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SMOOTHNESS OF THE DENSITY FOR SOLUTIONS TO
GAUSSIAN ROUGH DIFFERENTIAL EQUATIONS
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and Université de Lorraine

We consider stochastic differential equations of the form dYt =
V (Yt ) dXt + V0(Yt ) dt driven by a multi-dimensional Gaussian process.
Under the assumption that the vector fields V0 and V = (V1, . . . , Vd) sat-
isfy Hörmander’s bracket condition, we demonstrate that Yt admits a smooth
density for any t ∈ (0, T ], provided the driving noise satisfies certain nonde-
generacy assumptions. Our analysis relies on relies on an interplay of rough
path theory, Malliavin calculus and the theory of Gaussian processes. Our
result applies to a broad range of examples including fractional Brownian
motion with Hurst parameter H > 1/4, the Ornstein–Uhlenbeck process and
the Brownian bridge returning after time T .

1. Introduction. Over the past decade, our understanding of stochastic differ-
ential equations (SDEs) driven by Gaussian processes has evolved considerably.
As a natural counterpart to this development, there is now much interest in inves-
tigating the probabilistic properties of solutions to these equations. Consider an
SDE of the form

dYt = V (Yt ) dXt + V0(Yt ) dt, Y (0)= y0 ∈R
e,(1.1)

driven by an R
d -valued continuous Gaussian process X along C∞b vector fields V0

and V = (V1, . . . , Vd) on R
e. Once the existence and uniqueness of Y has been

settled, it is natural to ask about the existence of a smooth density of Yt for t > 0.
In the context of diffusion processes, the theory is classical and goes back to Hör-
mander [24] for an analytical approach, and Malliavin [32] for a probabilistic one.

For the case where X is fractional Brownian motion, this question was first ad-
dressed by Nualart and Hu [25], where the authors show the existence and smooth-
ness of the density when the vector fields are elliptic, and the driving Gaussian
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noise is fractional Brownian motion (fBm) for H > 1/2. Further progress was
achieved in [1] where, again for the regime H > 1/2, the density was shown to be
smooth under Hörmander’s celebrated bracket condition. Rougher noises are not
directly amenable to the analysis put forward in these two papers. Additional in-
gredients have since gradually become available with the development of a broader
theory of (Gaussian) rough paths (see [9, 17, 30]). The papers [7] and [6] used this
technology to establish the existence of a density under fairly general assumptions
on the Gaussian driving noises. These papers, however, fall short of proving the
smoothness of the density, because the proof demands far more quantitative esti-
mates than were available at the time.

More recently, decisive progress was made on two aspects which obstructed the
extension of this earlier work. First, the paper [8] established sharp tail estimates
on the Jacobian of the flow J X

t←0(y0) driven by a wide class of (rough) Gaussian
processes. The tail turns out to decay quickly enough to allow to conclude the
finiteness of all moments for J X

t←0(y0). Second, [23] obtained a general, deter-
ministic version of the key Norris lemma (see also [26] for some recent work in
the context of fractional Brownian motion). The lemma of Norris first appeared
in [35] and has been interpreted as a quantitative version of the Doob–Meyer de-
composition. Roughly speaking, it ensures that there cannot be too many cancel-
lations between martingale and bounded variation parts of the decomposition. The
work [23], however, shows that the same phenomenon arises in a purely determin-
istic setting, provided that the one-dimensional projections of the driving process
are sufficiently and uniformly rough. This intuition is made precise through a no-
tion of “modulus of Hölder roughness;” see Definition 5.2 below. Together with
an analysis of the higher order Malliavin derivatives of the flow of (1.1), also car-
ried out in [23], these two results yield a Hörmander-type theorem for fractional
Brownian motion if H > 1/3.

In this paper, we aim to realise the broader potential of these developments
by generalising the analysis to a wide class of Gaussian processes. This class in-
cludes fractional Brownian motion with Hurst parameter H ∈ (1

4 , 1
2 ], the Ornstein–

Uhlenbeck process, and the Brownian bridge. Instead of focusing on particular ex-
amples of processes, our approach aims to develop a general set of conditions on
X under which Malliavin–Hörmander theory still works.

The probabilistic proof of Hörmander’s theorem is intricate, and hard to sum-
marise in a few lines; see [20] for a relatively short exposition. However, let us
highlight some basic features of the method in order to see where our main contri-
butions lie:

(i) At the centre of the proof of Hörmander’s theorem is a quantitative esti-
mate on the nondegeneracy of the Malliavin covariance matrix CT (ω). Our effort
in this direction consists in a direct and instructive approach, which reveals an
additional structure of the problem. In particular, the conditional variance of the
process plays an important role, which does not appear to have been noticed so far.
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More specifically, following [7] we study the Malliavin covariance matrix as a 2D
Young integral against the covariance function R(s, t). This provides the conve-
nient representation

vT Ct(ω)v =
∫
[0,t]×[0,t]

fs(v;ω)fr(v;ω)dR(s, r)

for some γ -Hölder continuous f (v;ω), which avoids any detours via the fractional
calculus that are specific to fBm. Compared to the setting of [6], we have to impose
some additional assumptions on R(s, t), but our more quantitative approach allows
us in return to relax the zero–one law condition required in this paper.

(ii) An essential step in the proof is achieved when one obtains some lower
bounds on vT Ctv in terms of the supremum norm of f . Toward this aim, we prove
a novel interpolation inequality, which lies at the heart of this paper. It is explicit
and also sharp in the sense that it collapses to a well-known inequality for the
space L2([0, T ]) in the case of Brownian motion. Furthermore, this result should
be important in other applications in the area, for example, in establishing bounds
on the density function (see [3] for a first step in this direction) or studying small-
time asymptotic.

(iii) Hörmander’s theorem also relies on an accurate analysis and control of
the higher order Malliavin derivatives of the flow J X

t←0(y0). This turns out the be
notationally cumbersome, but structurally quite similar to the technology already
developed for fBm. For this step, we therefore rely as much as possible on the
analysis performed in [23]. The integrability results in [8] then play the first of two
important roles in showing that the flow belongs to the Shigekawa–Sobolev space
D
∞(Re).
(iv) Finally, an induction argument that allows to transfer the bounds from the

interpolation inequality to the higher order Lie brackets of the vector fields has
to be set up. This induction requires another integrability estimate for J X

t←0(y0),
plus a Norris type lemma allowing to bound a generic integrand A in terms of the
resulting noisy integral

∫
AdX in the rough path context. This is the content of

our second main contribution, which can be seen as a generalisation of the Norris
lemma from [23] to a much wider range of regularities and Gaussian structures for
the driving process X. Namely, we extend the result of [23] from p-rough paths
with p < 3 to general p under the same “modulus of Hölder roughness” assump-
tion. It is interesting to note that the argument still only requires information about
the roughness of the path itself and not its lift.

Let us further comment on the Gaussian assumptions allowing the derivation
of the interpolation inequality briefly described in step (ii) above. First, we need a
standing assumption that regards the regularity of R(s, t) (expressed in terms of its
so called 2D ρ-variation, see [17]) and complementary Young regularity of X and
its Cameron–Martin space. This is a standard assumption in the theory of Gaussian
rough paths. The first part of the condition guarantees the existence of a natural lift
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of the process to a rough path. The complementary Young regularity in turn is
necessary to perform Malliavin calculus, and allows us to obtain the integrability
estimates for J X

t←0(y0) in [8].
In order to understand the assumptions on which our central interpolation in-

equality hinges, let us mention that it emerges from the need to prove lower bounds
of the type ∫

[0,T ]×[0,T ]
fsft dR(s, t)≥ C|f |aγ ;[0,T ]|f |2−a

∞;[0,T ](1.2)

for some exponents γ and a, and all γ -Hölder continuous functions f . After view-
ing the integral in (1.2) along a sequence of discrete-time approximations to the
integral, relation (1.2) relies on solving a sequence of finite dimensional partially
constrained quadratic programming (QP) problems. These (QP) problems involve
some matrices Q whose entries can be written as Qij =E[X1

ti ,ti+1
X1

tj ,tj+1
], where

X1
ti ,ti+1

denotes the increment X1
ti+1
− X1

ti
of the first component of X. Interest-

ingly enough, some positivity properties of Schur complements computed within
the matrix Q play a prominent role in the resolution of the aforementioned (QP)
problems. In order to guarantee these positivity properties, we shall make two non-
degeneracy type assumptions on the conditional variance and covariance structure
of our underlying process X1 (see Conditions 2 and 3 below). This is quite natural
since Schur complements are classically related to conditional variances in ele-
mentary Gaussian analysis. We also believe that our conditions essentially char-
acterise the class of processes for which we can quantify the nondegeneracy of
CT (ω) in terms of the conditional variance of the process X.

The outline of the article is as follows. In Section 2, we give a short overview of
the elements of the theory of rough paths required for our analysis. Section 3 then
states our main result. In Section 4, we demonstrate how to verify the nondegener-
acy assumptions required for the driving process in a number of concrete examples.
The remainder of the article is devoted to the proofs. First, in Section 5, we state
and prove our general version of Norris’s lemma and we apply it to the class of
Gaussian processes we have in mind. In Section 6, we then provide the proof of
an interpolation inequality of the type (1.2). In Section 7, we obtain bounds on
the derivatives of the solution with respect to its initial condition, as well as on its
Malliavin derivative. Finally, we combine all of these ingredients in Section 8 to
complete the proof of our main theorem.

2. Rough paths and Gaussian processes. In this section, we introduce some
basic notation concerning rough paths, following the exposition in [8]. In particu-
lar, we recall the conditions needed to ensure that a given Gaussian process has a
natural rough path lift.

For N ∈ N, recall that the truncated tensor algebra T N(Rd) is defined by
T N(Rd) =⊕N

n=0(R
d)⊗n, with the convention (Rd)⊗0 = R. The space T N(Rd)
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is equipped with a straightforward vector space structure, plus an operation ⊗ de-
fined by

πn(g⊗ h)=
N∑

k=0

πn−k(g)⊗ πk(h), g,h ∈ T N (
R

d)
,

where πn denotes the projection on the nth tensor level. Then (T N(Rd),+,⊗) is
an associative algebra with unit element 1 ∈ (Rd)⊗0.

At its most fundamental, we will study continuous R
d -valued paths parame-

terised by time on a compact interval [0, T ]; we denote the set of such functions
by C([0, T ],Rd). We write xs,t := xt − xs as a shorthand for the increments of a
path. Using this notation, we define the uniform norm and the p-variation semi-
norm of a path x by

‖x‖∞ := sup
t∈[0,T ]

|xt |, ‖x‖p-var;[0,T ] :=
(

sup
D

∑
[s,t]∈D

|xs,t |p
)1/p

,(2.1)

where the supremum in the second term runs over all partitions D of [0, T ]. We
will use the notation Cp-var([0, T ],Rd) for the linear subspace of C([0, T ],Rd)

consisting of the continuous paths that have finite p-variation. Of interest will also
be the set of γ -Hölder continuous functions, denoted by Cγ ([0, T ],Rd), which
consists of functions satisfying

‖x‖γ ;[0,T ] := sup
0≤s<t≤T

|xs,t |
|t − s|γ <∞.

For s < t and n ≥ 2, consider the simplex �n
st = {(u1, . . . , un) ∈ [s, t]n;u1 <

· · ·< un}, while the simplices over [0,1] will simply be denoted by �n. A contin-
uous map x :�2 → T N(Rd) is called a multiplicative functional if for s < u < t

one has xs,t = xs,u ⊗ xu,t . An important example arises from considering paths x

with finite variation: for 0 < s < t , we set

xn
s,t =

∑
1≤i1,...,in≤d

(∫
�n

st

dxi1 · · ·dxin

)
ei1 ⊗ · · · ⊗ ein,(2.2)

where {e1, . . . , ed} denotes the canonical basis of Rd , and then define the signature
of x as

SN(x) :�2 → T N (
R

d)
, (s, t) 
→ SN(x)s,t := 1+

N∑
n=1

xn
s,t .

SN(x) will be our typical example of multiplicative functional. Let us also add the
following two remarks:
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(i) A geometric rough path (see Definition 2.1 below), as well as the signature
of any smooth function, takes values in the strict subset GN(Rd)⊂ T N(Rd) given
by the “group-like elements”

GN (
R

d)= exp⊗
(
LN (

R
d))

,

where LN(Rd) is the linear span of all elements that can be written as a commuta-
tor of the type a⊗ b− b⊗ a for two elements in T N(Rd).

(ii) It is sometimes convenient to think of the indices w = (i1, . . . , in) in (2.2)
as words based on the alphabet {1, . . . , d}. We shall then write xw for the iterated
integral

∫
�n

st
dxi1 · · ·dxin .

More generally, if N ≥ 1 we can consider the set of such group-valued paths

xt = (
1,x1

t , . . . ,xN
t

) ∈GN (
R

d)
.

Note that the group structure provides a natural notion of increment, namely
xs,t := x−1

s ⊗ xt , and we can describe the set of “norms” on GN(Rd) which
are homogeneous with respect to the natural scaling operation on the tensor al-
gebra (see [17] for definitions and details). One such example is the Carnot–
Caratheodory (CC) norm (see [17]), which we denote by ‖ · ‖CC. The precise
norm used is mostly irrelevant in finite dimensions because they are all equiva-
lent. The subset of these so-called homogeneous norms which are symmetric and
sub-additive (again, see [17]) gives rise to genuine metrics on GN(Rd), for exam-
ple, dCC in the case of the CC norm. In turn, these metrics give rise to a notion of
homogenous p-variation metrics dp-var on the set of GN(Rd)-valued paths. Using
the CC norm for definiteness, we will use the following homogenous p-variation
and γ -Hölder variation semi-norms:

‖x‖p-var;[s,t] = max
i=1,...,�p


(
sup
D

∑
[s,t]∈D

‖xs,t‖pCC

)1/p

,

(2.3)

‖x‖γ,[s,t] = sup
(u,v)∈�2

st

‖xu,v‖CC

|v− u|γ ,

where the supremum over D is as in (2.1).
We will also use some metrics on path spaces which are not homogenous. The

most important will be the following:

Nx,γ ;[s,t] :=
N∑

k=1

sup
(u,v)∈�2

st

|xk
u,v|(Rd )⊗k

|v− u|kγ
,(2.4)

which will be written simply as Nx,γ when the interval [s, t] is clear from the
context.

DEFINITION 2.1. The space of weakly geometric p-rough paths [denoted
WG�p(Rd)] is the set of paths x :�2 →G�p
(Rd) such that (2.3) is finite.
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We will also work with the space of geometric p-rough paths, which we denote
by G�p(Rd), defined as the dp-var-closure of{

S�p
(x) :x ∈C1-var([0, T ],Rd)}
.

Analogously, if γ > 0 and N = [1/γ ] we define C0,γ ([0, T ];GN(Rd)) to be the
linear subspace of G�N(Rd) consisting of paths x :�2 →GN(Rd) such that

lim
n→∞

∥∥x− SN(xn)
∥∥
γ ;[0,T ] = 0

for some sequence (xn)
∞
n=1 ⊂C∞([0, T ];Rd).

