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DISTANCES IN THE HIGHLY SUPERCRITICAL PERCOLATION
CLUSTER

BY ANNE-LAURE BASDEVANT, NATHANAËL ENRIQUEZ AND LUCAS GERIN

Université Paris-Ouest

On the supercritical percolation cluster with parameter p, the distances
between two distant points of the axis are asymptotically increased by a factor
1 + 1−p

2 + o(1 − p) with respect to the usual distance. The proof is based
on an apparently new connection with the TASEP (totally asymmetric simple
exclusion process).

1. Introduction. First passage percolation is a model introduced in the 1960s
by Hammersley and Welsh [6] which asks the question of the minimal distance
D(x) between the origin 0 and a distant point x of Z

2, when edges have i.i.d.
positive finite lengths. One can prove by subadditivity arguments that in every
direction such distances grow linearly: for each y ∈ Z

2 \ {0}, D(ny)/n converges
almost surely to a constant μ(y). The particular value of μ((1,0)) =: μ is called
the time constant. It is unknown except in the trivial case of deterministic edge
lengths. We refer the reader to [7] for an introduction on first passage percolation.

In this article we study the extreme case where edges have lengths 1 with prob-
ability p ∈ (0,1), +∞ with probability 1 − p. Then, the distance D(x) coincides
with the distance between the origin and x in the graph induced by bond percola-
tion on Z

2: each edge of Z
2 is open with probability p and closed with probability

1 − p. When p > 1/2, it is known (see [5], Chapter 1, for an introduction to bond
percolation) that there exists almost surely a unique infinite connected component
of open edges. We write x ↔ y if x, y belong to the same connected component,
and x ↔ ∞ if x is in the infinite cluster.

Gärtner and Molchanov ([4], Lemma 2.8) were the first to rigorously prove
that if 0 and x belong to the infinite component, D(x) is of order x. Garet and
Marchand ([3], Theorem 3.2) improved this result and showed that, even if the
subadditivity argument fails, the limit still holds: for each y ∈ Z

2 \ {0}, there exists
a constant μ(y) such that, on the event {0 ↔ ∞}, we have a.s.

lim
n→∞

0↔(n,0)

D(ny)

n
= μ(y).

The aim of the present paper is to give an asymptotics of the time constant
when p is close to one. One clearly has D(n,0) ≥ n. On the other side, among
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the n edges of the segment joining 0 to (n,0), about n(1 − p) of them are closed,
but with high probability the two extremities of each such edge can be joined by a
path of length three. This naive approach suggests an upper bound of 1 + 2(1 −p)

for the time constant. To our knowledge, the best known upper bound comes from
Corollary 6.4 of [3] and is equal to 1 + (1 − p). We obtain in the present paper a
sharp asymptotics of the time constant when p goes to one.

THEOREM 1. On the event {0 ↔ ∞}, we have a.s.1

μp
def= lim

n→∞
0↔(n,0)

D(n,0)

n
= 1 + 1 − p

2
+ o(1 − p).

Our result says that the graph distance and the L1 distance asymptotically dif-
fer by a factor 1 + (1 − p)/2. Note that Garet and Marchand ([3], Corollary 6.4)
observed that these two distances coincide in all the directions inside a cone con-
taining the axis {y = x}. The angle of this cone is characterized by the asymptotic
speed of oriented percolation of parameter p, studied by Durrett [1].

The key ingredient of the proof relies on a correspondence between the syn-
chronous totally asymmetric simple exclusion process (TASEP) on an interval and
the graph distance on the percolation cluster inside an infinite strip.

2. First bounds on μp . We denote by Pp the product measure on the set
of edges of Z

2 of length 1 under which each edge is open independently with
probability p. Since p > 1/2, we have Pp{0 ↔ ∞} > 0, so we can also define P̄p

the probability Pp conditioned on the event {0 ↔ ∞},
P̄p{A} = Pp{A ∩ {0 ↔ ∞}}

Pp{0 ↔ ∞} .

When no confusion is possible, we will omit the subscript p.
The origin is in the infinite cluster, unless there is a path of closed edges in the

dual lattice surrounding 0. In the whole paper, we take p close enough to one so
that this occurs with high probability [to fix ideas, with probability greater than
1 − 2(1 − p)4].

Because of the conditioning, it is not possible to apply directly subadditive ar-
guments to the sequence D(n,0). To overcome this difficulty, we adapt the ideas
of [3] and consider the sequence of points of the axis which lie in the infinite
cluster. This enables us to derive bounds on μp .

