodicity, that is, dispensing with a condition of uniformity. Furthermore,
Aaronson proves convergence in a strong distributional sense, a stronger mode of
convergence than weak convergence. The same strong distributional convergence
was established later in Thaler and Zweimüller (2006), with the assumption of
pointwise dual ergodicity replaced by an averaged version of (5.4). The latter as-
sumption was further weakened in Zweimüller (2007a). Our result, Theorem 6.1
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below, extends Aaronson’s result to the space D[0,∞), under the assumption of
pointwise dual ergodicity.

We start with defining strong distributional convergence. Let Y be a separable
metric space, equipped with its Borel σ -field. Let (	1,F1,m) be a measure space
and (	2,F2,P2) a probability space. We say that a sequence of measurable maps
Rn :	1 → Y , n= 1,2, . . . converges strongly in distribution to a measurable map
R :	2 → Y if P1 ◦R−1

n ⇒ P2 ◦R−1 in Y for any probability measure P1 �m on
(	1,F1). That is, ∫

	1

g(Rn)dP1 →
∫
	2

g(R)dP2

for any such P1 and a bounded continuous function g on Y . We will use the nota-

tion Rn
L(m)⇒ R when strong distributional convergence takes place.

THEOREM 6.1 (Generalized Darling–Kac theorem). Let T be an ergodic con-
servative measure preserving map on an infinite σ -finite measure space (E,E,μ).
Assume that T is pointwise dual ergodic with a normalizing sequence (an) that is
regularly varying with exponent β ∈ (0,1). Let f ∈ L1(μ) be such that μ(f ) �= 0,
and denote Sn(f )=∑n

k=1 f ◦ T k , n= 1,2, . . . . Then

1

an

S�n·�(f )
L(μ)⇒ μ(f )�(1+ β)Mβ(·) in D[0,∞),(6.1)

where Mβ is the Mittag–Leffler process, and D[0,∞) is equipped with the J1
topology.

PROOF. It is shown in Corollary 3 of Zweimüller (2007b) that proving weak
convergence in (6.1) for one fixed probability measure on (E,E), that is absolutely
continuous with respect to μ, already guarantees the full strong distributional con-
vergence. We choose and fix an arbitrary set A ∈ E with 0 < μ(A) <∞, and prove
weak convergence in (6.1) with respect to μA(·)= μ(· ∩A)/μ(A).

It turns out that we only need to consider one particular function f = 1A and to
establish the appropriate finite-dimensional convergence, that is, to show that(

1

an

S�nti�(1A)

)k

i=1
⇒ (

μ(A)�(1+ β)Mβ(ti)
)k
i=1 in R

k(6.2)

for all k ≥ 1, 0≤ t1 < · · ·< tk , when the law of the random vector in the left-hand
side is computed with respect to μA.

Indeed, suppose that (6.2) holds. By Hopf’s ergodic theorem [also sometimes
called a ratio ergodic theorem; see Theorem 2.2.5 in Aaronson (1997)], the
finite-dimensional convergence immediately extends to the corresponding finite-
dimensional convergence with any function f ∈ L1(μ) such that μ(f ) �= 0. Next,
write f = f+ − f−, the difference of the positive and negative parts. Since the
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process (a−1
n S�nt�(f+), t ≥ 0) has, for each n, nondecreasing sample paths, Theo-

rem 3 in Bingham (1971) tells us that the convergence of the finite-dimensional dis-
tributions, and the continuity in probability of the limiting Mittag–Leffler process
already imply weak convergence, hence tightness, of this sequence of processes.
Similarly, the sequence of the processes (a−1

n S�nt�(f−), t ≥ 0), n= 1,2, . . . is tight
as well. Since both converge to a continuous limit, their sum, (a−1

n S�nt�(f ), t ≥ 0),
n = 1,2, . . . , is tight as well, because in this case the uniform modulus of con-
tinuity can be used instead of the J1 modulus of continuity; see, for example,
Billingsley (1999).

This will give us the required weak convergence, and hence, complete the proof
of the theorem.

It remains to show (6.2). We will use a strategy similar to the one used in
Bingham (1971). We start with defining a continuous version of the process
(S�nt�(1A), t ≥ 0) given by the linear interpolation

S̃n(t)= (
(i + 1)− nt

)
Si(1A)+ (nt − i)Si+1(1A)

(6.3)

if
i

n
≤ t ≤ i + 1

n
, i = 0,1,2, . . . .

With the implicit argument x ∈ E viewed as random (with the law μA), each S̃n

defines a random Radon measure on [0,∞). Therefore, for any k ≥ 1 the k-tuple
product S̃k

n = S̃n × · · · × S̃n is a random Radon measure on [0,∞)k . By Fubini’s
theorem,

m̃(k)
n (B)=

∫
A

S̃k
n(B)(x)μA(dx), B ⊆ [0,∞)k, Borel,

is a Radon measure on [0,∞)k . We define, similarly, Sn, Sk
n and m

(k)
n , starting

with Sn(t)= S�nt�(1A), t ≥ 0. Finally, we perform the same operation on the lim-
iting process and define Mβ,A by μ(A)�(1+ β)Mβ , and then construct Mk

β,A and

m
(k)
β,A =EMk

β,A.

Note that m̃
(k)
n is absolutely continuous with respect to the k-dimensional

Lebesgue measure, and

dkm̃
(k)
n

dt1 · · · dtk
= nk

∫
A

k∏
j=1

1A ◦ T ij (x)μA(dx)

on
ij

n
≤ tj <

ij + 1

n
, ij = 0,1, . . . , j = 1, . . . , k.

We will prove that for all k ≥ 1, θ1, . . . , θk ≥ 0,

1

ak
n

∫ ∞
0
· · ·

∫ ∞
0

e
−∑k

j=1 θj tj m̃(k)
n (dt1 · · · dtk)

(6.4)
→

∫ ∞
0
· · ·

∫ ∞
0

e
−∑k

j=1 θj tj m
(k)
β,A(dt1 · · · dtk)
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as n→∞. We claim that this will suffice for (6.2).
Indeed, suppose that (6.4) holds. Convergence of the joint Laplace transforms

implies that

a−k
n m̃(k)

n

v→m
(k)
β,A

(vaguely) in [0,∞)k . Since the rectangles are, clearly, compact continuity sets with
respect to the limiting measure m

(k)
β,A, we conclude that for every k = 1,2, . . . and

tj ≥ 0, j = 1, . . . , k, we have∫
A

k∏
j=1

a−1
n S̃n(tj )(x)μA(dx)

= a−k
n m̃(k)

n

(
k∏

j=1

[0, tj ]
)
→m

(k)
β,A

(
k∏

j=1

[0, tj ]
)

=E

[
k∏

j=1

μ(A)�(1+ β)Mβ(tj )

]

as n→∞. Since for every fixed ε > 0 and n > 1/ε,

S̃n(t)≤ Sn(t)≤ S̃n(t + ε)

for each t ≥ 0, we conclude by monotonicity and continuity of the Mittag–Leffler
process that∫

A

k∏
j=1

a−1
n Sn(tj )μA(dx)→E

[
k∏

j=1

μ(A)�(1+ β)Mβ(tj )

]
.(6.5)

We claim that (6.5) implies (6.2). By taking linear combinations with nonnegative
weights, we see that it is enough to show that the distribution of such a linear
combination,

k∑
j=1

θjMβ(tj ), θj > 0, j = 1, . . . , k,

is determined by its moments, and by the Carleman sufficient condition it is enough
to check that

∞∑
m=1

(
1

E(
∑k

j=1 θjMβ(tj ))m

)1/(2m)

=∞.