In the following, we will consider RDEs driven by paths x in WG�p(Rd), along
a collection of vector fields V = (V1, . . . , Vd) on R

e, as well as a deterministic
drift along V0. From the point of view of existence and uniqueness results, the
appropriate way to measure the regularity of the Vi ’s turns out to be the notion of
Lipschitz-γ (short: Lip-γ ) in the sense of Stein [17, 31]. This notion provides a
norm on the space of such vector fields (the Lip-γ norm), which we denote | · |Lip-γ .
For the collection V of vector fields, we will often make use of the shorthand

|V |Lip-γ = max
i=1,...,d

|Vi |Lip-γ ,

and refer to the quantity |V |Lip-γ as the Lip-γ norm of V .
A theory of such Gaussian rough paths has been developed by a succession of

authors [7, 9, 12, 15] and we will mostly work within their framework. To be more
precise, we will assume that Xt = (X1

t , . . . ,X
d
t ) is a continuous, centred (i.e., mean

zero) Gaussian process with i.i.d. components on a complete probability space
(�,F,P ). Let W = C([0, T ],Rd) and suppose that (W,H,μ) is the abstract
Wiener space associated with X. The function R : [0, T ] × [0, T ]→R will denote
the covariance function of any component of X, that is,

R(s, t)=E
[
X1

s X
1
t

]
.

Following [15], we recall some basic assumptions on the covariance function of a
Gaussian process which are sufficient to guarantee the existence of a natural lift
of a Gaussian rough process to a rough path. We recall the notion of rectangular
increments of R from [16]; these are defined by

R

(
s, t

u, v

)
:=E

[(
X1

t −X1
s

)(
X1

v −X1
u

)]
.

The existence of a lift for X is ensured by insisting on a sufficient rate of decay for
the correlation of the increments. This is captured, in a very general way, by the
following two-dimensional ρ-variation constraint on the covariance function.

DEFINITION 2.2. Given 1≤ ρ < 2, we say that R has finite (two-dimensional)
ρ-variation if

Vρ

(
R; [0, T ] × [0, T ])ρ := sup

D,D′

∑
[s,t]∈D
[s′,t ′]∈D′

∣∣∣∣R
(

s, t

s′, t ′
)∣∣∣∣

ρ

<∞.(2.5)
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If a process has a covariance function with finite ρ-variation for ρ ∈ [1,2) in
the sense of Definition 2.2, [15], Theorem 35, asserts that (Xt)t∈[0,T ] lifts to a
geometric p-rough path provided p > 2ρ. Moreover, there is a unique natural lift
which is the limit, in the dp-var-induced topology, of the canonical lift of piecewise
linear approximations to X.

A related take on this notion is obtained by enlarging the set of partitions of
[0, T ]2 over which the supremum is taken in (2.5). Recall from [16] that a rectan-
gular partition of the square [0, T ]2 is a collection {Ai : i ∈ I } of rectangles of the
form Ai = [si, ti] × [ui, vi], whose union equals [0, T ]2 and which have pairwise
disjoint interiors. The collection of rectangular partitions is denoted Prec([0, T ]2),
and R is said to have controlled ρ-variation if

|R|ρ
ρ-var;[0,T ]2 := sup

{Ai : i∈I }∈Prec([0,T ]2)
Ai=[si ,ti ]×[ui,vi ]

∑
i,j

∣∣∣∣R
(

si, ti

ui, vi

)∣∣∣∣
ρ

<∞.(2.6)

We obviously have Vρ(R; [0, T ]2)≤ |R|ρ-var;[0,T ]2 , and it is shown in [16] that for
every ε > 0 there exists cp,ε such that |R|ρ-var;[0,T ]2 ≤ cp,εVρ+ε(R; [0, T ]2). The
main advantage of the quantity (2.6) compared to (2.5) is that the map

[s, t] × [u, v] 
→ |R|ρρ-var;[s,t]×[u,v]
is a 2D control in the sense of [16].

DEFINITION 2.3. Given 1≤ ρ < 2, we say that R has finite (two-dimensional)
Hölder-controlled ρ-variation if Vρ(R; [0, T ] × [0, T ]) <∞, and if there exists
C > 0 such that for all 0≤ s ≤ t ≤ T we have

Vρ

(
R; [s, t] × [s, t])≤ C(t − s)1/ρ.(2.7)

REMARK 2.4. This is (essentially) without loss of generality compared to
Definition 2.2. To see this, we note that if R also has controlled ρ-variation in the
sense of (2.6), then we can introduce the deterministic time-change τ : [0, T ] →
[0, T ] given by τ = σ−1, where σ : [0, T ] → [0, T ] is the strictly increasing func-
tion defined by

σ(t) :=
T |R|ρ

ρ-var;[0,t]2
|R|ρ

ρ-var;[0,T ]2
.(2.8)

It is then easy to see that R̃, the covariance function of X̃ = X ◦ τ , is Hölder-
controlled in the sense of Definition 2.3.

Two important consequences of assuming that R has finite Hölder-controlled
ρ-variation are: (i) X has 1/p-Hölder sample paths for every p > 2ρ, and (ii) by
using [17], Theorem 15.33, we can deduce that

E
[
exp

(
η‖X‖2

1/p;[0,T ]
)]

<∞ for some η > 0,(2.9)
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that is, ‖X‖2
1/p;[0,T ] has a Gaussian tail.

The mere existence of this lift is unfortunately not sufficient to apply the usual
concepts of Malliavin calculus. In addition, it will be important to require a com-
plementary (Young) regularity of the sample paths of X and the elements of its
Cameron–Martin space. The following assumption captures both of these require-
ments.

CONDITION 1. Let (Xt)t∈[0,T ] = (X1
t , . . . ,X

d
t )t∈[0,T ] be a Gaussian process

with i.i.d. components. Suppose that the covariance function has finite Hölder-
controlled ρ-variation for some ρ ∈ [1,2). We will assume that X has a natural
lift to a geometric p-rough path and that H, the Cameron–Martin space associated
with X, has Young-complementary regularity to X in the following sense: for some
q ≥ 1 satisfying 1/p+ 1/q > 1, we have the continuous embedding

H ↪→Cq-var([0, T ],Rd)
.

The following theorem appears in [15] as Proposition 17 (cf. also the recent
note [16]); it shows how the assumption Vρ(R; [0, T ]2) <∞ allows us to embed
H in the space of continuous paths with finite ρ variation. The result is stated
in [15] for one-dimensional Gaussian processes, but the generalisation to arbitrary
finite dimensions is straightforward.

THEOREM 2.5 ([15]). Let (Xt)t∈[0,T ] = (X1
t , . . . ,X

d
t )t∈[0,T ] be a mean-zero

Gaussian process with independent and identically distributed components. Let R

denote the covariance function of (any) one of the components. Then if R is of finite
ρ-variation for some ρ ∈ [1,2) we can embed H in the space Cρ-var([0, T ],Rd),
in fact,

|h|H ≥ |h|ρ-var;[0,T ]√
Vρ(R; [0, T ] × [0, T ])

.(2.10)

REMARK 2.6 ([14]). Writing HH for the Cameron–Martin space of fBm for
H in (1/4,1/2), the variation embedding in [14] gives the stronger result that

HH ↪→ Cq-var([0, T ],Rd)
for any q > (H + 1/2)−1.

Theorem 2.5 and Remark 2.6 provide sufficient conditions for a process to sat-
isfy the fundamental Condition 1, which we summarise in the following remark.

REMARK 2.7. As already observed, the requirement that R has finite 2D ρ-
variation, for some ρ ∈ [1,2), implies both that X lifts to a geometric p-rough path
for all p > 2ρ and also that H ↪→ Cρ-var([0, T ],Rd) (Theorem 2.5). Complemen-
tary regularity of H in the above condition thus can be obtained by ρ ∈ [1,3/2),
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which covers for example BM, the OU process and the Brownian bridge (in each
case with ρ = 1). When X is fBm, we know that X admit a lift to G�p(Rd) if
p > 1/H , and Remark 2.6 therefore ensures the complementary regularity of X

and H if H > 1/4.

3. Statement of the main theorem. We will begin the section by laying out
and providing motivation for the assumptions we impose on the driving Gaussian
signal X. We will then end the section with a statement of the central theorem of
this paper, which is a version of Hörmander’s theorem for Gaussian RDEs. First,
we give some notation which will feature repeatedly.

NOTATION 1. We define

Fa,b := σ
(
Xv,v′ :a ≤ v ≤ v′ ≤ b

)
to be the σ -algebra generated by the increments of X between times a and b.

The following condition aims to capture the nondegeneracy of X, it will feature
prominently in the sequel.

CONDITION 2 (Nondeterminism-type condition). Let (Xt)t∈[0,T ] be a contin-
uous Gaussian process. Suppose that the covariance function R of X has finite
Hölder-controlled ρ-variation for some ρ in [1,2). We assume that there exists
α > 0 such that

inf
0≤s<t≤T

1

(t − s)α
Var(Xs,t |F0,s ∨Ft,T ) > 0.(3.1)

Whenever this condition is satisfied, we will call α the index of nondeterminism if
it is the smallest value of α for which (3.1) is true.

REMARK 3.1. It is worthwhile making a number of comments. First, notice
that the conditional variance

Var(Xs,t |F0,s ∨Ft,T )

is actually deterministic by Gaussian considerations. Then for any [s, t] ⊆ [0, S] ⊆
[0, T ], the law of total variance can be used to show that

Var(Xs,t |F0,s ∨Ft,S)≥Var(Xs,t |F0,s ∨Ft,T ).

It follows that if (3.1) holds on [0, T ], then it will also hold on any interval [0, S] ⊆
[0, T ] provided S > 0.

Note that Condition 2 implies the existence of c > 0 such that

Var(Xs,t |F0,s ∨Ft,T )≥ c(t − s)α.
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This is reminiscent of (but not equivalent to) other notions of nondeterminism
which have been studied in the literature. For example, it should be compared to
the similar notion introduced in [4], where it was exploited to show the existence
of a smooth local time function (see also the subsequent work of Cuzick et al. [10]
and [11]). In the present context, Condition 2 is also related to the following con-
dition: for any f of finite p-variation over [0, T ]∫ T

0
fs dhs = 0 ∀h ∈H ⇒ f = 0 a.e. on [0, T ].(3.2)

This has been used in [6] to prove the existence of the density for Gaussian RDEs.
In some sense, our Condition 2 is the quantitative version of (3.2). In this paper,
when we speak of a nondegenerate Gaussian process (Xt)t∈[0,T ] we will mean the
following.

DEFINITION 3.2. Let (Xt)t∈[0,T ] be a continuous, real-valued Gaussian pro-
cess. For any partition D = {ti : i = 0,1, . . . , n} of [0, T ], let (QD

ij )1≤i,j≤n denote
the n× n matrix given by the covariance matrix of the increments of X along D,
that is,

QD
ij =R

(
ti−1, ti

tj−1, tj

)
.(3.3)

We say that X is nondegenerate if QD is positive definite for every partition D of
[0, T ].

REMARK 3.3. An obvious example of a “degenerate” Gaussian process is
a bridge process which returns to zero in [0, T ]. This is plainly ruled out by an
assumption of nondegeneracy.

It is shown in [7] that nondegeneracy is implied by (3.2). Thus, nondegeneracy
is a weaker condition than (3.2). It also has the advantage of being formulated more
tangibly in terms of the covariance matrix. The next lemma shows that Condition 2
also implies that the process is nondegenerate.

LEMMA 3.4. Let (Xt)t∈[0,T ] be a continuous Gaussian process which satisfies
Condition 2 then X is nondegenerate.

PROOF. Fix a partition D of [0, T ], and denote the covariance matrix along
this partition by Q with entries as in (3.3). If Q is not positive definite, then for
some nonzero vector λ= (λ1, . . . , λn) ∈R

n we have

0= λT Qλ=E

[(
n∑

i=1

λiXti−1,ti

)2]
.(3.4)
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Suppose, without loss of generality, that λj �= 0. Then from (3.4), we can deduce
that

Xtj−1,tj =
n∑

i �=j

λi

λj

Xti−1,ti

with probability one. This immediately implies that

Var(Xtj−1,tj |F0,tj−1 ∨Ftj ,T )= 0,

which contradicts (3.1). �

A crucial step in the proof of the main theorem is to establish lower bounds
on the eigenvalues of the Malliavin covariance matrix in order to obtain moment
estimates for its inverse. In the setting we have adopted, it transpires that these
eigenvalues can be bounded from below by some power of the 2D Young integral:∫

[0,T ]2
fsft dR(s, t)(3.5)

for some suitable (random) function f ∈ Cp-var([0, T ],Rd). By considering the
Riemann sum approximations to (3.5), the problem of finding a lower bound can
be re-expressed in terms of solving a sequence of finite-dimensional constrained
quadratic programming problems. By considering the dual of these problems, we
can simplify the constraints which appear considerably; they become nonnegativ-
ity constraints, which are much easier to handle. Thus, the dual problem has an
explicit solution subject to a dual feasibility condition. The following condition is
what emerges as the limit of the dual feasibility conditions for the discrete approx-
imations.

CONDITION 3. Let (Xt)t∈[0,T ] be a continuous, real-valued Gaussian pro-
cess. We will assume that X has nonnegative conditional covariance in that for
every [u, v] ⊆ [s, t] ⊆ [0, S] ⊆ [0, T ] we have

Cov(Xs,t ,Xu,v|F0,s ∨Ft,S)≥ 0.(3.6)

In Section 6, we will prove a novel interpolation inequality. The significance of
Condition 3 will become clearer when we work through the details of that section.
For the moment, we content ourselves with an outline. First, for a finite parti-
tion D of the interval [0, T ], one can consider the discretisation of the process
Xt conditioned on the increments in D ∩ ([0, s] ∪ [t, T ]). Let QD be the corre-
sponding covariance matrix of the increments [see (3.3)]. Then the conditional
covariance Cov(XD

s,t ,X
D
u,v|FD

0,s ∨ FD
t,T ) of the discretised process can be charac-

terised in terms of a Schur complement � of the matrix QD . Using this relation,
the condition

Cov
(
XD

s,t ,X
D
u,v|FD

0,s ∨FD
t,T

)≥ 0
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is precisely what ensures that the row sums for � are nonnegative. Conversely, if
for any finite partition D all Schur complements of the matrix QD have nonnega-
tive row sums, then Condition 3 is satisfied. This relation motivates an alternative
sufficient condition that implies Condition 3, which has the advantage that it may
be more readily verified for a given Gaussian process. In order to state the condi-
tion, recall that an n× n real matrix Q is diagonally dominant if

Qii ≥
∑
j �=i

|Qij | for every i ∈ {1,2, . . . , n}.(3.7)

CONDITION 4. Let (Xt)t∈[0,T ] be a continuous real-valued Gaussian process.
For every [0, S] ⊆ [0, T ], we assume that X has diagonally dominant increments
on [0, S]. By this, we mean that for every partition D = {ti : i = 0,1, . . . , n} of
[0, S], the n× n matrix (QD

ij )1≤i,j≤n with entries

QD
ij =E[Xti−1,tiXtj−1,tj ] =R

(
ti−1, ti

tj−1, tj

)

is diagonally dominant.