For n ≥ 1, let (Tn(k),0) be the kth intersection of the infinite cluster and the set
{(in,0), i ∈ N}.

1We use notation introduced in [3]: the subscript 0 ↔ (n,0) means that we only take n’s for
which (n,0) is in the infinite component. More precisely, if (T1(n),0) stands for the nth point
of the half-line N × {0} belonging to the infinite component, then limn→∞,0↔(n,0)

D(n,0)
n :=

limn→∞ D(T1(n),0)
T1(n)

.
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PROPOSITION 1. We have for all n ≥ 1,

lim
k→∞ E

(
D(T1(k),0)

k
1{0↔∞}

)
= μp ≤ E

(
D(Tn(1),0)

n
1{0↔∞}

)
.

PROOF. This proposition is mainly a direct consequence of Lemma 3.1 of [3].
Indeed, this lemma states that, for all n ≥ 1, there exists a constant f such that

lim
k→∞

D(Tn(k),0)

nk
= f, P̄ a.s. and in L1(P̄).(1)

Moreover, by subadditivity, we have nf ≤ E(D(Tn(1),0)|0 ↔ ∞) and besides

μp = P{0 ↔ ∞}f.

Combining these two facts, we get the upper bound. For the left equality, we now
use the L1 convergence in (1) with n = 1. This gives

lim
k→∞ E

(
D(T1(k),0)

k

∣∣∣0 ↔ ∞
)

= f = μp

P{0 ↔ ∞} . �

For p close to 1, the upper bound can be simplified using the following propo-
sition.

PROPOSITION 2. For all δ > 1, there exists cδ > 0 such that for all n ≥ 10
and p ∈ (5/6,1), we have

E
(
D

(
Tn(1),0

)
1{0↔∞}

) ≤ E
(
D(n,0)1{0↔(n,0)↔∞}

) + cδ(1 − p)2nδ.

To prove this proposition, we first show two lemmas.

LEMMA 1. For all δ > 1, there exists a constant Cδ > 0 such that, for n ≥ 1
and for p ∈ (5/6,1), we have

E
(
D2(n,0)1{0↔(n,0)↔∞}

) ≤ (
Cδn

δ)2
.

PROOF. We have

E
(
D2(n,0)1{0↔(n,0)↔∞}

) ≤ n2δ +
∞∑

i=n2δ

P
{
D(n,0) ≥ √

i,0 ↔ (n,0) ↔ ∞}
.

Fix some q ∈ (0, 1
2δ

) such that q + 1
2δ

≤ 1
2 and for i ≥ n2δ , let �i be the box

[−i1/(2δ), n + i1/(2δ)] × [− iq

6 , iq

6 ]. A self avoiding path in �i has less than |�i | =
iq

3 (n + 2i1/(2δ)) ≤ √
i steps. Thus,

P
{
D(n,0) ≥ √

i,0 ↔ (n,0) ↔ ∞} ≤ P
{
0 � (n,0) in �i,0 ↔ (n,0) ↔ ∞}

.
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The event {0 � (n,0) in �i,0 ↔ (n,0) ↔ ∞} implies the existence in the dual of
a path of closed edges starting from the border of �i and having at least iq

3 steps
since it must disconnect 0 and (n,0). Using that |∂�i | ≤ 6i1/(2δ), we get

P
{
D(n,0) ≥ √

i,0 ↔ (n,0) ↔ ∞} ≤ 6i1/(2δ)(3(1 − p)
)iq/3

.

This yields, for p ∈ (5/6,1),

E
(
D2(n,0)1{0↔∞}

) ≤ n2δ + 6
∞∑

i=n2δ

i1/(2δ)

(
1

2

)iq/3

≤ (
Cδn

δ)2
.

�

LEMMA 2. Recall that Tn(1) denotes the first point among {n,2n,3n, . . .}
which is in the infinite component. There exists C > 0 such that for any p ∈
(5/6,1), any n ≥ 10 and j ≥ 2,

P
{
Tn(1) ≥ jn

} ≤ C(1 − p)4+√
j−2.(2)

PROOF. For j = 2, the left-hand side in (2) is simply P{(n,0) is disconnect-
ed} ≤ C(1 − p)4. For 3 ≤ j ≤ 10, the event {Tn(1) ≥ jn} is included in {(n,0) �

∞ and (2n,0) � ∞}. These two points are either disconnected by two different
paths or by the same path (which then has length ≥ 2n). The latter case has a much
smaller probability, and then P{Tn(1) ≥ jn} ≤ C′(1 − p)8 and (2) holds.