A simple monotonicity and scaling argument shows that it is sufficient to verify
only that

∞∑
m=1

(
1

E(Mβ(1))m

)1/(2m)

=∞.(6.6)
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However, the moments of Mβ(1) can be read off (3.2), and Stirling’s formula to-
gether with elementary algebra imply (6.6). Hence, (6.2) follows.

It follows that we need to prove (6.4). Taking into account the form of the den-
sity of m̃

(k)
n with respect to the k-dimensional Lebesgue measure, we can write the

left-hand side of (6.4) as ∑
π

Fn,A(θπ(1) · · · θπ(k)),

where

Fn,A(θ1 · · · θk)

=
(

n

an

)k ∫
· · ·

∫
0<t1<···<tk

e
−∑k

j=1 θj tj μA

(
k⋂

j=1

T −�ntj �A
)

dt1 · · · dtk

and π runs through the permutations of the sets {1, . . . , k}. To establish (6.4), it is
enough to verify that

Fn,A(θ1 · · · θk)
(6.7)

→ (
μ(A)�(1+ β)

)k(
(θ1 + · · · + θk)(θ2 + · · · + θk) · · · θk

)−β

as n → ∞, because Lemma 3 in Bingham (1971) shows that summing up
the expression in the right-hand side of (6.7) over all possible permutations
(θπ(1) · · · θπ(k)) produces the expression in the right-hand side of (6.4).

Given 0 < ε < 1, we use repeatedly pointwise dual ergodicity and Egorov’s
theorem to construct a nested sequence of measurable subsets of E, with A0 =A,
and for i = 0,1, . . . , Ai+1 ⊆Ai , and μ(Ai+1)≥ (1− ε)μ(Ai), while

1

an

n∑
k=1

T̂ k1Ai
→ μ(Ai) uniformly on Ai+1.(6.8)

It is elementary to see that with v1 = θ1 + θ2 + · · · + θk , v2 = θ2 + · · · + θk, . . . ,

vk = θk ,

Fn,A(θ1 · · · θk)

∼ 1

ak
n

∞∑
m1=0

· · ·
∞∑

mk=0

e
−n−1 ∑k

j=1 vjmj μA

(
k⋂

j=1

T −(m1+···+mj )A

)

= 1

ak
n

∫
A

[( ∞∑
m1=0

T̂ m11Ae−v1m1/n

)
(6.9)

×
k∏

j=2

( ∞∑
mj=0

1A ◦ T m2+···+mj e−vjmj /n

)]
dμA

≥ 1

ak
n

∫
A1

(· · ·),
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where the equality is due to the duality relation (4.1). Note that by (6.8) with i = 0,
∞∑

m1=0

T̂ m11Ae−v1m1/n

(6.10)

= (
1− e−v1/n) ∞∑

i=0

(
i∑

m1=0

T̂ m11A0

)
e−v1i/n ∼ μ(A0)v1

n

∞∑
i=0

aie
−v1i/n

uniformly on A1 as n→∞. Therefore,

Fn,A(θ1 · · · θk)

≥ (
1− o(1)

) 1

ak
n

μ(A0)v1

n

×
∞∑
i=0

aie
−v1i/n

∫
A1

k∏
j=2

( ∞∑
mj=0

1A ◦ T m2+···+mj e−vjmj /n

)
dμA

= (
1− o(1)

) 1

ak
n

μ(A0)v1

n

×
∞∑
i=0

aie
−v1i/n

∫
A

[( ∞∑
m2=0

T̂ m21A1e
−v2m2/n

)

×
k∏

j=3

( ∞∑
mj=0

1A ◦ T m3+···+mj e−vjmj /n

)]
dμA

≥ (
1− o(1)

) 1

ak
n

μ(A0)v1

n

∞∑
i=0

aie
−v1i/n

∫
A2

(· · ·).

Using now repeatedly (6.8) with larger and larger i, together with the same argu-
ment as in (6.10), we conclude that

Fn,A(θ1 · · · θk)

≥ (
1− o(1)

) 1

ak
n

μ(A0)μ(A1)v1v2

n2

∞∑
i1=0

ai1e
−v1i1/n

∞∑
i2=0

ai2e
−v2i2/n

×
∫
A2

k∏
j=3

( ∞∑
mj=0

1A ◦ T m3+···+mj e−vjmj /n

)
dμA

≥ · · · ≥ (
1− o(1)

) 1

ak
n

∏k−1
j=0 μ(Aj )vj+1

nk

k∏
j=1

( ∞∑
i=0

aie
−vj i/n

)
μ(Ak)

μ(A)

≥ (
1− o(1)

)
(1− ε)k(k+1)/2

(
μ(A)

nan

)k

(v1 · · ·vk)

k∏
j=1

( ∞∑
i=0

aie
−vj i/n

)
.
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Extending the sequence (an) into a piece-wise constant regular varying function
of real variable (a(x), x > 0) and using Karamata’s Tauberian theorem [see, e.g.,
Section 3.6 in Aaronson (1997)], we conclude that for every j = 1, . . . , k,

∞∑
i=0

aie
−vj i/n ∼ �(1+ β)

n

vj

a(n/vj ), n→∞.

It follows that

Fn,A(θ1 · · · θk) ≥ (
1− o(1)

)
(1− ε)k(k+1)/2(μ(A)�(1+ β)

)k k∏
j=1

a(n/vj )

an

→ (1− ε)k(k+1)/2(μ(A)�(1+ β)
)k k∏

j=1

v
−β
j

by the regular variation. Since this is true for every 0 < ε < 1, we have obtained
the lower bound

lim inf
n→∞ Fn,A(θ1 · · · θk)

(6.11)
≥ (

μ(A)�(1+ β)
)k(

(θ1 + · · · + θk)(θ2 + · · · + θk) · · · θk

)−β
.

The lower bound (6.11) is valid for any measurable set A with 0 < μ(A) <∞.
We will now show that for any k ≥ 1 and 0 < θ < 1 there is a measurable set
Ak,θ ⊆A such that

μ(Ak,θ )≥ (1− θ)μ(A)(6.12)

and such that

lim sup
n→∞

Fn,Ak,θ
(θ1 · · · θk)

(6.13)
≤ (

μ(Ak,θ )�(1+ β)
)k(

(θ1 + · · · + θk)(θ2 + · · · + θk) · · · θk

)−β
.

We know that (6.11) and (6.13) together imply (6.7), hence that (6.2) holds for
the set Ak,θ . We claim that this implies that (6.2) for every measurable A with
0 < μ(A) <∞.