Diagonal dominance is obviously in general a stronger assumption than requir-
ing that a covariance matrix has positive row sums. Consequently, Condition 4 is
particularly useful for negatively correlated processes, when diagonal dominance
of the increments and positivity of row sums are the same. The condition can then
be expressed succinctly as

E[X0,SXs,t ] ≥ 0 ∀[s, t] ⊆ [0, S] ⊆ [0, T ].
In fact, it turns out that Condition 4 implies Condition 3. This is not obvious a pri-
ori, and ultimately depends on two nice structural features. The first is the observa-
tion from linear algebra that the property of diagonal dominance is preserved under
taking Schur complements (see [38] for a proof of this). The second results from
the interpretation of the Schur complement (in the setting of Gaussian vectors) as
the covariance matrix of a certain conditional distribution. We will postpone the
proof of this until Section 6 when these properties will be used extensively.

The final condition we will impose is classical, namely Hörmander’s condition
on the vector fields defining the RDE.

CONDITION 5 (Hörmander). We assume that

span
{
V1, . . . , Vd, [Vi,Vj ], [

Vi, [Vj ,Vk]], . . . :
(3.8)

i, j, k, . . .= 0,1, . . . , d
}|y0 = Ty0R

e ∼=R
e.

We are ready to formulate our main theorem.
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THEOREM 3.5. Let (Xt)t∈[0,T ] = (X1
t , . . . ,X

d
t )t∈[0,T ] be a continuous Gaus-

sian process, with i.i.d. components associated to the abstract Wiener space
(W,H,μ). Assume that some (and hence every) component of X satisfies:

(1) Condition 1, for some ρ ∈ [1,2);
(2) Condition 2, with index of nondeterminacy α < 2/ρ;
(3) Condition 3, that is, it has nonnegative conditional covariance.

Fix p > 2ρ, and let X ∈G�p(Rd) denote the canonical lift of X to a Gaussian
rough path. Suppose V = (V1, . . . , Vd) is a collection of C∞-bounded vector fields
on R

e, and let (Yt )t∈[0,T ] be the solution to the RDE

dYt = V (Yt ) dXt + V0(Yt ) dt, Y (0)= y0.

Assume that the collection (V0,V1, . . . , Vd) satisfy Hörmander’s condition, Con-
dition 5, at the starting point y0. Then random variable Yt has a smooth density
with respect to Lebesgue measure on R

e for every t ∈ (0, T ].
4. Examples. In this section, we demonstrate how the conditions on X we

introduced in the last section can be checked for a number of well-known pro-
cesses. We choose to focus on three particular examples: fractional Brownian mo-
tion (fBm) with Hurst parameter H > 1/4, the Ornstein–Uhlenbeck (OU) process
and the fractional Brownian bridge (fBb) with Hurst parameter 1/3 < H ≤ 1/2.
Together, these encompass a broad range of Gaussian processes that one encoun-
ters in practice. Of course, there are many more examples, but these should be
checked on a case-by-case basis by analogy with our presentation for these core
examples. We first remark that Condition 1 is straightforward to check in all these
cases (see, e.g., [17] and [7]). Proving that the fBb (returning at T ′ > 0) with
H > 1/3 satisfies Condition 1 is a simple calculation in a similar style.

We will now commence with a verification of the nondeterminism condition,
that is, Condition 2.

4.1. Nondeterminism-type condition. Recall that the Cameron–Martin
space H is defined to be the completion of the linear space of functions of the
form

n∑
i=1

aiR(ti, ·), ai ∈R and ti ∈ [0, T ],

with respect to the inner product〈
n∑

i=1

aiR(ti, ·),
m∑

j=1

bjR(sj , ·)
〉
H
=

n∑
i=1

m∑
j=1

aibjR(ti, sj ).

Some authors prefer instead to work with the set of step functions E

E =
{

n∑
i=1

ai1[0,ti ] :ai ∈R, ti ∈ [0, T ]
}
,
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equipped with the inner product

〈1[0,t],1[0,s]〉H̃ =R(s, t).

If H̃ denote the completion of E w.r.t. 〈·, ·〉H̃, then it is obvious that the linear map
φ :E→H defined by

φ(1[0,t])=R(t, ·)(4.1)

extends to an isometry between H̃ and H. We also recall that H̃ is isometric to the
Hilbert space H 1(Z) ⊆ L2(�,F,P ) which is defined to be the | · |L2(�)-closure
of the set {

n∑
i=1

aiZti :ai ∈R, ti ∈ [0, T ], n ∈N

}
.

In particular, we have that |1[0,t]|H̃ = |Zt |L2(�). We will now prove that Condi-

tion 2 holds whenever it is the case that H̃ embeds continuously in Lq([0, T ]) for
some q ≥ 1. Hence, Condition 2 will simplify in many cases to showing that

|h̃|Lq [0,T ] ≤ C|h̃|H̃
for some C > 0 and all h̃ ∈ H̃.

LEMMA 4.1. Suppose (Zt )t∈[0,T ] is a continuous real-valued Gaussian pro-
cesses. Assume that for some q ≥ 1 we have H̃ ↪→Lq([0, T ]). Then Z satisfies
Condition 2 with index of nondeterminacy less than or equal to 2/q , that is,

inf
0≤s<t≤T

1

(t − s)2/q
Var(Zs,t |F0,s ∨Ft,T ) > 0.

PROOF. Fix [s, t] ⊆ [0, T ] and for brevity let G denote the σ -algebra F0,s ∨
Ft,T . Then, using the fact that Var(Zs,t |G) is deterministic and positive, we have

Var(Zs,t |G)= ∥∥Var(Zs,t |G)
∥∥
L2(�) =E

[
E

[(
Zs,t −E[Zs,t |G])2|G]2]1/2

= E
[(

Zs,t −E[Zs,t |G])2]= ∥∥Zs,t −E[Zs,t |G]
∥∥2
L2(�)

= inf
Y∈L2(�,G,P )

‖Zs,t − Y‖2
L2(�)

.

We can therefore find sequence of random variables (Yn)
∞
n=1 ⊂ L2(�,G,P ) such

that

‖Zs,t − Yn‖2
L2(�)

=E
[
(Zs,t − Yn)

2] ↓Var(Zs,t |G).(4.2)

Moreover, because E[Zs,t |G] belongs to the closed subspace H 1(Z), we can as-
sume that Yn has the form

Yn =
kn∑

i=1

an
i Ztni ,tni+1
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for some sequence of real numbers {an
i : i = 1, . . . , kn} and a collection of subin-

tervals {[
tni , tni+1

]
: i = 1, . . . , kn

}
,

which satisfy [tni , tni+1] ⊆ [0, s] ∪ [s, T ] for every n ∈N.
We now exhibit a lower bound for ‖Zs,t − Yn‖2

L2(�)
which is independent of n

[and hence from (4.2) will apply also to Var(Zs,t |G)]. Let us note that the isometry
between the H 1(Z) and H̃ yields

‖Zs,t − Yn‖2
L2(�)

= |h̃n|2H̃,(4.3)

where

h̃n(·) :=
kn∑

i=1

an
i 1[tni ,tni+1](·)+ 1[s,t](·) ∈ H̃.

The embedding H̃ ↪→Lq([0, T ]) then shows that

|h̃n|2H̃ ≥ c|h̃|2Lq [0,T ] ≥ c(t − s)2/q .

The result follows immediately from this together with (4.2) and (4.3). �

Checking that H̃ embeds continuously in a suitable Lq([0, T ]) space is some-
thing which is readily done for our three examples. This is what the next lemma
shows.

LEMMA 4.2. If (Zt )t∈[0,T ] is fBm with Hurst index H ∈ (0,1/2) and q ∈
[1,2) then H̃ ↪→ Lq([0, T ]). If (Zt )t∈[0,T ] is the (centred) Ornstein–Uhlenbeck
process or the Brownian bridge (returning to zero after time T ) then H̃ ↪→
L2([0, T ]).

PROOF. The proof for each of the three examples has the same structure. We
first identify an isometry K∗ which maps H̃ surjectively onto L2[0, T ]. (The op-
erator K∗ is of course different for the three examples.) We then prove that the
inverse (K∗)−1 is a bounded linear operator when viewed as a map from L2[0, T ]
into Lq[0, T ]. For fBm this is shown via the Hardy–Littlewood lemma (see [36]).
For the OU process and the Brownian bridge, it follows from a direct calculation
on the operator K∗. Equipped with this fact, we can deduce that

|h̃|Lq [0,T ] =
∣∣(K∗)−1

K∗h̃
∣∣
Lq [0,T ] ≤

∣∣(K∗)−1∣∣
L2→Lq

∣∣K∗h̃
∣∣
L2[0,T ]

= ∣∣(K∗)−1∣∣
L2→Lq |h̃|H̃,

which completes the proof. �
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REMARK 4.3. We can verify the condition in the case of the fBb by more
direct means. One representation of the fBb is of the form

Xt = Bt − atBT with at = t2H + T 2H − (T − t)2H

2T 2H
.(4.4)

Then

Var(Xs,t |F0,s ∨Ft,T ) ≥ Var(Xs,t |F0,s ∨Ft,T ,BT )=Var
(
Bs,t |FB

0,s ∨FB
t,T

)
� cr2H .

As an immediate corollary of the last two lemmas, we can conclude that the
(centred) Ornstein–Uhlenbeck process and the Brownian bridge (returning to zero
after time T ) both satisfy Condition 2 with index of nondeterminism no greater
than unity. In the case of fBm (ZH

t )t∈[0,T ], the scaling properties of ZH enable us
to say more about the nondeterminism index than can be obtained by an immediate
application of Lemmas 4.1 and 4.2. To see this, note that for fixed [s, t] ⊆ [0, T ]
we can introduce a new process

Z̃H
u := (t − s)−HZH

u(t−s).

Z̃ defines another fBm, this time on the interval [0, T (t − s)−1] =: [0, T̃ ]. Let
u= s(t − s)−1, v = t (t − s)−1 and denote by F̃a,b the σ -algebra generated by the
increments of Z̃ in [a, b]. Scaling then allows us to deduce that

Var(Zs,t |F0,s ∨Ft,T )= (t − s)2H Var(Z̃u,v|F̃0,u ∨ F̃
v,T̃

).(4.5)

By construction u−v = 1. And since Z̃ is fBm it follows from Lemmas 4.1 and 4.2
that

inf
[u,v]⊆[0,T̃ ],
|u−v|=1

Var(Z̃u,v|F̃0,u ∨ F̃
v,T̃

) > 0.(4.6)

It follows from (4.5) and (4.6) that ZH satisfies Condition 2 with index of nonde-
terminacy no greater than 2H .

4.2. Nonnegativity of the conditional covariance. We finally verify that our
example processes also satisfy Condition 3. We first consider the special case of
process with negatively correlated increments.

4.2.1. Negatively correlated increments. From our earlier discussion, it suf-
fices to check that Condition 4 holds. In other words, that QD is diagonally domi-
nant for every partition D. This amounts to showing that

E[Zti−1,tiZ0,T ] ≥ 0
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for every 0≤ ti−1 < ti ≤ T . It is useful to have two general conditions on R which
will guarantee that (i) the increments of Z are negatively correlated, and (ii) diag-
onal dominance is satisfied. Here is a simple characterisation of these properties:

Negatively correlated increments: If i < j , write

Qij =E[Zti−1,tiZtj−1,tj ] =
∫ ti

ti−1

∫ tj

tj−1

∂2
abR(a, b) da db,

so that a sufficient condition for Qij < 0 is ∂2
abR(a, b) ≤ 0 for a < b. This is

trivially verified for fBm with H < 1/2. Note that the distributional derivative
∂2
abR(a, b) might be singular on the diagonal, but the diagonal is avoided here.

Diagonal dominance: If we assume negatively correlated increments, then di-
agonal dominance is equivalent to

∑
j Qij > 0. Moreover, if we assume Z0 is

deterministic and Z is centred we get

∑
j

Qij =E[Zti−1,tiZT ] =
∫ ti

ti−1

∂aR(a,T ) da,

so that a sufficient condition for
∑

j Qij ≥ 0 is ∂aR(a, b) ≥ 0 for a < b. This is
again trivially verified for fBm with H < 1/2.

EXAMPLE 4.4. In the case where (Zt )t∈[0,T ] is the Brownian bridge, which
returns to zero at time T ′ > T we have

R(a, b)= a

T ′
(
T ′ − b

)
for a < b.

It is then immediate that ∂2
abR(a, b)=−1/T ′ < 0 and ∂aR(a, b)= 1− b/T ′ > 0.

Similarly, for the centred Ornstein–Uhlenbeck process, we have

R(a, b)= 2e−b sinh(a) for a < b.

From which it follows that ∂2
abR(a, b) = −2e−b cosh(a) < 0 and ∂aR(a, b) =

2e−b cosh(a) > 0. In the more general case of the fractional Brownian bridge re-
turning to zero at time T ′ > T , the covariance function is given for a < b by

R(a, b)= 1

2
RH(a, b)− 1

2(T ′)2H
RH

(
a,T ′

)
RH

(
b,T ′

)
,

where we used the shorthand RH(a, b)= a2H + b2H − (b− a)2H . Thus,

∂aR(a, b)=H
[
a2H−1 + (b− a)2H−1]

− H

(T ′)2H

[
a2H−1 + (

T ′ − a
)2H−1]

RH

(
b,T ′

)
.

This is positive, since RH(b,T ′)≤ (T ′)2H and (T ′−a)2H−1 ≤ (b−a)2H−1 when-
ever H < 1/2. The fact that ∂abR(a, b)≤ 0 is also easily seen.
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4.2.2. Without negatively correlated increments. In the three examples, we
were able to check Condition 3 by using the negative correlation of the increments
and showing explicitly the diagonal dominance. In the case where the increments
have positive or mixed correlation, we may have to check the weaker condition,
Condition 3, directly. An observation that might be useful in this regard is the
following geometrical interpretation. Recall that we want to want to check that

Cov(Zs,t ,Zu,v|F0,s ∨Ft,T )≥ 0.

For simplicity, let X = Zs,t , Y = Zu,v and G =F0,s ∨ Ft,T . The map PG :Z 
→
E[Z|G] then defines a projection from the Hilbert space L2(�,F,P ) onto the
closed subspace L2(�,G,P ), which gives the orthogonal decomposition

L2(�,F,P )= L2(�,G,P )⊕L2(�,G,P )⊥.

A simple calculation then yields

Cov(X,Y |G)= E
[
Cov(X,Y |G)

]=E
[
(I − PG)X(I − PG)Y

]
= 〈

P⊥G X,P⊥G Y
〉
L2(�),

where P⊥G is the projection onto L2(�,G,P )⊥. In other words, Cov(X,Y |G)≥ 0
if and only if cos θ ≥ 0, where θ is the angle between the projections P⊥G X and
P⊥G Y of, respectively, X and Y onto the orthogonal complement of L2(�,G,P ).

5. A Norris-type lemma. In this section, we generalise a deterministic ver-
sion of the Norris lemma, obtained in [23] for p rough paths with 1 < p < 3, to
general p > 1. It is interesting to note that the assumption on the driving noise we
make is consistent with [23]. In particular, it still only depends on the roughness
of the basic path and not the rough path lift.

