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ON THE RANGE OF A RANDOM WALK IN A TORUS AND
RANDOM INTERLACEMENTS
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Let a simple random walk run inside a torus of dimension three or higher
for a number of steps which is a constant proportion of the volume. We ex-
amine geometric properties of the range, the random subgraph induced by the
set of vertices visited by the walk. Distance and mixing bounds for the typical
range are proven that are a k-iterated log factor from those on the full torus
for arbitrary k. The proof uses hierarchical renormalization and techniques
that can possibly be applied to other random processes in the Euclidean lat-
tice. We use the same technique to bound the heat kernel of a random walk
on random interlacements.

1. Introduction. Consider a discrete torus of side length N in dimension
d ≥ 3. Let a simple random walk run in the torus until it fills a constant proportion
of the torus and examine the range, the random subgraph induced by the set of
vertices visited by the walk. How well does this range capture the geometry of the
torus? Viewing the range as a random perturbation of the torus, we can draw hope
that at least some geometric properties of the torus are retained, by considering
results on a more elementary random perturbation, Bernoulli percolation.

It is now known that various properties of the Euclidean lattice “survive”
Bernoulli percolation with density p > pc(Zd). In [1], Antal and Pisztora proved
that there is a finite C(p,d) such that the graph distance between any two vertices
in the infinite cluster is more than C times their l2 distance, with probability expo-
nentially low in this distance. Isoperimetric bounds for the largest connected clus-
ter in a fixed box of side n were given by Benjamini and Mossel for p sufficiently
close to 1 in [2], and by Mathieu and Remy for p > pc in [12]. A consequence is
that the mixing time for a random walk on this cluster has the same order bound,
θ(n2), as on the full box. In [14], Pete extends this result to more general graphs.

Returning to our process, in Figure 1 simulation pictures are shown that give
heuristical support to the view that although the range for d ≥ 3 has long range
dependence, it bears some similarities to i.i.d. site percolation. Indeed, one can
see that the middle picture, a 2d slice of the range of a walk that filled 30% of
a 3d torus, is “in between,” dependence-wise, the i.i.d. picture on the right and
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FIG. 1. From left to right, the range in 2 dimensions, a slice in 3 dimensions and Bernoulli perco-
lation, all of density 0.3.

the highly dependent picture on the left where the effect of two-dimensional re-
currence is evident. Thus, one might expect analogous geometric behavior of the
range for d ≥ 3 and i.i.d. percolation. This partially turns out to be the case.

In [3], the complement of the range, called the vacant set, is investigated by
Benjamini and Sznitman. For positive u, it is shown uNd is indeed the proper
timescale to generate percolative behavior of the vacant set. Starting at the uniform
distribution, it is easily shown that for some c(u, d) > 0, the probability a given
vertex in the torus is visited by the walk is between c and 1 − c, independently
of N . A more difficult result is that for small u, the vacant set typically contains
a connected component that is larger than some constant proportion of the torus.
Indeed, simulations support the existence of a phase transition in u of the vacant set
geometry, where below some critical uc > 0, a unique giant component appears,
and above it all clusters are microscopic.

The range, unlike the vacant set, does not display an obvious phase transition
in u. It is connected for all positive u, and fills a c′(u, d) > 0 proportion of the
torus with high probability. Despite the analogy to percolation being flawed in
this respect, the range does display some percolative behavior due to the Markov
property and uniform transience of a random walk in d > 2. Roughly, condition-
ing on the vertices by which the walk enters and exits a small box makes the
path in between them independent from the walk outside this box. Using this
idea and facts from percolation theory gathered in Section 4, we prove the range
does capture the distance and isoperimetric bounds of the torus, though our meth-
ods require an iterated logarithmic correction to the bounds of the full torus. In
Section 6, it is shown that for arbitrarily small u > 0, the range asymptotically
dominates a recursive structure, defined in Section 2, which can roughly be de-
scribed as a finite-level supercritical fractal percolation. From this structure, we
extract distance bounds (Appendix B) and mixing bounds (Section 3) that are a
log(k)(N) = log(log(· · · (log(N) · · ·k · · ·))) factor from those on the torus.

Let us expand a bit on the heuristics presented in the previous paragraph. Since
the holes in the range are larger than those in i.i.d. percolation (see the last com-
ment in [3]), one can never hope to dominate it. Instead, we formulate a notion of
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density of a box of side n, which essentially means that it is crossed top to bottom
(traversed) by the random walk an order of nd−2 times. A union bound then gives
that w.h.p. all log4 N -sided “first-level” boxes in the torus possess this property.
Next, given this condition, for each fixed first-level box, all internal “second-level”
boxes of side c log4(logN) are dense w.h.p., and independently from other disjoint
first-level boxes. The probability for the denseness of the second-level boxes is not
high enough for a union bound on all of them, however, it is enough such that first-
level boxes whose second-level boxes are all dense dominate p-percolation for
arbitrarily high p < 1. This is the basis of the hierarchical renormalization used
below to prove the same fact for “k-level” boxes with arbitrary k. A drawback
of this method is that the density of boxes becomes diluted by a constant factor
from level to level, preventing us from continuing this rescaling to reach boxes of
a bounded size. This dilution is the main source of the log(k)(N) correction. We
believe this correction is an artifact of the method and that the true bounds should
be the same as those on the torus.

A central technical concept introduced in the paper is the recursively defined
k-goodness of a box, which is roughly that the (k − 1)-good smaller scale boxes
inside satisfy some typical supercritical Percolation properties. The main demand
from 0-good boxes is that the range is connected in their interior. This provides
a useful way to analyze the range but perhaps a better formulated notion will
get sharper bounds. A second technique worth mentioning is the propagation
of isoperimetric bounds through multiple scales in Lemma 3.3. This has been
done for one level in [12], but it is not clear how to extend the method there
to more than one level. Last, getting rid of dependence on time in the random
walk when moving to smaller scale boxes is not trivial. To do this, we prove
the domination of the k-good recursive structure mentioned above simultane-
ously for all {RN(t)}t≥uNd , where RN(t) is the range of the walk up to time t .
This is facilitated by results on conditioned random walks from Section 5, in
particular by Lemma 5.11. The lemma shows that given any fixed “boundary-
connected-path” f (t) in a dense box (see definition above Lemma 5.3), the ran-
dom walk traversals will merge it w.h.p. into a single connected component, for all
t ≥ 0.

Using the results proved for the random walk on the torus, we prove a bound
on the Heat kernal of random walk on Random Interlacements. In Appendix C,
we write a short introduction on Random Interlacements where one can find the
notation used in Section 7.

It should be mentioned that while all sections ahead require the terminology
introduced in Section 2, all remaining sections apart from Section 6 may be read
quite independently from one another. Section 6 also relies on random walk defi-
nitions from Section 5. For reading convenience, one can find an index of symbols
in Appendix D.
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2. Result and notation. Let T (N,d) be the discrete d-dimensional torus
with side length N , for d ≥ 3. Fixing d , T (V ,E) is a graph with

V (N) = {
x ∈ Zd : 0 ≤ xi < N,1 ≤ i ≤ d

}
and

E(N) = {{x,y} ⊂ V
(
T (N)

)
:�N(x − y) ∈ {±e1, . . . ,±ed}},

where �N :Zd → V (N) for x ∈ Zd is �N(x) = (x1 modN, . . . , xd modN) and
{ei}di=1 is the standard basis of Zd .

Note that if S(·) is a simple random walk (SRW) in Zd , SN(·) = �N ◦ S(·)
is a SRW in T (N). Let R(t1, t2) = {S(s) : t1 ≤ s < t2} and call R(t) = R(0, t)

the range (until time t) of the walk. We consider RN(t), the random connected
subgraph of T induced by �N ◦ R(t), where we include only edges traversed by
the random walk. Throughout the paper, when no ambiguity is present, we identify
a graph with its vertices.

Let Px[·] be the law that makes S(·) an independent SRW starting at x ∈ Zd .
Below are the main three results of the paper.

THEOREM 2.1. Set u > 0 and for a graph G, let dG(·, ·) denote graph dis-
tance. Then for any k,

lim
N→∞ P0

[
max

t≥uNd

{
dRN(t)(x,y)

dT (N)(x,y)
: x,y ∈ RN(t), dT (N)(x,y) > (logN)5d

}

> log(k) N

]
= 0,

where log(k) N is log(·) iterated k-times of N .

Since this paper was uploaded to the arXiv on 2010, the distance bounds where
improved in [5] by Cernỳ and Popov. They managed to get a tight result without
the log correction. Due to the improvement, the proof of Theorem 2.1 is postponed
to Appendix B. Note that since distance bounds require finding one good path and
isoperimetric bounds require a uniform bound on all subsets, the rest of the results
in this paper do not follow the techniques of [5].

THEOREM 2.2. Set u > 0 and let τ(G) be the (e.g., uniform) mixing time of a
simple random walk on a graph G. Then for any k,

lim
N→∞ P0

[
max

t≥uNd

τ (RN(t))

N2 > log(k) N

]
= 0.
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The two theorems are a direct consequence of Theorem 6.1 and Theorems B.1,
3.1, respectively.

Using the same techniques for proving Theorem 2.1 and Theorem 2.2, we can
show the next result for a random walk on the range of random interlacements (see
Appendix C for notation).

THEOREM 2.3. Let u > 0 and k ∈ N. Then there exists a constant C(u, k)

such that for Pu
0 almost every Iu, and for all n large enough

Pu
0[0, n] ≤ C · log(k)(n)

nd/2 .

This theorem quantifies the result of Ráth and Sapozhnikov in [16]. Ráth and
Sapozhnikov proved the graph of random interlacements is transient a.s.

The main purpose of the remainder of the section is to define a k-good configu-
ration, and to establish notation used throughout the paper.

2.1. Graph notation. Given a graph G, we identify a subset of vertices V

with its induced subgraph in G. We denote G \ V , the complement of V relative
to G, by V c

G. Writing dG(·, ·) for the graph distance in G, we let dG(v,V ) =
inf{dG(v,x) : x ∈ V }. For the outer and inner boundary, we respectively write

∂G(V ) = {
v ∈ G :dG(v,V ) = 1

}
,

∂ in
G(V ) = ∂G

(
V c

G

) = {
v ∈ G :d

(
v,V c

G

) = 1
}
.

We often omit G from the notation when the ambient graph is clear. We say V

is connected in G if any two vertices in V have a path in G connecting them.
V1,V2 ⊂ G are connected in G if V1 ∪ V2 is connected in G. Given V ⊂ G, we
call a set that is connected in V and is maximal to inclusion a component of V .

As noted above, we identify graphs and their vertices. Thus, Zd denotes the d-
dimensional integers as well as the graph on these vertices in which two vertices
are connected if they differ by a unit vector.

Last, if V ⊂ Zd, z ∈ Zd then V ± z = {x ± z : x ∈ V }.
2.2. Box notation. For x ∈ Zd, n > 0, let

B(x, n) = {
y ∈ Zd :∀i,1 ≤ i ≤ d,−n/2 ≤ x(i) − y(i) < n/2

}
.

We write B(n) if x is the origin, and when length and center are unambiguous we
often just write B . Occasionally, we use lowercase b for a smaller instance of a
box. We denote the side length of a box by ‖B‖, that is,

‖B‖ = |B|1/d .

Let sp{B(x, n)} = {B(x + ∑
i eikin, n) : (k1, . . . , kd) ∈ Zd} where e1, . . . , ed are

the unit vectors in Zd , that is, all the nonintersecting translations of B in Zd . We
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attach a graph structure to sp{B(x, n)} by defining the neighbors of a box B(x, n)

as B(x ± ein, n), 1 ≤ i ≤ d . Henceforth, any graph operators on a subset of some
sp{B} refer to this graph structure. Observe that sp{B(x, n)} is isomorphic as a
graph to Zd . We fix an isomorphism � : sp{B} → Zd , �(B(x + ∑

i eikin, n)) =
x + ∑

i eiki . Using �, we extend the definitions of a box to boxes as well. Thus,
for a box b = b(n) and an integer m > 0, B�(b,m) is a set of md boxes. We use
a big union symbol to denote internal union, that is,

⋃
A = {x ∈ A :A ∈ A}. So in

the preceding example, we have
⋃

B�(b,m) = B(mn).
To ease the reading, we often refer to boxes that are neighbors under the above

relationship as �-neighbors, a connected set of boxes as �-connected, and a com-
ponent under �-neighbor relationship a �-component.

DEFINITION 2.4. Given a box B(x, n), and α > 0, we write Bα for B(x, αn).
Let

s(n) = logn�4.

We write s(i)(n) to denote s(·) iterated i times.

DEFINITION 2.5. Let

σ
(
B(x, n)

) = sp
{
b
(
x, s(n)

)} ∩ {
b
(
y, s(n)

)
: y ∈ B

(
x,5n + 3logn�6)}

be the subboxes of B(x, n). Note that B5 ⊂ ⋃
σ(B). σ(B) is a collection of sub-

boxes of side length s(n) covering B5; see Figure 2 for visualization.

We write 2A for the power set of a set A, that is, the collection of subsets of A.
We refer to finite subsets of Zd as configurations.

2.3. Percolating configurations. Let ca, cb be fixed positive constants depen-
dent only on dimension (ca, cb are determined in Lemma 4.8 and Corollary 4.6,
resp.). ω ∈ 2B(n) is a percolating configuration, denoted by ω ∈ P(n), if there ex-
ists a subset which we call a good cluster C = C(ω) ⊂ ω, connected in ω (not
necessarily maximal) for which the following properties hold:

FIG. 2. 0-good configuration.
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1. |C| > (1 − 10−d)|B(n)|.
2. The largest component in B(n) \ C is of size less than (logn)2.
3. For any v,w ∈ C ∩B(n− ca logn) we have dC(v,w) < ca(dB(v,w)∨ logn).

Moreover, a configuration ω ∈ P(n) admits an isoperimetry property:
4. Let T ⊂ B(n) satisfy n1/5d < |T | ≤ nd/2, and assume both T and B(n) \ T

are connected in B(n). Then |∂BT ∩ ω|, |∂c
BT ∩ ω| > cb|T |(d−1)/d .

The following claim is easy to check.

CLAIM 2.1. P(n) is a monotone set, that is, if ω ∈ P(n) and ω ⊂ ω+ ⊂ B(n)

then ω+ ∈ P(n).

2.4. k-good configurations. Let ch be a fixed positive constant dependent only
on dimension (ch is determined in Theorem 5.12 below). For n ∈ N, ρ > 0, and
setting B = B(n), a configuration ω ⊂ B7 belongs to Gρ

0 (n) if and only if the
following properties hold:

1. For each b ∈ σ(B), |ω ∩ b| > (ρch ∧ 1
2)|b|.

2. For each b ∈ σ(B), ω ∩ b5 is connected in ω ∩ b7.

REMARK 2.6. If ω ∈ Gρ
0 (n), then for all n > (ρch)

−1/d : (i) ω intersects all
b ∈ σ(B) (property 1), and (ii) for any two �-neighbors b1, b2 ∈ σ(B), since b2 ⊂
b5

1, ω ∩ b1 and ω ∩ b2 are connected in ω ∩ b7
1 (property 2). In particular, ω ∩ B5

is connected in ω ∩ B7. See Figure 2 for a graphical explanation.