We now do the case j ≥ 10. For each integer i, let Ai be the event that (ni,0) is
disconnected, and let

Ai,r = {
(ni,0) is disconnected by a path included in [ni − r;ni + r] × [−r; r]}.

One plainly has that each Ai,r ⊂ Ai and that Ai,r ,Aj,r are independent as soon
as the corresponding boxes are disjoint, namely, if 2r ≤ n|j − i|. For j ≥ 2, set
J = �√j
, and we write

P
{
Tn(1) ≥ jn

} = P{A1,A2, . . . ,Aj−1} ≤ P{AJ ,A2J ,A(J−1)×J }

≤
J−1∏
�=1

P{A�J,nJ/2} + P{∃� ≤ J − 1;AJ \ A�J,nJ/2}

≤ (1 − p)4(J−1) + J
∑
i≥nJ

i
(
3(1 − p)

)i

≤ (1 − p)4(J−1) + 4nJ 2(
3(1 − p)

)nJ

≤ C(1 − p)4+√
j−2,

since a path disconnecting (n�J,0) which is not included in the box [n�J −
nJ
2 ;n�J + nJ

2 ] × [−nJ
2 ; nJ

2 ] has at least nJ edges. �

We are now able to prove Proposition 2.
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PROOF OF PROPOSITION 2. We write, using Lemmas 1 and 2,

E
(
D

(
Tn(1),0

)
1{0↔∞}

)
=

∞∑
j=1

E
(
D(jn,0)1{Tn(1)=jn}1{0↔∞}

)

≤ E
(
D(n,0)1{0↔(n,0)↔∞}

)
+

∞∑
j=2

E
(
D(jn,0)21{0↔(jn,0)↔∞}

)1/2P
{
Tn(1) = jn

}1/2

≤ E
(
D(n,0)1{0↔(n,0)↔∞}

) +
∞∑

j=2

Cδ(jn)δP
{
Tn(1) ≥ jn

}1/2

≤ E
(
D(n,0)1{0↔(n,0)↔∞}

) + C′
δn

δ(1 − p)2
∞∑

j=2

jδ

(
1

6

)(j−2)1/4

≤ E
(
D(n,0)1{0↔(n,0)↔∞}

) + cδ(1 − p)2nδ. �

3. Percolation on a strip and TASEP. As a first step toward our main result,
we shall study distances in percolation on an infinite strip. We will reduce this
problem to the analysis of a finite particle system; this allows explicit computations
from which will result the bounds in Theorem 1.

Here is the context we will deal with in the whole section. Fix an integer K and
ε ∈ (0,1). Let ZK be the infinite strip Z × [[−K,K]], with three kinds of edges:

• Vertical edges {(i, j) → (i, j + 1), i ∈ Z, j ∈ [[−K,K − 1]]};
• Horizontal edges {(i, j) → (i + 1, j), i ∈ Z, j ∈ [[−K,K]]};
• Diagonal edges {(i, j) → (i + 1, j + 1) and (i, j) → (i + 1, j − 1)}.

We now consider a random subgraph of ZK equipped with distances:

CROSS MODEL. (i) Vertical and horizontal edges have length 1, whereas di-
agonal edges have length 2.

(ii) Diagonal and vertical edges are open.
(iii) Each horizontal edge is open (resp., closed) independently with probability

1 − ε (resp., ε).

For i ≥ 0 and j ∈ [[−K,K]], let DK,d(i, j) be the distance between (0,0) and
(i, j) inside ZK in the Cross Model (see an example in Figure 1); the “d” stands for
the addition of diagonal edges. Sometimes we also need to consider the distance
between two vertices x, y of ZK , which will be denoted by DK,d(x → y).

Since vertical and diagonal edges are open, every point in ZK is connected
in the Cross Model to 0, hence, DK,d(i, j) is finite for every i, j . We also set
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FIG. 1. A configuration of percolation in ZK for K = 2 and the associated distances DK,d . Note
the importance of diagonal edges: DK,d(3,0) = 5 instead of 7 if there was none.