5.1. Norris’ lemma. To simplify the notation, we will assume that T = 1 in
this subsection; all the work will therefore be done on the interval [0,1]. Our
Norris-type lemma relies on the notion of controlled process, which we proceed
to define now. Recall first the definition contained in [18] for second-order rough
paths: whenever x ∈ C0,γ ([0,1];GN(Rd)) with γ > 1/3, the space Qx(R) of con-
trolled processes is the set of functions y ∈ Cγ ([0,1];R) such that the increment
yst can be decomposed as

yst = yi
sx

i
s,t + rs,t ,

where the remainder term r satisfies |rs,t | ≤ cy |t − s|2γ and where we have used
the summation over repeated indices convention. Notice that y has to be considered
in fact as a vector (y, y1, . . . , yd).

In order to generalise this notion to lower values of γ , we shall index our con-
trolled processes by words based on the alphabet {1, . . . , d}. To this end, we need
the following additional notation.
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NOTATION 2. Let w = (i1, . . . , in) and w̄ = (j1, . . . , jm) be two words based
on the alphabet {1, . . . , d}. Then |w| = n denotes the length of w, and ww̄ stands
for the concatenation (i1, . . . , in, j1, . . . , jm) of w and w̄. For L≥ 1, WL denotes
the set of words of length at most L.

Let us now turn to the definition of controlled process based on a rough path.

DEFINITION 5.1. Let x ∈ C0,γ ([0,1];GN(Rd)), with γ > 0, N = [1/γ ].
A controlled path based on x is a family (yw)w∈WN−1 indexed by words of length
at most N − 1, such that for any word w ∈WN−2 we have

yw
s,t =

∑
w̄∈WN−1−|w|

yww̄
s xw̄

s,t + rw
s,t where

∣∣rw
s,t

∣∣≤ cy |t − s|(N−|w|)γ .(5.1)

In order to take the drift term of (1.1) into account, we also assume that for w =∅

we get a decomposition for the increment ys,t of the form

ys,t =
∑

w̄∈WN−1

yw̄
s xw̄

s,t + y0
s (t − s)+ r

y
st where

∣∣ry
s,t

∣∣≤ cy |t − s|Nγ .(5.2)

The set of controlled processes is denoted by Qγ
x , and the norm on Qγ

x is given by

‖y‖Qγ
x
= ∥∥y0∥∥

γ +
∑

w∈WN−1

∥∥yw
∥∥
γ .

We next recall the definition of θ -Hölder-roughness introduced in [23].

DEFINITION 5.2. Let θ ∈ (0,1). A path x : [0, T ] → R
d is called θ -Hölder

rough if there exists a constant c > 0 such that for every s in [0, T ], every ε in
(0, T /2], and every φ in R

d with |φ| = 1, there exists t in [0, T ] such that ε/2 <

|t − s|< ε and ∣∣〈φ,xs,t 〉
∣∣ > cεθ .

The largest such constant is called the modulus of θ -Hölder roughness, and is
denoted Lθ(x).

A first rather straightforward consequence of this definition is that if a rough
path x happens to be Hölder rough, then the derivative processes yw in the de-
composition (5.1) of a controlled path y is uniquely determined by y. This can be
made quantitative in the following way.

PROPOSITION 5.3. Let x ∈ C0,γ ([0,1];GN(Rd)), with γ > 0 and N =
[1/γ ]. We also assume that x is θ -Hölder rough for some θ < 2γ . Let y be
a real-valued controlled path defined as in Definition 5.1, and set Yn(y) =
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sup|w|=n ‖yw‖∞ for n ≤ N − 1. Then there exists a constant M depending only
on d such that the bound

Yn(y)≤ M(‖y‖Qγ
x
Nx)

θ/(2γ )

Lθ (x)
Y1−θ/(2γ )

n−1 (y)(5.3)

holds for every controlled rough path Qγ
x and every 1≤ n≤N − 1.

PROOF. For sake of clarity, we shall assume that y0 = 0, leaving to the patient
reader the straightforward adaptation to a nonvanishing drift coefficient. Now start
from the decomposition (5.1) and recast it as

yw
s,t =

d∑
j=1

ywj
s x(j)

s,t +
∑

2≤|w̄|≤N−1−|w|
yww̄
s xw̄

s,t + rw
s,t ,

where we have set wj for the concatenation of the word w and the word (j) for
notational sake. This identity easily yields

sup
|t−s|≤ε

∣∣∣∣∣
d∑

j=1

ywj
s x(j)

s,t

∣∣∣∣∣≤ 2
∥∥yw

∥∥∞
+ ∑

2≤|w̄|≤N−1−|w|

∥∥yww̄
∥∥∞∥∥xw̄

∥∥
γ |w̄|ε

|w̄|γ(5.4)

+ ∥∥rw
∥∥
γ (N−|w|)ε

(N−|w|)γ .

Since x is θ -Hölder rough by assumption, there exists v, which is independent of
j, with ε/2≤ |v − s| ≤ ε such that∣∣∣∣∣

d∑
j=1

ywj
s x(j)

s,v

∣∣∣∣∣ > Lθ(x)εθ
∣∣(yw1

s , . . . , ywd
s

)∣∣.(5.5)

Combining both (5.4) and (5.5) for all words w of length n − 1, we thus obtain
that

Yn(y)≤ c

Lθ(x)

[
Yn−1(y)ε−θ

+ sup
|w|=n−1

( ∑
2≤|w̄|≤N−1−|w|

∥∥yww̄
∥∥∞∥∥xw̄

∥∥
γ |w̄|ε

|w̄|γ−θ

+ ∥∥rw
∥∥
γ (N−|w|)ε

(N−|w|)γ−θ

)]
.

Let us further simplify this relation by recalling that we take supremums over
words w such that |w| = n−1≤N −2, so that N −|w| ≥ 2, and we also consider
words w̄ whose length is at least 2. This yields

Yn(y)≤ c

Lθ(x)

(
Yn−1(y)ε−θ + ‖y‖Qγ

x
Nx,γ ε2γ−θ )

.
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One can optimise the right-hand side of the previous inequality over ε, by choosing
ε such that the term Yn−1(y)ε−θ is of the same order as Nx,γ ε2γ−θ . One then
verifies that our claim (5.3) follows from this elementary computation. �

REMARK 5.4. Definition 5.1 and Proposition 5.3 can be generalised to d-
dimensional controlled processes. In particular, if y is a d-dimensional path, the
decomposition (5.2) becomes

yi
s,t =

∑
w̄∈WN−1

yi,w̄
s xw̄

s,t + r
i,y
s,t where

∣∣ri,y
s,t

∣∣≤ cy |t − s|Nγ(5.6)

for all i = 1, . . . , d .

We now show how the integration of controlled processes fits into the gen-
eral rough paths theory. For this, we will use the nonhomogeneous norm Nx,γ =
Nx,γ,[0,1] introduced in (2.4).

PROPOSITION 5.5. Let y be a d-dimensional controlled process, given as in
Definition 5.1 and whose increments can be written as in (5.6). Then (x,y) is a
geometrical rough path in GN(R2d). In particular, for (s, t) ∈ �2, the integral
Ist ≡ ∫ t

s yi
s dxi

s is well defined and admits the decomposition

Is,t =
d∑

j=1

(
yj
s x

j
s,t +

∑
w̄∈WN−1

yw̄
s xw̄j

s,t

)
+ rI

s,t ,(5.7)

where |rI
s,t | ≤Nx‖y‖γ |t − s|(N+1)γ .

PROOF. Approximate x and y by smooth functions xm,ym, while preserving
the controlled process structure (namely ym ∈ Qxm ). Then one can easily check
that (xm, ym) admits a signature, and that Im

s,t ≡
∫ t
s ym,i

s dxm,i
s can be decomposed

as (5.7). Limits can then be taken thanks to [19], which completes the proof. �

The following theorem is a version of Norris’ lemma, and constitutes the main
result of this section.

THEOREM 5.6. Let x be a geometric rough path of order N ≥ 1 based on
the R

d -valued function x. We also assume that x is a θ -Hölder rough path with
2γ > θ . Let y be a R

d -valued controlled path of the form given in Definition 5.1,
b ∈ Cγ ([0,1]), and set

zt =
d∑

i=1

∫ t

0
yi
s dxi

s +
∫ t

0
bs ds = Ist +

∫ t

0
bs ds.

Then there exist constants r > 0 and q > 0 such that, setting

R= 1+Lθ(x)−1 +Nx,γ + ‖y‖Qγ
x
+ ‖b‖Cγ ,(5.8)
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one has the bound

‖y‖∞ + ‖b‖∞ ≤MRq‖z‖r∞
for a constant M depending only on T , d and y.

PROOF. We shall divide this proof in several steps. In the following compu-
tations, the symbol κ will stand for an exponent for R and M will stand for an
arbitrary multiplicative constant. The exact values of these two constants are irrel-
evant and can change from line to line without warning.

Step 1: Bounds on y. Combining (5.7), the bound on rI given in Proposition 5.5
and the definition of R, we easily get the relation

‖z‖∞ ≤MRκ .(5.9)

We now resort to relation (5.3) applied to the controlled path z and for n = 1,
which means that Yn(z) � ‖y‖∞ and Yn−1(z) � ‖z‖∞. With the definition of R
in mind, this yields the bound

‖y‖∞ ≤M‖z‖1−θ/(2γ )∞ Rκ,(5.10)

which corresponds to our claim for y.
Along the same lines and thanks to relation (5.3) for n > 1, we iteratively get

the bounds

Yn(y)≤M‖z‖(1−θ/(2γ ))n∞ Rκ,(5.11)

which will be useful in order to complete the bound we have announced for b.
Step 2: Bounds on rI and I . In order to get an appropriate bound on r , it is

convenient to consider x as a rough path with Hölder regularity β < γ , still satis-
fying the inequality 2β > θ . Notice furthermore that Nx,β ≤Nx,γ . Consider now
w ∈Wn. According to (5.11), we have∥∥yw

∥∥∞ ≤M‖z‖(1−θ/(2γ ))n∞ Rκ,

while ‖yw‖γ ≤MR by definition. Hence, invoking the inequality∥∥yw
∥∥
β ≤ 2

∥∥yw
∥∥β/γ
γ

∥∥yw
∥∥1−β/γ
∞ ,

which follows immediately from the definition of the Hölder norm, we obtain the
bound ∥∥yw

∥∥
β ≤M‖z‖(1−θ/(2γ ))n(1−β/γ )∞ Rκ,

which is valid for all w ∈Wn and all n≤N − 1. Summing up, we end up with the
relation

‖y‖β ≤M‖z‖(1−θ/(2γ ))N−1(1−β/γ )∞ Rκ .
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Now according to Proposition 5.5, we get rI
s,t ≤Nx,β‖y‖β |t − s|(N+1)β and the

above estimate yields∥∥rI
∥∥
(N+1)β ≤M‖z‖(1−θ/(2γ ))N−1(1−β/γ )∞ Rκ .

Plugging this estimate into the decomposition (5.7) of Ist we end up with

‖I‖∞ ≤M‖z‖(1−θ/(2γ ))N−1(1−β/γ )∞ Rκ .(5.12)

Step 3: Bound on b. Combining the bound (5.12) with (5.9) and the fact that the
exponent of ‖z‖∞ appearing in (5.12) is less than 1, we have∥∥∥∥

∫ ·
0

bs ds

∥∥∥∥∞ ≤M‖z‖(1−θ/(2γ ))N−1(1−β/γ )∞ Rκ .

Once again, we use an interpolation inequality to strengthen this bound. Indeed,
we have (see [21], Lemma 6.14, for further details)

‖∂tf ‖∞ ≤M‖f ‖∞max
(

1

T
,‖f ‖−1/(γ+1)∞ ‖∂tf ‖1/(γ+1)

γ

)
,

and applying this inequality to ft = ∫ t
0 bs ds, it follows that

‖b‖∞ ≤M‖z‖(1−θ/(2γ ))N−1(1−β/γ )(γ /(γ+1))∞ Rκ .(5.13)

Gathering the bounds (5.10) and (5.13), our proof is now complete. �

REMARK 5.7. One might be motivated to consider situations in which the
drift and the noise have different natural parameterisations (see, e.g., the recent
work [13]). More precisely suppose X is a Gaussian rough path in WG�p(Rd)

(with general p-variation regularity) and let Y be the solution to

dYt = V (Yt ) dX+ V0(Yt ) dt, Y (0)= y0.

Then, as we have already observed in Remark 2.4, we can use the parameterisation
τ : [0, T ]→ [0, T ], the inverse of σ in (2.8), to force X̃t :=Xτ(t) to have a Hölder-
controlled covariance function. This leads us to consider the solution to

dỸt = V (Ỹt ) dX̃+ V0(Ỹt ) dτ (t), Ỹ (0)= y0,(5.14)

whereupon Ỹt = Yτ(t). In particular, for proving smoothness of the density of
YT (= ỸT ), one needs never to consider any parameterisation in which the noise
is not of Hölder-type regularity. This is a useful remark because Condition 2 ex-
plicitly involves the Hölder-parameterisation. To deal with the situation presented
by (5.14), one should adapt the previous theorem to accommodate RDEs of the
form

zt =
d∑

i=1

∫ t

0
yi
s dxi

s +
∫ t

0
bs dτ(s).



212 CASS, HAIRER, LITTERER AND TINDEL

5.2. Small-ball estimates for Lθ(X). We now take X to be a Gaussian process
satisfying Condition 2. As the reader might have noticed, equation (5.8) above in-
volves the random variable Lθ(X)−1, for which we will need some tail estimates.
The nondeterminism condition naturally gives rise to such estimates as the follow-
ing lemma makes clear.

LEMMA 5.8. Suppose (Xt)t∈[0,T ] is a zero-mean, R
d -valued, continuous

Gaussian process with i.i.d. components, with each component having a contin-
uous covariance function R. Suppose that one (and hence every) component of X

satisfies Condition 2. Let α0 > 0 be the index of nondeterminism for X and sup-
pose α ≥ α0. Then there exist positive and finite constants C1 and C2 such that for
any interval Iδ ⊆ [0, T ] of length δ and 0 < x < 1 we have

P
(

inf|φ|=1
sup

s,t∈Iδ

∣∣〈φ,Xs,t 〉
∣∣≤ x

)
≤ C1 exp

(−C2δx
−2/α)

.(5.15)

PROOF. The proof is similar to Theorem 2.1 of Monrad and Rootzen [34]; we
need to adapt it because our nondeterminism condition is different.

