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MEAN FIELD CONDITIONS FOR COALESCING RANDOM
WALKS1

BY ROBERTO IMBUZEIRO OLIVEIRA

IMPA

The main results in this paper are about the full coalescence time C of a
system of coalescing random walks over a finite graph G. Letting m(G) de-
note the mean meeting time of two such walkers, we give sufficient conditions
under which E[C] ≈ 2m(G) and C/m(G) has approximately the same law as
in the “mean field” setting of a large complete graph. One of our theorems is
that mean field behavior occurs over all vertex-transitive graphs whose mix-
ing times are much smaller than m(G); this nearly solves an open problem of
Aldous and Fill and also generalizes results of Cox for discrete tori in d ≥ 2
dimensions. Other results apply to nonreversible walks and also generalize
previous theorems of Durrett and Cooper et al. Slight extensions of these re-
sults apply to voter model consensus times, which are related to coalescing
random walks via duality.

Our main proof ideas are a strengthening of the usual approximation of
hitting times by exponential random variables, which give results for non-
stationary initial states; and a new general set of conditions under which we
can prove that the hitting time of a union of sets behaves like a minimum of
independent exponentials. In particular, this will show that the first meeting
time among k random walkers has mean ≈m(G)/

( k
2
)
.

1. Introduction. Start a continuous-time random walk from each vertex of
a finite, connected graph G. The walkers evolve independently, except that when
two walkers meet—that is, lie on the same vertex at the same time—they coalesce
into one. One may easily show that there will almost surely be a finite time at
which only one walk will remain in this system. The first such time is called the
full coalescence time for G and is denoted by C.

The main goal of this paper is to show that one can estimate the law of C for
a large family of graphs G, and that this law only depends on G through a single
rescaling parameter. More precisely, we will prove results of the following form:
if the mixing time tGmix of G (defined in Section 2) is “small,” then there exists a
parameter m(G) > 0 such that the law C/m(G) takes a universal shape. Slight ex-
tensions of these results will be used to study the so-called voter model consensus
time on G.
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The universal shape of C/m(G) comes from a mean field computation over a
large complete graph Kn. In this case the distribution of C can be computed exactly
(cf. [2], Chapter 14),

C

(n− 1)/2
=d

n∑
i=2

Zi ,

where:

The Zi ’s are independent and ∀i ≥ 2, t ≥ 0 P(Zi ≥ t)= e−t (
i
2 ).(1.1)

In words, C is a rescaled sum of independent exponential random variables with
means 1/

( i
2

)
, 2≤ i ≤ n.

The scaling factor (n− 1)/2 is the expected meeting time of two independent
random walks over Kn, and we see that

C

(n− 1)/2
→w

∑
i≥2

Zi and
E[C]

(n− 1)/2
→ 2 when n grows.

This suggests the general problem we address in this paper:

PROBLEM 1.1. Given a graph G, let m(G) denote the expected meeting time
of two independent random walks over G, both started from stationarity. Give
sufficient conditons on G under which C has mean-field behavior, that is,

Law
(
C/m(G)

)≈ Law
(∑

i≥2

Zi

)
(1.2)

and

E[C] ≈m(G)E
[∑

i≥2

Zi

]
= 2m(G).(1.3)

A version of this problem was posed in Aldous and Fill’s 1994 draft [2], Chap-
ter 14, and much more recently by Aldous [1]. However, as far as we know there
are only two families of examples where the problem has been fully solved. Dis-
crete tori G = (Z/mZ)d with with d ≥ 2 fixed and m� 1 were considered in
Cox’s 1989 paper [7]. More recently, Cooper, Frieze and Radzik [6] proved mean
field behavior in large random d-regular graphs (d bounded). Partial results were
also obtained by Durrett [8, 9] for certain models of large networks.

We note that mean-field behavior is not universal over all large graphs. One
counterexample comes from a sequence of growing cycles, where the limiting law
of C was also computed by Cox [7]. Stars with n vertices are also not mean field:
C is lower bounded by the time the last edge of the star is crossed by some walker,
which is about logn, whereas m(G) is uniformly bounded.
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1.1. Results for transitive, reversible chains. Our results in this paper ad-
dress (1.2) and (1.3) simultaneously by proving approximation bounds in L1
Wasserstein distance, which implies closeness of first moments; cf. Section 2.2.

The first theorem implies that mean field behavior occurs whenever G is vertex-
transitive, and its mixing time (defined in Section 2) is much smaller than m(G).
This nearly solves a problem posed by Aldous and Fill in [2], Chapter 14. In their
open Problem 12, they ask for an analogous result with the relaxation time replac-
ing the mixing time (more on this below).