Indeed, suppose that, to the contrary, (6.2) fails for some measurable A with 0 <

μ(A) <∞, some k ≥ 1 and some 0 < t1 < · · ·< tk . By the one-dimensional result
of Aaronson (1981), the k components in the left hand side of (6.2), individually,
converge weakly. Therefore, the sequence of the laws of the k-dimensional vectors
in the left-hand side of (6.2) is tight, and so there is a sequence of integers nl ↑∞
and a random vector (Y1, . . . , Yk) with

(Y1, . . . , Yk)
d�= μ(A)�(1+ β)

(
Mβ(t1) · · ·Mβ(tk)

)
,(6.14)
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such that
1

anl

(
S�nl t1�(1A), . . . , S�nltk�(1A)

)⇒ (Y1, . . . , Yk),(6.15)

when the law of the random vector in the left-hand side is computed with re-
spect to μA. It follows from (6.14) that there is a Borel set B ⊂ R

k such that,
for each b > 0, bB is a continuity set for both (Y1, . . . , Yk) and μ(A)�(1 +
β)(Mβ(t1) · · ·Mβ(tk)) and (abusing the notation a bit by using the same letter P ),

P
(
μ(A)�(1+ β)

(
Mβ(t1) · · ·Mβ(tk)

) ∈ B
)

(6.16)
> (1+ ρ)P

(
(Y1, . . . , Yk) ∈ B

)
for some ρ > 0. In fact, since the law of a Mittag–Leffler random variable is
atomless, such a B can be taken to be either a “SW corner” of the type B =∏k

j=1(−∞, xj ] for some (x1, . . . , xk) ∈R
k , or its complement.

Choose now 0 < θ < 1 so small that

(1− θ)(1+ ρ) > 1(6.17)

and consider the set Ak,θ . It follows from (6.15) and Hopf’s ergodic theorem that

1

anl

(
S�nl t1�(1Ak,θ

), . . . , S�nl tk�(1Ak,θ
)
)⇒ μ(Ak,θ )

μ(A)
(Y1, . . . , Yk),

when the law of the random vector in the left-hand side is still computed with
respect to μA. However, since (6.2) holds for the set Ak,θ , we see that

P
(
(Y1, . . . , Yk) ∈ B

)
= lim

l→∞μA

(
1

anl

(
S�nl t1�(1Ak,θ

), . . . , S�nltk�(1Ak,θ
)
) ∈ μ(Ak,θ )

μ(A)
B

)

= μ(Ak,θ )

μ(A)
lim

l→∞μAk,θ

(
1

anl

(
S�nl t1�(1Ak,θ

), . . . , S�nltk�(1Ak,θ
)
) ∈ μ(Ak,θ )

μ(A)
B

)
≥ (1− θ)P

(
μ(A)�(1+ β)

(
Mβ(t1) · · ·Mβ(tk)

) ∈ B
)

> P
(
(Y1, . . . , Yk) ∈ B

)
,

where the last inequality follows from (6.16) and (6.17). This contradiction shows
that, once we prove (6.13), this will establish (6.2) for every measurable A with
0 < μ(A) <∞.

We call a nested sequence (A0,A1, . . .) of sets in (6.8) an ε-sequence start-
ing at A0. Its finite subsequence (A0,A1, . . . ,Ak) will be called an ε-sequence
of length k + 1 starting at A0 and ending at Ak . Let A be a measurable set with
0 < μ(A) <∞. Fix 0 < θ < 1. Let 0 < r < 1 be a small number, to be specified
in the sequel. We construct a nested sequence of sets as follows.

Let B0 =A. Construct an r-sequence of length k+ 1 starting at B0, and ending
at some set B1 ⊆ B0. Next, construct an r2-sequence of length k+1 starting at B1,
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and ending at some set B2 ⊆ B1. Proceeding this way we obtain a nested sequence
of measurable sets A= B0 ⊇ B1 ⊇ B2 ⊇ · · · , such that

μ(Bn)≥
n∏

i=1

(
1− ri)kμ(A), n= 1,2, . . . .

The sets (Bn) decrease to some set Ak,θ with

μ(Ak,θ )≥
∞∏
i=1

(
1− ri)kμ(A).

Notice that, by choosing 0 < r < 1 small enough, we can ensure that (6.12) holds.
Note, further, that by construction, for every d = 1,2, . . . ,

μ(Ak,θ )≥ fdμ(Bd) with fd =
∞∏

i=d+1

(
1− ri)k.

Clearly, fd ↑ 1 as d →∞. Starting with the first line in (6.9), we see that

Fn,Ak,θ
(θ1 · · · θk)

≤ (
1+ o(1)

) 1

ak
n

×
∞∑

m1=0

· · ·
∞∑

mk=0

e
−n−1 ∑k

j=1 vjmj μBd

(
k⋂

j=1

T −(m1+···+mj )Bd

)
μ(Bd)

μ(Ak,θ )

≤ (
1+ o(1)

) 1

fd

1

ak
n

∫
Bd

[( ∞∑
m1=0

T̂ m11Bd−1e
−v1m1/n

)

×
k∏

j=2

( ∞∑
mj=0

1Bd
◦ T m2+···+mj e−vjmj /n

)]
dμBd

.

Using repeatedly uniform convergence as in (6.10) above, we conclude, as in the
case of the corresponding lower bound calculation that

Fn,Ak,θ
(θ1 · · · θk)

≤ (
1+ o(1)

) 1

fd

1

ak
n

μ(Bd−1)v1

n

×
∞∑
i=0

aie
−v1i/n

∫
Bd

[( ∞∑
m2=0

T̂ m21Bd−1e
−v2m2/n

)

×
k∏

j=3

( ∞∑
mj=0

1Bd
◦ T m3+···+mj e−vjmj /n

)]
dμBd
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≤ · · · ≤ (
1+ o(1)

) 1

fd

(
μ(Bd−1)

nan

)k

(v1 · · ·vk)

k∏
j=1

( ∞∑
i=0

aie
−vj i/n

)

≤ (
1+ o(1)

) 1

fdf k
d−1

(
μ(Ak,θ )

nan

)k

(v1 · · ·vk)

k∏
j=1

( ∞∑
i=0

aie
−vj i/n

)
.

As in the case of the lower bound, Karamata’s Tauberian theorem shows that

Fn,Ak,θ
(θ1 · · · θk) ≤ (

1+ o(1)
) 1

fdf k
d−1

(
μ(Ak,θ )�(1+ β)

)k k∏
j=1

a(n/vj )

an

→ 1

fdf k
d−1

(
μ(Ak,θ )�(1+ β)

)k k∏
j=1

v
−β
j

as n →∞. Since this is true for every d ≥ 1, we can let now d →∞ to ob-
tain (6.12), and the proof of the theorem is complete. �

REMARK 6.2. It follows immediately from Theorem 6.1 and continuity of
the limiting Mittag–Leffler process that for the continuous process (S̃n) defined
in (6.3), strong distributional convergence as in (6.1) also holds, either in D[0,∞)

or in C[0,∞).

We use the strong distributional convergence obtained in Theorem 6.1 in the
following proposition.