We start by introducing two simplifications. First, for any φ in R
d with |φ| = 1,

we have (〈φ,Xt 〉)t∈[0,T ]
D= (

X1
t

)
t∈[0,T ],(5.16)

which implies that

P
(

sup
s,t∈Iδ

∣∣〈φ,Xs,t 〉
∣∣≤ x

)
= P

(
sup

s,t∈Iδ

∣∣X1
s,t

∣∣≤ x
)
.(5.17)

We will prove that the this probability is bounded above by

exp
(−cδx2/α)

for a positive real constant c, which will not depend on T , δ or x. The inequal-
ity (5.15) will then follow by a well-known compactness argument (see [23]
and [35]). The second simplification is to assume that δ = 1. We can justify this by
working with the scaled process

X̃t = δα/2Xt/δ,

which is still a Gaussian process only now defined on the interval [0, T̃ ] := [0, T δ].
Furthermore, the scaled process also satisfies Condition 2 since

Var(X̃s,t |F̃0,s ∨ F̃
t,T̃

)= δα Var(Xs/δ,t/δ|F0,s/δ ∨Ft/δ,T )

≥ cδα

(
t − s

δ

)α

= c(t − s)α.
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Thus, if we can prove the result for intervals of length 1, we can deduce the bound
on (5.17) we want from the identity

P
(

sup
s,t∈Iδ

∣∣X1
s,t

∣∣≤ x
)
= P

(
sup

s,t∈I1

∣∣X̃1
s,t

∣∣≤ x

δα/2

)
.

To complete the proof, we begin by defining the natural number n := �x−2/α
 ≥
1 and the dissection D(I)= {ti : i = 0,1, . . . , n+ 1} of I = I1, given by

ti = inf I + ix2/α, i = 0,1, . . . , n,

tn+1 = inf I + 1= sup I.

Then it is trivial to see that

P
(

sup
s,t∈I

∣∣X1
s,t

∣∣≤ x
)
≤ P

(
max

i=1,2,...,n
|X1

ti−1,ti
| ≤ x

)
.(5.18)

To estimate (5.18), we successively condition on the components of(
X1

t0,t1
, . . . ,X1

tn−1,tn

)
.

More precisely, the distribution of X1
tn−1,tn

conditional on (X1
t0,t1

, . . . ,X1
tn−2,tn−1

)

is Gaussian with a variance σ 2. Condition 2 ensures that σ 2 is bounded below
by cx2. When Z is a Gaussian random variable with fixed variance, P(|Z| ≤ x)

will be maximised when the mean is zero. We therefore obtain the following upper
bound:

P
(

sup
s,t∈I

∣∣X1
s,t

∣∣≤ x
)
≤

(∫ x/σ

−x/σ

1√
2π

exp
(
−1

2
y2

)
dy

)n

.

Using x/σ ≤√c, we can finally deduce that

P
(

sup
s,t∈I

∣∣X1
s,t

∣∣≤ x
)
≤ exp(−Cn)≤ exp

(
−Cx−2/α

2

)
,

where C := log[2�(
√

c)− 1]−1 ∈ (0,∞). �

REMARK 5.9. As well as [34], these small-ball estimates should be compared
to the estimates obtained by Li and Linde in [29] and Molchan [33] in the case of
fractional Brownian motion.

COROLLARY 5.10. Suppose (Xt)t∈[0,T ] is a zero-mean, R
d -valued, con-

tinuous Gaussian process with i.i.d. components satisfying the conditions of
Lemma 5.8. Then for every θ > α/2, the path (Xt)t∈[0,T ] is almost surely θ -Hölder
rough. Furthermore, for 0 < x < 1, there exist positive finite constants C1 and C2
such that the modulus of θ -Hölder roughness, Lθ(X), satisfies

P
(
Lθ(X) < x

)≤ C1 exp
(−C2x

−2/α)
.

In particular, under these assumptions we have that Lθ(X)−1 is in
⋂

p>0 Lp(�).
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PROOF. The argument of [23] applies in exactly the same way to show that
Lθ(X) is bounded below by

1

2 · 8θ
Dθ(X),

where

Dθ(X) := inf‖φ‖=1
inf
n≥1

inf
k≤2n

sup
s,t∈Ik,n

|〈φ,Xs,t 〉|
(2−nT )θ

and Ik,n := [(k − 1)2−nT , k2−nT ]. We can deduce that for any x ∈ (0,1)

P
(
Dθ(X) < x

)≤ ∞∑
n=1

2n∑
k=1

P

(
inf‖φ‖=1

sup
s,t∈Ik,n

|〈φ,Xs,t 〉|
(2−nT )θ

< x

)
,

whereupon we can apply Lemma 5.8 to yield

P
(
Dθ(X) < x

)≤ c1

∞∑
n=1

2n exp
(−c22−n(1−2θ/α)T −2θ/αx−2/α)

.

By exploiting the fact that θ > α/2, we can then find positive constants c3 and c4
such that

P
(
Dθ(X) < x

)≤ c3

∞∑
n=1

exp
(−c4nx−2/α)= c3

exp(−c4x
−2/α)

1− exp(−c4x−2/α)

≤ c5 exp
(−c4x

−2/α)
,

which completes the proof. �

6. An interpolation inequality. Under the standing assumptions on the Gaus-
sian process, the Malliavin covariance matrix of the random variable UX

t←0(y0)≡
Yt can be represented as a 2D Young integral (see [7])

Ct =
d∑

i=1

∫
[0,t]2

J X
t←s(y0)Vi(Ys)⊗ J X

t←s′(y0)Vi(Ys′) dR
(
s, s′

)
.(6.1)

In practice, showing the smoothness of the density boils down to getting integra-
bility estimates on the inverse of inf‖v‖=1 vT CT v, the smallest eigenvalue of CT .
For this reason, we will be interested in

vT CT v =
d∑

i=1

∫
[0,T ]2

〈
v, J X

t←s(y0)Vi(Ys)
〉〈
v, J X

t←s′(y0)Vi(Ys′)
〉
dR

(
s, s′

)
.

We will return to study the properties of CT more extensively in Section 8. For the
moment, we look to generalise this perspective somewhat. Suppose f : [0, T ]→R
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is some (deterministic) real-valued Hölder-continuous function, where γ is Young-
complementary to ρ, 2D-variation regularity of R. Our aim in this section is elab-
orate on the nondegeneracy of the 2D Young integral∫

[0,T ]
fsft dR(s, t).(6.2)

More precisely, what we want is to use Conditions 2 and 3 to give a quantitative
version of the nondegeneracy statement∫

[0,T ]
fsft dR(s, t)= 0 ⇒ f ≡ 0.(6.3)

To give an idea of the type of estimate we might aim for, consider the case where
R ≡ RBM is the covariance function of Brownian motion. The 2D Young inte-
gral (6.2) then collapses to the square of the L2-norm of f :∣∣∣∣

∫
[0,T ]

fsft dRBM(s, t)

∣∣∣∣= |f |2L2[0,T ],(6.4)

and the interpolation inequality (Lemma A3 of [22]) gives

‖f ‖∞;[0,T ] ≤ 2 max
(
T −1/2|f |L2[0,T ], |f |2γ /(2γ+1)

L2[0,T ] ‖f ‖1/(2γ+1)
γ -Höl;[0,T ]

)
.(6.5)

Therefore, in the setting of Brownian motion at least, (6.5) and (6.4) quanti-
fies (6.3). The problem is that the proof of (6.5) relies heavily properties of the
L2-norm, in particular, we use the fact that

if f (u)≥ c > 0 for all u ∈ [s, t] then |f |L2[s,t] ≥ c(t − s)1/2.

We cannot expect for this to naively generalise to inner products resulting from
other covariance functions. We therefore have to re-examine the proof of the in-
equality (6.5) with this generalisation in mind.

It is easier to first consider a discrete version of the problem. Suppose D is some
(finite) partition of [0, T ]. Then the Riemann sum approximation to (6.2) along D

can be written as

f (D)T Qf (D),

where Q is the matrix (3.3) and f (D) the vector with entries given by the values of
f at the points in the partition. The next sequence of results is aimed at addressing
the following question.

PROBLEM 6.1. Suppose |f |∞;[s,t] ≥ 1 for some interval [s, t] ⊆ [0, T ]. Can
we find a positive lower bound f (D)T Qf (D) which holds uniformly over some
sequence of partitions whose mesh tends to zero?
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To take a first step toward securing an answer, let D = {ti : i = 0,1, . . . , n} and
define

Z := (Z1, . . . ,Zn) := (Xt0,t1, . . . ,Xtn−1,tn)∼N(0,Q).

Suppose that Q has the block decomposition

Q=
(

Q11 Q12

QT
12 Q22

)
with Q11 ∈R

k,k,Q12 ∈R
k,n−k,Q22 ∈R

n−k,n−k.

In other words, Q11 is the covariance matrix of (Z1, . . . ,Zk) and Q22 is the co-
variance matrix of (Zk+1, . . . ,Zn). We are interested in finding the infimum of the
quadratic form xT Qx over the subset{

(x1, . . . , xn) ∈R
n :xj ≥ b,∀j = k+ 1, . . . , n

}
,

where b > 0. To simplify the problem, we recall that the description of the condi-
tion distribution

(Zk+1, . . . ,Zn)|σ(Z1, . . . ,Zk)∼N(μ̄, Q̄),

where the mean and covariance are given by

μ̄=QT
12Q

−1
11 (Z1, . . . ,Zk)

T , Q̄=Q22 −QT
12Q

−1
11 Q12.

Q̄ is the so-called Schur complement of Q11 in Q. It follows that x1Z1 + x2Z2 +
· · ·+xnZn|(Zk+1, . . . ,Zn)∼N(

∑k
i=1 xiZi+∑n

i=k+1 xiμ̄i,
∑k

i,j=1 xiQ̄i,j xj ), and
hence

E
[
(x1Z1 + · · · + xnZn)

2]= E
[
E

[
(x1Z1 + x2Z2 + · · · + xnZn)

2|σ(Z1, . . . ,Zk)
]]

=
k∑

i,j=1

xiQ̄i,j xj +E

[(
k∑

i=1

xiμ̄i +
n∑

i=k+1

xiZi

)2]
.

We may always choose the unconstrained variables x1, . . . , xk in order that the
second term is zero, therefore,

inf
xk+1≥b,...,xn≥b

E
[
(x1Z1 + · · · + xnZn)

2]= inf
xk+1≥b,...,xn≥b

k∑
i,j=1

xiQ̄i,j xj .(6.6)

At first glance, it may appear that the minimiser in the right-hand side is
(xk+1, . . . , xn) = (b, . . . , b), but this is not always true.4 The following lemma,
however, gives a simple condition on Q̄ which ensures that it is.

4For example, suppose b = 1 and Q̄ is the 2 × 2 positive definite, symmetric matrix given by

Q̄= ( 5
−2

−2
1

)
. Then (1,1)Q̄(1,1)T = 2, but (1,1.1)Q̄(1,1.1)T = 1.8.
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LEMMA 6.2. Let b > 0 and b in R
n denote the vector (b, . . . , b). Suppose

(Q̄ij )i,j∈{1,2,...,n} is a real n× n positive definite matrix and assume Q̄ has non-
negative row sums, that is,

n∑
j=1

Q̄ij ≥ 0 for all i ∈ {1, . . . , n}.(6.7)

Then the infimum of the quadratic form xT Q̄x over the subset

C = {
(x1, . . . , xn) ∈R

n :xj ≥ b,∀j = 1, . . . , n
}

is attained at x = b, and hence

inf
x∈C xT Q̄x = bT Q̄b=b2

n∑
i,j=1

Q̄ij .

PROOF. Without loss of generality, we may assume that b = 1. We can then
reformulate the statement as describing the smallest value for the following con-
strained quadratic programming problem:

minxT Q̄x subject to x ≥ 1,

where 1 := (1, . . . ,1) ∈ R
n and x ≥ 1 means xi ≥ 1i = 1,∀i = 1, . . . , n. The La-

grangian function of this quadratic programming problem (see, e.g., [5], page 215)
is given by

L(x,λ)= xT Q̄x + λT (−x + 1).

Solving for

∇xL(x,λ)= 2Q̄x − λ= 0

and using the strict convexity of the function we deduce that x∗ = 1
2Q−1λ is the

minimiser of L. Hence, the (Lagrangian) dual function g(λ) := infx L(x,λ) is
given by

g(λ)=−1
4λT Q̄−1λ+ λT 1

and the dual problem consists of

maxg(λ) subject to λ≥ 0.

As Q−1 is positive definite the function g is strictly concave and the local maxi-
mum λ∗ = 2Q̄1 that is obtained by solving ∇λg(λ)= 0 with

∇λg(λ)=−1
2Q̄−1λ+ 1(6.8)

is also the unique global maximum. In order to prove that λ∗ solves the dual prob-
lem, we therefore need only check that it is feasible for the dual problem, that
is, we must show that λ∗ ≥ 0. But since the components of λ∗ are just twice the
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sum of the respective rows of Q̄, this feasibility condition follows at once from
assumption 6.7. �

When Q arises as the covariance matrix of the increments of a Gaussian process,
we need to know when the Schur complement of some sub-block of Q will satisfy
condition (6.7). In the context of Gaussian vectors, these Schur complements have
a convenient interpretation; they are the covariance matrices which result from
partially conditioning on some of the components. It is this identification which
motivates the positive conditional covariance condition (Condition 3).

In order to present the proof of the interpolation inequality as transparently as
possible, we first gather together some relevant technical comments. To start with,
suppose we have two sets of real numbers

D = {ti : i = 0,1, . . . , n} ⊂ D̃ = {t̃i : i = 0,1, . . . , ñ} ⊆ [0, T ]
ordered in such a way that 0≤ t0 < t1 < · · ·< tn ≤ T , and likewise for D̃. Suppose
s and t be real numbers with s < t and let Z be a continuous Gaussian process.
We need to consider how the variance of the increment Zs,t changes when we
condition on

FD := σ(Zti−1,ti : i = 1, . . . , n),

compared to conditioning the larger σ -algebra

F D̃ := σ(Zt̃i−1,t̃i
: i = 1, . . . , ñ).

To simplify the notation a little, we introduce

G = σ
(
Zt̃i−1,t̃i

: {t̃i−1, t̃i} ∩ D̃ \D �=∅
)
,

so that

F D̃ =FD ∨ G.

Because

(Zs,t ,Zt0,t1, . . . ,Ztñ−1,tñ ) ∈R
ñ+1(6.9)

is Gaussian, the joint distribution of Zs,t and the vector (6.9) conditional on FD

(or indeed F D̃) is once again Gaussian, with a random mean but a deterministic
covariance matrix. A simple calculation together with the law of total variance
gives that

Var
(
Zs,t |FD)= E

[
Var

(
Zs,t |FD ∨ G

)]+Var
(
E

[
Zs,t |FD ∨ G

])
≥ E

[
Var

(
Zs,t |FD ∨ G

)]=Var
(
Zs,t |F D̃)

,

which is the comparison we sought. We condense these observations into the fol-
lowing lemma.
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LEMMA 6.3. Let (Zt )t∈[0,T ] be a Gaussian process, and suppose that D and
D̃ are two partitions of [0, T ] with D ⊆ D̃. Then for any [s, t] ⊆ [0, T ] we have

Var
(
Zs,t |FD)≥Var

(
Zs,t |F D̃)

.

Our aim is to show how the optimisation problem of Lemma 6.2 can be used
to exhibit lower bounds on 2D Young integrals with respect to R. In order to do
this, we need to take a detour via two technical lemmas. The first is the following
continuity result for the conditional covariance, which we need approximate when
passing to a limit from a discrete partition. The situation we will often have is two
subintervals [s, t] ⊆ [0, S] of [0, T ], and a sequence of sets (Dn)

∞
n=1of the form

Dn =D1
n ∪D2

n.