Let � be a fixed positive constant dependent only on dimension (� is deter-
mined in Theorem 5.8). For k > 0, Gρ

k (n) is defined recursively. Given ω ⊂ Zd ,
i ∈N and a box b(x,m), we say b is (ω, i, ρ)-good if (ω ∩ b7) − x ∈ Gρ

i (m). Let

S = {
b ∈ σ(B) :b is (ω, k − 1, ρ�)-good

}
,

and let σB = ‖�(σ(B))‖ = |σ(B)|1/d . Then ω ∈ Gρ
k (n) if ω ∈ Gρ

0 (n) and �(S) ∈
P(σB). See Figure 3 for a graphical explanation.

2.5. k-good torus. Let T = T (N) and fix ω ⊂ T . Let k ≥ 0, ρ > 0. We define
(ω, k, ρ)-goodness of a torus. Let n = N/10�. We call

T = sp
{
B(n)

} ∩ {
B(y, n) : y ∈ B(N)

}
the top-level boxes for T . Then T is a (ω, k, ρ)-good torus if all boxes in T are
(�−1

N ω,k,ρ)-good.
Remark 2.6 therefore implies the following.

REMARK 2.7. If T (N) is a (ω, k, ρ)-good torus, then ω is connected for all
N > C(ρ).
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FIG. 3. k-good configuration. All the grey subboxes are k − 1-good, that is, ω ∩ b ∈
Gρ�

k−1(logn�4). The configuration on the right is in P(σB).

2.6. Constants. All constants are dependent on dimension by default and in-
dependent of any other parameter not appearing in their definition. Constants
like c,C may change their value from use to use. Numbered constants (e.g., c1,C2)
retain their value in a proof but no more than that, and constants tagged by a letter
(ca, c�) represent the same value throughout the paper.

3. Mixing bound. Given a finite connected graph G, let X(t) be a lazy ran-
dom walk on G. That is, denoting the walk’s transition matrix by p(·, ·), for any
v ∈ G of degree m, p(v,v) = 1/2 and p(v,w) = 1/2m for any neighbor w ∈ ∂{v}.
We write τ(G) for the mixing time of X(t) on G, that is,

τ(G) = min
{
n :

∣∣∣∣pn(x, y) − π(y)

π(y)

∣∣∣∣ ≤ 1

4
, ∀x, y ∈ V (G)

}
,

where π is the stationary measure of the random walk on G. See [13] a thorough
introduction on mixing times.

THEOREM 3.1. Let ω0 ⊂ T (N), ρ > 0, k ≥ 1. There is a C(k,ρ) such that if
T (N) is a (ω0, k, ρ)-good torus then

τ(ω0) < CN2 log(k−1) N,

where log(m) N is log(·) iterated m times of N .

We begin by stating and proving propositions required for Corollary 3.4, then
using the corollary we prove Theorem 3.1.

Recall the definition of Gρ
l (n) from Section 2.4. Let cρ = (ρch ∧ 1

2)/3. We
assume n is large enough such that Gρ

l (n) is nonempty, and that for any ω ∈ Gρ
l (n),

ω ∩ B5(n) is connected in ω and satisfies |ω ∩ B5(n)| > 3cρnd (see property 1 of
Gρ

0 in Section 2.4 and Remark 2.6). In particular, there exists a set S ⊂ ω, |S ∩
B5(n)| ∧ |(ω \ S) ∩ B5(n)| ≥ cρnd .

Since ω ∩ B5(n) is connected in ω, we have the following.
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PROPOSITION 3.2. For any l ≥ 0 and all large n, and S ⊂ ω ∈ Gρ
l (n)

|∂ωS| ≥ 1.

Next, we bound |∂S| more accurately. The next theorem is one of the main re-
sults and techniques introduced in this paper. The theorem proves an almost tight
isoperimetric inequality (up to an iterated log). The main idea of the proof is in-
duction on the number of iterations (which provide the iterated log) and analyzing
the geometry of renormalized subsets, that is, use the geometrical properties of the
percolation configuration of good subboxes.

THEOREM 3.3. Let l ≥ 0, ρ > 0, ω ∈ Gρ
l and S ⊂ ω such that |S ∩ B5(n)| ∧

|(ω \ S) ∩ B5(n)| = r ≥ n1/3. There exists a constant c1(l, ρ) > 0, such that

|∂ωS| > c1(l, ρ)r(d−1)/d(
s(l)(n)

)1−d
.(1)

PROOF. The proof is by induction on l. For l = 0, since s(0)(n) = n,
|B5(n)|(d−1)/ds(0)(n)1−d is less than some C1 for any r ≤ |B5(n)|. Thus, the
base case of l = 0 is given in Proposition 3.2 and the connectedness of ω with
c1(0) = C−1

1 . Now fix l > 0, ρ > 0 and assume (1) is true for l − 1 with constant
c1(l − 1, ρ�) > 0, for all large n and n1/3 ≤ r ≤ |B5(n)|.

Our default ambient graph for S is ω. Thus, for S ⊂ ω, Sc = ω\S and ∂S = ∂ωS.
Note that as |S| ≥ r , if |∂S| > |S|(d−1)/d we are done. W.l.o.g. assume |Sc ∩B5| ≥
|S ∩ B5| since |∂ωSc| ∼ |∂ωS|.

Let B = B(n) and let m = s(n). For 0 < α < 1, let

F = F(ω,S,α) = {
b ∈ σ(B) : |b ∩ S| ≥ α|b ∩ ω|},

be the α-filled subboxes. By the pigeon hole principle, there are α(ρ) < 1, c2(ρ) >

0, such that

|F| < (1 − c2)
∣∣σ(B)

∣∣.(2)

Let T = T(ω,S) = {b ∈ σ(B) :b ∩ S �= ∅}, then |T| ≥ |S|m−d . The proof is
separated into cases depending on the size of F . We begin with the case that |F| is
small.

If |F| ≤ 1
2 |S|m−d then by the trivial lower bound on T, |T \ F| ≥ 1

2 |S|m−d .
For any box b ∈ T \ F, we have x,y ∈ b such that x ∈ S,y ∈ Sc. Since x,y are
connected in ω ∩ b7 (property 2 of Gρ

0 ), ∂S ∩ b7 �=∅. For any box b ∈ σ(B), there
are at most 50d boxes b′ ∈ σ(B) such that b7 ∩ b′7 �= φ. Since |S| ≥ n1/3 and md

is o(n1/4d) we have for all large n,

|∂S| ≥ 1

50d
|T \ F| ≥ 1

100d
|S|m−d > |S|1−3/(4d) > |S|(d−1)/d ,

and are done with this case.
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Our default ambient graph for sets of subboxes is σ(B) with the box (�)
neighbor relationship (see Section 2.2). Thus, for A ⊂ σ(B), Ac = σ(B) \ A,
∂A = ∂σ(B)A, ∂ inA = ∂ in

σ(B)A. We introduce edge boundary notation

∂e(Q) = {{
b, b′} :b ∼ b′, b ∈ Q, b′ ∈ Qc}.

In the case that remains, |F| > 1
2 |S|m−d . Note that any box b ∈ ∂F satisfies |b5 ∩

S| ∧ |b5 ∩ Sc| > c′(ρ)md . Hence, if we knew that F was a single �-connected
component with a connected complement, we could lower bound |∂F| and use the
fact that ∂F is a typical set (Percolation property 4) to get that a constant proportion
of ∂F are (ω, l − 1, ρ�)-good boxes. Together with our induction hypothesis, this
would complete the proof.

|∂S| ≥ ∣∣∂S ∩ ∂F ∩
b∈Gλρ

l−1(m)
{b}∣∣ ≥ c|∂F|md−1(

sl−1(m)
)1−d

≥ c|F|(d−1)/dmd−1(
sl(n)

)1−d ≥ c

2
|S|(d−1)/dm1−dmd−1(

sl−1(m)
)1−d(3)

= c

2
|S|(d−1)/d(

sl−1(m)
)1−d

.

F is not in general so nice. However, being of size greater than 1
2 |S|m−d implies

there is a c3(ρ) > 0 and a set K = K(F) ⊂ 2σ(B) with the following properties for
all large n, allowing us to make a similar isoperimetric statement:∑

f∈K

(|f| ∧ ∣∣fc∣∣) ≥ c3|S|m−d,(4)

∀f ∈K, ∂f ⊂ Fc, ∂ inf ⊂ F,(5)

∀f1, f2 ∈ K, f1 �= f2 �⇒ ∂ef1 ∩ ∂ef2 = ∅,(6)

∀f ∈ K, f, fc are �-connected,(7)

n1/5d < |f| ∧ ∣∣fc∣∣ ≤ ∣∣σ(B)
∣∣/2.(8)

First, we show how the proof follows from the existence of K. Let G =
G(ω, l, ρ) be the set of (ω, l − 1, ρ�)-good subboxes in σ(B). By (7), (8) and
Percolation property 4 (see Section 2.3), for all large enough n, for any f ∈ K,
|∂f ∩ G| > cb(|f| ∧ |fc|)(d−1)/d . Let K∂ = {∂f : f ∈ K}. By (6), for any b ∈ σ(B),
|{f ∈ K∂ :b ∈ f}| ≤ 2d . Thus,∣∣∣⋃K∂ ∩ G

∣∣∣ ≥ 1

2d

∑
f∈K

cb

(|f| ∧ ∣∣fc∣∣)(d−1)/d
.

By subadditivity of xβ where β < 1 and (4) this gives∣∣∣⋃K∂ ∩ G
∣∣∣ ≥ c

[∑
f∈K

(|f| ∧ ∣∣fc∣∣)](d−1)/d

≥ c′ |S|(d−1)/d

md−1 .(9)
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Let A ⊂ ⋃
K∂ ∩ G, be a subset of size |A| > c|⋃K∂ ∩ G|, satisfying that for

any distinct b1, b2 ∈ A, b7
1 ∩b7

2 = ∅, for example, A = (
⋃
K∂ ∩G)∩�−1(20 ·Zd).

By (5), for any b ∈ A, b ∈ Fc but has a �-neighbor b′ ∈ F, implying |S ∩ b5| ∧
|Sc ∩ b5| ≥ c(α̂, ρ)md = ĉmd . Since A ⊂ G, using our induction assumption and
that |S| > r ,

|∂S| ≥
∣∣∣∂S ∩ ⋃

F
∣∣∣ (5)≥ |∂S ∩ A| (9)≥ c′ |S|(d−1)/d

md−1 md−1(
sl−1(m)

)1−d

(10)
= c′|S|(d−1)/d(

sl(n)
)1−d

and we are done.
We return to proving the existence of K.
Recall, a �-component of a set Q ⊂ σ(B) is a maximal connected compo-

nent in Q according to the box neighbor relationship (see Section 2.2). Let F
be the set of �-components of F. Since F �= σ(B), for any f ∈ F, there exists
b ∈ f with a �-neighbor b′ ∈ fc, such that b′ ⊂ b5. As before, by property 2
of Gρ

0 (see Section 2.4), b7 ∩ ∂S �= ∅. Letting F∂ = {b ∈ F :b7 ∩ ∂S �= ∅}, we
then have |F∂ | ≥ |F|. Since we can extract a subset A ⊂ F∂ where |A| > c|F∂ |,
and for any distinct b1, b2 ∈ A, b7

1 ∩ b7
2 = ∅, we only need deal with the case

|F| < |S|1−1/(2d). Let H be the set of �-components of Fc. In the same way, we
may assume |H| < |S|1−1/(2d). By (2), |Fc| > c2|σ(B)| > 2c3|S|m−d . We also as-
sumed |F| > 1

2 |S|m−d , so w.l.o.g. c3 < 1/4 and∣∣Fc
∣∣, |F| > 2c3|S|m−d .(11)

Let F̂ = {f ∈ F : |f| ≥ c3|S|1/(2d)m−d} and let Ĥ = {h ∈ H : |h| ≥
c3|S|1/(2d)m−d}. We assumed |F|, |H| < |S|1−1/(2d), and thus

⋃
(F \ F̂),

⋃
(H \

Ĥ) < c3|S|m−d . So, from (11), we get∣∣∣⋃ F̂
∣∣∣, ∣∣∣⋃ Ĥ

∣∣∣ > c3|S|m−d .(12)

Let

K = {
f ⊂ σ(B) : f is a �-component of hc,h ∈ H, |f| ∧ ∣∣fc∣∣ > c3|S|1/(2d)m−d}

.

Let U :K → H where for f ∈ K, U(f) is the unique element in H for which f
is a �-component of U(f)c. For each f ∈ K, ∂f ⊂ U(f) ⊂ Fc and because U(f)
is a component of Fc, ∂ inf ⊂ F, giving us (5). Let h ∈ Ĥ. For any f ∈ F̂, f ⊂ hc

and thus f is contained in some �-component of hc which we denote f̂. Since
h ⊂ f̂c and f ⊂ f̂ we get f̂ ∈ K and in particular, f̂ ∈ U−1(h). Thus, for any h ∈ Ĥ,⋃
F̂ ⊂ ⋃

U−1(h). In Figure 4, we give an example of some F and the resulting K.
We regroup terms in the sum and use the fact that for any h ∈ H, f ∈ U−1(h),

we have h ⊂ fc to get:∑
f∈K

(|f| ∧ ∣∣fc∣∣) ≥ ∑
h∈Ĥ

∑
f∈U−1(h)

(|f| ∧ ∣∣fc∣∣) ≥ ∑
h∈Ĥ

∑
f∈U−1(h)

(|f| ∧ |h|).
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FIG. 4. Example of F and resulting K = {f1, f2, f3, f4}.
[
F h1 f1 f2

h2 f3 f4

]
where the sets are in black

and h1 = U(f1) = U(f2), h2 = U(f3) = U(f4).

If there exists h∗ ∈ Ĥ such that for any f ∈ U−1(h∗), |h∗| ≥ |f|, we have∑
f∈K

(|f| ∧ ∣∣fc∣∣) ≥ ∑
f∈U−1(h∗)

|f| =
∣∣∣⋃U−1(

h∗)∣∣∣ ≥
∣∣∣⋃ F̂

∣∣∣.
If none such exists, then∑

f∈K

(|f| ∧ ∣∣fc∣∣) ≥ ∑
h∈Ĥ

|h| =
∣∣∣⋃ Ĥ

∣∣∣.
Thus, from (12), we get (4). Next, for f1 ∈ K, any edge {b, b̂} ∈ ∂ef1 satisfies
w.l.o.g. b̂ ∈ U(f1) and b ∈ f1. Thus, if f2 ∈ K shares the edge {b, b̂} with f1, then
U(f1) = U(f2) and since b ∈ f1 ∩ f2 and both are �-components of U(f1)

c, we
have f1 = f2, giving us (6). To get (7), let h ∈ H, and let hc = f1 ∪ · · · ∪ fn where
fi are the �-components of hc. Then ∀i, ∂fi ⊂ h, and since h is connected, fi , fj
are connected in fi ∪ fj ∪ h for any i, j . This implies fci = h ∪ f1 ∪ · · · ∪ fn \ fi is
�-connected for any i. Last, since |f| ∧ |fc| > c3|S|1/(2d)m−d and md is o(n1/20d),
we get (8). �

In the below corollary, we transfer the isoperimetric bounds on ϕ from the set-
ting of a box to a torus. The main idea of the proof is to show that given any large
set S in a (ω, k, ρ)-good torus, there are two neighboring top-level boxes which
have a large intersection with S and ω \ S.

