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CONVERGENCE IN DISTRIBUTION FOR SUBCRITICAL 2D
ORIENTED PERCOLATION SEEN FROM ITS RIGHTMOST POINT

BY E. D. ANDJEL1

Université d’Aix-Marseille

We study subcritical two-dimensional oriented percolation seen from its
rightmost point on the set of infinite configurations which are bounded above.
This a Feller process whose state space is not compact and has no invari-
ant measures. We prove that it converges in distribution to a measure which
charges only finite configurations.

1. Introduction and main results.

1.1. Background. Two-dimensional oriented percolation and its continuous
time analog the one-dimensional contact process, seen from their rightmost point,
have been studied in several papers. Durrett [3] proved that in the critical and su-
percritical phase there exists an invariant measure. Then, Schonmann proved that
there are no such measures in the subcritical phase [7]. These two papers consider
only the discrete time model, but their results hold also for some continuous time
one-dimensional process which include the contact process (see [1]). Galves and
Presutti [5] proved that the one-dimensional contact process seen from the right-
most point converges in the supercritical phase to a unique invariant measure. This
last result was then extended by Cox, Durrett and Schinazi [2] to the critical phase.
There are no difficulties in adapting these convergence results to the discrete time
setting. Finally, we mention [5] and [6] where the position of the rightmost point
is shown to satisfy a central limit theorem. In this paper, we prove that conver-
gence of the discrete time process seen from the rightmost point also occurs in the
subcritical phase although there are no invariant measures.

1.2. Definitions. Let

� = {
(x, y) :x, y ∈ Z, y ≥ 0, x + y ∈ 2Z

}
.(1.1)

Draw oriented bonds from each point (m,n) in � to (m + 1, n + 1) and to
(m − 1, n + 1). In this paper, we suppose that bonds are open independently of
each other and that each bond is open with probability p ∈ (0,1). To formalise this,
let B be the set of all bonds with both endpoints in � and assume that {Zb :b ∈ B}
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is a collection of i.i.d. random variables whose distribution is a Bernoulli with
parameter p. A bond b will be considered open (closed) if Zb = 1 (Zb = 0). The
event consisting on the existence of an open path from A to B , where A and B are
subsets of �, will be denoted by {A → B} and its complement by {A� B}. When
either A or B or both are singletons, say {x} and {y}, respectively, we will write
{x → y}, {x → B}, etc.

Given a subset A of 2Z we let

ξA
n = {

y : (y, n) ∈ � and (x,0) → (y, n) for some x ∈ A
}
,

(1.2)
n = 0,1, . . . .

Then, (ξA
n , n ≥ 0) is a Markov chain taking values in the subsets of 2Z at even

times and of 2Z+ 1 at odd times.
Let A be an infinite subset of 2Z such that supA < ∞. Then, for all n > 0, the

supremum of ξA
n is finite and a simple Borel–Cantelli argument shows that ξA

n is
a.s. infinite. For such initial conditions, we let

r
(
ξA
n

) = sup ξA
n and ζA

n = {
x − r

(
ξA
n

)
:x ∈ ξA

n

}
.

Then (ζA
n , n ≥ 0) is a Markov chain on infinite subsets of 2Z− =: {0,−2,−4, . . .}

containing 0. For finite subsets A we may also define the Markov chain (ζA
n , n ≥

0) by simply adopting the convention: ζA
n = ∅ if ξA

n = ∅. Obviously, ∅ is an
absorbing state for both (ξA

n , n ≥ 0) and (ζA
n , n ≥ 0).

In the sequel,

S = {infinite subsets of 2Z− containing 0},(1.3)

S0 = {finite subsets of 2Z− containing 0}(1.4)

and

S̄ = {subsets of 2Z−}.(1.5)

We will consider S and S0 as subsets of S̄ which we identify with {0,1}2Z−

by means of the bijection: F(A) = 1A. Then, S̄ inherits the product topology of
{0,1}2Z− and becomes a compact space. The subsets S and S0 of S̄ are now en-
dowed with the induced topology. Probability measures on either S or S0 will be
seen as measures on S̄ and the space of all probability measures on S̄ will be en-
dowed with the topology of weak convergence.