PROPOSITION 6.3. Under the assumptions of Theorem 6.1, let A be a
Darling–Kac set with 0 < μ(A) < ∞, such that (5.4) is satisfied, and suppose
that the function f is supported by A. Define a probability measure on E by
μn(·) = μ(· ∩ {ϕ ≤ n})/μ({ϕ ≤ n}), where ϕ is the first entrance time of A.
Let 0 ≤ t1 < · · · < tH , H ≥ 1, and fix L ∈ N with tH ≤ L. Then under μnL,
the sequence (S�nth�(f )/an)

H
h=1 converges weakly in R

H to the random vector

(μ(f )�(1 + β)Mβ(th − T
(L)∞ )+)Hh=1, where T

(L)∞ is a random variable indepen-

dent of the Mittag–Leffler process Mβ , with P(T
(L)∞ ≤ x)= (x/L)1−β , 0≤ x ≤L.

PROOF. Since T preserves measure μ, for the duration of the proof we may
and will modify the definition of Sn to Sn(f ) =∑n−1

k=0 f ◦ T k , n = 1,2, . . . . Fix
θ1, . . . , θH ∈R and let λ ∈R. Since f is supported by A, we have, as n→∞,

μnL

(
1

an

H∑
h=1

θhS�nth�(f ) > λ

)

∼ μnL

(
Ac ∩

{
1

an

H∑
h=1

θhS�nth�(f ) > λ

})
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= μ(ϕ ≤ nL)−1
nL∑

m=1

μ

(
Am ∩

{
1

an

H∑
h=1

θhS�nth�(f ) > λ

})

∼ μ(ϕ ≤ nL)−1
nL∑

m=1

μ

(
Am ∩ T −m

{
1

an

H∑
h=1

θhS(�nth�−m)+(f ) > λ

})

=
∫
A

1

μ(ϕ ≤ nL)

nL∑
m=1

T̂ m1Am · 1{∑H
h=1 θhS(�nth�−m)+ (f )>λan} dμ.

Note that the measure on E defined by η(·)= ∫
·K dμ with K in (5.4) is neces-

sarily a probability measure. We conclude by (5.4) that

μnL

(
1

an

H∑
h=1

θhS�nth�(f ) > λ

)
(6.18)

∼
nL∑

m=1

η

(
1

an

H∑
h=1

θhS(�nth�−m)+(f ) > λ

)
pn(m),

where pn(j) = μ(Aj )/
∑nL

m=1 μ(Am), j = 1, . . . , nL, is a probability mass func-

tion. Let T
(L)
n be a discrete random variable with this probability mass function,

independent of S�n·�(f ), which is, in turn, governed by the probability measure η.

If we declare that T
(L)
n is defined on some probability space (	n,Fn,Pn), then the

right-hand side of (6.18) becomes

(η× Pn)

(
1

an

H∑
h=1

θhS(�nth�−T
(L)
n )+(f ) > λ

)
.

Since η is a probability measure absolutely continuous with respect to μ, it
follows from the strong distributional convergence in Theorem 6.1 that

1

an

S�n·�(f )⇒ μ(f )�(1+ β)Mβ(·) in D[0,L],(6.19)

when the law in the left-hand side is computed with respect to η. On the other hand,
by the regular variation of the wandering rate sequence and (4.5), for x ∈ [0,L],

Pn

(
T

(L)
n

n
≤ x

)
=
�nx�∑
m=1

pn(m)∼ w�nx�
wnL

∼
(

x

L

)1−β

,(6.20)

which is precisely the law of T
(L)∞ . We can put together (6.19), (6.20), and inde-

pendence between Sn and T
(L)
n to obtain

μnL

(
1

an

H∑
h=1

θhS�nth�(f ) > λ

)
→ P

(
μ(f )�(1+β)

H∑
h=1

θhMβ

((
th−T (L)∞

)
+
)
> λ

)
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for all continuity points λ of the right-hand side, and all θ1 · · · θH ∈ R by, for ex-
ample, Theorem 13.2.2 in Whitt (2002). This proves the proposition. �

7. Proof of the main theorem. In this section, we prove Theorem 5.1. We
start with several preliminary results. The first lemma explains the asymptotic re-
lation (5.7).

LEMMA 7.1. Under the assumptions of Proposition 6.3, assume, additionally,
that the set A supporting f is a Darling–Kac set. Let 0 < α < 2. If 1 < α < 2,
assume, additionally, that f ∈ L2(μ), and that either:

(i) A is a uniform set for |f |, or
(ii) f is bounded.

Then (∫
E

∣∣Sn(f )
∣∣α dμ

)1/α

∼ ∣∣μ(f )
∣∣Cα,βanw

1/α
n as n→∞(7.1)

and (5.7) holds.

PROOF. It is an elementary calculation to check that (7.1) implies (5.7), so in
the sequel we concentrate on checking (7.1). It follows from (4.5) and the fact that
f is supported by A that(∫

E

∣∣Sn(f )
∣∣α dμ

)1/α

= an

(
μ(ϕ ≤ n)

)1/α
A(α)

n ∼ anw
1/α
n A(α)

n ,(7.2)

where A
(α)
n = (

∫
E |Sn(f )/an|α dμn)

1/α . Therefore, proving (7.1) reduces to
checking that

A(α)
n → ∣∣μ(f )

∣∣Cα,β as n→∞.(7.3)

If α = 1 and f is nonnegative, then this follows by direct calculation, using the
definition of Cα,β . If f is not necessarily nonnegative, we can use the obvious
bound −Sn(|f |) ≤ Sn(f ) ≤ Sn(|f |) together with the so-called Pratt lemma; see
Pratt (1960), or Problem 16.4(a) in Billingsley (1995).

It remains to consider the case α ∈ (0,1) ∪ (1,2). Proposition 6.3 shows that
(A

(α)
n ) is the sequence of the α-norms of a weakly converging sequence, and the

expression in the right-hand side of (7.3) is easily seen to be the α-norm of the
weak limit. Therefore, our statement will follow once we show that this weakly
convergent sequence is uniformly integrable, which we proceed now to do.

Suppose first that 0 < α < 1. Recalling the relation (4.6) and the fact that T

preserves measure μ, we see that

sup
n≥1

∫
E

∣∣∣∣Sn(f )

an

∣∣∣∣dμn = sup
n≥1

1

anμ(ϕ ≤ n)

∫
E

∣∣Sn(f )
∣∣dμ

(7.4)
≤ sup

n≥1

n

anμ(ϕ ≤ n)

∫
E
|f |dμ <∞,
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which proves uniform integrability in this case.
Finally, we consider the case 1 < α < 2, when it is sufficient to prove that

sup
n≥1

∫
E

(
Sn(f )

an

)2

dμn <∞.(7.5)

Under the assumption (i), since f is supported by A, we can use the duality relation
(4.1) to write∫

E
Sn(f )2 dμ= n

∫
E

f 2 dμ+
n∑

k=1

n∑
l=1,k �=l

∫
E

f ◦ T kf ◦ T ldμ

= n

∫
E

f 2 dμ+ 2
n−1∑
k=1

n−k∑
j=1

∫
A

T̂ jf · f dμ,

so that∫
E

(
Sn(f )

an

)2

dμn

≤ n

a2
nμ(ϕ ≤ n)

∫
E

f 2 dμ+ 2

a2
nμ(ϕ ≤ n)

n−1∑
k=1

n−k∑
j=1

∫
A

T̂ j |f | · |f |dμ.