DK,d
i = {DK,d(i, j), j ∈ [[−K,K]]}. By construction, we have along each vertical

edge |DK,d(i, j) − DK,d(i, j + 1)| = 1.
The main goal of this section is to estimate DK,d(n,0), when K,n are large. To

do so, we introduce a particle system associated to the process (DK,d
i )i≥0. Let us

consider the state space {•,◦}2K (identified to {1,0}2K ), and denote its elements
in the form (

y−K+1, y−K+2, . . . , y0, y1, . . . , yK)
.

Let (Yi )i≥0 be the process with values in {•,◦}2K defined as follows:

∀j ∈ [[−K + 1,K]] Y
j
i =

{
• = 1, if DK,d(i, j) = DK,d(i, j − 1) − 1,

◦ = 0, if DK,d(i, j) = DK,d(i, j − 1) + 1.

Let’s say that the site j is occupied by a particle at time i if Y
j
i = • and empty

otherwise (see Figure 2).

DEFINITION 1. The synchronous Totally Asymmetric Simple Exclusion Pro-
cess (TASEP) on [[−K + 1,K]] with jump rate α, exit rate β and entry rate γ is

FIG. 2. The same configuration with particles.
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the Markov chain with state space {•,◦}2K defined as follows:

• at time t + 1, for each j , a particle at position j = −K + 1, . . . ,K − 1 moves
one step forward if the site j + 1 is empty at time t , with probability α and
independently from the other particles;

• at time t + 1, a particle enters the system at position −K + 1 if site −K + 1 is
empty at time t , with probability β;

• at time t + 1, if there were a particle at position K at time t , it exits the system
with probability γ .

PROPOSITION 3 (The particles follow a TASEP). The processes (DK,d
i )i≥0

and (Yi)i≥0 are Markov chains. Moreover, (Yi )i≥0 has the law of discrete time
synchronous TASEP on [[−K + 1,K]] with jump rate ε and exit and entry rate ε.

PROOF. Let us note that since all the vertical edges are open, the optimal path
from 0 to (i, j) ∈ ZK , i ≥ 0 never does a step from right to left. Moreover, the
vector DK,d

i+1 depends only on DK,d
i and on the edges {(i, j) → (i + 1, j), j ∈

[[−K,K]]}, hence, it is Markov.
Let us now prove that the displacement of particles follows the rules of TASEP.

We detail the case in which there is a particle on the edge (i, j − 1) → (i, j) but
no particle on the edge (i, j) → (i, j + 1), that is, at time i there is a particle in
position j and no particle in position j + 1.

This means that if DK,d(i, j) = �, then DK,d(i, j −1) = DK,d(i, j +1) = �+1.
Then, whether the horizontal edges (i, j − 1) → (i + 1, j − 1) and (i, j + 1) →
(i + 1, j + 1) are open or closed, we have DK,d(i + 1, j − 1) = DK,d(i + 1, j +
1) = � + 2 [this is because the two diagonal edges starting from (i, j) are open];
see the left part of the figure below:
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Now, DK,d(i + 1, j) depends only on the edge (i, j) → (i + 1, j): it is equal
to � + 1 if this edge is open and the particle lying at j stays put. If the edge
(i, j) → (i + 1, j) is closed, DK,d(i + 1, j) = � + 3, which corresponds for the
particle lying at j to a move to j + 1.

We leave the cases in which a particle is followed by another particle and in
which an empty edge is followed by an empty edge, which are similar, to the
reader.

We do the bottom boundary case (when a particle may enter the system; see
the figure below). Assume that there is no particle at time i in position −K + 1.
This means that if we set � = D(i,−K), then D(i,−K + 1) = � + 1. If the edge
(i,−K) → (i +1,−K) is open, then D(i +1,−K) = �+1 and there is no particle
at time i + 1 in position −K + 1. Otherwise D(i + 1,−K) = � + 3 and a particle
appears at time i + 1 in −K + 1.

The right-boundary case (when a particle exits) is similar. �

We have thus seen in the proof that the knowledge of (Yi)i≥0 fully determines
the metric DK,d using the following recursive identity:

DK,d(i + 1, j) = DK,d(i, j) + 1 + 2 · 1{Y j
i =•,Y j+1

i =◦,Y j
i+1=◦,Y j+1

i+1 =•}.

Let νK,ε be the stationary measure of the synchronous TASEP (Yi )i≥0. Let

νK,ε(•,◦) def= νK,ε

(
y0 = •, y1 = ◦)

.

PROPOSITION 4. We have the following asymptotics for the distances on ZK

in the Cross Model:

lim
n→∞

1

n
E

(
DK,d(n,0)

) = 1 + 2ενK,ε(•,◦).