COROLLARY 3.4. Let ω ⊂ T (N). If T (N) is a (ω, k, ρ)-good torus then for
all large enough N , and r ≥ N

φ̂(r) = inf
{ |∂ωS|

|S| :S ⊂ ω,N1/3 ≤ |S| ≤ r ∧
(

1 − 1

4d

)
|ω|

}

> c(k,ρ)
r−1/d

(s(k)(N))d−1 .

PROOF. Let ω+ = �−1
N (ω)∩B3(N). Recall from Section 2.5 that all top-level

boxes for T (N) are (ω+, k, ρ)-good, so by property 1 of Gρ
0 , for any top-level box
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B , there is a c1(ρ) > 0 such that∣∣B ∩ ω+∣∣ > c1N
d.(13)

Fix r ≥ N . By construction, 1
2d

|ω+| = |ω| ≥ |B ∩ ω+| for any top-level box B .
We assume that N is large enough so that c1N

d−1 > 4d , and |B ∩ ω+| > 4dN .
In particular, this implies that the infimum is not on an empty set. Let S satisfy
the conditions to be a candidate for the infimum in φ̂(r) and extend it to S+ =
�−1

N (S) ∩ B3(N). Let r̂ = |S| ∧ |ω \ S|. Again by (13), for each top-level box B ,
|B ∩S+|∨ |B ∩ (ω+ \S+)| ≥ 1

2c1N
d > c2r̂ . On the other hand, since there are 10d

top-level boxes whose union covers B(N), by the pigeonhole principle, there must
be some box B for which |B ∩ S+| ≥ 10−d |S| and likewise a box B ′ for which
|B ′ ∩ (ω+ \ S+)| ≥ 10−d |(ω \ S)|. Let c3 = c2 ∧ 10−d . Since the top-level boxes
are �-connected, there are two �-neighboring top-level boxes B1,B2 such that
|B1∩S+|, |B2∩(ω+\S+)| ≥ c3r̂ . This implies |B5

1 ∩S+|∧|B5
1 ∩(ω+\S+)| ≥ c3r̂ .

By construction, |∂B7
1∩ω+S+| ≤ |∂ωS|. Since B1 is (ω+, k, ρ)-good, we can use

Theorem 3.3 to lower bound |∂B7
1∩ω+S+| by cr̂(d−1)/d(s(k)(N))1−d for all large N .

Note that as |ω| > 4dN , implying |ω \ S| ≥ N , we have r̂ ≥ N . Since |ω \ S| ≥
1

4d
|ω| > 1

4d
|S|, we can bound |S|, the denominator in the infimum, from above by

4dr̂ , giving us |∂ωS|
|S| ≥ cr̂−1/d(s(k)(N))1−d . Since r̂ ≤ r we are done. �

We now proceed to prove the main theorem of this section.

PROOF OF THEOREM 3.1. The following proof makes assumptions which are
valid for all but a finite number of N , and those are resolved by the large constant
above. Note that ω0 is viewed as a subgraph of T (N) as far as connectivity is
concerned. We present an upper bound to the mixing time τ of X(t) using average
conductance, a method developed in [11] and refined in subsequent papers.

We follow notation of [13]. Let π(·) be the stationary distribution of X(t)

and for x,y ∈ ω0 let Q(x,y) = π(x)p(x,y). For S,A ⊂ ω0 let Q(S,A) =∑
s∈S,a∈A Q(s,a). Let �S = Q(S,Sc)

π(S)
and let �(u) = inf{�S : 0 < π(S) ≤ u ∧ 1

2}.
Let π∗ = minx∈ω0 π(x).

By [13],

τ = τ

(
ω0,

1

4

)
≤ 1 +

∫ 16

4π∗

4du

u�2(u)
.(14)

Recall the notation from Section 2.1. In this proof, our ambient graph is ω0 and
thus Sc = ω0 \ S and ∂S = ∂ω0S. To simplify notation in the proof, we restate (14)
in terms of internal volume and boundary size.

For S ⊂ ω0, if π(S) ≤ u, then we have by definition u ≥ ∑
v∈S deg(v) ×

[∑v∈ω0
deg(v)]−1. Using the bound on degree and connectedness of ω0, we get
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|S| ≤ 2ud|ω0|. In the same way, 2d
|Sc|
|ω0| > π(Sc) ≥ 1 − u which gives |S| ≤

(1 − 1
2d

(1 − u))|ω0|, and thus for u ≤ 1
2 ,

|S| ≤ 2ud|ω0| ∧
(

1 − 1

4d

)
|ω0|.(15)

Let φS = |∂S|
|S| . Since ω0 is a bounded degree graph and x ∼ y ⇐⇒ 1

4d
≤

p(x,y) ≤ 1
2 , for some C(d) and all S ⊂ ω0 we have φS < C�S . Let φ(r) =

inf{φS : 0 < |S| ≤ r ∧ (1 − 1
4d

)|ω0|}. Then by (15) the infimum in φ(2ud|ω0|) is
on a larger set than the infimum in �(u) giving us φ(2ud|ω0|) < C�(u). Thus, by
the change of variables r = 2ud|ω0| in (14), we get

τ < C

∫ 32dNd

1

dr

rφ2(r)
.(16)

We continue by showing that for our purposes, a rough estimate of φS for suffi-
ciently small sets S is enough. Let

φ̂(r) = inf
{
φS :N1/3 ≤ |S| ≤ r ∧

(
1 − 1

4d

)
|ω0|

}
,

where the infimum of an empty set is ∞. Since ω0 is connected (see Remark 2.7),
φ(r) ≥ 1/r for any 1 ≤ r < |ω0|. For large N , by property 1 of Gρ

0 (see Sec-
tion 2.4), N < (1 − 1

4d
)|ω0|. Thus,

φ(r) = inf
{
φS : |S| ≤ r ∧ N1/3} ∧ φ̂(r)

≥ [
r−1 ∨ N−1/3] ∧ φ̂(r).

By Corollary 3.4 below, φ̂(r) > c(k, ρ)(s(k)(N))1−dr−1/d . Integrating (16) with
the above lower bound for φ(r), we thus get

τ < C

∫ 32Nd

1

dr

r(N−1/3)2 + C

∫ 32Nd

10dN1/3

dr

rφ̂2(r)

< o
(
N2) + C

(
s(k)(N)

)2d−2
N2 = o

((
log(k−1) N

))
N2

as required. �

4. High density percolation percolates. This section presents results used in
the renormalization arguments of Section 6. See Section 2.3 for the properties of
percolating configuration. Note that many of the lemmas in this section deal with
i.i.d. Bernoulli percolation.

LEMMA 4.1. For n ∈ N, let {Y(z)}z∈B(n) be i.i.d. {0,1} r.v.’s, and write S(n) =
{z ∈ B(n) :Y(z) = 1} for the random support of Y . Then there are dimensional
dependent constants, C > 0 and pb < 1, such that if Pr[Y(0) = 1] = pb,

Pr
[
S(n) ∈ P(n)

] ≥ 1 − C(logn)d−1

nd
.
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PROOF. Lemmas 4.3, 4.7, 4.8 and Corollary 4.6 prove Percolation proper-
ties 1–4, respectively. �

The next lemma assures a percolation configuration given a finite range depen-
dance requirement.

COROLLARY 4.2. For n ∈ N, let {Y(z)}z∈B(n) be {0,1} r.v.’s, not necessarily
i.i.d., and write S(n) = {z ∈ B(n) :Y(z) = 1} for the random support of Y . Assume
the r.v.’s have the property that for any x ∈ B(n) and any A ⊂ B(n) \ b(x,20),

Pr
[
Y(x) = 1|S ∩ B(n) \ b(x,20) = A

]
> pd,

where pd < 1 is a fixed constant dependent only on pb (from Lemma 4.1) and
dimension.

Then for all p < 1, there is a C(p) < ∞ such that for all n > C,

Pr
[
S(n) ∈ P(n)

]
> p.

PROOF. The domination of product measures result of Liggett, Schonmann
and Stacey [10], implies there is a pd < 1 for which S(n) stochastically dominates
an i.i.d. product field with density pb on B(n). Lemma 4.1 tells us that the prob-
ability such an i.i.d. field belongs to P(n) approaches one as n tends to infinity.
Since Percolation properties are monotone (Claim 2.1), we are done. �

Write Pp[·] for the law that makes {Y(z)}z∈Zd i.i.d. {0,1} r.v.’s where Y(z) = 1
w.p. p. Let B = B(n) and write S = Y−1(1) ∩ B for the random set of open sites
in B . Denote by C the largest connected component in S .

We write a consequence of Theorem 1.1 of [6]. One can find the proof in the
appendix of [15].

LEMMA 4.3. There is a p0(d) < 1 such that for every p > p0, there exists a
c > 0 such that

Pp

[|C| < (
1 − 10−d)∣∣B(n)

∣∣] ≤ ce−cn.

DEFINITION 4.4. Let B∗ be the graph of B(n) where we add edges between
any two vertices in B of l∞ distance one. We call a set A in B ∗-connected, if it is
connected in B∗.

LEMMA 4.5. There is a β1, β2, cd(d) > 0, β3,p1(d) < 1 and C(d) < ∞ such
that for any p > p1

Pp

[∃A,∗-connected, |A| > C logn, |A ∩ S| < cd |A|] ≤ β1e
−β2n

β3
.(17)
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PROOF. Fix a vertex v ∈ B and let A be ∗-connected such that v ∈ A and
|A| = k. The number of such components is bounded by (3d − 1)2k < eĉk . To see
this, fix a spanning tree for each such set and explore the tree starting at v using a
depth first search. Each edge is crossed at most twice and at each step the number
of directions is bounded by the degree. Using Cramér’s theorem for i.i.d. (large
deviations), for large enough p1(d) < 1 and small enough p1(d) > cd(d) > 0,
Pp[|A∩S| < cd |A|] < exp(−2ĉ|A|). To bound the probability of the event in (17),
we union bound over ∗-connected components larger than n1/3 that contain a fixed
vertex in B to get

nd
∑

k≥n1/3

eĉke−2ĉk,

which is smaller than β1e
−β2n

β3 for appropriate constants. �

COROLLARY 4.6. There is a cb > 0, Cb < ∞ such that for all p > p1(d),
with probability greater than 1 − β1e

−β2n
β3 , any connected set A ⊂ B such that

B \ A is also connected and Cb logd/(d−1) n < |A| ≤ nd/2.

|∂BA ∩ S|, ∣∣∂ in
B A ∩ S

∣∣ > cb|A|(d−1)/d .

PROOF. By Lemma 2.1(ii) in [6], ∂BA, ∂c
BA are ∗-connected. By well-known

isoperimetric inequalities for the grid; see, for example, Proposition 2.2 in [6],
there is a cI > 0 such that for |A| ≤ nd/2, |∂BA|, |∂c

BA| > cI |A|(d−1)/d . For ap-
propriate Cb, cI |A|(d−1)/d > Ca logn, and thus Lemma 4.5 gives the result with
cb = cI cd . �

LEMMA 4.7. Let K denote the largest connected component in B \ C. There
are c > 0, γ < 1 and p2(d) < 1 such that for all p > p2,

Pp

[|K| > log2 n
] ≤ e−cnγ

.

PROOF. Choose a component K of B \ C. Since C is connected and K is max-
imal, B \ K is also connected. This easy fact is proved in Theorem 3.3. From
Lemma 4.3, we have for p > p0, k = |K| < |B|/2. It is not true in general that
Y(K) = 0 but since ∂ in

B K separates K from C, Y(∂ in
B K) = 0. Thus, from Corol-

lary 4.6, for p2 > p1, w.h.p., |K| < Cb logd/(d−1) n. �

LEMMA 4.8. There is a ca > 0 such that for p > p1 > pc

Pp

[∃v,w ∈ C ∩ B(n − ca logn), dC(v,w) > ca

(
dB(v,w) ∨ logn

)] ≤ C(logn)d−1

nd
.
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PROOF. Recall Y(z) are defined for all z ∈ Zd . Let C∞ be the infinite compo-
nent of Y−1(1). We start by showing that w.h.p., C, the largest cluster in Y−1(1)∩B

is contained in C∞. By Lemma 4.3, the diameter of C is of order n w.h.p. If in this
case C � C∞, then C is a finite cluster in Y−1(1) of diameter n. In the supercritical
phase (p > pc), the probability for such a cluster at a fixed vertex decays exponen-
tially in n (see, e.g., 8.4 in [7]). Thus we may union bound over the vertices of B

to get that w.h.p.

C ⊂ C∞.(18)

We assume henceforth that this is the case.
Next, by Theorem 1.1 of [1], we have that for some 0 < k,K0,K < ∞, depen-

dent on dimension and p1,

Pp

[
dC∞(x,y) > K0m|x,y ∈ C∞, d(x,y) = m

]
< K exp(−km).

We use this to show that for appropriate K1 < ∞, the probability of the following
event decays to 0. Let

A = {∃x,y ∈ B ∩ C∞,K1 logn < d(x,y) < K−1
0 dC∞(x,y)

}
.

Using a union bound,

Pp[A] < nd
∞∑

m=K1 logn

Cmd−1 exp(−km) < Cnd(logn)d−1n−2d .

Let B− = B(n − 4dK0K1 logn). We now show that A not occurring implies the
event B.

B =
{
∀x,y ∈ C ∩ B− s.t. 1 <

dC(x,y)

K1 logn
< 4d, dC(x,y) < 4dK0K1 logn

}
.

From A not occurring and (18), we get that for any x,y satisfying the condition
in B, dC∞(x,y) < 4dK0K1 logn. Since x,y ∈ B−, a path connecting x to y in C∞
realizing this distance is too short to reach ∂ inB , and thus by (18) is contained in C.

Next, for any x,y ∈ B−, there is a sequence of boxes b1, . . . , bm where x ∈
b1,y ∈ bm and the following conditions hold. For all i for which it is defined,
‖bi‖ = K1 logn�, the diameter of bi ∪ bi+1 is less than 4dK1 logn, d(bi, bi+1) >

K1 logn and for some K2 < ∞, m < K2d(x, y)/ logn + 2. The left term in the
bound for m can be achieved for example by placing boxes with order logn spacing
in lines parallel to the coordinate axes. The constant 2 appears for the case where
d(x,y) < K1 logn and we use an intermediary box.

Lemma 4.7 tells us that for all large n, w.h.p. every box b with ‖b‖ ≥ logn

intersects C. Assuming that this and the high probability B event occur, we have
that for x,y as in B−, dC(x,y) < 4dK0K1(K2d(x, y) + 2 logn), and we are done.

�
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5. Goodness of random walk range.

5.1. Random walk definitions and notation. Given a box B , consider the two
faces of ∂B7 for which the first coordinate is constant. We call the one for which
this coordinate is larger the top face and call the other one the bottom face. Let
Top+(B),Bot(B) be the projection of B3 on the top and bottom faces, respectively.
Let Top(B) be the neighbors of Top+(B) inside B7. Thus, Top(B) ⊂ ∂ inB7 is a
translation along the first coordinate of Bot(B) ⊂ ∂B7.