Standard coupling arguments show that P(ξ0
n �= ∅ for all n) increases with p

and we can define the critical value pc of the parameter p as the supremum of
its values for which the above probability is 0. It is well known (see [3]) that
0 < pc < 1. Throughout this paper, we assume that p ∈ (0,pc).
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1.3. Theorems. Before stating our results, we recall that a quasi-stationary dis-
tribution of a Markov chain (Xn;n ≥ 0) on S0 ∪ {∅} with absorbing state ∅ is a
probability measure ν on S0 such that Pν(Xn = x|T > n) = ν(x) for all n ∈ N and
x ∈ S0, where T = inf{k :Xk = ∅}. We refer the reader to [4] for more informa-
tion concerning quasi-stationary distributions. Our first theorem is not new, it is
immediately obtained from Theorem 1 of [4].

THEOREM 1.1. Suppose 0 < p < pc and let T = inf{n : ζ 0
n = ∅}. Then the

conditional distribution of ζ 0
n given {T > n} converges as n goes to infinity to a

probability measure ν on S0. Moreover, ν is the minimal quasi-stationary distribu-
tion of the ζn process on S0 ∪ {∅}.

We now state our main result which was conjectured by Galves, Keane and
Meilijson. As expected by the authors of [4] (see Remark 7 in page 606 of that
reference), Theorem 1.1 is the key ingredient to prove it.

THEOREM 1.2. Suppose 0 < p < pc. Then, for any A ∈ S the distribution of
ζA
n converges as n goes to infinity to ν, where ν is as in Theorem 1.1.

The paper is organised as follows: Section 2 starts explaining the strategy we
will follow, continues stating two lemmas and then deduces Theorem 1.2 from
these lemmas. Then, in Section 3 we prove those two lemmas.

2. Proof of Theorem 1.2. We start this section introducing some more nota-
tion: Let f be real-valued function defined on S ∪ S0. We say that f is a cylinder
function depending only on coordinates −2r, . . . ,−2 if there exists a function g

defined on subsets of {−2r, . . . ,−2} such that f (A) = g(A ∩ {−2r, . . . ,−2}) for
all A ∈ S ∪ S0. For such functions, ‖‖ will denote the supremum norm

‖f ‖ = sup
A∈S∪S0

∣∣f (A)
∣∣.

For (x,m) ∈ � let

Cx,m = {
(y, k) ∈ � :k ≥ m, |y − x| ≤ k − m

}
and call this set the cone emerging from (x,m). For r ∈ N, call level r the set

Lr = {
(x, n) ∈ � :n = r

}
.

We will say that level n is higher than level m if n ≥ m. In the sequel, νr will be
the distribution of ζ 0

r given {T > r} where T = inf{k : ζ 0
k = ∅} and A will be fixed

but arbitrary element in S.
We now sketch the proof of Theorem 1.2: We first find the rightmost point x0

of A satisfying ξ
x0
n �= ∅. We would like to apply Theorem 1.1 but cannot do it

immediately because we are conditioning not only on {ξx0
n �=∅} but also on {ξy

n =
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∅} for all y ∈ A∩{z : z > x0}. However since p < pc, there is a positive probability
that no point of Cx0,0 can be attained from {(y,0) :y > x,y ∈ A} following open
paths. If this occurs, then the distribution of ζ

x0
n is νn. If this fails to happen we look

at the highest level in Cx0,0 attained from {(y,0) :y > x0, y ∈ A} and repeat the
argument from that level. We keep doing so until the corresponding emerging cone
is not attained. Once this happens, we will derive from p < pc that the elements
of ξA

n \ ξ
x0
n are far to the left of ξ

x0
n for large n. In carrying out this approach, the

main difficulty comes from keeping track of several conditionings. To make this
argument rigorous, we begin defining two sequences of r.v.’s Yi and Xi as follows:
Let

Y0 = 0(2.1)

and

X0 = sup
{
x ∈ A : (x,0) → Ln

}
.(2.2)

Then, given Y0, Y1, . . . , Yi and X0, . . . ,Xi , we let

Yi+1 = sup
{
k :∃u, v : (u,Yi) → (v, k)

(2.3)
with u > Xi,u ∈ ξA

Yi
and (v, k) ∈ CXi,Yi

} ∨ Yi

and

Xi+1 = sup
{
x :x ∈ ξA

Yi+1
and (x,Yi+1) → Ln

}
.(2.4)

Note that Yi ≤ Yi+1 and that as soon as Yi = Yi−1 both sequences become constant.
The reader may find helpful to have now a first look at Figure 1 in the next section.

We now state two lemmas which will be proved in the next section. In the second
of these lemmas, we use the fact that on the event {0 → Ln} the process (ζ 0

k , k =
0, . . . , n) takes values on S0.