Clearly, n/(a2
nμ(ϕ ≤ n))→ 0. Further, since A is uniform for |f |,
1

a2
nμ(ϕ ≤ n)

n−1∑
k=1

n−k∑
j=1

∫
A

T̂ j |f | · |f |dμ

≤ n

anμ(ϕ ≤ n)

∫
A

1

an

n∑
j=1

T̂ j |f | · |f |dμ∼ μ
(|f |)2 n

anμ(ϕ ≤ n)
.

Using (4.6), we see that (7.5) follows. On the other hand, under the assumption (ii),
the ratio Sn(f )/Sn(1A) is bounded, hence for some finite C > 0,

sup
n≥1

∫
E

(
Sn(f )

an

)2

dμn ≤C sup
n≥1

∫
E

(
Sn(1A)

an

)2

dμn.

However, the Darling–Kac property of A means that it is uniform for 1A, and so
we are, once again, under the assumption (i). �

In preparation for the proof of Theorem 5.1, we introduce a useful decompo-
sition of the process X given in (2.1). We begin by decomposing the local Lévy
measure ρ into a sum of two parts, corresponding to “large jumps” and “small
jumps.” Let

ρ1(·)= ρ
(· ∩ {|x|> 1

})
,

ρ2(·)= ρ
(· ∩ {|x| ≤ 1

})
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and let M1,M2 be independent homogeneous symmetric infinitely divisible ran-
dom measures, without a Gaussian component, with the same control measure
μ and local Lévy measures ρ1, ρ2 accordingly. Under the integrability assump-
tions (5.2), the stochastic processes X

(i)
n = ∫

E f ◦ T n(x) dMi(x), n = 1,2, . . . ,

for i = 1,2, are independent stationary infinitely divisible processes, and Xn =
X

(1)
n +X

(2)
n , n= 1,2, . . . .

Our final lemma shows that, from the point of view of the central limit behavior
in the case 0 < α < 1, the contribution of the process (X

(2)
n ), corresponding to the

“small jumps,” is negligible.

LEMMA 7.2. If 0 < α < 1, then

1

cn

n∑
k=1

X
(2)
k

p→ 0.(7.6)

PROOF. By Chebyshev’s inequality, for any ε > 0,

P

(∣∣∣∣∣
n∑

k=1

X
(2)
k

∣∣∣∣∣> εcn

)
≤ n

εcn

E
∣∣X(2)

1

∣∣→ 0

(since cn ∈ RVβ+(1−β)/α implies n/cn → 0 in the case 0 < α < 1) as long as the

expectation E|X(2)
1 | is finite. Since for every p1 > p0 in (5.1) and p1 ≥ 1,∫

E

∫
R

∣∣xf (s)
∣∣1(∣∣xf (s)

∣∣> 1
)
ρ2(dx)μ(ds)≤

∫ 1

−1
|x|p1ρ(dx)

∫
E

∣∣f (s)
∣∣p1μ(ds),

the expectation is finite because, by (5.2), we can find p1 as above such that∫
E |f |p1 dμ <∞. �

PROOF OF THEOREM 5.1. We start with proving the finite-dimensional weak
convergence, for which it enough to show the convergence

1

cn

H∑
h=1

θh

�nth�∑
k=1

Xk ⇒
∣∣μ(f )

∣∣ H∑
h=1

θhYα,β(th)

for all H ≥ 1, 0 ≤ t1 < · · · < tH , and θ1 · · · θH ∈ R. Conditions for weak con-
vergence of infinitely divisible random variables [see, e.g., Theorem 15.14 in
Kallenberg (2002)] simplify in this one-dimensional symmetric case to∫

E

(
1

cn

H∑
h=1

θhS�nth�(f )

)2 ∫ rcn/|∑ θhS�nth�(f )|
0

xρ(x,∞) dx dμ

→ r2−αCα

2− α

∣∣μ(f )
∣∣α(7.7)

×
∫
[0,∞)

∫
	′

∣∣∣∣∣
H∑

h=1

θhMβ

(
(th − x)+,ω′

)∣∣∣∣∣
α

P ′
(
dω′

)
ν(dx)
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and ∫
E

ρ

(
rcn

∣∣∣∣∣
H∑

h=1

θhS�nth�(f )

∣∣∣∣∣
−1

,∞
)

dμ

→ r−αCα

∣∣μ(f )
∣∣α(7.8)

×
∫
[0,∞)

∫
	′

∣∣∣∣∣
H∑

h=1

θhMβ

(
(th − x)+,ω′

)∣∣∣∣∣
α

P ′
(
dω′

)
ν(dx)

for every r > 0. Fix L ∈N with tH ≤L and r > 0.
Since the argument for (7.7) and the argument for (7.8) are very similar, we

only prove (7.7). By Proposition 6.3 and Skorohod’s embedding theorem, there is
some probability space (	∗,F∗,P ∗) and random variables Y , Yn, n = 1,2, . . .

defined on that space such that, for every n, the law of Yn coincides with the
law of a−1

n

∑H
h=1 θhS�nth�(f ) under μnL, the law of Y coincides with the law of

μ(f )�(1+ β)
∑H

h=1 θhMβ((th − T
(L)∞ )+) under P ′, and Yn→ Y P ∗-a.s.

Introduce a function

ψ(y)= y−2
∫ ry

0
xρ(x,∞) dx, y > 0,

so that the expression in the left-hand side of (7.7) becomes∫
E

ψ

(
cn

|∑H
h=1 θhS�nth�(f )|

)
dμ= μ(ϕ ≤ nL)E∗

[
ψ

(
cn

an|Yn|
)]

.

By Karamata’s theorem [see, e.g., Theorem 0.6 in Resnick (1987)],

ψ(y)∼ r2

2− α
ρ(ry,∞) as y→∞,

so that, as n→∞,

μ(ϕ ≤ nL)ψ

(
cn

an|Yn|
)

∼ r2

2− α
μ(ϕ ≤ nL)|Yn|αρ

(
rcna

−1
n ,∞)

(7.9)

+ r2

2− α
μ(ϕ ≤ nL)ρ

(
rcna

−1
n ,∞)(ρ(rcna

−1
n |Yn|−1,∞)

ρ(rcna
−1
n ,∞)

− |Yn|α
)
.

By (5.7), Lemma 7.1 and (4.5),

ρ
(
rcna

−1
n ,∞)∼ r−αCα

(
�(1+ β)

)−α(
μ(ϕ ≤ n)

)−1 as n→∞.(7.10)

This, together with the basic properties of regularly varying functions of a negative
index [see, e.g., Proposition 0.5, Resnick (1987)], shows that the second term in
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the right-hand side of (7.9) converges to 0. Therefore,

μ(ϕ ≤ nL)ψ

(
cn

an|Yn|
)
→ r2−α

2− α
CαL1−β

( |Y |
�(1+ β)

)α

.