Let Px[·] be the law that makes S(·) an independent SRW starting at x ∈ Zd .
For a set A ⊂ Zd , let τA = inf{t ≥ 0 :S(t) ∈ A} be the first hitting time of A, and
for a single vertex v, we write τv = τ{v}. For a ∈ Top(B), z ∈ Bot(B), we call the
ordered pair η = (a, z) a B-traversal. We write Pη[·] = Pa[·|τ∂B7 = τz].

Let H = (η1, η2, . . . , ηk) be an ordered sequence of B-traversals. We call H a
B-itinerary and write PH = Pη1 × · · · × Pηk for the product probability space. For
each η ∈ H , we denote the associated independent conditioned random walk by
Sη(·), write Rη(t1, t2) = {Sη(s) : t1 ≤ s ≤ t2} and simply Rη for Rη(0, τ∂B7). We
say H is ρ-dense if |H | ≥ ρ‖B‖d−2.

For a B(x, n)-itinerary H , we abbreviate notation inside PH [·] by writing Gρ
k

instead of Gρ
k (n) + x.

For a SRW S(·), we write S(t1, t2) for the sequence (S(t1), . . . , S(t2)).
For Q ⊂ H a set (subsequence) of B-traversals, let RQ = ⋃

η∈QRη. When in
use under the law PH , we write R for RH .

5.2. Independence of a random walk traversing a box. Let IN(·) = �−1
N ◦

�N(·) and for b = b(N/10�) let I∗
N(·) = b7 ∩ IN(·). Since ‖b7‖ < N , IN(b7) is

an infinite disconnected union of translated copies of b7. Thus, we have that for
any x ∈ IN(b7), I∗

N is a graph isomorphism between b7 and βx, the component of
x in IN(b7).

Given S(·), a simple random walk in Zd , we define the following random set of
triplets.

TN = {(
γ, γ +, β

)
: 0 < γ < γ +, β a box, β7 is a component of IN

(
b7)

,

S(γ − 1) ∈ ∂β7,

S(γ ) ∈ Top(β),R
(
γ, γ + − 1

) ⊂ β7, S
(
γ +) ∈ Bot(β)

}
.

For any two distinct copies of b7 in IN(b7) − β, β̂ we have ∂β7 ∩ ∂β̂7 = ∅. Thus,
for any two distinct triplets (γ, γ +, β), (γ̂ , γ̂ +, β̂) either γ > γ̂ + or γ̂ > γ +. Or-
dering the triplets by increasing first coordinate, we write (γi, γ

+
i , βi) for the ith

triplet by this order.
Since TN may be defined in terms of the finite state Markov process SN(·),

Px[|TN | = ∞] = 1. Thus, for ρ > 0, γ +
ρnd−2� is well defined.

DEFINITION 5.1. Let τρ(b) = γ +
ρnd−2�.
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FIG. 5. Traversal and Top, Bot definition.

The next lemma claims the following: Run a SRW up to time uNd from a point
x ∈ B10. There exists a constant ρ(u) such that with high probability there are at
least ρNd−2 traversals from Top to Bot. See Figure 5 for graphical representation.

LEMMA 5.2. For any u > 0, there is a ρ(u) > 0 such that

Px
[
τρ(b) < uNd] N→ 1,

uniformly for any x ∈ Zd .

PROOF. Let n = N/10� and let b = b(n). By the central limit theorem,
there is a c1 > 0 such that Px[τIN(b) < N2/2] > c1 uniformly in x. For y =
(y1, . . . , yd) ∈ Zd , define B(y) to be the event that in N2/2 steps the first coor-
dinate of a d-dimensional random walk hits y1 + 4n and then hits y1 − 8n, while
the maximal change in the other coordinates is less than n. By the invariance prin-
ciple, there is a c2 > 0 such that for all large N , Py[B(y)] > c2.

Let τb
i = inf{t ≥ iN2 :S(t) ∈ IN(b)}, let Ai = {τb

i < (i + 1
2)N2} and let χi be

the indicators of Ai occurring for S(t) and B(S(τ b
i )) occurring for S(τb

i + t). Note
that χi implies there is a (γ, γ +, β) ∈ TN , iN2 ≤ γ < γ + < (i + 1)N2.

By the Markov property, χi dominates i.i.d. Bernoulli r.v.’s that are 1 w.p. c3 > 0

for all large N . Thus, by the law of large numbers,
∑�uNd−2�

i=1 χi > c3uNd−2/2,
w.h.p. This event implies that τρ(b) ≤ uNd for ρ < c3u/2, which completes the
proof. �

Given a box b, and a set ω ⊂ b, we call ω b-boundary-connected if any x ∈
ω∩b7 is connected in ω to ∂ inb7. We call F :Z≥0 → 2b7

a b-boundary-connected-
path if F(t) ⊂ F(t + 1) and F(t) is b-boundary-connected for all t ≥ 0.

We write S for the set of all finite paths in Zd . That is,

S = {
s = (v0, . . . ,vn) : Pv0

[
S(0, n) = s

]
> 0

}
.

For s = (v0, . . . ,vn) ∈ S, we let si = vi and write ‖s‖ for n, the number of edges
traversed by the path s. The next lemma attains stochastic domination between the
range of the random walk and a ρ-dense b-itinerary.
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LEMMA 5.3. For N > 0, fix a box b = b(N/10�), ρ > 0 and x ∈ Zd . Then
for any A ⊂ 2b7

there is a ρ-dense b-itinerary H = H(A) and a b-boundary-
connected-path F(t) = F(x, t) such that

Px
[{
I∗

N ◦R(t) : t ≥ τρ(b)
} ⊂ A

] ≥ PH

[{
R∪ F(t) : t ≥ 0

} ⊂ A
]
.

PROOF. Let n = N/10� and let M = ρnd−2�. For 1 ≤ i ≤ M + 1 fix si ∈ S.
Let

τ� = inf
{
t ≥ τρ :T (N) = RN(τρ, t)

}
that is, the first time after τρ , the random walk (starting at time τρ ) covers the torus.
Since RN takes values in the finite state space T (N), Px[τ� < ∞] = 1. With the
convention that γ +

0 = 0, we partition the probability space of S(·) to events

B = B(s1, . . . , sM+1) =
{

M⋂
i=1

S
(
γ +
i−1, γi

) = si

}
∩ S

(
γ +
M,τ�

) = sM+1

satisfying Px[B(s1, . . . , sM+1)] > 0. For i = 1, . . . ,M let α(i) = si(‖si‖), ζ(i) =
si+1(0), that is, the end point of the path si and the starting point of the
path si+1. By the Markov property (see Proposition A.1), {S(γi, γ

+
i )}Mi=1 under

Px[·|B] are independent random vectors with the distribution of S(0, τ∂β7
i
) un-

der Pα(i)[·|τ∂β7
i

= τζ(i)]. Let a(i) = I∗
N(α(i)), z(i) = I∗

N(ζ(i)) and let H be a b-
itinerary, H = (η1, . . . , ηM) where ηi = (a(i), z(i)). Since I∗

N is an isomorphism
between β+

i and b7, I∗
N ◦ S(0, τ∂β7

i
) under Pα(i)[·|τ∂β7

i
= τζ(i)] is distributed the

same as S(0, τ∂b7) under Pηi [·]. Thus,
⋃M

i=1{I∗
N ◦R(γi, γ

+
i )} under Px[·|B] is dis-

tributed like RH under PH [·]. Let

F̂ (t) =
M⋃
i=1

R
(
γ +
i−1, γi

) ∪R
(
γ +
M,

(
γ +
M + t

) ∧ τ�
)
.

Since τρ = γ +
M , we have R(τρ + t) = F̂ (t) ∪ ⋃M

i=1{R(γi, γ
+
i )} for all t ≥ 0.

Given B, F̂ (t) is uniquely determined. Let F(t) = I∗
N ◦ F̂ (t). Since I∗

N is ei-
ther a local isomorphism to b7 or else gives the empty set, F(t) is a b-boundary-
connected-path. Thus, for any A⊂ 2b7

Px
[{
I∗

N ◦R(t) : t ≥ τρ(b)
} ⊂ A|B] = PH(B)

[{
R∪ F(B)(t) : t ≥ 0

} ⊂ A
]
,

which proves the lemma (see Proposition A.2). �

For a box B and a B-itinerary H , we proceed to define the event Dσ
ρ =

Dσ
ρ (H,B). Roughly, Dσ

ρ is the event that all subboxes are crossed a correct or-
der of times by B-traversals. First, given a box B and b ∈ σ(B), let us define for a
random walk S(·) the event JB[b]

JB[b] = {∃t, t+ : 0 < t < t+ < τ∂B7 :S(t − 1) ∈ ∂b7, S(t) ∈ Top(b),

R
(
t, t+ − 1

) ⊂ b7, S
(
t+

) ∈ Bot(b)
}
.
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Given H a B-itinerary, η ∈ H , and a subbox b ∈ σ(B), we write Jη[b] for the
event JB[b] occurring on the random walk Sη(·).

Next, we would like to assign each box b ∈ σ(B) a subset H [b] ⊂ H with the
property that if two distinct subboxes intersect, they have disjoint H [·] sets. Let us
do this by first fixing a function (·)50 :Zd → {0,1, . . . ,50d − 1} with the property
that any distinct x,y ∈ Zd with (x)50 = (y)50 are a distance of at least 50 in the l∞
norm. This can be induced by any bijection from (Z/50Z)d to {0,1, . . . ,50d − 1}.

Recall that � is the isomorphism mapping σ(B) into Zd , and that H =
(η1, . . . , ηk) is an ordered sequence. We write

H [b] = {
ηi ∈ H : i ≡ (�b)50

(
mod 50d)}

.

Next, for each b ∈ σ(B) define the random set of B-traversals ψH [b] = {η ∈
H [b] :Jη[b]}. Since 2‖b7‖ < 50d‖b‖, we get the following desired property.

CLAIM 5.4. For any distinct b0, b1 ∈ σ(B) satisfying b7
0 ∩ b7

1 �= ∅ we have
ψH [b0] ∩ ψH [b1] =∅.

DEFINITION 5.5. Let Dσ
ρ be the event that for each b ∈ σ(B), |ψH [b]| ≥

ρ‖b‖d−2.

The next lemma identifies, given some set, an itinerary which minimizes the
probability to be contained in the set. The sets in mind are non good sets.

LEMMA 5.6. Fix a box B , a B-itinerary H , a B-boundary-connected-path
F(t), and a subbox b ∈ σ(B). Let H = H(E) = Dσ

ρ ,RH \ b7 ∈ E where E is a

fixed subset of 2B7
. Assume PH [H] > 0. Then for any A ⊂ 2b7

, there is a ρ-dense
b-itinerary h = h(A) and a b-boundary-connected-path f (t) = f (A,F )(t) ⊂ b7

satisfying

PH

[{(
R∪ F(t)

) ∩ b7 : t ≥ 0
} ⊂ A|H] ≥ Ph

[{
R∪ f (t) : t ≥ 0

} ⊂A
]
.

PROOF. If for η ∈ H the event Jη[b] occurs, then we know there exists at least
one time pair (t, t+), 0 < t < t+ < τ∂B7 satisfying the requirements of Jη[b]—
roughly that b7 is crossed top to bottom by Sη. Since these time pairs must be
disjoint, we can consider the first, which we shall denote by (tη, t

+
η ).

Fix Q ⊂ H [b], s1
η, s2

η ∈ S for each η ∈ Q and s0
η ∈ S for each η ∈ H \ Q and

define the event

B = B
(
Q,si

η

) = {
ψH [b] = Q

} ∩ ⋂
η∈Q

{
Sη(0, tη) = s1

η, Sη

(
t+η , τ∂B7

) = s2
η

}
∩ ⋂

η∈H\Q

{
Sη(0, τ∂B7) = s0

η

}
.
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We partition {Sη(·) :η ∈ H } to such B(Q, si
η) events satisfying PH [B(Q, si

η)] > 0.

Any two distinct B(Q, si
η),B(Q̂, ŝi

η) have an empty intersection because either

Q �= Q̂ or if Q = Q̂ then si
η �= ŝi

η for some η ∈ Q. Observe that RH \ b7 is de-
termined by B, and that by our construction (Claim 5.4), so is ψH [·]. Since H is
(RH \ b7,ψH [·]) measurable, and the B events are a partition of the entire prob-
ability space, those for which PH [B,H] > 0 form a partition of H. H ⊂ Dσ

ρ so
any positive probability B(Q, si

η) ⊂ H has |Q| ≥ ρ‖b‖d−2. For each η ∈ Q let
a(η) = s1

η(‖s1
η‖), z(η) = s2

η(0) and let h be a b-itinerary, h = (a(η), z(η))η∈Q with
order inherited from H . Since Sη are independent and B is a product of events on
{Sη}η∈H ({ψH [b] = Q} can be factored to each {Sη}η∈H ), we have by the Markov
property (see Proposition A.1), that {Sη(tη, t

+
η )}η∈Q under PH [·|B] are indepen-

dent random vectors with the distribution of S(0, τ∂b7) under Pa(η)[·|τ∂b7 = τz(η)].
Thus

⋃
η∈QRη(tη, t

+
η ) under PH [·|B] is distributed like Rh under Ph[·]. Let

f̂ = ⋃
η∈H\Q s0

η ∪⋃
η∈Q s1

η ∪⋃
η∈Q s2

η and let f (t) = (f̂ ∪F(t))∩b7. Since all el-
ements in the union are B-boundary-connected, f (t) is a b7-boundary-connected-
path. As (RH ∪F(t))∩b7 = f (t)∪⋃

η∈Q{Rη(tη, t
+
η )}, we have for any A ⊂ P(b7)

PH

[{(
R∪ F(t)

) ∩ b7 : t ≥ 0
} ⊂ A|B] = Ph

[{
R∪ f (t) : t ≥ 0

} ⊂ A
]
.

Since |h| = |Q| ≥ ρ‖b‖d−2, h is ρ-dense, and as B is an arbitrary partition element
of H, this proves the lemma by Proposition A.2. �

5.3. Properties of the range of a random walk. We will require the following
large deviation estimate for sums of independent indicators, a weak version of
Lemma 4.3 from [4].

LEMMA 5.7. Let Q be a finite sum of independent indicator ({0,1}-valued)
random variables with mean μ > 0. There is a 0 < cf < 1 such that

Pr[Q < μ/2],Pr[Q > 2μ] < exp(−cf μ).

Recall Dσ
ρ from Definition 5.5.

THEOREM 5.8. There is a �(d) > 0 such that for any q > 0, � > 0 there is a
C(q,�) < ∞ such that if n > C and H is a �-dense B(n)-itinerary,

PH

[
Dσ

��

]
> 1 − q.

PROOF. Fix b ∈ σ(B) and let m = ‖b‖ = s(n). Lemma A.3 tells us that for
any B-traversal η ∈ H ,

Pη[
Jη[b]] > c�

(
m

n

)d−2

.
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Let Q = ∑
η∈H [b] 1Jη[b]. For all large enough n, |H [b]| ≥ 60−d�nd−2, so by lin-

earity,

EH

[∣∣ψH [b]∣∣] = EH [Q] > �60−dc�md−2.

Since the random walks Sη are mutually independent, by Lemma 5.7 there is a cf

such that

PH

[
Q ≤ E[Q]/2

] ≤ exp
(−cfE[Q]) ≤ e−cmd−2

.