(D1
n)
∞
n=1 and (D2

n)
∞
n=1 here will be nested sequences of partitions of [0, s] and

[t, S], respectively, with mesh(Di
n)→ 0 as n→∞ for i = 1,2. If

FD := σ
(
Zu,v : {u, v} ⊆D

)
,

then we can define a filtration (Gn)
∞
n=1 by Gn := FD1

n ∨ FD2
n and ask about the

convergence of

Cov(Zp,qZu,v|Gn)

as n→∞ for subintervals [p,q] and [u, v] are subintervals of [0, S]. The follow-
ing lemma records the relevant continuity statement.

LEMMA 6.4. For any p,q,u, v such that [p,q] and [u, v] are subintervals of
[0, S] ⊆ [0, T ] we have

Cov(Zp,qZu,v|Gn)→ Cov(Zp,qZu,v|F0,s ∨Ft,S)

as n→∞.

PROOF. The martingale convergence theorem gives

Cov(Zp,qZu,v|Gn)→ Cov

(
Zp,qZu,v

∣∣∣∣
∞∨

n=1

Gn

)
, a.s. and in Lp for all p ≥ 1.

The continuity of Z and the fact that mesh(Dn)→ 0 easily implies that, modulo
null sets, one has

∨∞
n=1 Gn =F0,s ∨Ft,T . �

We now introduce another condition on Z, which we will later discard. This
condition is virtually the same as Condition 3, the only difference being that we
insist on the strict positivity of the conditional variance.
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CONDITION 6. Let (Zt )t∈[0,T ] be a real-valued continuous Gaussian process.
We will assume that for every [u, v] ⊆ [s, t] ⊆ [0, S] ⊆ [0, T ] we have

Cov(Zs,t ,Zu,v|F0,s ∨Ft,S) > 0.(6.10)

The second technical lemma we need will apply whenever we work with a Gaus-
sian process that satisfies Condition 6. It delivers a nested sequence of partitions,
with mesh tending to zero, and such that the discretisation of Z along each partition
will satisfy the dual feasibility condition [i.e., (6.7) in Lemma 6.2].

LEMMA 6.5. Let (Zt )t∈[0,T ] be a continuous Gaussian process that satisfies
Condition 6. Then for every 0 ≤ s < t ≤ S ≤ T there exists a nested sequence of
partitions

(Dm)∞m=1 =
({

tmi : i = 0,1, . . . , nm

})∞
m=1

of [0, S] with the following properties:

(1) The mesh of Dm converges to 0 as m→∞.
(2) One has {s, t} ⊆Dm for all m.
(3) If Zm

1 and Zm
2 are the jointly Gaussian vectors,

Zm
1 =

(
Ztmi ,tmi+1

: tmi ∈Dm ∩ ([0, s)∪ [t, S)
))

,

Zm
2 =

(
Ztmi ,tmi+1

: tmi ∈Dm ∩ [s, t)),
with respective covariance matrices Qm

11 and Qm
22, then the Gaussian vector

(Zm
1 ,Zm

2 ) has a covariance matrix of the form

Qm =
(

Qm
11 Qm

12(
Qm

12

)T
Qm

22

)
,

and the Schur complement of Qm
11 in Qm has nonnegative row sums.

PROOF. See the Appendix. �

The next result shows how we can bound from below the 2D Young integral of
a Hölder-continuous f against R. The lower bound thus obtained is expressed in
terms of the minimum of f , and the conditional variance of the Gaussian process.

PROPOSITION 6.6. Suppose that R : [0, T ]2 → R is the covariance function
of some continuous Gaussian process (Zt )t∈[0,T ]. Suppose that R has finite 2D
ρ-variation for some ρ in [1,2) and that Z is nondegenerate and has a nonnega-
tive conditional covariance (i.e., satisfies Condition 3). Let γ ∈ (0,1) be such that
1/ρ+γ > 1 and assume f ∈ Cγ ([0, T ],R). Then for every [s, t] ⊆ [0, T ] we have
the following lower bound on the 2D-Young integral of f against R:∫

[0,T ]2
fufv dR(u, v)≥

(
inf

u∈[s,t]
∣∣f (u)

∣∣2)
Var(Zs,t |F0,s ∨Ft,T ).
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REMARK 6.7. We emphasise again that Fa,b is the σ -algebra generated by
the increments of the form Zu,v for u, v ∈ [a, b].

PROOF OF PROPOSITION 6.6. Fix [s, t] ⊆ [0, T ], and take b :=
infu∈[s,t] |f (u)|.

Step 1: We first note that there is no loss of generality in assuming the stronger
Condition 6 instead of Condition 3. To see this, let (Bt )t∈[0,T ] be a Brownian mo-
tion, which is independent of (Zt )t∈[0,T ], and for every ε > 0 define the perturbed
process

Zε
t := Zt + εBt .

It is easy to check that Zε satisfies the conditions in the statement. Let Fε
p,q be

the σ -algebra generated by the increments Zε
u,v between times p and q [note that

Fε
p,q actually equals Fp,q ∨ σ(Bl,m :u≤ l < m≤ q)], and note that we have

Cov
(
Zε

s,t ,Z
ε
u,v|Fε

0,s ∨Fε
t,T

)= Cov(Zs,t ,Zu,v|F0,s ∨Ft,T )+ ε2(u− v) > 0

for every 0 ≤ s < u < v ≤ t ≤ T . It follows that Zε satisfies Condition 6. Let
Rε denote the covariance function of Zε . If we could prove the result with the
additional hypothesis of Condition 6, then it would follow that∫

[0,T ]2
fufv dRε(u, v) ≥ b2 Var

(
Zε

s,t |Fε
0,s ∨Fε

t,T

)
(6.11)

= b2 Var(Zs,t |F0,s ∨Ft,T )+ b2ε2(t − s).

Because ∫
[0,T ]2

fufv dRε(u, v)=
∫
[0,T ]2

fufv dR(u, v)+ ε2|f |2
L2[0,T ],

the result for Z will then follow from (6.11) by letting ε tend to zero.
Step 2: We now prove the result under the additional assumption of Condi-

tion 6. By considering −f if necessary, we may assume that f is bounded from
below by b on [s, t]. Since we now assume Condition 6 we can use Lemma 6.5
to obtain a nested sequence of partitions (Dr)

∞
r=1 such that {s, t} ⊂ Dr for all r ,

mesh(Dr) → 0 as r →∞, and such that the dual feasibility condition (prop-
erty 3 in the Lemma 6.5) holds. Suppose D = {ti : i = 0,1, . . . , n} is any par-
tition of [0, T ] in this sequence (i.e., D = Dr for some r). Then for some
l < m ∈ {0,1, . . . , n− 1} we have tl = s and tm = t . Denote by f (D) the column
vector

f (D)= (
f (t0), . . . , f (tn−1)

)T ∈R
n,

and Q= (Qi,j )1≤i,j<n the symmetric n× n matrix with entries

Qij =R

(
ti−1, ti

tj−1, tj

)
=E[Zti−1,tiZtj−1,tj ].
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From the nondegeneracy of Z, it follows that Q is positive definite. The Riemann
sum approximation to the 2D integral of f against R along the partition D can be
written as

n∑
i=1

n∑
j=1

fti−1ftj−1R

(
ti−1, ti

tj−1, tj

)
=

n∑
i=1

n∑
j=1

fti−1ftj−1Qi,j

(6.12)
= f (D)T Qf (D).

If necessary, we can ensure that last m− l components of f (D) are bounded be-
low by b. To see this, we simply permute its coordinates using any bijective map
τ : {1, . . . , n}→ {1, . . . , n} which has the property that

τ(l + j)= n−m+ l + j for j = 0,1, . . . ,m− l.

Fix one such map τ , and let fτ (D) denote the vector resulting from applying τ to
the coordinates of f (D). Similarly, let Qτ = (Qτ

i,j )1≤i,j<n be the n× n matrix

Qτ
ij =Qτ(i)τ (j),

and note that Qτ is the covariance matrix of the Gaussian vector

Z = (Ztτ(1)−1,tτ (1)
, . . . ,Ztτ(n)−1,tτ (n)

).

A simple calculation shows that

f (D)T Qf (D)= fτ (D)T Qτfτ (D).

We can apply Lemma 6.2 because condition (6.7) is guaranteed to hold by the
properties of the sequence (Dr)

∞
r=1. We deduce that

f (D)T Qf (D)= fτ (D)T Qτfτ (D)≥ b2
m−l∑
i,j=1

Sij ,(6.13)

where S is the (m− l)× (m− l) matrix obtained by taking the Schur complement
of the leading principal (n−m+ l)× (n−m+ l) minor of Q̃. As already men-
tioned, the distribution of a Gaussian vector conditional on some of its components
remains Gaussian and the conditional covariance is described by a suitable Schur
complement. In this case, this means we have that

S = Cov
[
(Ztl,tl+1, . . . ,Ztm−1,tm)|Ztj−1,tj ,

(6.14)
j ∈ {1, . . . , l} ∪ {m+ 1, . . . , n}].

If we define

FD := σ
(
Ztj−1,tj : j ∈ {1, . . . , l} ∪ {m+ 1, . . . , n}),
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to be the σ -algebra generated by the increments of Z in D \[s, t], then using (6.14)
we arrive at

m−l∑
i,j=1

Sij =
m−l−1∑
i,j=1

E
[
(Ztl+i−1,tl+i

)(Ztl+j−1,tl+j
)|FD]

−
m−l−1∑
i,j=1

E
[
(Ztl+i−1,tl+i

)|FD]
E

[
(Ztl+j−1,tl+j

)|FD]
(6.15)

= E
[
(Zs,t )

2|FD]−E
[
Zs,t |FD]2 =Var

(
Zs,t |FD)

.

To complete the proof, we note that FD ⊆ F0,s ∨ Ft,T , and exploit the mono-
tonicity of the conditional variance described by Lemma 6.3 to give

Var
(
Zs,t |FD)≥Var(Zs,t |F0,s ∨Ft,T ).(6.16)

Then by combining (6.16), (6.15) and (6.13) in (6.12), we obtain
n∑

i=1

n∑
j=1

fti−1ftj−1Qi,j ≥ b2 Var(Zs,t |F0,s ∨Ft,T ).

Because this inequality holds for any D ∈ (Dr)
∞
r=1, we can apply it for D = Dr

and let r →∞, which yields∫
[0,T ]2

fufv dR(u, v)≥ b2 Var(Zs,t |F0,s ∨Ft,T ),

whereupon the proof is complete. �

We now deliver on a promise we made in Section 3 by proving that the diagonal
dominance of the increments implies the positivity of the conditional covariance.

COROLLARY 6.8. Let (Zt )t∈[0,T ] be a real-valued continuous Gaussian pro-
cess. If Z satisfies Condition 4 then it also satisfies Condition 3.

PROOF. Fix s < t in [0, T ], let (Dn)
∞
n=1 be a sequence of partitions having the

properties described in the statement of Lemma 6.4 and suppose [u, v] ⊆ [s, t].
From the conclusion of Lemma 6.4, we have that

Cov(Zs,tZu,v|Gn)→ Cov(Zs,tZu,v|F0,s ∨Ft,T )(6.17)

as n→∞. Let Zn be the Gaussian vector whose components consist of the in-
crements of Z over all the consecutive points in the partition Dn ∪ {s, u, v, t}. Let
Q denote the covariance matrix of Zn. The left-hand side of (6.17) is the sum
of all the entries in some row of a particular Schur complement of Q. Z is as-
sumed to have diagonally dominant increments. Any such Schur complement of
Q will therefore be diagonally dominant, since diagonal dominance is preserved
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under Schur-complementation (see [38]). As diagonally dominant matrices have
nonnegative row sums, it follows that Cov(Zs,tZu,v|Gn) is nonnegative, and hence
the limit in (6.17) is also. �

We are now in a position to generalise the L2-interpolation inequality (6.5)
stated earlier.

THEOREM 6.9 (Interpolation). Let (Zt )t∈[0,T ] be a continuous Gaussian
process with covariance function R : [0, T ]2 → R. Suppose R has finite two-
dimensional ρ-variation for some ρ in [1,2). Assume that Z is nondegenerate
in the sense of Definition 3.2, and has positive conditional covariance (i.e., sat-
isfies Condition 3). Suppose f ∈ C([0, T ],R) with γ + 1/ρ > 1. Then for every
0 < S ≤ T at least one of the following inequalities is always true:

‖f ‖∞;[0,S] ≤ 2E
[
Z2

S

]−1/2
(∫
[0,S]2

fsft dR(s, t)

)1/2

,(6.18)

or, for some interval [s, t] ⊆ [0, S] of length at least( ‖f ‖∞;[0,S]
2‖f ‖γ ;[0,S]

)1/γ

,

we have
1

4
‖f ‖2∞;[0,S]Var(Zs,t |F0,s ∨Ft,S)≤

∫
[0,S]2

fvfv′ dR
(
v, v′

)
.(6.19)

PROOF. We take S = T , the generalisation to 0 < S < T needing only minor
changes. f is continuous and, therefore, achieves its maximum in [0, T ]. Thus, by
considering −f if necessary, we can find t ∈ [0, T ] such that

f (t)= ‖f ‖∞;[0,T ].
There are two possibilities which together are exhaustive. In the first case, f never
takes any value less than half its maximum, that is,

inf
u∈[0,T ]f (u)≥ 1

2‖f ‖∞;[0,T ].

Hence, we can apply Proposition 6.6 to deduce (6.18). In the second case, there
exists u ∈ [0, T ] such that f (u)= 2−1‖f ‖∞;[0,T ]. Then, assuming that u < t (the
argument for u > t leads to the same outcome), we can define

s = sup
{
v < t :f (v)≤ 1

2‖f ‖∞;[0,T ]
}
.

By definition f is then bounded below by ‖f ‖∞;[0,T ]/2 on [s, t]. The Hölder
continuity of f gives a lower bound on the length of this interval in an elementary
way

1
2‖f ‖∞;[0,T ] =

∣∣f (t)− f (s)
∣∣≤ ‖f ‖γ ;[0,T ]|t − s|γ ,
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which yields

|t − s| ≥
( ‖f ‖∞;[0,T ]

2‖f ‖γ ;[0,T ]

)1/γ

.

Another application of Proposition 6.6 then gives (6.19). �

COROLLARY 6.10. Assume Condition 2 so that the ρ-variation of R is
Hölder-controlled, and for some c > 0 and some α ∈ (0,1) we have the lower
bound on the conditional variance

Var(Zs,t |F0,s ∨Ft,T )≥ c(t − s)α.

Theorem 6.9 then allows us to bound ‖f ‖∞;[0,T ] above by the maximum of

2E
[
Z2

T

]−1/2
(∫
[0,T ]2

fsft dR(s, t)

)1/2

and

2√
c

(∫
[0,T ]2

fsft dR(s, t)

)γ /(2γ+α)

‖f ‖α/(2γ+α)
γ ;[0,T ] .