PROOF. We have seen in the proof of Proposition 3 that

DK,d(i + 1,0) = DK,d(i,0) + 1,

unless a particle has moved at time i from position 0 to 1, in which case DK,d(i +
1,0) = DK,d(i,0) + 3. This shows that

E
(
DK,d(i + 1,0)

) = E
(
DK,d(i,0)

) + 1

+ 2P
{
Y 0

i = •, Y 1
i = ◦, {

(i,0) → (i + 1,0) is closed
}}

,
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thus,

E
(
DK,d(n,0)

) = n + 2ε

n−1∑
j=0

P
{
Y 0

j = •, Y 1
j = ◦}

,

which gives, by the Markov chain ergodic theorem, the proof of the proposition.
�

We thus need an estimate of νK,ε(•,◦). It turns out that the stationnary measure
of the synchronous TASEP was studied in detail by Evans, Rajewsky and Speer [2]
using a matrix ansatz.

PROPOSITION 5. The following identities relative to νK,ε(•,◦) hold:

(i) For all K,ε,

νK,ε(•,◦) = Aε(K)

εAε(K) + Aε(K + 1)
,

with Aε(K) = 1
K

∑K
k=1

(K
k

)( K
k+1

)
(1 − ε)k .

(ii)

lim
K→∞νK,ε(•,◦) = 1 − √

1 − ε

2ε
.

(iii) For all α > 0,

lim
ε→0

νε−α,ε(•,◦) = 1

4
.

PROOF. The first two assertions are consequences of (4.24), (8.21) and (10.13)
of [2]. For (iii), we are led to prove that limε→0

Aε(ε
−α+1)

Aε(ε−α)
= 4.

Denote

a(K, k)
def=

(
K

k

)(
K

k + 1

)
(1 − ε)k.

The ratio

a(K, k + 1)

a(K, k)
= (1 − ε)

(K − k)(K − k − 1)

(k + 1)(k + 2)
(3)

is asymptotically equal to (1 − ε)(K−k
k

)2 for large values of k and K − k. There-
fore, the sequence (a(K, k))1≤k≤K increases from 1 to some kmax(K) and de-
creases after. Moreover, kmax(K) ∼ K(1

2 − ε
8).
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For K > 0 and β ∈ (0,1), let us decompose the sum KAε(K) into

K(1/2−εβ)−1∑
k=1

a(K, k) +
K/2∑

k=K(1/2−εβ)

a(K, k) +
K(1/2+εβ)∑
k=K/2+1

a(K, k)

+
K∑

k=K(1/2+εβ)+1

a(K, k)

and denote by A−
β (K), B−

β (K), B+
β (K), A+

β (K), the four successive sums. Note

first, from the analysis of the ratio (3), that A−
β (K) and A+

β (K) are both subgeo-

metric sums with rate 1 − Cεβ . This implies

A+
β (K) ≤ Cε−βa

(
K,K

(1
2 + εβ))

,

A−
β (K) ≤ Cε−βa

(
K,K

(1
2 − εβ))

.

In the same time, from the variations of the sequence (a(K, k))1≤k≤K , we deduce

B+
β (K) ≥ Kεβa

(
K,K

(1
2 + εβ))

,

B−
β (K) ≥ Kεβa

(
K,K

(1
2 − εβ))

.

Therefore, as soon as the K � ε−2β , the ratio KAε(K)

B−
β (K)+B+

β (K)
goes to 1.

Now, for all k,

a(K + 1, k)

a(K, k)
= (K + 1)2

(K − k)(K − k + 1)
.

This ratio is between 4(1−cεβ) and 4(1+Cεβ) when k is between K(1
2 −εβ) and

K(1
2 + εβ). This implies that, for all β > 0, the ratio

B−
β (K+1)+B+

β (K+1)

B−
β (K)+B+

β (K)
converges

to 4 as ε goes to 0 and K goes to ∞. Consequently, the same occurs also for
(K+1)Aε(K+1)

KAε(K)
, as soon as K � ε−2β . We choose β = min{1, α

4 } to prove the result.
�

We will need further the following bounds on E(DK,d(n,0)).

PROPOSITION 6. For n ≥ 0, we have

n
(
1 + 2ενK,ε(•,◦)) ≤ E

(
DK,d(n,0)

) ≤ n
(
1 + 2ενK,ε(•,◦)) + 2K.