Let � = 60−dc�/2. For m ≥ [ 2d
c�cf 60−d�

logn]1/(d−2) we have

PH

[
Q ≤ ��md−2]

< n−4(d−2).(19)

If b = b(x,m) ∈ σ(B) then x ∈ B6 and m = s(n) = log4 n� which is
ω(log1/(d−2) n) but o(n). Thus, for all large n, a union bound on σ(B) gives the
result. �

REMARK 5.9. One can obtain any polynomial decay in (19) by taking m =
logk n, for large enough k.

The below lemma shows that w.h.p., the union of those ranges of a dense
itinerary which intersect an interior set of low density, has size of greater order
than the size of the set itself.

LEMMA 5.10. Let b = b(n), and let M ⊂ b6 where |M| ≥ βnα with α,β > 0.
Let h be a �-dense b-itinerary, � > 0. Then for γ = 1 + 2(α−1 − d−1), cg(d) > 0
and all large n,

Ph

[∣∣R({
η ∈ h :R(η) ∩ M �=∅

}) ∩ b
∣∣ < cg�βnγα ∧ nd

2

]
≤ exp

(−cg�βnα(1−2/d)).
PROOF. Fix η = (a, z) ∈ h and Q ⊂ b. Let B(η,Q) = {|Q| < nd/2} ∪

{|R(η) ∩ Q| > c0n
2}, c0 > 0 determined below. Let τM(η) be the first hitting time

of M by Sη, and let τB(η) = inf{t ≥ 0 :Sη(0, t) ⊂ B} be the first time the occur-
rence of B is implied by Sη(t). By Proposition A.5 for some x ∈ M

Pa[τM, τB < τ∂B7 |τ∂B7 = τz] ≥ Pa[τM < τ∂B7 |τ∂B7 = τz]Px[τB < τ∂B7 |τ∂B7 = τz].
By Lemma A.4 and Corollary A.11,

Pa[τM < τ∂B7 |τ∂B7 = τz] > c|M|1−2/dn2−d ≥ c1βnα(1−2/d)+(2−d).

Since M ⊂ b6 and assuming |Q| ≥ nd/2 for the nontrivial case, again by
Lemma A.4 and Corollary A.11, we get for some c0, c2 > 0,

Px
[
R(0, τ∂B7) ∩ Q > c0n

2|τ∂B7 = τz
]
> c2.
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Recall, h = (η1, η2, . . .). Let RM
k = R({ηi ∈ h : 1 ≤ i ≤ k,R(ηi) ∩ M �= ∅}), let

χ(η,Q) be the indicator variable for the event {τM(η), τB(η) < τ∂B7(η)} and let

Sk = ∑k
i=1 χ(ηi, b \RM

i−1). Then |RM
k | stochastically dominates c0n

2Sk ∧ nd

2 . By
above bounds, and independence of traversals, the sequence χ(ηi, b \RM

i−1) dom-
inates i.i.d. Bernoulli r.v.’s that are 1 w.p. c1c2βnα(1−2/d)+(2−d). Thus, by concen-
tration of i.i.d. Bernoulli r.v.’s, for example, as stated in Lemma 5.7,

Ph

[∣∣RM|h|
∣∣ <

c0

2
n2Eh[S|h|] ∧ nd

2

]
< exp

(−cfEh[S|h|]).
Since

Eh[S|h|] ≥ �nd−2c3βnα(1−2/d)+(2−d),

we get

Ph

[∣∣RM|h|
∣∣ < c4�βnα(1+2(α−1−d−1)) ∧ nd

2

]
< exp

(−cf c3�βnα(1−2/d)),
which proves the lemma. �

LEMMA 5.11. Let b(n) be a box, let F(t) be a b-boundary-connected-path,
and let H be a ρ-dense b-itinerary, ρ > 0. There is a c(ρ) > 0 such that for all
large n

PH

[∀t ≥ 0,
(
R∪ F(t)

) ∩ b5 is connected in R∪ F(t)
]
> 1 − exp

(−cn1−2/d)
.

PROOF. For any h ⊂ H , F(t) ∪ Rh is also a b-boundary-connected-path and
is independent from the traversals in H \ h. Thus, we may assume w.l.o.g. that
|H | = ρnd−2�. Let H 5.5 = {η ∈ H :R(η) ∩ b5.5 �= ∅}. We show that R(H 5.5)

is connected in R = RH w.h.p. Set D = log(1+d−1)
2d
3 �. If |H 5.5| ≤ 1 we are

done. Otherwise given distinct traversals ζ,ϕ ∈ H 5.5, partition H \ {ζ,ϕ} into sets
H

ζ
1 ,H

ϕ
1 , . . . ,H

ζ
D,H

ϕ
D and H∗, where each of the 2D + 1 sets has size at least

|H |/3D > cD(ρ, d)nd−2. Set M
ζ
0 = R(ζ ) ∩ b6 and for i = 1, . . . ,D recursively

define

M
ζ
i = ⋃

η∈H
ζ
i : M

ζ
i−1∩R(η) �=∅

R(η) ∩ b6.

Define M
ϕ
i analogously. Thus, the event M = {∃η ∈ H∗ : |R(η) ∩ M

ζ
D|, |R(η) ∩

M
ϕ
D| > 0} implies that R(ζ ) is connected to R(ϕ) in R, an event we denote by

ζ ↔ ϕ. For i = 0, . . . ,D, let Mζ
i = {|Mζ

i | ≥ ci
ρn(1+d−1)i } where cρ = cgρ ∧ 1

2 ,

with cg from Lemma 5.10. Define Mϕ
i analogously. By independence of Mζ

D

and Mϕ
D ,

PH [ζ ↔ ϕ] ≥ PH [M] ≥ PH

[
M|Mζ

D,Mϕ
D

]
PH

[
Mζ

D

]
PH

[
Mϕ

D

]
.(20)
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By Proposition A.2, for some F
ζ
D(H∗),F ϕ

D(H∗) ⊂ b6 with |Fζ
D|, |Fϕ

D| ≥ cD
ρ n2d/3,

PH

[
M|Mζ

D,Mϕ
D

] ≥ PH

[
M|Mζ

D = F
ζ
D,M

ϕ
D = F

ϕ
D

] = 1 − qD.(21)

Given η = (a, z) ∈ H∗, let τζ (η), τϕ(η) be the first hitting times of F
ζ
D,F

ϕ
D by η,

respectively. By Proposition A.5, for some x ∈ F
ζ
D ,

Pa[τζ , τϕ < τ∂B7 |τ∂B7 = τz] ≥ Pa[τζ < τ∂B7 |τ∂B7 = τz]Px[τϕ < τ∂B7 |τ∂B7 = τz].
Since F

ζ
D,F

ϕ
D ⊂ b6 and |Fζ

D|, |Fϕ
D| ≥ cD

ρ n2d/3, by Lemma A.4 and Corollary A.11
each term in the product above is at least

c1
(
cD
ρ n2d/3)1−2/d

cn2−d = c2n
(2−d)/3.

Let χ(η) be the indicator for the event {τζ (η), τϕ(η) < τ∂B7(η)}, and write S =∑
η∈H∗ χ(η). Then qD ≤ PH [S = 0]. By concentration of independent indicators

in Lemma 5.7, we get

qD ≤ exp
(−cf cDnd−2c2

2n
2(2−d)/3) ≤ exp

(−c3(ρ)n(d−2)/3)
.(22)

We now lower bound PH [Mζ
D] and PH [Mϕ

D] from (20). Since the bound is the
same for both terms, we drop ζ,ϕ from the notation. Note that by connectedness
of each traversal in H 5.5, M0 is of probability one, thus by chaining conditions

PH [MD] ≥
D−1∏
i=0

PH [Mi+1|Mi , . . . ,M0].(23)

By Proposition A.2, for some Fi(Hi+1) ⊂ b6 with |Fi | ≥ ci
ρn(1+d−1)i we have

PH [Mi+1|Mi , . . . ,M0] ≥ PH [Mi+1|Mi = Fi].
By Lemma 5.10, for 0 ≤ i ≤ D − 1, if Fi ⊂ b6 and |Fi | ≥ ci

ρn(1+d−1)i , then for all
large n and some ci(ρ) > 0,

qi(Fi) = 1 − PH [Mi+1|Mi = Fi] ≤ exp
(−cin

1−2/d)
.(24)

Let qi = 1 − pi for i = 0, . . . ,D. Writing ζ � ϕ for the event that R(ζ ) is not
connected to R(ϕ) in R, and plugging (21), (23), (24) into (20) and using the
bounds from (22), (24) we have for large n and c4(ρ)

PH [ζ � ϕ] ≤ 1 −
D∏

i=0

(1 − qi)
2 ≤ 2

D∑
i=0

qi ≤ 2D exp
(−c4n

1−2/d)
.

Since we assumed |H | < 2ρnd−2, we union bound the probability for {ζ � ϕ}
over any two traversals in H 5.5, to get

PH

[
R

(
H 5.5)

is connected in R
] ≥ 1 − exp

(−c5n
1−2/d)

.(25)
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Let F be the event that for any t ≥ 0, any x ∈ F(t)∩b5 is connected to R(H 5.5)

in R ∪ F(t). By (25), to prove the lemma it remains to show that F occurs w.h.p.
Let tx = inf{t ≥ 0 : x ∈ F(t)} and denote by Mx the component of x in F(tx).
If for fixed t ≥ 0 x ∈ F(t), then tx ≤ t and Mx ⊂ F(t). Thus, F is implied by
{∀x ∈ b5 :Mx ∩R(H 5.5) �= ∅}, which is in turn implied by {∀x ∈ b5 :Mx ∩ b5.5 ∩
RH �= ∅}. Since F(t) is b-boundary-connected for all t , Mx ∩ b5.5 is of size at
least n/2 for all x ∈ b5. By Lemma 5.10, the probability none of the traversals in
H hit Mx ∩ b5.5 decays exponentially in n. Thus, by union bound for some c6(ρ)

PH

[∃x ∈ b5 :Mx ∩ b5.5 ∩R = ∅
] ≤ ∣∣b5∣∣ exp

(−cn1−2/d)
< exp

(−c′n1−2/d)
,

and we are done. �

THEOREM 5.12. Fix ρ > 0. Let H be a B(n)-itinerary and let F(t) be a B-
boundary-connected-path. There is a C(ρ), D such that for n > C

PH

[{
R∪ F(t) : t ≥ 0

} ⊂ Gρ
0 (n)|Dσ

�ρ

]
> 1 − D

nd
.

PROOF. See Section 2.4 for the properties each subbox must possess relative
to R∪ F(t) for the above to hold. Using Lemma 5.6 and a union bound on σ(B),
it suffices to show that for any fixed b ∈ σ(B), any �ρ-dense b-itinerary h and any
b-boundary-connected-path f (t),

Ph

[
|R∩ b| ≥

(
ρch ∧ 1

2

)
|b|

]
> 1 − n−2d,(26)

Ph

[∀t ≥ 0,
(
R∪ f (t)

) ∩ b5 is connected in
(
R∪ f (t)

) ∩ b7]
> 1 − n−2d .(27)

Let m = ‖b‖. Using Lemma 5.10 with M = b,α = d,β = 1 and ch = �cg , we
get that the LHS of (26) is greater than 1 − exp(−ρchm

d−2). By Lemma 5.11, the
LHS of (27) is greater than 1 − exp(−cm(d−2)/d).

Since m = log4 n� is ω(logd/(d−2) n), we are done. �

6. Renormalization. Refer to Sections 5.1, 5.2 and Definition 5.5 for the defi-
nitions of τρ , an itinerary, a boundary-connected-path and Dσ

ρ , used in this section.

THEOREM 6.1. For any u > 0, there is a ρ(u) > 0 such that for any k > 0,

P0
[∀t ≥ uNd,T (N) is a

(
RN(t), k, ρ

)
-good torus

] N−→ 1.

PROOF. Let FT
N(b, k, ρ) be the event that a box b is (�−1

N ◦ RN(t), k, ρ)-
good for all t ≥ T . Since the number of top-level boxes for T (N) is bounded, the
theorem follows by definition of a good torus if we show that for some ρ > 0,

P0[FuNd

N (b)] N→ 1 uniformly for an arbitrary top-level box b.
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By translation invariance the above follows from showing that for B =
B(0, N/10�)

Px
[
FuNd

N (B)
] N→ 1,

uniformly for x ∈ Zd . For ρ > 0, τρ = τρ(N) is a random function of SN(·) defined
in Section 5.2. Roughly, τρ is the time it takes SN(·) to make ρ‖B‖d−2 top to
bottom crossings of �N(B7). In Lemma 5.2, we show there is a ρ(u) > 0 for

which Px[τρ > uNd ] N→ 0 uniformly for x ∈ Zd . Since

FuNd

N (B) ⊃ F τρ

N (B) \ {
τρ > uNd}

,

it is thus enough to show Px[F τρ

N (B)] N→ 1 uniformly for x ∈ Zd .
A ρ-dense B-itinerary (defined in Section 5.1) is essentially a product space

of ρ‖B‖d−2 SRWs conditioned to cross B7 from top to bottom. A B-boundary-
connected-path F(t) is a map from Z≥0 to 2B7

with certain properties (defined
before Lemma 5.3). By Lemma 5.3 there is a ρ-dense B-itinerary H (inde-
pendent of x) and a B-boundary-connected-path F(t) (dependent on x) such
that

Px
[
F τρ

N (B)
] ≥ PH

[{
R∪ F(t) : t ≥ 0

} ⊂ Gρ
k

]
.

By Corollary 6.3 below, the RHS approaches one as N tends to infinity uniformly
for ρ-dense B(N/10�)-itineraries [and independently of F(t)]. �

In the below lemma, we use a dimensional constant pd < 1 from Corollary 4.2.

LEMMA 6.2. Let B = B(n), fix j > 0 and ρ > 0. Let C1(ρ, j) be such that
for any ρ�-dense B-itinerary h, B-boundary-connected-path f (t), and n > C1
we have

Ph

[{
R∪ f (t) : t ≥ 0

} ⊂ Gρ
j−1

]
> pd.

Then for all p < 1 there is a C2(p,ρ) such that for any ρ-dense B-itinerary H ,
any B-boundary-connected-path F(t) and all n > C2

PH

[{
R∪ F(t) : t ≥ 0

} ⊂ Gρ
j

]
> p.

PROOF. Fix a ρ-dense B(n)-itinerary H and a B-boundary-connected-path
F(t). Let σj = |σ(B)|1/d and let

S = {
b ∈ σ(B) :∀t ≥ 0, b is

(
R∪ F(t), j − 1, ρ�

)
-good

}
.

Observe that if �S ∈ P(σj ) and {R ∪ F(t) : t ≥ 0} ⊂ Gρ
0 , this implies that {R ∪

F(t) : t ≥ 0} ⊂ Gρ
j .
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See Definition 5.5 for the definition of Dσ
�ρ , which is roughly, the event that

each b ∈ σ(B) is traversed top to bottom at least �ρ‖b‖d−2 times. By Theo-
rem 5.8, for any q > 0 there is a C1(q, ρ) such that for all n > C1,

PH

[
Dσ

�ρ

]
> 1 − q.

By Theorem 5.12, for any q > 0 and all n > C2(q, ρ),

PH

[{
R∪ F(t) : t ≥ 0

} ⊂ Gρ
0 |Dσ

�ρ

]
> 1 − q.