LEMMA 2.1. Let I = inf{i :Yi = Yi+1}. Then, there exists β > 0 such that for
all m:

(a) P(I ≥ m) ≤ exp(−βm),
(b) P(YI ≥ m2) ≤ (m + 1) exp(−βm) and
(c) P(I ≤ m,YI ≤ m2) ≥ 1 − (m + 2) exp(−βm).

LEMMA 2.2. Let A be an element of S, let f be a cylinder function on S ∪ S0
depending only on the coordinates −2r, . . . ,−2 and let β be as in Lemma 2.1.
Then, for all i, j ≤ n,∣∣E(

f
(
ζA
n

)|I = i, Yi = j
) − E

(
f

(
ζ 0
n

)|0 → Ln

)∣∣ ≤ 2‖f ‖(n + r) exp
(−β(n − j)

)
.
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We now proceed to prove our main result.

PROOF OF THEOREM 1.2. Let f be a cylinder function on S ∪ S0 depending
only on the coordinates −2r, . . . ,−2 and let m = 
n1/3� where 
·� denotes the
integer part. By part (c) of Lemma 2.1, we have∣∣∣∣∣E(

f
(
ζA
n

)) −
m∑

i=0

m2∑
j=0

E
(
f

(
ζA
n

)|I = i, Yi = j
)
P(I = i, Yi = j)

∣∣∣∣∣
≤ ‖f ‖(m + 2) exp(−βm).

Therefore,∣∣Ef
(
ζA
n

) − E
(
f

(
ζ 0
n

)|0 → Ln

)∣∣
≤

m∑
i=0

m2∑
j=0

(∣∣E(
f

(
ζA
n

)|I = i, Yi = j
) − E

(
f

(
ζ 0
n

)|0 → Ln

)∣∣)P(I = i, Yi = j)

+ 2‖f ‖(
1 − P

(
I ≤ m,YI ≤ m2))

≤
m∑

i=0

m2∑
j=0

(
2‖f ‖(n + r) exp

(−β(n − j)
)
P(I = i, Yi = j)

)

+ 2‖f ‖(
1 − P

(
I ≤ m,YI ≤ m2))

≤ 2‖f ‖(n + r) exp
(−β

(
n − m2)) + 2‖f ‖(

1 − P
(
I ≤ m,YI ≤ m2))

,

where the second inequality follows from Lemma 2.2. Since m = 
n1/3� this and
part (c) of Lemma 2.1, imply that

lim
n

∣∣Ef
(
ζA
n

) − E
(
f

(
ζ 0
n

)|0 → Ln

)∣∣ = 0,

and the result follows from Theorem 1.1. �

3. Proofs of Lemmas 2.1 and 2.2. In this section, for r ∈ N and x ∈ 2Z−,
Gr

x will denote the σ -algebra generated by the random variables which determine

the state of the bonds with both vertices in (
⋃−x/2

i=0 Cx+2i,0) ∩ (
⋃r

j=0 Lj), Gr will
denote the σ -algebra generated by the random variables which determine the state
of the bonds with both vertices in

⋃r
i=0 Li and G′r will denote the σ -algebra gen-

erated by the random variables which determine the state of the bonds with both
vertices in

⋃∞
i=r Li . Besides this, an event belonging to a σ -algebra generated by

random variables determining the state of a finite number of bonds will be called
an elementary cylinder of that σ -algebra if it is nonempty and does not contain
any nonempty proper subset of that σ -algebra. The first lemma of this section is
an immediate consequence of the exponential decay of P(ξx

n �= ∅) (see Section 7
of [3]) and we omit its proof.
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LEMMA 3.1. There exists a constant β > 0 such that for all x ∈ 2Z and all
m ∈ N we have

P

(
(y,0) → Cx,0 ∩

( ∞⋃
j=m

Lj

)
for some y > x

)
≤ exp(−βm).

In our next lemma, for notational convenience we let r0 = 0 and recalling (2.1)–
(2.4), consider events of the form

G(x0) = {X0 = x0} and for i ≥ 1

G(r1, . . . , ri;x0, . . . , xi) = {Y1 = r1, . . . , Yi = ri,X0 = x0, . . . ,Xi = xi},
where 0 ≤ r1 ≤ · · · ≤ ri are integers and (x0,0), (x1, r1), . . . , (xi, ri) ∈ �.