Integrating the limit yields

E∗
[

r2−α

2− α
CαL1−β

( |Y |
�(1+ β)

)α]

= r2−α

2− α
CαL1−β

∣∣μ(f )
∣∣αE′

[
H∑

h=1

θhMβ

((
th − T (L)∞

)
+
)]α

= r2−αCα

2− α

∣∣μ(f )
∣∣α ∫

[0,∞)

∫
	′

(
H∑

h=1

θhMβ

(
(th − x)+,ω′

))α

P ′
(
dω′

)
ν(dx),

which is exactly the right-hand side of (7.7). Therefore, in order to complete the
proof of (7.7), we only need to justify taking the limit inside the integral. For
this purpose, we use, once again, Pratt’s lemma. We need to exhibit random vari-
ables Gn, n= 0,1,2, . . . on (	∗,F∗,P ∗) such that

μ(ϕ ≤ nL)ψ

(
cn

an|Yn|
)
≤ Gn, P ∗-a.s.,(7.11)

Gn →G0, P ∗-a.s.,(7.12)

E∗Gn → E∗G0 ∈ [0,∞).(7.13)

We start with writing [using (7.10)]

μ(ϕ ≤ nL)ψ

(
cn

an|Yn|
)

≤ C1
ψ(cna

−1
n |Yn|−1)

ψ(cna
−1
n )

1{cn>an|Yn|} +C1
ψ(cna

−1
n |Yn|−1)

ψ(cna
−1
n )

1{cn≤an|Yn|},

where C1 > 0 is a constant. Suppose first that 1 ≤ α < 2, and choose 0 < ξ <

2 − α. Then by the Potter bounds [see Proposition 0.8 in Resnick (1987)], for
some constant C2 > 0,

ψ(cna
−1
n |Yn|−1)

ψ(cna
−1
n )

1{cn>an|Yn|} ≤C2
(|Yn|α−ξ + |Yn|α+ξ )

for all n large enough. Further, since y2ψ(y)→ 0 as y ↓ 0, we have, for some
constant C3 > 0,

ψ(cna
−1
n |Yn|−1)

ψ(cna
−1
n )

1{cn≤an|Yn|} ≤ C3

(
an

cn

)2 |Yn|2
ψ(cna

−1
n )

,
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hence, for some constant C4 > 0,

μ(ϕ ≤ nL)ψ

(
cn

an|Yn|
)
≤ C4

(
|Yn|α−ξ + |Yn|α+ξ +

(
an

cn

)2 |Yn|2
ψ(cna

−1
n )

)
(7.14)

for all n (large enough) and all realizations. We take

Gn = C4

(
|Yn|α−ξ + |Yn|α+ξ +

(
an

cn

)2 |Yn|2
ψ(cna

−1
n )

)
, n= 1,2, . . . ,

G0 = C4
(|Y |α−ξ + |Y |α+ξ ).

Then (7.11) holds by construction, while (7.12) follows from the fact that(
an

cn

)2 1

ψ(cna
−1
n )

∈RV(1−β)(1−2/α)

and (1−β)(1−2/α) < 0. Keeping this in mind, and recalling that, by (7.5) (which
holds also for α = 1 under the assumptions of the theorem), supn≥1 E∗Y 2

n <∞,
we obtain the uniform integrability implying (7.13). This proves (7.7) in the case
1≤ α < 2.

If 0 < α < 1, then Lemma 7.2 allows us to assume, without loss of generality,
that ρ(x : |x| ≤ 1)= 0. Then ψ is bounded on (0,1], so that for some C5 > 0,

ψ(cna
−1
n |Yn|−1)

ψ(cna
−1
n )

1{cn≤an|Yn|} ≤ C5
an

cn

|Yn|
ψ(cna

−1
n )

and the upper bound (7.14) is replaced with

μ(ϕ ≤ nL)ψ

(
cn

an|Yn|
)
≤ C6

(
|Yn|α−ξ + |Yn|α+ξ + an

cn

|Yn|
ψ(cna

−1
n )

)
for some C6 > 0, where we now choose 0 < ξ < 1− α. Since

an

cn

1

ψ(cna
−1
n )

∈RV(1−β)(1−1/α)

with (1− β)(1− 1/α) < 0 and supn≥1 E∗|Yn|<∞ by (7.4), an argument similar
to the case 1≤ α < 2 applies here as well. A similar argument proves, in the case
0 < α < 1, the “positive” version described in Remark 5.4.

It remains to prove that the laws in the left-hand side of (5.9) are tight in D[0,L]
for any fixed L > 0. By Theorem 13.5 of Billingsley (1999), it is enough to show
that there exist γ1 > 1, γ2 ≥ 0 and B > 0 such that

P

[
min

(∣∣∣∣∣
�ns�∑
k=1

Xk −
�nr�∑
k=1

Xk

∣∣∣∣∣,
∣∣∣∣∣
�nt�∑
k=1

Xk −
�ns�∑
k=1

Xk

∣∣∣∣∣
)
≥ λcn

]
≤ B

λγ2
(t − r)γ1



FUNCTIONAL CENTRAL LIMIT THEOREM 277

for all 0 ≤ r ≤ s ≤ t ≤ L, n ≥ 1 and λ > 0. We start with a simple observation
that, in the case 0 < α < 1, we may assume that the function f is bounded. To
see that, note that we can always write f = f 1|f |>M + f 1|f |≤M , and use the
finite-dimensional convergence in (5.10) and the fact that μ(f 1|f |>M) → 0 as
M →∞.

Next, for any 0 < α < 2, if 0 < t− r < 1/n, then the probability in the left-hand
side vanishes. If Xn = X

(1)
n + X

(2)
n , n = 1,2, . . . be the decomposition described

prior to Lemma 7.2. We start with the part corresponding to the “small jumps.”
Note that, by Lemma 7.2, this part is negligible if 0 < α < 1 (since we can apply
the lemma to the supremum of the process). Therefore, we only consider the case
1 ≤ α < 2, and prove that there exist γ1 > 1, γ2 ≥ 0 and B > 0 such that for all
0≤ s ≤ t ≤ L, n≥ 1, |t − s| ≥ 1/n and λ > 0,

P

(∣∣∣∣∣
�nt�∑
k=1

X
(2)
k −

�ns�∑
k=1

X
(2)
k

∣∣∣∣∣≥ λcn

)
≤ B

λγ2
(t − s)γ1 .(7.15)

Note that Lévy–Itô decomposition yields

�nt�∑
k=1

X
(2)
k −

�ns�∑
k=1

X
(2)
k

d=
∫
E

S�nt�−�ns�(f ) dM2

d=
∫ ∫

|xS�nt�−�ns�(f )|≤λcn

xS�nt�−�ns�(f ) d�N2

+
∫ ∫

|xS�nt�−�ns�(f )|>λcn

xS�nt�−�ns�(f ) dN2,

where N2 is a Poisson random measure on R×E with mean measure ρ2 ×μ and
�N2 ≡N2 − (ρ2 ×μ). Therefore,

P

(∣∣∣∣∣
�nt�∑
k=1

X
(2)
k −

�ns�∑
k=1

X
(2)
k

∣∣∣∣∣≥ λcn

)