Thus, if we also prove that for all n > C3(q)

PH

[
�S ∈ P(σj )|Dσ

�ρ

]
> 1 − q,(28)

then for q < (1 − p)/4 and n > C1(q, ρ) ∨ C2(q, ρ) ∨ C3(q)

PH

[{
R∪ F(t) : t ≥ 0

} ⊂ Gρ
j

]
> p > 1 − 4q,

and we are done.
Let Fj ⊂ B(σj ) and let b ∈ σ(B). Write Fj (Fj , b) for the event that �(S \

B�(b,20)) = Fj . By Corollary 4.2 (a consequence of the main theorem in [10]),
to prove (28) for all n > C(p), it is enough to show that for any such Fj for which
PH [Dσ

�ρ,Fj ] > 0,

PH

[
b ∈ S|Dσ

�ρ,Fj

]
> pd.(29)

Since {b ∈ S} is a function of (R ∪ F(t)) ∩ b7, by Lemma 5.6, (29) follows from
our assumption. �

COROLLARY 6.3. Fix k > 0 and p < 1. Let B = B(n), let H be a �-dense
B-itinerary, � > 0 and let F(t) be a B-boundary-connected-path. Then for all
n > C(�, k,p)

PH

[{
R∪ f (t) : t ≥ 0

} ⊂ G�
k

]
> p.

PROOF. W.l.o.g. p > pd . Let b = b(s(k)(n)). By Theorem 5.12 for any ��k-
dense b-itinerary h, b-boundary-connected-path f (t), and whenever s(k)(n) >

C(1 − p,ρ)

Ph

[{
R∪ f (t) : t ≥ 0

} ∈ G��k

0

]
> p.

Iterate Lemma 6.2 with above p from j = 1, ρ = ��k−1 to j = k,ρ = � to finish.
�
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7. Random interlacements. In this section, we prove Theorem 2.3. Notation
and definition of random interlacements appear in Appendix C.

DEFINITION 7.1. Denote by ωu′,u(Top → Bot) the set of trajectories w ∈
Supp(ωu′,u(W ∗

Top)) such that the first exit position of w from B7 is in Bot ⊂ ∂B7.

DEFINITION 7.2. Let uρ = inf{u > 0 : |ωu(Top → Bot)| > ρNd−2}.

LEMMA 7.3. uρ is finite P a.s.

PROOF. Denote by p(N) = P[|ω1(Top → Bot)| ≥ 1]. Then for every N ,
p(N) > 0. By independence between ωu,u′ and ωv,v′ for u < u′ ≤ v ≤ v′, we ob-
tain by the Borel–Cantelli lemma that

P
[∃k,

∣∣ωk(Top → Bot)
∣∣ ≥ ρNd−2]

≥ P
[
lim sup
i→∞

∣∣ωi,i+1(Top → Bot)
∣∣ ≥ 1

]
= 1. �

We now prove the equivalent of Lemma 5.2.

LEMMA 7.4. For every u > 0, there is a ρ(u) > 0 such that

lim
N→∞P[uρ < u] = 1.

PROOF. First, |ωu(W
∗
Top)| is Poisson(uCap(Top)) distributed. There exists a

dimension dependent constant c′
d such that, cap(Top) = c′

dNd−2 (see [9] Propo-
sition 6.5.2). By the invariance principle, there is a dimension dependent con-
stant cd > 0, such that minx∈Top Px[Xτ

B7 ∈ Bot] ≥ cd , for large enough N .

Thus, |ωu(Top → Bot)| stochastically dominates a Poisson(ucdNd−2) distri-
bution. Now take any ρ < ucd , and by Chebyshev’s inequality we obtain
that

P
[∣∣ωu(Top → Bot)

∣∣ < ρNd−2] →
N→∞ 0,

which concludes the lemma. �

LEMMA 7.5. For N > 0 large enough fix a box b = b(N/10�), ρ > 0, u >

uρ . Then for any A ⊂ 2b7
there is a ρ-dense b-itinerary H = H(A) and a b-

boundary-connected-path F(t) = F(x, t) such that

P
[
Iu ∩ b7 ∈A

] ≥ PH

[{
R∪ F(t) : t ≥ 0

} ∈ A
]
.
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PROOF. Since u > uρ we know |ωu(Top → Bot)| > ρNd−2. Order the tra-
jectories in ωu(Top → Bot) by some arbitrary but fixed method. For every 1 ≤
i ≤ ρNd−2 and trajectory wi ∈ ωu(Top → Bot) denote by a(i) ∈ Top, the start-
ing point of wi and by z(i) ∈ Bot, the exit point. For every 1 ≤ i ≤ ρNd−2

let ηi = (a(i), z(i)), and H = (η1, . . . , ηρNd−2�). For all t > 0, let F(t) =⋃
w∈Supp(ωu(W ∗

b7 )) range(w) ∩ b7 \ ⋃ρNd−2

i=1 range(wi). Then

P
[
range

(
ω

(
W ∗

b7

)) ∩ b7 ⊂ A
] = PH

[{
R∪ F(t) : t ≥ 0

} ⊂ A
]
. �

THEOREM 7.6. For every k ∈ N and u,ρ > 0, there exists a constant α(k,ρ)

such that

P
[
Iu /∈ Gρ

k (n)
] ≤ α

n2 .

PROOF. The proof follows Theorem 6.1 without the union on top level boxes.
�

We now prove the bound on the heat kernel of random interlacements.

THEOREM 7.7. Let u > 0 and let Xn be a random walk on the graph Iu. For
large enough N , if Iu ∈ Gρ

k (N) and 0 ∈ Iu, there exists a constant C(k,ρ) such
that

Pu
0[XN = 0] ≤ C(k,ρ) log(k−1)(N)

Nd/2 .

PROOF. Let ε > 0. By [13] (Theorem 2), there exists a constant c̃ such that if
for some ε > 0

c̃

∫ 4/ε

1

dr

rφ2(r)
≤ n,(30)

then P0[Xn = 0] ≤ ε. In order to bound P0[Xn = 0] it is enough to consider the
isoperimetric constant of sets inside B(n). Indeed consider a new graph Ĩu which
is the same as Iu inside B(n) but all the edges are open outside B(n). Since a
random walk cannot leave B(n) before time n, it is enough to prove the theorem
for the graph Ĩu. Next, we prove an isoperimetric inequality for the graph Ĩu. For
every set A ⊂ Zd , such that |A| > n1/3, if A ∩ B(n) = φ then by the isoperimetric
inequality of Zd , |∂A| ≥ |A|(d−1)/d . If A ∩ B(n) �= φ and |A ∩ B(n)c| ≥ 1

2 |A|, by
the triangle inequality and isoperimetric inequality of Zd ,

|∂A| ≥ ∣∣∂(
A ∩ B(n)c

)∣∣ ≥ (∣∣A ∩ B(n)c
∣∣)(d−1)/d ≥

(
1

2
|A|

)(d−1)/d

.
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If A ∩ B(n) �= φ and |A ∩ B(n)| > 1
2 |A|, since |∂A ∩ Bc| ≥ |A ∩ ∂B| (a straight

line between two points is the shortest path)

|∂A| ≥ ∣∣∂(A ∩ B)
∣∣ > c(k,ρ)

(1
2 |A|)(d−1)/d(

s(l)(n)
)d−1

.

If φ(r) is realized by a set of size smaller than N1/3, then φ(r) ≥ N−1/3. By
Theorem 3.3,∫ 4/ε

1

dr

rφ2(r)
=

∫ 4/ε

1

dr

r(1/N2/3)
+

∫ 4/ε

N1/3

dr

rφ̂2(r)

= N2/3 log
(

4

ε

)
+

∫ 4/ε

N1/3

c(k, ρ)−1(s(k)(N))2d−2 dr

rr−2/d
(31)

= N2/3 log
(

4

ε

)
+ c′(s(k)(N))2d−2

εd/2 .

Thus, if ε ≥ c′′(s(k)(N))2d−2

Nd/2 , P0[XN = 0] ≤ c′′(s(k)(N))2d−2

Nd/2 ≤ c′′′ logk−1(N)

Nd/2 . �

The proof of Theorem 2.3 follows from Theorems 7.7 and 7.6.

APPENDIX A

Recall the notation from Section 5.2 and let τ0 = 0, and for z(i) ∈ G,mi ∈ N
where i ≥ 1 recursively define

τi = τi

({
z(i)

}
, {mi}) = inf

{
t > τi−1 + mi−1 :S(t) = z(i)

}
.

PROPOSITION A.1. Fix n ∈ N, s0, . . . , sn, g1, . . . , gn ∈ S(G) and C1, . . . ,

Cn ⊂ S(G). Set z(i) = si(0),mi = ‖si‖,a(i) = si(mi). Define the events A =⋂n
i=0 S(τi, τi +mi) = si , B(A1, . . . ,An) = ⋂n

i=1 S(τi−1 +mi−1, τi) ∈ Ai . Writing
Bg for B({g1}, . . . , {gn}) and BC for B(C1, . . . ,Cn) and assuming Pz(0)[A,BC] >

0 we have

Pz(0)[A,Bg|A,BC] =
n∏

i=1

Pa(i)

[
S(0, τz(i)) = gi |S(0, τz(i)) ∈ Ci

]
.

PROOF. See Figure 6 for an illustration. Observe that if for some i, gi /∈ Ci ,
then both sides are 0, thus we assume gi ∈ Ci .

Pz(0)[A,Bg|A,BC] = Pz(0)[A,Bg]/Pz(0)[A,BC].
Let W1, . . . ,Wn ⊂ S(G) be with the property that for each 1 ≤ i ≤ n and
w ∈ Wi , w = (a(i),v1, . . . ,vk, z(i)) ∈ S(G), vj �= z(i) ∀1 ≤ j ≤ k. For each
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FIG. 6. Scheme of A,BC on top and of A,Bg on bottom.

(w1, . . . ,wn) ∈ W1 × · · · × Wn, we decompose A,B({w1}, . . . , {wn}) according
to the Markov property and sum to get

Pz(0)

[
A,B(W1, . . . ,Wn)

]
=

(
n∏

i=1

Pz(i−1)

[
S(0,mi−1) = si−1

]
Pa(i)

[
S(0, τz(i)) ∈ Wi

])
(32)

× Pz(n)

[
S(0,mn) = sn

]
.

Since we assume Pz(0)[A,BC] > 0, we have that each Ci consists of paths with
the constraints above. Using (32) with Wi = Ci and Wi = {gi} we get

Pz(0)[A,Bg|A,BC] =
n∏

i=1

(
Pa(i)

[
S(0, τz(i)) = gi

]
/Pa(i)

[
S(0, τz(i)) ∈ Ci

])
,

and are done. �

PROPOSITION A.2. Let X ,Y be events in some probability space, and let
{Yα}α∈I be a partition of Y where ∀α ∈ I,Pr[Yα] > 0. Then for some γ,� ∈ I ,

Pr[X |Yγ ] ≤ Pr[X |Y] ≤ Pr[X |Y�].
PROOF. Follows from the identity,

Pr[X |Y] = ∑
α∈I

Pr[X |Yα]Pr[Yα]/Pr[Y].
�

Recall JB[b] from Definition 5.5.

LEMMA A.3. Let B = B(n), let b ∈ σ(B), where we write m = ‖b‖. There
is a c�(d) > 0, independent of n, such that for any a ∈ A(B), z ∈ Z(B) and all
large n,

Pa
[
JB[b]|τ∂B7 = τz

]
> c�

(
m

n

)d−2
.
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PROOF. For y = (y1, . . . , yd) ∈ Zd , define B(y) to be the event S(·) hits b at
y and then the first coordinate of S(·) hits y1 + 4m and then hits y1 − 8m, while
the maximal change in the other coordinates is less than m. Let τB(y) = inf{t ≥
0 :S(0, t) ⊂ B(y)} be the first time the occurrence of B(y) is implied by S(t). By
Proposition A.5 for some x ∈ b,

Pa
[
τb, τB

(
S(τb)

)
< τ∂B7 |τ∂B7 = τz

]
≥ Pa[τb < τ∂B7 |τ∂B7 = τz]Px

[
τB(x) < τ∂B7 |τ∂B7 = τz

]
.

Using Lemma A.4 together with Corollary A.11, we have

Pa[τb < τ∂B7 |τ∂B7 = τz] > c1

(
m

n

)d−2

.

Since {τB(x) < τ∂B7} ⊂ JB[b], we are done if we show for some c2(d) > 0

Px
[
τB(x) < τ∂B7 |τ∂B7 = τz

]
> c2.(33)

Partitioning over S(τB(x)) ∈ b10 and using the Markov property, we have for some
y ∈ b10,

Px
[
τB(x) < τ∂B7 |τ∂B7 = τz

]
Px[τ∂B7 = τz]

(34)
≥ Px

[
τB(x) < τ∂B7

]
Py[τ∂B7 = τz].

By the invariance principle, Px[τB(x) < τ∂B7] is bounded away from zero by a
dimensional constant independent of x. Since x,y from (34) are contained in B6

for all large n, we use Lemma A.10 to get (33). �

In the lemma below, we look at the number vertices hit in an interior set M ⊂ B6

by a B-traversal, and lower bound the probability for this number to be small in
terms of |M|.

LEMMA A.4. Let B = B(n), let M ⊂ B6, set a ∈ B7 and z ∈ Z(B). Let
X(M) = |{v ∈ M : τv < τ∂B7}| and let μX = μX(a, z) = Ea[X(M)|τ∂B7 = τz].
There is a c1(d) > 0, independent of n, a and z, such that for all large n

Pa
[
X(M) ≥ 1

2μX|τ∂B7 = τz
]
> c1μX|M|−2/d .

Thus, if Pa[τv < τ∂B7 |τ∂B7 = τz] > f (n) for every v ∈ M , then since X(M) =∑
v∈M 1{τv<τ

∂B7 }, we have

Pa
[
X(M) ≥ 1

2μX|τ∂B7 = τz
]
> c1|M|1−2/df (n).

PROOF. Write μX2 for Ea[X2|τ∂B7 = τz]. By the Paley–Zygmund inequality,
Pa[X ≥ 1

2μX] ≥ 1
4μ2

X/μX2 , so enough to show

μX2 < Cm2μX,
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where m = |M|1/d .
By linearity,

μX2 = ∑
v∈M

∑
w∈M

Pa[τw, τv < τ∂B7 |τ∂B7 = τz].

For two vertices x,y, let τv,w = inf{t ≥ τx :S(t) = y}. By a union bound

Pa[τw, τv < τ∂B7 |τ∂B7 = τz] ≤ Pa[τw ≤ τw,v < τ∂B7 |τ∂B7 = τz]
+ Pa[τv ≤ τv,w < τ∂B7 |τ∂B7 = τz].

By Bayes theorem and the Markov property,

Pa[τw ≤ τw,v < τ∂B7 |τ∂B7 = τz]
= Pa[τw < τ∂B7 |τ∂B7 = τz]Pa[τw ≤ τw,v < τ∂B7 = τz|τw < τ∂B7]

Pa[τ∂B7 = τz|τw < τ∂B7]
= Pa[τw < τ∂B7 |τ∂B7 = τz]Pw[τv < τ∂B7 |τ∂B7 = τz].

Again by the Markov property,

Pw[τv < τ∂B7 |τ∂B7 = τz] = Pv[τ∂B7 = τz]Pw[τv < τ∂B7]
Pw[τ∂B7 = τz] .