The natural setting for this first theorem is that of walkers evolving according to
the same reversible, transitive Markov chain (the definition of C easily generalizes
to this case), where transitive means that for any two states x and y one can find
a permutation of the state space mapping x to y and leaving the transition rates
invariant. Clearly, the standard continuous-time random walk on a vertex-transitive
graph is transitive in this sense.

NOTATIONAL CONVENTION 1.1. In this paper we will use “b=O(a)” in the
following sense: there exist universal constants C, ξ > 0 such that |a| ≤ ξ ⇒ |b| ≤
C|a|.

THEOREM 1.1 (Mean field for transitive, reversible chains). Let Q be the
(generator of a) transitive, reversible, irreducible Markov chain over a finite state
space V, with mixing time t

Q
mix. Define m(Q) to be the expected meeting time of

two independent continuous-time random walks over V that evolve according to Q,
when both are started from stationarity. Denote by C the full coalescence time for
walks evolving according to Q. Finally, define {Zi}+∞i=2 as in (1.1). Then

dW

(
Law

(
C

m(Q)

)
,Law

(∑
i≥2

Zi

))
=O

([
ρ(Q) ln

(
1

ρ(Q)

)]1/6)
,

where

ρ(Q)≡ t
Q
mix

m(Q)
,

and dW denotes L1 Wasserstein distance. In particular,

E[C] =
{

2+O

([
ρ(Q) ln

(
1

ρ(Q)

)]1/6)}
m(Q).

This result generalizes Cox’s theorem [7] for (Z/mZ)d with d ≥ 2 and grow-
ing m. In this case, for any fixed d , the mixing time grows as m2 whereas
m(G) ≈ m2 lnm for d = 2 and m(G) ≈ md for larger d . The original problem
posed by Aldous and Fill remains open, but we note that:



MEAN FIELD COALESCING R. W. 3423

• For transitive, reversible chains, the mixing time is at most a C ln |V| factor
away from the relaxation time, with C > 0 universal (this is true whenever the
stationary distribution is uniform). This means we are not too far off from a full
solution;

• Any counterexample to their problem would have to come from a vertex-
transitive graph with mixing time of the order of m(G) and relaxation time
asymptotically smaller than the mixing time. To the best of our knowledge, such
an object is not known to exist.

1.2. Results for other chains. We also have results on coalescing random
walks evolving according to arbitrary generators Q on finite state spaces V. Again,
we only require that the mixing time t

Q
mix of Q be sufficiently small relative to other

parameters of the chain.

THEOREM 1.2 (Mean field for general Markov chains). Let Q denote (the
generator of) a mixing Markov chain over a finite set V, with unique stationary
distribution π . Denote by qmax the maximum transition rate from any x ∈ V and
by πmax the maximum stationary probability of an element of V. Let m(Q) denote
the expected meeting time of two random walks evolving according to Q, both
started from π . Finally, let C denote the full coalescence time of random walks
evolving in V according to Q. Then

dW

(
Law

(
C

m(Q)

)
,Law

(∑
i≥2

Zi

))
=O

((
α(Q) ln

(
1

α(Q)

)
ln4 |V|

)1/6)
,

where

α(Q)= (
1+ qmaxt

Q
mix

)
πmax,

and dW again denotes L1 Wasserstein distance. In particular,

E[C] =
{

2+O

([
α(Q) ln

(
1

α(Q)

)
ln4 |V|

]1/6)}
m(Q).

We note that this theorem does not imply Theorem 1.1: for instance, it does not
work for two-dimensional discrete tori. However, the well-known formula for π

over graphs gives the following corollary:

COROLLARY 1.1 (Proof omitted). Assume G is a connected graph with vertex
set V, where each vertex x ∈V has degree degG(x). Assume that ε ∈ (|V|−1,1) is
such that (

maxx∈V degG(x)

|V|−1∑
x∈V degG(x)

)
tGmix ≤

ε|V|
ln4 |V| ln ln |V| .
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Then

dW

(
Law

(
C

m(G)

)
,Law

(∑
i≥2

Zi

))
=O

([
ε

(
1+ ln(1/ε)

ln ln |V|
)]1/6)

.

This corollary suffices to prove mean field behavior over a variety of examples,
such as:

• all graphs with bounded ratio of maximal to average degree and mixing time
at most of the order |V|/ ln5 |V|: this includes expanders [6] and supercritical
percolation clusters in (Z/mZ)d with d ≥ 3 fixed [5, 15];

• all graphs with maximal degree ≤ |V|1−η (η > 0 fixed) and mixing time that is
polylogarithmic in |V|: this includes the giant component of a typical Erdös–
Rényi graph Gn,d/n with d > 1 [10] and the models of large networks consid-
ered by Durrett [8, 9].