LEMMA 3.2. Let i be a nonnegative integer and let F be an elementary cylin-
der in Gri

x0 having a nonempty intersection with G(r1, . . . , ri;x0, . . . , xi). Then, Lri

contains i + 2 finite subsets Ai,1, . . . ,Ai,i ,Bi,Di determined by F,n, x0, . . . , xi ,
r1, . . . , ri only and such that

F ∩ G(r1, . . . , ri;x0, . . . , xi)

= F ∩ {
(xi, ri) → Ln

} ∩ {u �Ln ∀u ∈ Di}(3.1)

∩ {u �Lri+1 ∀u ∈ Bi} ∩
(

i⋂
j=1

{u �Ln,u� Cxj−1,rj−1 ∀u ∈ Ai,j }
)
.

Moreover,

ξA
ri

(xi) = 1,
{
z : z > xi, ξ

A
ri

(z) = 1
} = Di ∪ Bi ∪

(
i⋃

j=1

Ai,j

)
(3.2)

and

xi < di < bi < ai,i < ai,i−1 < · · · < ai,1
(3.3)

∀di ∈ Di, bi ∈ Bi, ai,j ∈ Ai,j , j = 1, . . . , i.

REMARK. If F is disjoint of G(r1, . . . , ri;x0, . . . , xi), we may extend the
definition of the sets Ai,1, . . . ,Ai,i ,Bi,Di by letting them be the empty set. In
this way, they become random Gri

x0 -measurable sets, hence independent of the σ -
algebra G′ri .

PROOF OF LEMMA 3.2. To follow this proof, we recommend the reader to
look at Figure 1. This may help visualizing the different sets involved in it. We
proceed by induction on i. If i = 0, then Gri

x0 = G0
x0

is the trivial σ -algebra.
Hence, F must be the whole probability space and the statement holds with
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FIG. 1. Here I = 2, (X0, Y0) = (x0,0), (X1, Y1) = (x1, r1), (X2, Y2) = (x2, r2), the doted lines
are the emerging cones from these three points and the full lines are the open paths starting from A.

D0 = {(z,0) : z > x0, z ∈ A} and B0 = ∅. Assume the statement holds for some
given i, and let F ′ be an elementary cylinder of Gri+1

x0 . Call F the unique elemen-
tary cylinder of Gri

x0 which contains F ′. Then, by the inductive hypothesis there
are i + 2 subsets Ai,1, . . . ,Ai,i,Bi,Di for which (3.1), (3.2) and (3.3) hold. Now,
define the following subsets of Lri+1 :

Ai+1,j = {
(x, ri+1) :Ai,j → (x, ri+1)

}
(i ≥ 1, j = 1, . . . , i),

Ai+1,i+1 = {
(x, ri+1) /∈ Cxi,ri :Di → (x, ri+1)

}
(i ≥ 0),

Bi+1 = {
(x, ri+1) ∈ Cxi,ri :Di → (x, ri+1)

}
and

Di+1 = {
(x, ri+1) ∈ Cxi,ri :x > xi+1, (xi, ri) → (x, ri+1)

} \ Bi+1.

It is now tedious but straightforward to verify that these sets satisfy (3.1), (3.2)
and (3.3) with F ′ and i + 1 replacing F and i, respectively. �

PROPOSITION 3.1. Let β be as in Lemma 3.1. Then, for all m, i and all
x0, . . . , xi, r1, . . . , ri we have:

P
(
Yi+1 − Yi ≥ m|G(r1, . . . , ri, x0, . . . , xi)

) ≤ exp(−βm).(3.4)

PROOF. Call ϒ the set of all paths from (xi, ri) to Ln. Given a path γ ∈ ϒ , call
Aγ,r the oriented graph composed by the bonds having both vertices in

⋃n
j=ri

Lj
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and at least one vertex strictly to the right of γ , and by the vertices of such bonds.
Let 
r be the rightmost open path starting from (xi, ri) and attaining Ln. Let γ be
a possible value of 
r . Note that the event {
r = γ } is constituted by the configu-
rations for which γ is open but there is no open path from a vertex of γ contained
in Aγ,r and reaching either Ln or another point in γ . Hence, the event {
r = γ }
is the intersection of the event {γ is open} and a decreasing event D(γ ) on the
graph Aγ,r .