So by Lemma A.10, since v,w ∈ M ⊂ B6,

Pw[τv < τ∂B7 |τ∂B7 = τz] < CPw[τv < τ∂B7] < CPw[τv < ∞].
Thus, by symmetry,

μX2 ≤ 2
∑

w∈M

Pa[τw < τ∂B7 |τ∂B7 = τz]
∑
v∈M

CPw[τv < ∞].

By Markov’s inequality, Pw[τv < ∞] < G(w,v) where G(·, ·) is the Green’s func-
tion of a simple random walk on Zd . Standard estimates for G(·, ·) (see, e.g., The-
orem 1.5.4 in [8]) give that Pw[τv < ∞] < C(d)‖w − v‖2−d

2 , and thus∑
v∈M

Pw[τv < ∞] <
∑
v∈M

‖w − v‖2−d
2 .

For some ĉ(d) < ∞, and all r > 0, a ball of radius ĉr around the origin contains
at least rd vertices in Zd . Since the RHS above can only be increased by moving a
vertex in M closer to w, we have∑

v∈M

Pw[τv < ∞] < Ĉ

ĉm∑
r=1

rd−1r2−d < Cm2 = C|M|2/d .

Since μX = ∑
w∈M Pa[τw < τ∂B7 |τ∂B7 = τz], we are done. �

Let τ0 : (Zd)Z
≥0 → Z≥0 be a stopping time for the random walk S(t). We denote

by τ t
0 the stopping time on the t-time shifted sequences, that is, τ t

0(a0,a1, . . .) =
τ0(at ,at+1, . . .) + t . We call τ0 a simple stopping time if τ t

0 ≥ τ0 for every t ≥ 0.
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PROPOSITION A.5. Let B = B(n), set a ∈ B7 and z ∈ Z(B). Let τ1, τ2 be
simple stopping times (see above). Then there exists a x satisfying Pa[S(τ1) =
x, τ1 < τ∂B7 |τ∂B7 = τz] > 0 such that

Pa[τ1, τ2 ≤ τ∂B7 |τ∂B7 = τz] ≥ Pa[τ1 < τ∂B7 |τ∂B7 = τz]Px[τ2 ≤ τ∂B7 |τ∂B7 = τz].

PROOF. Let

πy = Pa
[
S(τ1) = y, τ1 < τ∂B7 |τ∂B7 = τz

]
.

For y satisfying πy > 0, we have by Bayes

Pa
[
τ1, τ2 ≤ τ∂B7, S(τ1) = y|τ∂B7 = τz

]
(35)

= πyPa[τ1, τ2 ≤ τ∂B7 = τz|S(τ1) = y, τ1 < τ∂B7]
Pa[τ∂B7 = τz|S(τ1) = y, τ1 < τ∂B7] .

Since τ2 is a simple stopping time,

Pa
[
τ1, τ2 ≤ τ∂B7 = τz|S(τ1) = y, τ1 < τ∂B7

]
≥ Pa

[
τ1 ≤ τ

τ1
2 ≤ τ∂B7 = τz|S(τ1) = y, τ1 < τ∂B7

]
.

Plugging the above into (35) and using the strong Markov property, we get

Pa
[
τ1, τ2 ≤ τ∂B7, S(τ1) = y|τ∂B7 = τz

] ≥ πyPy[τ2 ≤ τ∂B7 |τ∂B7 = τz].
Let x ∈ {y :πy > 0} be the vertex for which Px[τ2 ≤ τ∂B7 |τ∂B7 = τz] is minimal.
Summing both sides over {y :πy > 0}, we are done. �

We quote the Harnack principle for Zd from Theorem 1.7.6 in [8].

PROPOSITION A.6. Let U be a compact subset of Rd contained in a con-
nected open set V . Then there exists a c = c(U,V ) < ∞ such that if An =
nU ∩Zd , Dn = nV ∩Zd , and f :Dn ∪ ∂Dn → [0,∞) is harmonic in Dn, then

f (x) ≤ cf (y), x, y ∈ An.

LEMMA A.7. Let B = B(n) and let F be the union of all hyperplanes in Zd

that intersect B6 and are parallel to Z(B). There is a C > 0 such that for any
y ∈ Z(B) ∪ A+(B) and any v ∈ F ∩ B7,

Pv[τ∂B7 = τy] < Cn1−d .

PROOF. We prove for y ∈ Z(B). The proof A+(B) is the same so we omit it.
Let H be the infinite hyperplane in Zd that contains Z(B), and let H0 a parallel
hyperplane, which is the component of ∂B7F closer to Z(B). Let h(y) be the l1-
closest vertex to y in H0. By vertex transitivity, there is a function g(n) such that for
any y ∈ Z(B), Ph(y)[τH = τy] = g(n). Observe that P(·)[τH = τy] is a nonnegative
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harmonic function in the component of Zd \ H containing H0, so by the Harnack
principle for Zd (Proposition A.6), for some c > 0, any v ∈ F ∩ B7,y ∈ Z(B)

satisfies

cPv[τH = τy] > Ph(y)[τH = τy] = g(n).

Summing both sides over y ∈ Z(B), we get

g(n) < Cn1−d .

Since {τ∂B7 = τy} ⊂ {τH = τy}, another application of the Harnack principle fin-
ishes the proof. �

COROLLARY A.8. Let B = B(n). There is a C > 0 such that for any a ∈
A(B), z ∈ Z(B)

Pa[τz = τ∂B7] < Cn−d .

PROOF. Using the notation of Lemma A.7, by the Markov property F

Pa[τz = τ∂B7] = ∑
x

Pa
[
τF < τ∂B7, S(τF ) = x

]
Px[τz = τ∂B7].

The right term is uniformly bounded by Cn1−d by Lemma A.7. Summing over x,
the event {τF < τ∂B7} implies that a one dimensional random walk starting at 1
hits n before hitting 0, an event of probability n−1. �

PROPOSITION A.9. Let B = B(n). There is a c(d) > 0 such that for any A ⊂
Zd and v,w ∈ Zd \ A

c <
Pv[τw < τA]
Pw[τv < τA] < c−1.

PROOF. Write GA(v,w) for the Green’s function of a random walk killed on
hitting A, that is, the expected number of visits to w for a walk starting at v before
it hits A. By elementary Markov theory, we have symmetry of Green’s function,
GA(v,w) = GA(w,v) and the following identity:

Pv[τw < τ∂B7]GA(w,w) = Pw[τv < τ∂B7]GA(v,v).

For any v ∈ Zd \ A, GA(v,v) ≥ 1, and is bounded above by the reciprocal of the
probability a simple random walk never returns to v, which by transience in d > 2,
is a finite dimensional constant. �

LEMMA A.10. Let B = B(n). There is a c > 0 such that for any a ∈ A(B), z ∈
Z(B) and any x ∈ B6,

cn1−d < Pa[τx < τ∂B7], Px[τz = τ∂B7] < c−1n1−d .(36)
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PROOF. Let Dx(r) = {v ∈ Zd :‖v−x‖2 ≤ r}. Lemma 1.7.4 in [8] tells us there
is a c1(d) > 0 such that for any r ∈ ∂D0(r),

P0[τ∂D0(r) = τr] > c1n
1−d .(37)

Fix y ∈ A+(B). Then there is a v ∈ B6 such that y ∈ ∂Dv(n),Dv(n) ⊂ B7. Since
{τ∂Dv(n) = τy} implies {τ∂B7 = τy}, we get that

Pv[τ∂B7 = τy] > c1n
1−d .(38)

The probability to exit B7 at y is a nonnegative harmonic function in B7. Thus, by
the Harnack principle for Zd (Proposition A.6), and since c1 is independent of y,
the above is true for any v ∈ B6 and any y ∈ A+(B) with an appropriate constant
c2 > 0 replacing c1.

The same argument proves the lower bound in (36) for Px[τz = τ∂B7].
Next, by Proposition A.9 we have Pa[τx < τ∂B7] > cPx[τa < τ∂B7]. Let a+ be

a’s neighbor in A+(B). Since {τa < τ∂B7} ⊃ {τa+ = τ∂B7} and by (38), we get

Px[τa < τ∂B7] ≥ Px[τa+ = τ∂B7] > cn1−d,

which proves the lower bound in (36) for Pa[τx < τ∂B7] as well.
The upper bound for Px[τz = τ∂B7] is immediate from Lemma A.7. To prove

for Pa[τx < τ∂B7], we first use the lemma to get

Px[τa+ = τ∂B7] < Cn1−d,

which implies the bound for Px[τa < τ∂B7], since by the Markov property, the
probability for exiting B7 one step after hitting a for the first time is

Px[τa < τ∂B7] · 1

2d
≤ Px[τa+ = τ∂B7].

Using Proposition A.9 again, we get the bound with a new factor for Pa[τx < τ∂B7].
�

COROLLARY A.11. Let B = B(n). There is a c > 0 such that for any a ∈
A(B) ∪ B6, z ∈ Z(B) and any x ∈ B6,

Pa[τx < τ∂B7 |τ∂B7 = τz] > cn2−d .(39)

PROOF. By the Markov property,

Pa[τx < τ∂B7 |τ∂B7 = τz]Pa[τ∂B7 = τz] = Pa[τ∂B7 = τz|τx < τ∂B7]Pa[τx < τ∂B7]
= Px[τ∂B7 = τz]Pa[τx < τ∂B7].

If a ∈ A(B), then Lemma A.10 and Corollary A.8 give the bound. If a ∈ B6, then
Lemma A.10 gives us the LHS is greater than cPa[τx < τ∂B7].

For r > 0, let br = {x ∈ Rd :∀i,1 ≤ i ≤ d, |xi | < r/2} and for y ∈ Rd let
d(y, r) = {x ∈ Rd :‖x − y‖2 < r}. Choose K(d) points y1, . . . ,yK ∈ b6 such that
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b6 ⊂ ⋃K
i=1 d(yi ,0.1) ⊂ b6.1. Let Dα

i (n) = d(nyi , αn) ∩ Zd . Then for α ≥ 0.1 and
all n

B6 ⊂
K⋃

i=1

Dα
i ⊂ B6+α.

Let pa(x) = Pa[τx < τ∂B7]. To show pa(x) > cn2−d uniformly in x,a ∈ B6, it is
enough to show, w.l.o.g., that there is a c1 > 0 such that for any x ∈ D0.1

1 ,a ∈ B6,
pa(x) > c1n

2−d . Since pa(x) is harmonic as a function of a in B7 \ {x}, by the
maximum (minimum) principle,

min
a∈D0.2

1 \{x}
pa(x) ≥ min

a∈∂D0.2
1 ∪{x}

pa(x).

Since px(x) = 1, and ∂D0.2
1 ⊂ B6.5, it is thus enough to lower bound pa(x) for

a ∈ B6.5 \D0.2
1 . Since pa(x) is harmonic and positive in B7 \D0.1

1 , by the Harnack
principle for Zd (Proposition A.6), there is a c2(d) > 0 such that for any a,b ∈
B6.5 \ D0.2

1

pb(x) ≥ c2pa(x).

Thus, it is enough to bound for some fixed a ∈ ∂D0.2
1 ∩ B6. Let D∗ = d(a,0.6n) ∩

Zd and note that x ∈ D∗ ⊂ B7, implying pa(x) ≥ Pa[τx < τ∂D∗]. By Proposi-
tion 1.5.9 in [8], since x ∈ d(a,0.4n) ∩Zd , Px[τa < τ∂D∗] ≥ cn2−d , and by Propo-
sition A.9 we are done. �

APPENDIX B: DISTANCE BOUND

In this section, we prove the following theorem.

THEOREM B.1. Let ω0 ⊂ T (N). If ω0 ⊂ T (N) is (N, k,ρ)-good (see Sec-
tion 2.5) where k ≥ 1, ρ > 0, then there is a C(k,ρ) < ∞ such that for all large N

and any two vertices x,y ∈ ω0

dω0(x,y) < CdT (x,y) log(k−1) N + C(logN)4d+2,

where log(m) N is log(·) iterated m times of N .

We start by reducing from the torus to top-level.boxes. To prove the theorem,
it is enough to show that there exists a C(k,ρ) < ∞ such that for all large n, any
ω ∈ Gρ

k (n) and any x,y ∈ ω ∩ b5(n) satisfy

dω(x,y) < Cdb7(n)(x,y) log(k−1) n + C(logn)4d+2.(40)

Note that while ω0 is a subgraph of T as far as graph distance, we require (40) to
hold for ω as a subgraph of Zd (no wrap around). To see why this is enough, let
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FIG. 7. On the left is a schematic example of B7(n) where the black boxes represent
βk = Ck−1(B(n)) and the gray ones S(B, k − 1) \ βk . On the right is a blowup of the framed region
on the left where the small black boxes are a part of βk−1.

x,y ∈ T (N) and set n = N/10�. First assume there is a top-level box b∗(a, n)

and x̂, ŷ ∈ b3∗ such that x = �N(x̂),y = �N(ŷ). Let ω = �−1
N (ω0) ∩ b7∗. Note

dω(x̂, ŷ) ≥ dω0(x,y) but since ‖b3∗‖ < N/2,db7∗(x̂, ŷ) = dT (x,y). By (40), since b∗
is (�−1

N (ω0), k, ρ)-good by definition, we are done. If no such b∗ exists, then by
our construction of top-level boxes, dT (x,y) > n. Let bx, by be the top-level boxes
such that x ∈ bx,y ∈ by. We can make a �-connected path of top-level boxes from
x to y of length at most 10d . Since b1, b2 that are �-neighbors satisfy that b1 ⊂ b5

2,
by Remark 2.6, (40) implies the theorem.

To simplify notation, we fix k,ρ,n and ω ∈ Gρ
k (n) for the remainder of the

section. We write Gi (resp., i-good) for Gρ�k−i

i [resp., (ω, i, ρ�k−i)-good].
We now utilize the recursive goodness properties of ω to extract a single con-

nected cluster of ω which is a power of log ω-distance from its complement in ω

and is “nicely” embedded in Zd . Given an (i + 1)-good box B where 0 ≤ i < k,
we write

S(B, i) = {
b ∈ σ(B) :b is i-good

}
,

and let σB = ‖�(σ(B))‖ = |σ(B)|1/d . Since B is (i + 1)-good, by definition we
have that �S(B, i) ∈ P(σB). Thus, there exists a good cluster C(�(S(B, i)))

satisfying Percolation properties 1, 2, 3 (see Section 2.3). Let Ci (B) ⊂ σ(B)

be the set for which (�Ci (B)) = C(�(S(B, i))). For i = 0, . . . , k let us de-
fine βi = βi(ω,n). Set βk = {B(n)} and for i = k − 1, . . . ,0 recursively define
βi = {b ∈ Ci (B) :B ∈ βi+1}. See Figure 7 for a schematic illustration.

Let nj = s(k−j)(n). Thus, for b ∈ βj we have ‖b‖ = nj and also |σ(b)|1/d <

6nj/nj−1 for all large n. Note that by Percolation property 1, {βj (n)}kj=0 are
nonempty for all large n. Roughly,

⋃
β0 is the nicely embedded cluster referred to

above. Its precise properties follow.
Given an (i + 1)-good box B , let C5

i (B) = {b ∈ Ci (B) :b ∩ B5 �= ∅}.
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LEMMA B.2. Set bk = B(n). There is a C(k) such that for any xk ∈ b5
k ∩ ω,

there are boxes {bi}k−1
i=0 satisfying: (i) bi ∈ C5

i (bi+1) ⊂ βi , and (ii) there is a x0 ∈
ω ∩ b0 such that

dω(xk,x0) < C(k)(logn)4d+2.