≤ P

(∣∣∣∣ ∫ ∫
|xS�nt�−�ns�(f )|≤λcn

xS�nt�−�ns�(f ) d�N2

∣∣∣∣≥ λcn

)
(7.16)

+ P

(∣∣∣∣ ∫ ∫
|xS�nt�−�ns�(f )|>λcn

xS�nt�−�ns�(f ) dN2

∣∣∣∣> 0
)
.
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It follows from (5.1) that for some constant C1 > 0,

P

(∣∣∣∣ ∫ ∫
|xS�nt�−�ns�(f )|≤λcn

xS�nt�−�ns�(f ) d�N2

∣∣∣∣≥ λcn

)

≤ 1

λ2c2
n

E

∣∣∣∣ ∫ ∫
|xS�nt�−�ns�(f )|≤λcn

xS�nt�−�ns�(f ) d�N2

∣∣∣∣2

= 1

λ2c2
n

∫ ∫
|xS�nt�−�ns�(f )|≤λcn

∣∣xS�nt�−�ns�(f )
∣∣2ρ2(dx) dμ

≤ 4
∫
E

(
S�nt�−�ns�(f )

λcn

)2 ∫ λcn/|S�nt�−�ns�(f )|
0

xρ2(x,∞) dx dμ

≤ C1

λp0

1

c
p0
n

∫
E

∣∣S�nt�−�ns�(f )
∣∣p0 dμ.

Similarly, for some constant C2 > 0,

P

(∣∣∣∣ ∫ ∫
|xS�nt�−�ns�(f )|>λcn

xS�nt�−�ns�(f ) dN2

∣∣∣∣> 0
)

≤ P
(
N2

{∣∣xS�nt�−�ns�(f )
∣∣> λcn

}≥ 1
)

≤EN2
{∣∣xS�nt�−�ns�(f )

∣∣> λcn

}
= 2

∫
E

ρ2
(
λcn

∣∣S�nt�−�ns�(f )
∣∣−1

,∞)
dμ

≤ C2

λp0

1

c
p0
n

∫
E

∣∣S�nt�−�ns�(f )
∣∣p0 dμ.

Recall the notation A
(p0)
n = (

∫
E |Sn(f )/an|p0 dμn)

1/p0 in (7.2). We conclude that

P

(∣∣∣∣∣
�nt�∑
k=1

X
(2)
k −

�ns�∑
k=1

X
(2)
k

∣∣∣∣∣≥ λcn

)

≤ C1 +C2

λp0

1

c
p0
n

∫
E

∣∣S�nt�−�ns�(f )
∣∣p0 dμ

= C1 +C2

λp0

μ(ϕ ≤ �nt� − �ns�)
μ(ϕ ≤ n)

(
a�nt�−�ns�

an

)p0 (A
(p0)�nt�−�ns�)p0

c
p0
n μ(ϕ ≤ n)−1a

−p0
n

.

It follows from (7.5) that

sup
n≥1,0≤s≤t≤L

A
(p0)�nt�−�ns� <∞.
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Next, we may, if necessary, increase p0 in (5.1) to achieve p0 > α. In that case, the
sequence c

p0
n μ(ϕ ≤ n)−1a

−p0
n ∈ RV(1−β)(p0/α−1) diverges to infinity, so for some

constant C3 > 0,

1

c
p0
n

∫
E

∣∣S�nt�−�ns�(f )
∣∣p0 dμ≤ C3

μ(ϕ ≤ �n(t − s)�)
μ(ϕ ≤ n)

(
a�n(t−s)�

an

)p0

.

By the regular variation and the constraint t − s ≥ 1/n, for every 0 < η <

min(β,1− β), there is C4 > 0, such that

μ(ϕ ≤ �n(t − s)�)
μ(ϕ ≤ n)

≤ C4

(�n(t − s)�
n

)1−β−η

≤ 21−β−ηC4(t − s)1−β−η,

a�n(t−s)�
an

≤ 2β−ηC4(t − s)β−η.

Therefore, for some constant C5 > 0,

P

(∣∣∣∣∣
�nt�∑
k=1

X
(2)
k −

�ns�∑
k=1

X
(2)
k

∣∣∣∣∣≥ λcn

)
≤ C5

1

λp0
(t − s)1+(p0−1)β−(1+p0)η.

Since p0 > α ≥ 1, we can choose η > 0 so small that 1 + (p0 − 1)β −
(1+ p0)η > 0. This establishes (7.15).

Next, we take up the process (X
(1)
n ). Lévy–Itô decomposition and the symmetry

of the Lévy measure ρ1 allow us to write, for any K > 0,

1

cn

�nt�∑
k=1

X
(1)
k

d= 1

cn

�nt�∑
k=1

∫ ∫
|xfk |≤Kcna−1

n

xfk d�N1 + 1

cn

�nt�∑
k=1

∫ ∫
|xfk |>Kcna−1

n

xfk dN1

:= Z(1,K)
n (t)+Z(2,K)

n (t),

where N1 and �N1 are as above. Here, we first show that or any ε > 0,

lim
K→∞ lim sup

n→∞
P
(

sup
0≤t≤L

∣∣Z(2,K)
n (t)

∣∣≥ ε
)
= 0.(7.17)

Consider first the case 1 < α < 2. Choose 0 < τ ≤ 2− α, and define

κ(w)=
{

1, if 0≤w < 1,
w−(α+τ), if w ≥ 1,

g(w)= (
(w+ 1)κ(w)

)−1
, w ≥ 0.

Since 2g(w)/g(u)≥ 1 for 0≤ u≤w, we have

P
(

sup
0≤t≤L

∣∣Z(2,K)
n (t)

∣∣≥ ε
)

≤ P

(∫ ∫
R×E

|x|
nL∑
k=1

|f | ◦ T k1
(|x||f | ◦ T k > Kcna

−1
n

)
dN1 ≥ εcn

)
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= P

(
2
∫ ∫
R×E

|x|
nL∑
k=1

|f | ◦ T kg
(|f | ◦ T k) 1

g(Kcna
−1
n /|x|) dN1 ≥ εcn

)

≤ 2

ε
c−1
n E

(∫ ∫
R×E

|x|
nL∑
k=1

|f | ◦ T kg
(|f | ◦ T k) 1

g(Kcna
−1
n /|x|) dN1

)

≤ C1nc−1
n

∫ ∞
1

x
(
Kcna

−1
n /x + 1

)
κ
(
Kcna

−1
n /x

)
ρ(dx),

where C1 > 0 is another constant. It is now straightforward to check that for some
constant C2 > 0,

lim sup
n→∞

P
(

sup
0≤t≤L

∣∣Z(2,K)
n (t)

∣∣≥ ε
)
≤ C2K

−(α−1).

This implies (7.17).
On the other hand, let 0 < α ≤ 1. Recall that we are assuming that the function

f is now bounded. We have

P
(

sup
0≤t≤L

∣∣Z(2,K)
n (t)

∣∣≥ ε
)
≤ P

(
max

k=1,...,nL
N1

{
(x, s) :

∣∣xfk(s)
∣∣> Kcna

−1
n

}≥ 1
)

≤ EN1

{
(x, s) : |x| max

k=1,...,nL
|fk|> Kcna

−1
n

}
= 2

∫
E

ρ1

(
Kcna

−1
n

maxk=1,...,nL |fk| ,∞
)

dμ.