PROOF. This is immediate from Theorem 6.9. �

In particular, if Z is a Brownian motion we have Var(Zs,t |F0,s∨Ft,T )= (t−s),
hence Corollary 6.10 shows that

‖f ‖∞;[0,T ] ≤ 2 max
(
T −1/2|f |L2[0,T ], |f |2γ /(2γ+1)

L2[0,T ] ‖f ‖1/(2γ+1)

γ ;[0,T ]
)
,

which is exactly (6.5). We have therefore achieved out goal of generalising this
inequality.

REMARK 6.11. Another application where we anticipate estimates of this
kind being useful is when estimating short-time density asymptotics (see, e.g.,
the recent works [2, 27]). Here, frequent use is made of the asymptotic behaviour
of the Malliavin covariance matrix as t ↓ 0.

7. Malliavin differentiability of the flow.

7.1. High-order directional derivatives. Let x be in WG�p(Rd) and suppose
that the vector fields V = (V1, . . . , Vd) and V0 are smooth and bounded. For t ∈
[0, T ] we let Ux

t←0(·) denote the map defined by

Ux
t←0(·) :y0 
→ yt ,

where y is the solution to the RDE

dyt = V (yt ) dxt + V0(yt ) dt, y(0)= y0.(7.1)
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It is well known (see [17]) that the flow [i.e., the map y0 
→Ux
t←0(y0)] is differen-

tiable; its derivative (or Jacobian) is the linear map

J x
t←0(y0)(·)≡ d

dε
Ux

t←0(y0 + ε·)
∣∣∣∣
ε=0

∈ L
(
R

e,Re).
If we let �x

t←0(y0), denote the pair

�x
t←0(y0)= (

Ux
t←0(y0), J

x
t←0(y0)

) ∈R
e ⊕L

(
R

e,Re),
and if W = (W1, . . . ,Wd) is the collection vector fields given by

Wi(y, J )= (
Vi(y),∇Vi(y) · J )

, i = 1, . . . , d

and

W0(y, J )= (
V0(y),∇V0(y) · J )

then �x
t←0(y0) is the solution5 to the RDE

d�x
t←0 =W

(
�x

t←0
)
dxt +W0

(
�x

t←0
)
dt,�x

t←0|t=0 = (y0, I ).

In fact, the Jacobian is invertible as a linear map and the inverse, which we will
denote J x

0←t (y0), is also a solution to an RDE [again jointly with the base flow
Ux

t←0(y0)]. We also recall the relation

J x
t←s(y) := d

dε
Ux

t←s(y + ε·)
∣∣∣∣
ε=0

= J x
t←0(y) · J x

0←s(y).

NOTATION 3. In what follows, we will let

Mx·←0(y0)≡ (
Ux

t←0(y0), J
x
t←0(y0), J

x
0←t (y0)

) ∈R
e ⊕R

e×e ⊕R
e×e.(7.2)

For any path h in Cq-var([0, T ],Rd) with 1/q + 1/p > 1, we can canonically
define the translated rough path Thx (see [17]). Hence, we have the directional
derivative

DhU
x
t←0(y0)≡ d

dε
U

Tεhx
t←0 (y0)

∣∣∣∣
ε=0

.

It is not difficult to show that

DhU
x
t←0(y0)=

d∑
i=1

∫ t

0
J x

t←s(y0)Vi

(
Ux

s←0(y0)
)
dhi

s,

which implies by Young’s inequality that∣∣DhU
x
t←0(y0)

∣∣≤ C
∥∥Mx·←0(y0)

∥∥
p-var;[0,t]|h|q-var;[0,t].(7.3)

5A little care is needed because the vector fields have linear growth (and hence are not Lip-γ ). But
one can exploit the “triangular” dependence structure in the vector fields to rule out the possibility of
explosion. See [17] for details.
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In this section, we will be interested in the form of the higher order directional
derivatives

Dh1 · · ·DhnU
x
t←0(y0) := ∂n

∂ε1, . . . , ∂εn

U
Tεnhn ···Tε1h1 x
t←0 (y0)

∣∣∣∣
ε1=···=εn=0

.

Our aim will be to obtain bounds of the form (7.3); to do this in a systematic way is
a challenging exercise. We rely on the treatment presented in [23]. For the reader’s
convenience when comparing the two accounts, we note that [23] uses the notation(

DsU
x
t←0(y0)

)
s∈[0,T ] =

(
D1

s U
x
t←0(y0), . . . ,D

d
s Ux

t←0(y0)
)
s∈[0,T ] ∈R

d

to identify the derivative. The relationship between DsU
x
t←0(y0) and DhU

x
t←0(y0)

is simply that

DhU
x
t←0(y0)=

d∑
i=1

∫ t

0
Di

sU
x
t←0(y0) dhi

s.

Note, in particular, DsU
x
t←0(y0)= 0 if t < s.

PROPOSITION 7.1. Assume x is in WG�p(Rd) and let V = (V1, . . . , Vd) be
a collection of smooth and bounded vector fields. Denote the solution flow to the
RDE (7.1) by

Ux
t←0(y0)= (

Ux
t←0(y0)1, . . . ,U

x
t←0(y0)e

) ∈R
e.

Suppose q ≥ 1 and n ∈N and let {h1, . . . , hn} be any subset of Cq-var([0, T ],Rd).
Then the directional derivative Dh1 · · ·DhnU

x
t←0(y0) exists for any t ∈ [0, T ].

Moreover, there exists a collection of finite indexing sets{
K(i1,...,in) : (i1, . . . , in) ∈ {1, . . . , d}n}

,

such that for every j ∈ {1, . . . , e} we have the identity

Dh1 · · ·DhnU
x
t←0(y0)j

=
d∑

i1,...,in=1

∑
k∈K(i1,...,in)

∫
0<t1<···<tn<t

f k
1 (t1) · · ·(7.4)

f k
n (tn)f

k
n+1(t) dh

i1
t1
· · ·dh

in
tn

for some functions f k
l which are in Cp-var([0, T ],R) for every l and k, that is,⋃

(i1,...,in)∈{1,...,d}n

⋃
k∈K(i1,...,in)

{
f k

l : l = 1, . . . , n+ 1
}⊂ Cp-var([0, T ],R)

.

Furthermore, there exists a constant C, which depends only on n and T such that∣∣f k
l

∣∣
p-var;[0,T ] ≤ C

(
1+ ∥∥Mx·←0(y0)

∥∥
p-var;[0,T ]

)p(7.5)

for every l = 1, . . . , n+1, every k ∈K(i1,...,in) and every (i1, . . . , in) ∈ {1, . . . , d}n.
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PROOF. We observe that Dh1 · · ·DhnU
x
t←0(y0)j equals

d∑
i1,...,in=1

∫
0<t1<···<tn<t

D
i1···in
t1···tn Ux

t←0(y0)j dh
i1
t1
· · ·dh

in
tn .(7.6)

The representation for the integrand in (7.6) derived in Proposition 4.4 in [23] then
allows us to deduce (7.4) and (7.5). �

7.1.1. Malliavin differentiability. We now switch back to the context of a con-
tinuous Gaussian process (Xt)t∈[0,T ] = (X1

t , . . . ,X
d
t )t∈[0,T ] with i.i.d. components

associated to the abstract Wiener space (W,H,μ). Under the assumption of finite
2D ρ-variation, we have already remarked that, for any p > 2ρ, X has a unique
natural lift to a geometric p-rough path X. But the assumption of finite ρ-variation
on the covariance also gives rise to the embedding

H ↪→Cq-var([0, T ],Rd)
(7.7)

for the Cameron–Martin space, for any 1/p + 1/q > 1, [7], Proposition 2. The
significance of this result it twofold. First, it is proved in [7], Proposition 3, that it
implies the existence of a (measurable) subset V ⊂W with μ(V)= 1 on which

ThX(ω)≡X(ω+ h)

for all h ∈H simultaneously. It follows that the Malliavin derivative DU
X(ω)
t←0 (y0) :

H→R
e

DU
X(ω)
t←0 (y0) :h
→DhU

X(ω)
t←0 (y0) := d

dε
U

X(ω+εh)
t←0 (y0)

∣∣∣∣
ε=0

,(7.8)

coincides with the directional derivative of the previous section, that is,

d

dε
U

X(ω+εh)
t←0 (y0)

∣∣∣∣
ε=0

= d

dε
U

Tεhx
t←0 (y0)

∣∣∣∣
ε=0

.(7.9)

The second important consequence results from combining (7.7), (7.9) and (7.3),
namely that ∥∥DU

X(ω)
t←0 (y0)

∥∥
op ≤C

∥∥MX(ω)
·←0 (y0)

∥∥
p-var;[0,t].(7.10)

If we can show that the right-hand side of (7.10) has finite positive moments of
all order, then these observations lead to the conclusion that

Yt =UX
t←0(y0) ∈

⋂
p>1

D
1,p(

R
e),

where D
k,p is the Shigekawa–Sobolev space (see Nualart [36]). The purpose of

Proposition 7.1 is to extend this argument to the higher order derivatives. We will
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make this more precise shortly, but first we remark that the outline just given is
what motivates the assumption

H ↪→Cq-var([0, T ],Rd)
detailed in Condition 1.6

The following theorem follows from the recent paper [8]. It asserts the suffi-
ciency of Condition 1 to show the existence of finite moments for the p-variation
of the Jacobian of the flow (and its inverse).

THEOREM 7.2 [Cass–Litterer–Lyons (CLL)]. Let (Xt)t∈[0,T ] be a continuous,
centred Gaussian process in R

d with i.i.d. components. Let X satisfy Condition 1,
so that for some p ≥ 1, X admits a natural lift to a geometric p-rough path X.
Assume V = (V0,V1, . . . , Vd) is any collection of smooth bounded vector fields on
R

e and let UX
t←0(·) denote the solution flow to the RDE

dUX
t←0(y0)= V

(
UX

t←0(y0)
)
dXt + V0

(
UX

t←0(y0)
)
dt,

UX
0←0(y0)= y0.

Then the map UX
t←0(·) is differentiable with derivative J X

t←0(y0) ∈R
e×e; J X

t←0(y0)

is invertible as a linear map with inverse denoted by J X
0←t (y0). Furthermore, if we

define

MX·←0(y0)≡ (
UX

t←0(y0), J
X
t←0(y0), J

X
0←t (y0)

) ∈R
e ⊕R

e×e ⊕R
e×e,

and assume X satisfies Condition 1, we have that∥∥MX·←0(y0)
∥∥
p-var;[0,T ] ∈

⋂
q≥1

Lq(μ).

PROOF. This follows from by repeating the steps of [8] generalised to incor-
porate a drift term. �

REMARK 7.3. Under the additional assumption that the covariance R has fi-
nite Hölder-controlled ρ-variation, it is possible to prove a version of this theorem
showing that ∥∥MX·←0(y0)

∥∥
1/p ∈

⋂
q≥1

Lq(μ).

6The requirement of complementary regularity in the Condition 1 then amounts to ρ ∈ [1,3/2).
This covers BM, the OU process and the Brownian bridge (all with ρ = 1) and fBm for H > 1/3
(taking ρ = 1/2H ). For the special case of fBm, one can actually improve on this general embedding
statement via Remark 2.6. The requirement of complementary then leads to the looser restriction
H > 1/4.
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7.2. Proof that U
X(·)
t←0(y0) ∈ D

∞(Re). We have already seen that appropriate
assumptions on the covariance lead to the observation that for all h ∈H,

DhU
X(ω)
t←0 (y0)≡ d

dε
U

ThX(ω)
t←0 (y0)

∣∣∣∣
ε=0

for all ω in a set of μ-full measure. We will show that the Wiener functional ω 
→
U

X(ω)
t←0 (y0) belongs to the Sobolev space D

∞(Re). Recall that

D
∞(

R
e) := ⋂

p>1

∞⋂
k=1

D
k,p(

R
e),

where D
k,p is the usual Shigekawa–Sobolev space, which is defined as the com-

pletion of the smooth random variables with respect to a Sobolev-type norm (see
Nualart [36]). There is an equivalent characterisation of the spaces D

k,p (origi-
nally due to Kusuoka and Stroock), which is easier to use in the present context.
We briefly recall the main features of this characterisation starting with the follow-
ing definitions. Suppose E is a given Banach space and F :W→E is a measurable
function. Recall (see Sugita [37]) that F is called ray absolutely continuous (RAC)
if for every h ∈H, there exists a measurable map F̃h :W→E satisfying

F(·)= F̃h(·), μ-a.e.,

and for every ω ∈W

t 
→ F̃h(ω+ th) is absolutely continuous in t ∈R.

And furthermore, F is called stochastically Gâteaux differentiable (SGD) if there
exists a measurable G :W→L(H,E), such that for any h ∈H

1

t

[
F(· + th)− F(·)] μ→G(ω)(h) as t → 0,

where
μ→ indicates convergence in μ-measure.

If F is SGD, then its derivative G is unique μ-a.s. and we denote it by DF .
Higher order derivatives are defined inductively in the obvious way. Hence, DnF

(ω) (if it exists) is a multi-linear map (in n variables) from H to E.
We now define the spaces D̃k,p(Re) for 1 < p <∞ by

D̃
1,p(

R
e) := {

F ∈ Lp(
R

e) :F is RAC and SGD, DF ∈ Lp(
L

(
H,Re))},

and for k = 2,3, . . . .

D̃
k,p(

R
e) := {

F ∈ D̃
k−1,p(

R
e) :DF ∈ D̃

k−1,p(
L

(
H,Re))}.

THEOREM 7.4 (Sugita [37]). For 1 < p <∞ and k ∈N, we have D̃k,p(Re)=
D

k,p(Re).
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It follows immediately from this result that we have

D
∞(

R
e)= ⋂

p>1

∞⋂
k=1

D̃
k,p(

R
e).

With these preliminaries out the way, we can prove the following.

PROPOSITION 7.5. Suppose (Xt)t∈[0,T ] is an R
d -valued, zero-mean Gaus-

sian process with i.i.d. components associated with the abstract Wiener space
(W,H,μ). Assume that for some p ≥ 1, X lifts to a geometric p-rough path X.
Let V = (V0,V1, . . . , Vd) be a collection of C∞-bounded vector fields on R

e, and
let U

X(ω)
t←0 (y0) denote the solution flow of the RDE

dYt = V (Yt ) dXt (ω)+ V0(Yt ) dt, Y (0)= y0.

Then, under the assumption that X satisfies Condition 1, we have that the Wiener
functional

U
X(·)
t←0(y0) :ω 
→U

X(ω)
t←0 (y0)

is in D
∞(Re) for every t ∈ [0, T ].

PROOF. We have already remarked that Condition 1 implies that on a set of
μ-full measure

ThX(ω)≡X(ω+ h)(7.11)

for all h ∈H. It easily follows that U
X(·)
t←0(y0) is RAC. Furthermore, its stochastic

Gâteaux derivative is precisely the map DU
X(ω)
t←0 (y0) defined in (7.8). The rela-

tion (7.11) implies that the directional and Malliavin derivatives coincide (on a set
of μ-full measure), hence DU

X(ω)
t←0 (y0) ∈ L(H,Re) is the map

DU
X(ω)
t←0 (y0) :h 
→DhU

X(ω)
t←0 (y0).