Let F be an elementary cylinder in Gri
x0 having a nonempty intersection with

G(r1, . . . , ri;x0, . . . , xi). To prove the proposition it suffices to show that for some
β > 0 which depends only on p, we have

P
(
Yi+1 − Yi ≥ m|F ∩ G(x0, . . . , xi, r1, . . . , ri)

) ≤ exp(−βm).(3.5)

By Lemma 3.2 on the event F ∩ G(x0, . . . , xi, r1, . . . , ri) ∩ {Yi+1 − Yi ≥ m}, there
is a point in u ∈ Di such that u → (

⋃n
j=ri+m Lj) ∩ Cxi,ri . Hence, (3.5) will follow

if we prove

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Di

∣∣∣
(3.6)

F ∩ G(x0, . . . , xi, r1, . . . , ri)

)
≤ exp(−βm).

By Lemma 3.2 this can be written as

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Di

∣∣∣
F ∩ {

(xi, ri) → Ln

} ∩ {u� Ln ∀u ∈ Di} ∩ {u �Lri+1 ∀u ∈ Bi}

∩
(

i⋂
j=1

{u �Ln,u�Cxj−1,rj−1 ∀u ∈ Ai,j }
))

≤ exp(−βm).

Since the state of the bonds above Lri is independent of F this is equivalent to

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Di

∣∣∣
{
(xi, ri) → Ln

} ∩ {u � Ln ∀u ∈ Di} ∩ {u � Lri+1 ∀u ∈ Bi}

∩
(

i⋂
j=1

{u� Ln,u�Cxj−1,rj−1 ∀u ∈ Ai,j }
))

≤ exp(−βm).
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Since {(xi, ri) → Ln} is a disjoint union of the events {
r = γ } where γ ranges
over ϒ , it suffices to show that for any γ ∈ ϒ we have

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Di

∣∣∣
{
r = γ } ∩ {u � Ln ∀u ∈ Di} ∩ {u � Lri+1,∀u ∈ Bi}

(3.7)

∩
(

i⋂
j=1

{u � Ln,u� Cxj−1,rj−1 ∀u ∈ Ai,j }
))

≤ exp(−βm).

But, as explained at the beginning of this proof, the left-hand side above can be
written as

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Di

∣∣∣
{γ is open} ∩ D(γ ) ∩ {u �Ln ∀u ∈ Di} ∩ {u � Lri+1 ∀u ∈ Bi}(3.8)

∩
(

i⋂
j=1

{u � Ln,u� Cxj−1,rj−1 ∀u ∈ Ai,j }
))

.

Now, let V (γ ) be the set of vertices of γ . Then, noting that{
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Di

}

∩ {u �Ln ∀u ∈ Di} ∩ {γ is open}
(3.9)

=
{
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
within Aγ,r for some u ∈ Di

}

∩ {u� Ln ∀u ∈ Di} ∩ {γ is open},
and that

{u� Ln ∀u ∈ Di} ∩ {γ is open}
(3.10)

= {
u� Ln ∪ V (γ ) ∀u ∈ Di

} ∩ {γ is open},
(3.8) can be written as

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
within Aγ,r for some u ∈ Di

∣∣∣
{γ is open} ∩ D(γ ) ∩ {

u �Ln ∪ V (γ ) ∀u ∈ Di

}
(3.11)
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∩ {u� Lri+1 ∀u ∈ Bi}

∩
(

i⋂
j=1

{u � Ln,u� Cxj−1,rj−1 ∀u ∈ Ai,j }
))

.

Since {γ is open} is independent of all the other events involved in the above ex-
pression, (3.11) is equal to

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
within Aγ,r for some u ∈ Di

∣∣∣
D(γ ) ∩ {

u �Ln ∪ V (γ ) ∀u ∈ Di

} ∩ {u �Lri+1 ∀u ∈ Bi}(3.12)

∩
(

i⋂
j=1

{u� Ln,u�Cxj−1,rj−1 ∀u ∈ Ai,j }
))

.

Since {u → Cxi,ri ∩ (
⋃n

j=ri+m Lj ) within Aγ,r for some u ∈ Di} is an increas-
ing event while D(γ ) ∩ {u � Ln ∪ V (γ ) ∀u ∈ Di} ∩ {u � Lri+1 ∀u ∈ Bi} ∩
(
⋂i

j=1{u � Ln,u � Cxj−1,rj−1 ∀u ∈ Ai}) is decreasing, (3.12) is bounded above
by

P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
within Aγ,r for some u ∈ Di

)

≤ P

(
u → Cxi,ri ∩

(
n⋃

j=ri+m

Lj

)
for some u ∈ Lri(3.13)

to the right of (xi, ri)

)
.