PROOF. By subadditivity of (E(DK,d(n,0)))n≥0, the sequence
E(DK,d(n,0))/n is decreasing. Together with Proposition 4, this proves the left
inequality.
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For the right inequality, the idea is to start the Markov chain (Yi)i≥0 from
its stationary distribution. Let Ỹ0 = (Ỹ

j
0 , j ∈ [[−K + 1,K]]) with law νK,ε . Take

D̃K,d(0,0) = 0 and define inductively D̃K,d(0, j) for each j such that

D̃K,d(0, j) =
{

D̃K,d(0, j − 1) − 1, if Ỹ
j
0 = •,

D̃K,d(0, j − 1) + 1, if Ỹ
j
0 = ◦.

If (D̃K,d
i ) is a realization of the chain starting from D̃

K,d
0 , then, by Proposition 3,

we have

E
(
D̃K,d(n,0)

) = n
(
1 + 2ενK,ε(•,◦)).

By construction of the chain, there is a (random) J such that

D̃K,d(n,0) = DK,d(
(0, J ) → (n,0)

) + D̃K,d(0, J ),

where DK,d is, as before, the true distance after percolation in ZK . Using the
triangular inequality, we get

DK,d(n,0) ≤ K + DK,d(
(0, J ) → (n,0)

)
≤ K + D̃K,d(n,0) − D̃K,d(0, J )

≤ 2K + D̃K,d(n,0).

Taking expectation gives the expected bound. �

If we gather the results obtained so far in this section, we roughly obtain that
for the Cross Model,

E
(
DK,d(n,0)

) ≈ n
(
1 + 2ενK,ε(•,◦)) ≈ n

(
1 + ε

2

)
.

In order to apply this result to usual percolation on strips (with horizontal and
vertical edges open with probability 1 − ε), we have to prove that distances in both
models differ very little. Fortunately, it happens that distances in both models are
quite similar as soon as there are no contiguous closed edges, which is the case
with high probability in any fixed rectangle, when ε is small.

We first choose in the Cross Model a particular path among all the minimal
paths:

LEMMA 3. For the Cross Model, for each K,n, there exists a path from (0,0)

to (n,0) of minimal length that only goes through horizontal and diagonal edges,
except possibly through the vertical edges of the first column {0} × [[−K,K]].

PROOF. Consider one of the minimal paths from (0,0) to (n,0); we will mod-
ify this path P to get one which satisfies the desired property. Among all the ver-
tical edges of P , let E = (i, j − 1) → (i, j) be the one for which
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(1) i is maximal,
(2) among them, j is minimal.

In this way, there are no vertical edges either to the right of E or below it. There
are three cases according to whether the other edge joining (i, j − 1) in P goes to
(i − 1, j − 1), to (i − 1, j) or to (i − 1, j − 2). In each of these three cases we can
do a substitution that removes the vertical edge or moves it to the left:

This substitution does not change the length of the path, it is thus still opti-
mal. After iterating the process, there may remain vertical edges only on the first
column. �

PROPOSITION 7. Consider a standard percolation on ZK where each hor-
izontal and vertical edge is open with probability 1 − ε. Denote DK the asso-
ciated distance. Let A = A(K,n, ε) be the event “in each square of area 1 of
[[0;n]]× [[−K;K]], that is, of vertices {(i, j), (i, j + 1), (i + 1, j + 1), (i, j + 1)},
at most one edge is closed”. Then, for each n,K ,

E
(
DK(n,0)|A) ≤ E

(
DK,d(n,0)

) + 3K.

PROOF. On the event A, adding diagonal edges with length 2 does not de-
crease the length of optimal paths since either the path (i, j) → (i, j + 1) →
(i +1, j +1) or (i, j) → (i +1, j) → (i +1, j +1) is open and, moreover, there is
at most a distance 3 between the two extremities of any edge of [[0;n]]×[[−K;K]].

Thanks to Lemma 3, there is always for the Cross Model a path of minimal
length using only horizontal and diagonal edges except maybe on the at most K

vertical steps along the first column {0} × [[−K,K]]. Thus, on the event A, we get

DK(n,0) ≤ DK,d(n,0) + 3K.

This yields

E
(
DK(n,0)|A) ≤ E

(
DK,d(n,0)|A) + 3K.