We have shown in (7.10) that∥∥DU
X(ω)
t←0 (y0)

∥∥
op ≤ C

∥∥MX·←0(y0)
∥∥
p-var;[0,T ],(7.12)

where

MX·←0(y0)≡ (
UX

t←0(y0), J
X
t←0(y0), J

X
0←t (y0)

)
.(7.13)

It follows from Theorem 7.2 that∥∥MX·←0(y0)
∥∥
p-var;[0,T ] ∈

⋂
p≥1

Lp(μ).

Using this together with (7.12) proves that U
X(·)
t←0(y0) is in

⋂
p>1 D̃

1,p(Re) which
equals

⋂
p>1 D

1,p(Re) by Theorem 7.4.
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We prove that U
X(·)
t←0(y0) is in

⋂
p>1 D̃

k,p(Re) for all k ∈ N by induction. If

U
X(·)
t←0(y0) ∈ D̃

k−1,p(Re) then, by the uniqueness of the stochastic Gâteaux deriva-
tive, we must have

Dk−1U
X(ω)
t←0 (y0)(h1, . . . , hk−1)=Dh1 · · ·Dhk

U
X(ω)
t←0 (y0).

It is then easy to see that Dk−1U
X(ω)
t←0 (y0) is RAC and SGD. Moreover, the stochas-

tic Gâteaux derivative is

DkU
X(ω)
t←0 (y0) : (h1, . . . , hk)=Dh1 · · ·Dhk

U
X(ω)
t←0 (y0).

It follows from Proposition 7.1 together with Condition 1 that we can bound the
operator norm of DkU

X(ω)
t←0 (y0) in the following way:

∥∥DkU
X(ω)
t←0 (y0)

∥∥
op ≤C

(
1+ ∥∥MX(ω)

·←0 (y0)
∥∥
p-var;[0,T ]

)(k+1)p

for some nonrandom constants C > 0. The conclusion that U
X(·)
t←0(y0) ∈⋂

p>1 D
k,p(Re) follows at once from Theorems 7.2 and 7.4. �

7.3. Note added in proof. Shortly before the article went to press, the authors
were made aware of a mistake in the proof of Proposition 7.5: control of the oper-
ator norms of DkU

X(ω)
t←0 (y0) does not imply Malliavin smoothness; instead control

of the stronger Hilbert–Schmidt norms is required. In a more restrictive setting, this
stronger control has been obtained in [23]. At the level of generality considered in
this article, this result has recently been obtained in [28], so that the statement of
Proposition 7.5 does hold and none of our results are affected.

8. Smoothness of the density: The proof of the main theorem. This section
is devoted to the proof of our Hörmander-type Theorem 3.5. As mentioned in the
Introduction, apart from rather standard considerations concerning probabilistic
proofs of Hörmander’s theorem (see, e.g., [23]), this boils down to the following
steps:

(1) Let W be a smooth and bounded vector field in R
e. Following [23], denote

by (ZW
t )t∈[0,T ] the process

ZW
t = J X

0←tW
(
UX

t←0(y0)
)
.(8.1)

Then assuming Conditions 2 and 3 we get a bound on |ZW |∞ in terms of the
Malliavin matrix CT defined at (6.1). This will be the content of Proposition 8.4.

(2) We invoke iteratively our Norris lemma (Theorem 5.6) to processes like ZW

in order to generate enough upper bounds on Lie brackets of our driving vector
fields at the origin.



SMOOTHNESS OF GAUSSIAN RDES 233

In order to perform this second step, we first have to verify the assumptions
of Theorem 5.6 for the process Mx·←0(y0) defined by (7.13). Namely, we shall
see that Mx·←0(y0) is a process controlled by X in the sense of Definition 5.1 and
relation (5.6).

PROPOSITION 8.1. Suppose (Xt)t∈[0,T ] satisfies the condition of Theo-
rem 7.2. In particular, X has a lift to X, a geometric-p rough path for some p > 1
which is in C0,γ ([0, T ];G�p
(Rd)) for γ = 1/p. Then Mx·←0(y0) is a process
controlled by X in the sense of Definition 5.1 and∥∥MX·←0(y0)

∥∥
Qγ

X
∈ ⋂

p≥1

Lp(�).

PROOF. For notational sake, the process MX·←0(y0) will be denoted by M only.
It is readily checked that M is solution to a rough differential equation driven by X,
associated to the vector fields given by

Fi(y, J,K)= (
Vi(y),∇Vi(y) · J,−K · ∇Vi(y)

)
, i = 0, . . . , d.(8.2)

This equation can be solved either by genuine rough paths methods or within the
landmark of algebraic integration. As mentioned in Proposition 5.5, both notions
of solution coincide thanks to approximation procedures. This finishes the proof
of our claim M ∈Qγ

X.
In order to prove integrability of M as an element of Qγ

X, let us write the equa-
tion governing the dynamics of M under the form

dMt = F0(Mt) dt +
d∑

i=1

Fi(Mt) dXi
t ,

where X is our Gaussian rough path of order at most N = 3. The expansion of M

as a controlled process is simply given by the Euler scheme introduced in [17],
Proposition 10.3. More specifically, M admits a decomposition (5.2) of the form:

M
j
s,t =Mj,0

s (t − s)+Mj,i1
s X1,i1

s,t +Mj,i1,i2
s X2,i1,i2

s,t +R
j,M
s,t ,

with

Mj,0
s = F

j
0 (Ms), Mj,i1

s = F
j
i1
(Ms), Mj,i1,i2

s = Fi2F
j
i1
(Ms),∣∣Rj,M

s,t

∣∣ ≤ cM |t − s|3γ .

With the particular form (8.2) of the coefficient F and our assumptions on the
vector fields V , it is thus readily checked that

‖M‖Qγ
X
≤ cV

(
1+ ‖J‖2∞ + ‖J−1‖2∞ + ‖J‖γ + ‖U‖γ

)
,

and the right-hand side of the latter relation admits moments of all order thanks to
Theorem 7.2 and the remark which follows it. �
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Define Lx(y0, θ, T ) to be the quantity

Lx(y0, θ, T ) := 1+Lθ(x)−1 + |y0| +
∥∥Mx·←0(y0)

∥∥
Qγ

x
+Nx,γ .

COROLLARY 8.2. Under the assumptions of Proposition 8.1, we have

Lx(y0, θ, T ) ∈ ⋂
p≥1

Lp(�).

PROOF. We recall that the standing assumptions imply that ‖X‖γ ;[0,T ] has a
Gaussian tail [see (2.9) from Section 2]. It is easily deduce from this that

NX,γ ∈
⋂
p≥1

Lp(�).

Similarly, we see from Corollary 5.10 and Proposition 8.1 that Lθ(x)−1 and
‖Mx·←0(y0)‖Qγ

x
have moments of all orders and the claim follows. �

DEFINITION 8.3. We define the sets of vector fields Vk for k ∈N inductively
by

V1 = {Vi : i = 1, . . . , d},
and then

Vn+1 = {[Vi,W ] : i = 0,1, . . . , d,W ∈ Vn

}
.

PROPOSITION 8.4. Let (Xt)t∈[0,T ] = (X1
t , . . . ,X

d
t )t∈[0,T ] be a continuous

Gaussian process, with i.i.d. components associated to the abstract Wiener space
(W,H,μ). Assume that X satisfies the assumptions of Theorem 3.5. Then there
exist real numbers p and θ satisfying 2/p > θ > α/2 such that: (i) X is θ -
Hölder rough and (ii) X has a natural lift to a geometric p rough path X in
C0,1/p([0, T ];G�p
(Rd)). For t ∈ (0, T ], let

Ct =
d∑

i=1

∫
[0,t]2

J X
t←s(y0)Vi(Ys)⊗ J X

t←s′(y0)Vi(Ys′) dR
(
s, s′

)
,

and suppose k ∈ N ∪ {0}. Then there exist constants μ = μ(k) > 0 and C =
C(t, k) > 0 such that for all W ∈ Vk and all v ∈R

e with |v| = 1, we have∣∣〈v,ZW·
〉∣∣∞;[0,t] ≤ CLX(y0, θ, t)μ

(
vT Ctv

)μ
.(8.3)

PROOF. Let us prove the first assertion. To do this, we note that the constraint
on ρ implies that X lifts to a geometric p-rough path for any p > 2ρ. Because
the ρ-variation is assumed to be Hölder-controlled, it follows from [17] that X is
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in C0,1/p([0, T ];G�p
(Rd)). By assumption α < 2/ρ, therefore we may always
choose p close enough to 2ρ in order that

2

p
>

α

2
.

On the other hand, X is θ -Hölder rough for any θ > α/2 by Corollary 5.10. Hence,
there always exist p and θ with the stated properties.

We have that

vT Ctv =
d∑

i=1

�i
t with �i

t ≡
∫
[0,t]2

f i(s)f i(s′)dR
(
s, s′

)
,(8.4)

where we have set f i(s) := 〈v, J X
t←s(y0)Vi(ys)〉 = 〈v,Z

Vi
s 〉. Furthermore, because

the hypotheses of Theorem 6.9 and Corollary 6.10 are satisfied, we can deduce
that

∣∣f i
∣∣∞;[0,t] ≤ 2 max

[ |�i
t |1/2

E[X2
t ]1/2

,
1√
c

∣∣�i
t

∣∣γ /(2γ+α)∣∣f i
∣∣α/(2γ+α)
γ ;[0,t]

]
(8.5)

for i = 1, . . . , d . On the other hand, Young’s inequality for 2D integrals (see [15])
gives ∣∣�i

t

∣∣ �
[∣∣f i

∣∣
γ ;[0,t] +

∣∣f i(0)
∣∣]2

Vρ

(
R; [0, t]2)

.(8.6)

From (8.6), (8.5) and the relation vT Ctv =∑d
i=1 �i

t , it follows that there exists
some C1 > 0, depending on t and c, such that we have∣∣f i

∣∣∞;[0,t] ≤ C1
(
vT Ctv

)γ /(2γ+α) max
i=1,...,d

[∣∣f i(0)
∣∣+ ∣∣f i

∣∣
γ ;[0,t]

]α/(2γ+α)
.

Using the fact that for some ν > 0,∣∣f i(0)
∣∣+ ∣∣f i

∣∣
γ ;[0,t] ≤ C2LX(y0, θ, t)ν for i = 1, . . . , d,

it is easy to deduce that (8.3) holds whenever W ∈ V1.
The proof of (8.3) for arbitrary k ∈N now follows by induction. The key relation

comes from observing that

〈
v,ZW

u

〉= 〈
v,W(y0)

〉+ d∑
i=1

∫ u

0

〈
v,Z[Vi,W ]

r

〉
dXi

r ,

in the sense of Proposition 5.5. Hence, assuming the induction hypothesis, we can
use Theorem 5.6 to obtain a bound of the form (8.3) on∣∣〈v,Z[Vi,W ]·

〉∣∣∞;[0,t]
for all W ∈ Vk . Since Vk+1 = {[Vi,W ] : i = 0,1, . . . , d,W ∈ Vn}, the result is then
established. �
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We are now in a position to prove our main theorem. Since the structure of
the argument is the classical one, we will minimise the amount of detail where
possible.

PROOF OF THEOREM 3.5. This involves assembling together the pieces we
have developed in the paper. First, let 2/p > θ > α/2 be chosen such that X

is θ -Hölder rough and X has a natural lift to a geometric p rough path X in
C0,1/p([0,1];G�p
(Rd)). This is always possible by the first part of Proposi-
tion 8.4. Let 0 < t ≤ T and note that we have shown in Proposition 7.5 that
U

X(ω)
t←0 (y0) is in D

∞(Re). The result will therefore follow by showing that for every
q > 0, there exists c1 = c1(q) such that

P
(

inf|v|=1
〈v,Ctv〉< ε

)
≤ c1ε

q

for all ε ∈ (0,1). It is classical that proving (detCt)
−1 has finite moments of all

order is sufficient for U
X(ω)
t←0 (y0) to have a smooth density (see, e.g., [36]).

Step 1: From Hörmander’s condition, there exists N ∈N with the property that

span

{
W(y0) :W ∈

N⋃
i=1

Vi

}
=R

e.

Consequently, we can deduce that

a := inf|v|=1

∑
W∈⋃N

i=1 Vi

∣∣〈v,W(y0)
〉∣∣ > 0.(8.7)

For every W ∈⋃N
i=1 Vi , we have∣∣〈v,ZW·

〉∣∣∞;[0,t] ≥
∣∣〈v,W(y0)

〉∣∣,(8.8)

and hence using (8.7), (8.8) and Proposition 8.4 we end up with

a ≤ inf|v|=1
sup

W∈⋃N
i=1 Vi

∣∣〈v,ZW·
〉∣∣∞;[0,t] ≤ c1LX(y0, θ, t)μ inf|v|=1

∣∣vT Ctv
∣∣π(8.9)

for some positive constants c1, μ= μN and π = πN .
Step 2: From (8.9) can deduce that for any ε ∈ (0,1)

P
(

inf|v|=1

∣∣vT Ctv
∣∣ < ε

)
≤ P

(
LX(y0, θ, t)μ>c2ε

−k)
for some constants c2 > 0 and k > 0 which do not depend on ε. It follows from
Corollary 8.2 that for every q > 0 we have

P
(

inf|v|=1

∣∣vT Ctv
∣∣ < ε

)
≤ c3ε

kq,

where c3 = c3(q) > 0 does not depend on ε. �
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APPENDIX

PROOF OF LEMMA 6.5. We prove the result for S = T , the modifications for
S < T are straightforward. Consider three nested sequences (Am)∞m=1, (Bm)∞m=1
and (Cm)∞m=1 consisting of partitions of [0, s], [s, t] and [t, T ], respectively, and
suppose that the mesh of each sequence tends to zero as m tends to infinity. For
each m1 and m2 in N let Dm1,m2 denote the partition of [0, T ] defined by

Dm1,m2 =Am1 ∪Bm2 ∪Cm1 .

We now construct an increasing function r :N→N such that

(Dm)∞m=1 =
(
Dr(m),m)∞

m=1

together form a nested sequence of partitions of [0, T ] having the needed proper-
ties.

We do this inductively. First, let m = 1, then for every two consecutive points
u < v in the partition Bm Lemma 6.4 implies that

Cov
(
Zs,tZu,v|FAn ∨FCn

)→ Cov(Zs,tZu,v|Fs,t ∨Ft,T )

as n→∞. Z has positive conditional covariance, therefore the right-hand side of
the last expression is positive. This means we can choose r(1) to ensure that

Cov
(
Zs,tZu,v|FAr(1) ∨FCr(1)

)≥ 0(A.1)

for every two consecutive points u and v in Bm [the total number of such pairs
does not depend on r(1)]. We then let D1 =Dr(1),1, both properties 2 and 3 in the
statement are easy to check; the latter follows from (A.1), when we interpret the
Schur complement as the covariance matrix of Z1

2 conditional on Z1
1 (see also

the proof of Proposition 6.6). Having specified r(1) < · · · < r(k − 1), we need
only repeat the treatment outlined above by choosing some natural number r(k) >

r(k − 1) to ensure that

Cov
(
Zs,tZu,v|FAr(k) ∨FCr(k)

)≥ 0

for each pair of consecutive points u < v in Bk . It is easy to verify that (Dm)∞m=1
constructed in this way has the properties we need. �
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