If we denote ‖ f ‖= supx∈E |f (x)| < ∞, then we can use once again Potter’s
bounds to see that for some constant C1 > 0 and 0 < ξ < α,

ρ1(Kcna
−1
n (maxk |fk|)−1,∞)

ρ1(cna
−1
n ,∞)

≤ C1

((
1

K
max

k=1,...,nL
|fk|

)α−ξ

+
(

1

K
max

k=1,...,nL
|fk|

)α+ξ)
.

Therefore by (4.5), (5.7) and the fact that f is supported by A, for some constant
C2 > 0,

P
(

sup
0≤t≤L

∣∣Z(2,K)
n (t)

∣∣≥ ε
)

≤ 2C1ρ1
(
cna

−1
n ,∞) ∫

E

(
1

K
max

k=1,...,nL
|fk|

)α−ξ

+
(

1

K
max

k=1,...,nL
|fk|

)α+ξ

dμ

≤ 2C1ρ1
(
cna

−1
n ,∞)((‖ f ‖

K

)α−ξ

+
(‖ f ‖

K

)α+ξ)
μ(ϕ ≤ nL)

≤ C2

((‖ f ‖
K

)α−ξ

+
(‖ f ‖

K

)α+ξ)
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and (7.17) follows.
It remains to consider the processes {Z(1,K)

n (t),0 ≤ t ≤ L}, n = 1,2, . . . for a
fixed K > 0. In the sequel, we drop the superscript K for notational convenience.
We will show that exist γ1 > 1, and B > 0 such that for all 0≤ s < t ≤ L, n≥ 1,
t − s ≥ 1/n and λ > 0,

P
(∣∣Z(1)

n (t)−Z(1)
n (s)

∣∣≥ λ
)≤ B

λ2 (t − s)γ1 .(7.18)

Indeed, by Chebyshev’s inequality and the fact that f is supported by A, we see
that

P
(∣∣Z(1)

n (t)−Z(1)
n (s)

∣∣≥ λ
)

≤ 1

λ2c2
n

E

∣∣∣∣∣
�nt�−�ns�∑

k=1

∫ ∫
|xfk |≤Kcna−1

n

xfk d�N1

∣∣∣∣∣
2

≤ 2

λ2c2
n

�n(t−s)�∑
k=1

�n(t−s)�∑
l=1

∫
E
|fkfl|

∫ Kcna−1
n /|fk |∨|fl |

0
x2ρ1(dx) dμ.

It follows from the Potter bounds and the fact that ρ1 does not assigns mass to the
interval (0,1) that for any 0 < ξ < 2 − α there is C > 0 such that for all a > 0
large enough and all r > 0,∫ ra

0 x2ρ1(dx)∫ a
0 x2ρ1(dx)

≤ C
(
r2−α−ξ ∨ r2−α+ξ ).

Therefore, for all n large enough, for some constant C1 > 0,

P
(∣∣Z(1)

n (t)−Z(1)
n (s)

∣∣≥ λ
)

≤ C1

λ2c2
n

�n(t−s)�∑
k=1

�n(t−s)�∑
l=1

∫
E

|fkfl|
(|fk| ∨ |fl|)2−α−ξ

dμ

∫ cna−1
n

0
x2ρ1(dx)

+ C1

λ2c2
n

�n(t−s)�∑
k=1

�n(t−s)�∑
l=1

∫
E

|fkfl|
(|fk| ∨ |fl|)2−α+ξ

dμ

∫ cna−1
n

0
x2ρ1(dx).

Note that by Karamata’s theorem, (4.5) and the definition (5.5) of the normalizing
sequence (cn), there is C2 > 0 such that∫ cna−1

n

0
x2ρ1(dx)≤ C2

c2
n

nan

.

If 1 < α < 2, we impose also the constraint ξ < α − 1, and use the relation

|fkfl|
(|fk| ∨ |fl|)2−α±ξ

= (|fk| ∧ |fl|)(|fk| ∨ |fl|)α−1∓ξ
,(7.19)
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so that

1

c2
n

�n(t−s)�∑
k=1

�n(t−s)�∑
l=1

∫
E

|fkfl|
(|fk| ∨ |fl|)2−α±ξ

dμ

∫ cna−1
n

0
x2ρ1(dx)

≤C2
1

nan

�n(t−s)�∑
k=1

�n(t−s)�∑
l=1

∫
E

(|fk| ∧ |fl|)(|fk| ∨ |fl|)α−1∓ξ
dμ

≤ 2C2
1

nan

×
[⌈

n(t − s)
⌉∫

E
|f |α∓ξ dμ

+
�n(t−s)�−1∑

k=1

�n(t−s)�∑
l=k+1

(∫
E
|fl||fk|α−1∓ξ dμ+

∫
E
|fk||fl|α−1∓ξ dμ

)]
:= Jn(1)+ Jn(2)+ Jn(3).

The fact that t−s > 1/n and (an) is regularly varying with the positive exponent β ,
shows that for any 1 < γ1 < 1+ β there is some constant C3 > 0, such that for all
n= 1,2, . . . ,

Jn(1)≤ C3(t − s)γ1 .

Next, by the duality relation (4.1),

Jn(2) ≤ 4C2

an

(t − s)

�n(t−s)�∑
k=1

∫
E
|fk||f |α−1∓ξ dμ

= 4C2

an

(t − s)

∫
A
|f |

(�n(t−s)�∑
k=1

T̂ k|f |α−1∓ξ

)
dμ.

If f is bounded, then by the Darling–Kac property of the set A we have, for some
constants C4,C5 > 0,

Jn(2)≤ C4(t − s)
a�n(t−s)�

an

μ
(|f |)≤ C5(t − s)γ1, 1 < γ1 < 1+ β

by the regular variation of (an). If, on the other hand, A is a uniform set for |f |,
then we can write

�n(t−s)�∑
k=1

T̂ k|f |α−1∓ξ ≤
�n(t−s)�∑

k=1

T̂ k1A +
�n(t−s)�∑

k=1

T̂ k|f |

and obtain the same bound on J2 by using both the Darling–Kac property and the
uniform property of the set A. A similar argument shows that, for some constant
C6 > 0 we also have

Jn(3)≤ C6(t − s)γ1, 1 < γ1 < 1+ β,
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which proves (7.18) in the case 1 < α < 2.
Finally, for 0 < α ≤ 1 the same argument works, if we replace the relation (7.19)

by

|fkfl|
(|fk| ∨ |fl|)1+ξ

≤ (|fk| ∧ |fl|)1−ξ
,

|fkfl|
(|fk| ∨ |fl|)1−ξ

= (|fk| ∧ |fl|)(|fk| ∨ |fl|)ξ ,
respectively, if α = 1, and

|fkfl|
(|fk| ∨ |fl|)2−α∓ξ

≤ (|fk| ∧ |fl|)α±ξ

if 0 < α < 1. This proves (7.18) in all cases, and hence, completes the proof of the
theorem. �
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