The proposition now follows from Lemma 3.1. �

PROOF OF LEMMA 2.1. If I ≥ m then the sequence Y0, . . . , Ym is strictly
increasing. But it follows from Proposition 3.1 that P(Yi+1 > Yi |Y1, . . . , Yi) ≤
exp(−β) a.s. Hence (a) follows by induction in i. To prove (b) write

P
(
YI ≥ m2) ≤ P(I > m) + P

(
Ym ≥ m2)

≤ exp(−βm) +
m−1∑
j=0

P(Yj+1 − Yj ≥ m)

≤ exp(−βm) + m exp(−βm),

where the second inequality follows from part (a) and the last one from Proposi-
tion 3.1. Part (c) follows easily from parts (a) and (b). �
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LEMMA 3.3. Let A′ ∈ S ∪ S0 and let f be a cylinder function on S ∪ S0
depending only on the coordinates −2r, . . . ,−2. Then, |E(f (ζA′

n )|{0 → Ln}) −
E(f (ζ 0

n )|{0 → Ln})| ≤ 2(n + r)‖f ‖ exp(−βn) ∀n ∈ N.

PROOF. Let � be the (random) set of points in levels 1,2, . . . , n which can be
reached from (0,0) following an open path. The event {0 → Ln} is a disjoint union
of events of the form {� = κ} where κ ranges over all values of � containing at
least one point in Ln. Then write∣∣E(

f
(
ζA′
n

)|� = κ
) − E

(
f

(
ζ 0
n

)|� = κ
)∣∣

≤ 2‖f ‖
n+r∑
i=1

P(−2i → Ln off κ)

≤ 2(n + r)‖f ‖ exp(−βn)

and the lemma follows. �

Before starting the proof of Lemma 2.2, we need to introduce some further no-
tation: T will the map sending subsets of 2Z+ k into subests of 2Z+ k + 1 given
by T (A) = {x − 1;x ∈ A} and for (x, n) ∈ � let G+

x,n be the σ -algebra gener-
ated by the random variables determining the state of the bonds whose vertices
are in

⋃n
i=0 Li and by the bonds having at least one vertex strictly to the right

of {(x + i, n + i); i = 0,1, . . .} and let G−
x,n be the σ -algebra generated by the

random variables determining the state of all the other bonds. If B is an infinite
subset of 2Z+ k which is bounded above, we define for n ≥ k: ξB

k,n = {z : (x, k) →
(z, n) for some x ∈ B}, r(ξB

k,n) = sup(ξB
k,n) and ζB

k,n = {x − r(ξB
k,n) :x ∈ ξB

k,n}. As
before (ζB

k,n, n ≥ k) is a Markov chain on infinite subsets of 2Z− containing 0.

PROOF OF LEMMA 2.2. Since E(f (ζA
n )|I = i, Yi = j) is a convex combi-

nation of E(f (ζA
n )|I = i, Yi = j,Xi = xi) where xi runs over all possible values

of Xi , it suffices to show that for all xi∣∣E(
f

(
ζA
n

)|I = i, Yi = j,Xi = xi

) − E
(
f

(
ζ 0
n

)|0 → Ln

)∣∣
(3.14)

≤ 2‖f ‖(n + r) exp
(−β(n − j)

)
.

But on the event {I = i, Yi = j,Xi = xi} it happens that xi is the rightmost point
of ξA

j from which there is an open path to Ln. Therefore, (3.14) will follow if we
show that for all infinite subset A′ of Lj such that supA′ = xi we have

∣∣E(
f

(
ζA′
j,n

)|I = i, Yi = j,Xi = xi

) − E
(
f

(
ζ 0
n

)|0 → Ln

)∣∣
(3.15)

≤ 2‖f ‖(n + r) exp
(−β(n − j)

)
.



1296 E. D. ANDJEL

Since {I = i, Yi = j,Xi = xi} = {(xi, j) → Ln} ∩ H where H ∈ G+
xi ,j

and the

evolution of ζA′
j,k as k increases from j to n is G−

xi ,j
-measurable we have

E
(
f

(
ζA′
j,n

)|I = i, Yi = j,Xi = xi

) = E
(
f

(
ζA′
j,n

)|(xi, j) → Ln

)
.(3.16)

Hence, (3.15) follows from Lemma 3.3 and translation invariance. �
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