Let us note now that A is an increasing event and −DK,d(n,0) is an increasing
random variable. Thus, the FKG inequality (see [5]) yields

E
(−DK,d(n,0)1A

) ≥ E
(−DK,d(n,0)

)
P{A},

which can be rewritten

E
(
DK,d(n,0)|A) ≤ E

(
DK,d(n,0)

)
. �
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4. The lower bound. We now return to the original model and consider per-
colation on Z

2 where each edge is closed independently with probability ε = 1−p.
Recall that D(i, j) denotes the distance between the origin and (i, j) ∈ Z

2. Using
Proposition 1, in order to prove the lower bound in Theorem 1, we just need to
show that

lim
k→∞

1

k
E

(
D

(
T1(k),0

)
1{0↔∞}

) ≥ 1 + ε

2
+ o(ε).

Let Dd(x) be the distance between the origin and x in Z
2, with diagonal and

vertical edges all open. Adding edges decreases the distances: Dd(x) is always
smaller than D(x). Thus, we have

E
(
D

(
T1(k),0

)
1{0↔∞}

) ≥ E
(
Dd(

T1(k),0
)
1{0↔∞}

)
≥ E

(
Dd(k,0)1{0↔∞}

)
,

since T1(k) ≥ k and the sequence (Dd(n,0)) is increasing (thanks to vertical
edges).

Note that every minimal path from the origin to (k,0) (with diagonal and verti-
cal edges open) has a length less than 2k and lies in the strip Zk . Therefore,

E
(
Dd(k,0)1{0↔∞}

) = E
(
Dk,d(k,0)1{0↔∞}

)
.

Using Proposition 6, we have E(Dk,d(k,0)) ≥ k(1 + 2ενk,ε(•,◦)). Besides,

E
(
Dk,d(k,0)(1 − 1{0↔∞})

) ≤ 2kP{0 � ∞} ≤ 4kε4.

We get

E
(
D

(
T1(k),0

)
1{0↔∞}

) ≥ k
(
1 + 2ενk,ε(•,◦) − 4ε4)

.

Letting k tends to infinity, we obtain with Proposition 5 the desired lower bound.

5. The upper bound: A short path. As in the previous section, we consider
standard percolation on Z

2 where each edge is closed with probability ε = 1 − p.
Recall that Proposition 2 states that for any δ > 1 there exists a cδ > 0 such that,
for all ε small enough and n ≥ 10,

μp ≤ E(D(n,0)1{0↔(n,0)↔∞})
n

+ cδε
2nδ−1.(4)

So to prove Theorem 1, it is sufficient to find n = n(ε) ≥ 10 such that εnδ−1 = o(1)

and

E
(
D(n,0)1{0↔(n,0)↔∞}

) ≤ n

(
1 + ε

2
+ o(ε)

)
.

Fix � > 1 and K,n > 2� and define the boxes (Ci)i≥0 by

Ci = [�,n − �] × [
(2i − 1)K + 1, (2i + 1)K

]
.
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Let Ei denote the event “in each square of area 1 of Ci , that is, of vertices
{(i, j), (i, j + 1), (i + 1, j + 1), (i, j + 1)}, at most one edge is closed”. Let us
note that the events (Ei)i≥0 are independent and have the same probability. More-
over, we have

P
{
Ec

i

} ≤ |Ci |P{more than 2 edges are closed in a given square}
≤ 2Kn

(
6ε2 + 4ε3 + ε4) ≤ 22Knε2.

Hence, if I = inf{i ≥ 0,Ei}, I + 1 is geometrically distributed with parameter
P{E0}.

Let ci, c
′
i denote the vertical boundaries of Ci , that is, ci

def= {�} × [(2i − 1)K +
1, (2i + 1)K] and c′

i

def= {n − �} × [(2i − 1)K + 1, (2i + 1)K] and εi, ε
′
i the boxes

defined by

εi = [−�, �] × [−K, (2i + 1)K
]
,

ε′
i = [n − �,n + �] × [−K, (2i + 1)K

]
.

Let Bi be the event (see Figure 3)

Bi = {0 ↔ ci in εi} ∩ {
(n,0) ↔ c′

i in ε′
i

}
.

We have

E
(
D(n,0)1{0↔(n,0)↔∞}

) ≤
∞∑
i=0

E
(
1{I=i}∩Bi

D(n,0)
)

(5)

+
∞∑
i=0

E
(
D(n,0)1{I=i}∩Bc

i ∩{0↔(n,0)↔∞}
)
.