PROOF. We use backward induction. For 1 ≤ j ≤ k, we prove that if xj ∈
B5

j ∩ω where Bj ∈ βj , then there is a bj−1 ∈ C5
j−1(Bj ) ⊂ βj−1 and a xj−1 ∈ bj−1

satisfying

dω(xj ,xj−1) < c(d)nd
j−1(lognj )

2.(41)

Since the conditions of the lemma provide us with an initial xk ∈ B5(n) where
by definition B(n) ∈ βk , the bound on dω(xk,x0) is proved by connecting
xk,xk−1, . . . ,x0.

We assumed Bj ∈ βj , so in particular, Bj is j -good. Let b∗ ∈ σ(Bj ) be the
subbox of Bj containing xj and assume b∗ /∈ C5

j−1(Bj ) as otherwise we are done.
Consider

B = {
b ∈ B�

(
b∗, log

∣∣σ(Bj )
∣∣) :b ∩ B5

j �= ∅
}
.

Since b∗ ∩ B5
j �= ∅ by assumption, |B| > log2 |σ(Bj )|, and thus by Percolation

property 2 (see Section 2.3), there is a bj−1 ∈ B ∩ C5
j−1(Bj ). Thus, there is a �-

path p ⊂ σ(Bj ) of length at most d log |σ(Bj )| starting at b∗ and ending at bj−1.
By Remark 2.6 on Gρ

0 (see Section 2.4), for any �-neighboring boxes bα, bβ in the
path, ω ∩ bα is connected to ω ∩ bβ in ω ∩ b+

α . Choosing some xj−1 ∈ ω ∩ bj−1

and using the volume of
⋃

b∈p b7 as a trivial distance bound, we get (41). �

For 0 ≤ j < k, note that although ‖b1‖ = ‖b2‖ for any b1, b2 ∈ βj , since they
can be subboxes of different B1,B2, b1 is not in general an element of sp{b2}.
Thus, for each 0 ≤ j ≤ k, we add a graph structure to βj by defining a neighbor

relation (
5∼) between boxes b1, b2 ∈ βj . We define that b1

5∼ b2 if and only if b1 ⊂
b5

2 and b2 ⊂ b5
1. Note this relation is reflexive, and that for (j + 1)-good B and

b1, b2 ∈ Cj (B), dβj
(b1, b2) ≤ d�(b1, b2). For the remainder of the section, any

graph properties of βj referred to, such as connectivity or distance, use the graph

structure created by
5∼.

LEMMA B.3. There is a Cd such that for each 0 < j ≤ k, if B1,B2 ∈ βj are
5∼-connected, and we have b1 ∈ C5

j−1(B1), b2 ∈ C5
j−1(B2), then dβj−1(b1, b2) <

Cd(dβj
(B1,B2) ∨ 1)nj /nj−1. In particular, b1, b2 are

5∼-connected in βj−1.
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PROOF. We prove the lemma for the special case of B1
5∼ B2 [i.e., dβj

(B1,

B2) ≤ 1]. The general lemma follows by applying the neighbor case over a path

in βj realizing the
5∼-distance between two fixed boxes. By definition, Cj−1(B1)

and Cj−1(B2) are each �-connected sets, and thus
5∼-connected. By Percolation

property 3, for i = 1,2 and any b, b′ ∈ C5
j−1(Bi), dCj−1(Bi)(b, b′) < Cdnj/nj−1.

Since Cj−1(Bi) ⊂ βj−1 and
5∼-distance is at most �-distance, to complete the

proof it is enough to show existence of b̂1 ∈ C5
j−1(B1) and b̂2 ∈ C5

j−1(B2) such

that b̂1 ⊂ b̂5
2 and b̂2 ⊂ b̂5

1. For i = 1,2, let Di = {b ∈ σ(Bi) :b ⊂ B2} and let Ei =
Di ∩ Cj−1(Bi). Let Di = ⋃

Di and let Ei = ⋃
Ei . Since Ei ⊂ Di , we have B2 \

Ei = (B2 \ Di) ∪ (Di \ Ei). By a volume bound, |B2 \ Di | ≤ 2dnj−1n
d−1
j and by

Percolation property 1, |Di \ Ei | < 10−d |σ(Bi)|. Since |σ(Bi)|1/d < 6nj/nj−1,
this implies |Di \ Ei | < (0.6nj )

d . As |B2| = nd
j and d > 2, we have by the bound

on |B2 \ Ei | for i = 1,2 that there is a x ∈ E1 ∩ E2. The containing boxes x ∈ b̂i ∈
Cj−1(Bi) for i = 1,2 are thus

5∼-neighbors. �

We now prove the theorem by showing there exists a C(k,ρ) < ∞ such that for
any x,y ∈ ω ∩ B5(n), (40) holds for all large n.

PROOF OF THEOREM B.1. We demonstrate there is a path from x to y in ω

shorter than the RHS of (40). Let bx,k = B(n) and apply Lemma B.2 to x to get
boxes {bx,i}k−1

i=0 satisfying: (i) bx,i ∈ C5
i (bx,i+1) ⊂ βi , and (ii) there is a x0 ∈ ω ∩

bx,0 such that dω(x,x0) < C(k)(logn)4d+2. Observe that (i) implies x0 ∈ b6
x,k−1

for all large n. Set by,k = B(n) and apply the lemma to y as well to get by,i and y0
with analogous properties.

By Lemma B.3, βk−1 is
5∼-connected, and more specifically,

dβk−2(bx,k−2, by,k−2) < Cd

(
dβk−1(bx,k−1, by,k−1) ∨ 1

)nk−1

nk−2
.

Iterating the lemma, we get

dβ0(bx,0, by,0) < Ck−1
d

(
dβk−1(bx,k−1, by,k−1) ∨ 1

)nk−1

n0
.(42)

Since bx,k−1, by,k−1 ∈ C5
k−1(B(n)), by Percolation property 3

dCk−1(B(n))(bx,k−1, by,k−1) < cadσ(B(n))(bx,k−1, by,k−1) ∨ ca log
nk

nk−1
.(43)

Where both are defined,
5∼-distance is at most �-distance, and thus we may replace

dCk−1(B(n))(·, ·) in (43) by dβk−1(·, ·). Since nk−1 · dσ(B(n))(·, ·) and dB7(n)(·, ·) are
comparable, and using that x0 ∈ b6

x,k−1,y0 ∈ b6
y,k−1 we have

nk−1dβk−1(bx,k−1, by,k−1) < c′
a

(
dB7(n)(x0,y0) ∨ nk−1 lognk

)
.
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Plugging this into (42), we get

dβ0(bx,0, by,0) < C(k)
(
dB7(n)(x0,y0) ∨ log5 n

)
/n0.

By properties of Gρ
0 (see Section 2.4), vertices in

5∼-neighboring boxes in β0 are
connected in ω in a path which is at most twice the volume of one box, and thus
we get

dω(x0,y0) < C(k)
(
dB7(n)(x0,y0) ∨ log5 n

)
(n0)

d−1.

We pay a C(logn)4d+2 term to connect x,y to x0,y0, respectively. This terms also
absorbs the (n0)

d−1 log5 n factor above. Since (n0)
d−1 is o(log(k−1) n), we are

done. �

APPENDIX C: RANDOM INTERLACEMENTS NOTATION

We try to follow as much as possible the canonical notation of Alain-Sol Sznit-
man [17]. Let W and W+ be the spaces of doubly infinite and infinite trajectories
in Zd that spend only a finite amount of time in finite subsets of Zd :

W =
{
γ :Z→ Zd; ∣∣γ (n) − γ (n + 1)

∣∣ = 1,∀n ∈ Z; lim
n→±∞

∣∣γ (n)
∣∣ = ∞

}
,

W+ =
{
γ :N→ Zd; ∣∣γ (n) − γ (n + 1)

∣∣ = 1,∀n ∈ Z; lim
n→∞

∣∣γ (n)
∣∣ = ∞

}
.

The canonical coordinates on W and W+ will be denoted by Xn, n ∈ Z and Xn, n ∈
N, respectively. Here, we use the convention that N includes 0. We endow W and
W+ with the sigma-algebras W and W+, respectively, which are generated by the
canonical coordinates. For γ ∈ W , let range (γ ) = γ (Z). Furthermore, consider
the space W ∗ of trajectories in W modulo time shift:

W ∗ = W/ ∼ where w ∼ w′ ⇐⇒ w(·) = w′(· + k) for some k ∈ Z.

Let π∗ be the canonical projection from W to W ∗, and let W∗ be the sigma-
algebra on W ∗ given by {A ⊂ W ∗ : (π∗)−1(A) ∈ W}. Given K ⊂ Zd and γ ∈ W+,
let H̃K(γ ) denote the hitting time of K by γ :

H̃K(γ ) = inf
{
n ≥ 1 :Xn(γ ) ∈ K

}
.(44)

For x ∈ Zd , let Px be the law on (W+,W+) corresponding to simple random walk
started at x, and for K ⊂ Zd , let P K

x be the law of simple random walk, conditioned
on not hitting K . Define the equilibrium measure of K :

eK(x) =
{

Px[H̃K = ∞], x ∈ K,

0, x /∈ K.
(45)

Define the capacity of a set K ⊂ Zd as

cap(K) = ∑
x∈Zd

eK(x).(46)



1632 E. B PROCACCIA AND E. SHELLEF

Next, we define a Poisson point process on W ∗ ×R+. The intensity measure of
the Poisson point process is given by the product of a certain measure ν and the
Lebesque measure on R+. The measure ν was constructed by Sznitman in [17],
and now we characterize it. For K ⊂ Zd , let WK denote the set of trajectories in W

that enter K . Let W ∗
K = π∗(WK) be the set of trajectories in W ∗ that intersect K .

Define QK to be the finite measure on WK such that for A,B ∈ W+ and x ∈ Zd ,

QK

[
(X−n)n≥0 ∈ A,X0 = x, (Xn)n≥0 ∈ B

] = P K
x [A]eK(x)Px[B].(47)

The measure ν is the unique σ -finite measure such that

1W ∗
K
ν = π∗ ◦ QK ∀K ⊂ Zd finite.(48)

The existence and uniqueness of the measure was proved in Theorem 1.1 of [17].
Consider the set of point measures in W ∗ ×R+:

� =
{
ω =

∞∑
i=1

δ(w∗
i ,ui );w∗

i ∈ W ∗, ui ∈ R+,

(49)

ω
(
W ∗

K × [0, u]) < ∞, for every finite K ⊂ Zd and u ∈ R+
}
.

Also consider the space of point measures on W ∗:

�̃ =
{
σ =

∞∑
i=1

δw∗
i
;w∗

i ∈ W ∗, σ
(
W ∗

K

)
< ∞, for every finite K ⊂ Zd

}
.(50)

For u > u′ ≥ 0, we define the mapping ωu′,u from � into �̃ by

ωu′,u =
∞∑
i=1

δw∗
i
1
{
u′ ≤ ui ≤ u

}
for ω =

∞∑
i=1

δ(w∗
i ,ui ) ∈ �.(51)

If u′ = 0, we write ωu. On � we let P be the law of a Poisson point process with
intensity measure given by ν(dw∗) dx. Observe that under P, the point process
ωu,u′ is a Poisson point process on �̃ with intensity measure (u − u′)ν(dw∗).
Given σ ∈ �̃, we define

I(σ ) = ⋃
w∗∈supp(σ )

range
(
w∗)

.(52)

For 0 ≤ u′ ≤ u, we define

Iu′,u = I(ωu′,u),(53)

which we call the random interlacement set between levels u′ and u. In case u′ = 0,
we write Iu.

Finally, we can define the measure of the random walk described in Theo-
rem 2.3. Let Pu

0[·] = P[·|0 ∈ Iu]. For every Iu distributed according to Pu
0 , let

Pu
0 be the law of a SRW on Iu starting from 0.
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APPENDIX D: INDEX OF SYMBOLS BY ORDER OF APPEARANCE

Symbol Page Definition

T (N,d) 1593 d-dimensional torus.
�N 1593 For x ∈ Zd , ON(x) = (x1 modN, . . . , xd modN).
R(t) 1593 The range of SRW on the torus.
∂ 1594 Outer vertex boundary.
∂ in 1594 Inner vertex boundary.
B(x, n) 1594 {y ∈ Zd :∀i,1 ≤ i ≤ d,−n/2 ≤ x(i) − y(i) < n/2}.
sp{B(x, n)} 1595 {B(x + ∑

i eikin, n) : (k1, . . . , kd) ∈ Zd}.
� 1595 The isomorphism, �: sp{B} → Zd .
Bα 1595 For a box B = B(x,n), Bα = B(x,αn).
s(n) 1595 logn�4.
s(i)(n) 1595 s(·) iterated i times.
σ(B(x, n)) 1595 sp{b(x, s(n))} ∩ {b(y, s(n)) : y ∈ B(x,5n + 3logn�6)}.
P(n) 1595 Percolation configurations.
Gρ

k (n) 1596 k-good configurations.
φ̂(r) 1601 inf{�S :N1/3 < π(S) ≤ r ∧ (1 − 1/4d)|ω0|}.
�S 1602 Q(S,Sc)

π(S)
.

�(u) 1602 inf{�S : 0 < π(S) ≤ u ∧ 1
2}.

Top, Bot 1607 Top and bottom projections of B3 on B7.
B-traversal 1607 An ordered pair η = (a, z), a ∈ Top, z ∈ Bot.
B-itinerary 1607 An ordered sequence of B-traversals.
τρ(b) 1607 τρ(b) = γ +

ρnd−2�.

Dρ
�ρ 1610,

1617
Each b ∈ σ(B) is traversed top to bottom at least
�ρ‖b‖d−2 times.

FT
N(b, k, ρ) 1615 The event {b ∩O−1

N ◦RN(t) ∈ Gρ
k (n) :∀t ≥ T }.

Acknowledgements. Thanks goes to Itai Benjamini for suggesting this prob-
lem and for fruitful discussions, and also to Gady Kozma who suggested the renor-
malization method and provided examples and counterexamples whenever they
were needed.

REFERENCES

[1] ANTAL, P. and PISZTORA, A. (1996). On the chemical distance for supercritical Bernoulli
percolation. Ann. Probab. 24 1036–1048. MR1404543

[2] BENJAMINI, I. and MOSSEL, E. (2003). On the mixing time of a simple random walk on the su-
per critical percolation cluster. Probab. Theory Related Fields 125 408–420. MR1967022

[3] BENJAMINI, I. and SZNITMAN, A.-S. (2008). Giant component and vacant set for random
walk on a discrete torus. J. Eur. Math. Soc. (JEMS) 10 133–172. MR2349899

http://www.ams.org/mathscinet-getitem?mr=1404543
http://www.ams.org/mathscinet-getitem?mr=1967022
http://www.ams.org/mathscinet-getitem?mr=2349899


1634 E. B PROCACCIA AND E. SHELLEF

[4] BRAMSON, M. and LEBOWITZ, J. L. (1991). Asymptotic behavior of densities for two-particle
annihilating random walks. J. Stat. Phys. 62 297–372. MR1105266
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