FIG. 3. The sketch of an almost optimal path, on the event Bi ∩ {I = i}.
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Let χ1(i) [resp., χ ′
1(i)] denote the distance between 0 and the segment ci inside

the box εi [resp., (n,0) and the segment c′
i inside the box ε′

i ]. Denote also χ2(i)

the distance between (�,2iK) and (n − �,2iK) inside the box Ci . We have

D(n,0) ≤ χ1(i) + χ ′
1(i) + χ2(i) + max

x∈ci

D
(
x → (�,2iK)

)
(6)

+ max
y∈c′

i

D
(
y → (n − �,2iK)

)
.

Moreover, on the event {I = i} ∩ Bi , the r.h.s. of this inequality is finite and we
have

χ1(i) ≤ |εi | = 4�(i + 1)K, χ ′
1(i) ≤ ∣∣ε′

i

∣∣ = 4�(i + 1)K,(7)

max
x∈ci

D
(
x → (�,2iK)

) ≤ 3K, max
y∈c′

i

D
(
y → (n − �,2iK)

) ≤ 3K.(8)

To bound χ2(i), let us note that χ2(i) only depends on the edges inside the box Ci .
Thus, we have

E
(
χ2(i)1{I=i}∩Bi

) ≤ E
(
χ2(i)1{I=i}

)
= E

(
χ2(i)|I = i

)
P{I = i}

= E
(
χ2(0)|I = 0

)
P{I = i}.

Moreover, the event {I = 0} coincides with the event A(K,n − 2�, ε) defined in
Proposition 7. This yields, using Propositions 6 and 7,

E
(
χ2(0)|I = 0

) ≤ E
(
DK,d(n − 2�,0)

) + 3K ≤ n
(
1 + 2ενK,ε(•,◦)) + 5K.(9)

Combining (6), (7), (8), (9), we get

∞∑
i=0

E
(
1{I=i}∩Bi

D(n,0)
) ≤ n

(
1 + 2ενK,ε(•,◦)) + 5K

(10)
+ K

(
8�E(I + 1) + 6

)
.

For the second term in the right-hand side of (5), using the Hölder inequality, we
get

E
(
D(n,0)1{I=i}∩Bc

i ∩{0↔(n,0)↔∞}
)

≤ P
{
Bc

i ∩ {I = i} ∩ {
0 ↔ (n,0) ↔ ∞}}1/2(11)

× E
(
D2(n,0)1{0↔(n,0)↔∞}

)1/2
.

Lemma 1 yields

E
(
D2(n,0)1{0↔(n,0)↔∞}

)1/2 ≤ Cδn
δ.
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Besides, we have

P
{
Bc

i ∩ {I = i} ∩ {
0 ↔ (n,0) ↔ ∞}} ≤ 2P

{{0 � ci in εi} ∩ {0 ↔ ∂εi} ∩ {I = i}}
= 2P

{{0 � ci in εi} ∩ {0 ↔ ∂εi}}P{I = i},
since the two first events only depend on the edges inside the box εi and the event
{I = i} only depends on the edges inside the box Ci . If 0 ↔ ∂εi but is not con-
nected to ci in the box εi , then there exists in the dual graph a path of closed edges
with at least 2� edges. Hence,

P
{{0 � ci in εi} ∩ {0 ↔ ∂εi}} ≤ 2K(i + 1)2�(3ε)2�.

Plugging this into (11) gives
∞∑
i=0

E
(
1{I=i}1Bc

i
D(n,0)1{0↔(n,0)↔∞}

)
(12)

≤ (8�K)1/2(3ε)�Cδn
δ

∞∑
i=0

P{I = i}1/2(i + 1)1/2.

Recall now that I + 1 is a geometric random variable with parameter P{E0} ≥
1 − 22Knε2. Thus, there exists C < ∞ such that, for any K,n, ε are such that
22Knε2 ≤ 1

2 , we have

∞∑
i=0

P{I = i}1/2(i + 1)1/2 ≤ C and E(I ) ≤ C.

Combining (4), (5), (10) and (12), we get, for ε ∈ (0, 1
6), K,n ≥ 2� and such that

22Knε2 ≤ 1
2 ,

μp ≤ (
1 + 2ενK,ε(•,◦)) + Cδ,�

(
nδ−1ε�K1/2 + K

n
+ ε2nδ−1

)
,

where Cδ,� is a constant depending only on � and δ > 1. Take now � = 3, n =
ε−3/2, K = ε−1/4 and δ = 3/2. We get

μp ≤ 1 + 2ενε−1/4,ε(•,◦) + Cε5/4.

We conclude by using Proposition 5.
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