Let us briefly comment on the case of large networks. Durrett has estimated
m(G) in these models, and has proven results similar to ours for a bounded num-
ber of walkers. We do not attempt to compute m(G) here, which in general is
a model-specific parameter. However, we do show that mean field behavior for
C follows from “generic” assumptions about networks that hold for many differ-
ent models. This is important because recent measurements of real-life social net-
works [11] suggest that known models of large networks are very inaccurate with
respect to most network characteristics outside of degree distributions and conduc-
tance. In fairness, coalescing random walks and voter models over large networks
are not particularly realistic either, but at the very least we know that mean field
behavior is not an artifact of a particular class of models. We also observe that our
Theorem 1.2 also works for nonreversible chains, for example, random walks on
directed graphs.

1.3. Results for the voter model. The voter model is a very well-known pro-
cess in the interacting particle systems literature [13]. The configuration space for
the voter model is the power set OV of functions η : V→ O, where V is some
nonempty set, and O is a nonempty set of possible opinions. The evolution of
the process is determined by numbers q(x, y) (x, y ∈ V,x �= y) and is informally
described as follows: at rate q(x, y), node x copies y’s opinion. That is, there is
a transition at rate q(x, y) from any state η : V→ O to the corresponding state
ηx←y , where

ηx←y(z)=
{

η(y), if z= x;
η(z), for all other z ∈ V \ {x}.

A classical duality result relates this voter model to a system of coalescing ran-
dom walks with transition rates q(·, ··) and corresponding generator Q. More pre-
cisely, suppose that V = {x(1), . . . , x(n)} and that (Xt(i))t≥0,1≤i≤n is a system
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of coalescing random walks evolving according to Q with X0(i)= x(i) for each
1≤ i ≤ n.

PROPOSITION 1.1 (Duality [2]). Choose η0 ∈OV. Then the configuration

η̂t :x(i) ∈V �→ η0
(
Xt(i)

) ∈O (1≤ i ≤ n)

has the same distribution as the state ηt of the voter model at time t , when the
initial state is η0. In particular, the consensus time for the voter model

τ ≡ inf
{
t ≥ 0 :∀i, j ∈V, ηt (i)= ηt (j)

}
satisfies E[τ ] ≤ E[C]<+∞.

Now assume that the initial state η0 ∈ OV is random and that the random vari-
ables {η0(x)}x∈V are i.i.d. and have common law μ which is not a point mass.
In this case one can show via duality that the law of the consensus time τ is that
of CK∧n, where K is a N-valued random variable independent of the coalescing
random walks, defined by

K =min{i ∈N :Ui+1 �=U1} where U1,U2,U3, . . . , are i.i.d. draws from μ,

and for each 1≤ k ≤ n,

Ck ≡min
{
t ≥ 0 :

∣∣{Xt(i) : 1≤ i ≤ n
}∣∣= k

}
.

Thus the key step in analyzing the voter model via our techniques is to prove
approximations for the distribution of Ck . Theorems 1.1 and 1.2 imply mean-field
behavior for C= C1. A quick inspection of the proofs reveals that the same bounds
for Wasserstein distance can be obtained for Ck for any 1≤ k ≤ n. It follows that:

THEOREM 1.3 (Proof omitted). Let V, O and μ be as above, and consider the
voter model defined by V, O and by the generator Q corresponding to transition
rates q(x, y). Assume that the sequence {Zi}i≥2 is defined as in (1.1), and also
that K has the law described above and is independent from the Zi . Define ρ(Q)

and α(Q) as in Theorems 1.1 and 1.2. Then the consensus time τ for this voter
model satisfies

dW

(
Law

(
τ

m(Q)

)
,Law

(∑
i>K

Zi

))
=O

((
ρ(Q) ln

(
1/ρ(Q)

))1/6)
if Q is reversible and transitive, and

dW

(
Law

(
τ

m(Q)

)
,Law

(∑
i>K

Zi

))
=O

((
α(Q) ln

(
1/α(Q)

)
ln4 |V|)1/6)

,

otherwise.
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1.4. Main proof ideas. Our proofs of Theorems 1.1 and 1.2 both start from
the formula (1.1) for the terms in the distribution of C over Kn. Crucially, each
term Zi has a specific meaning: Zi is the time it takes for a system with i particles
to evolve to a system with i−1 particles, rescaled by the expected meeting time of
two walkers. For i = 2, this is just the (rescaled) meeting time of a pair of particles,
which is an exponential random variable with mean 1. For i > 2, we are looking at
the first meeting time among

( i
2

)
pairs of particles. It turns out that these pairwise

meeting times are independent; since the minimum of k independent exponential
random variables with mean μ is an exponential r.v. with mean μ/k, we deduce
that Zi is exponential with mean 1/

( i
2

)
.

The bulk of our proof consists of proving something similar for more general
chains Q. Fix some such Q, with state space V, and let Ci denote the time it takes
for a system of coalescing random walks evolving according to Q to have i unco-
alesced particles. Clearly, M ≡ C1 − C2 is the meeting time of a pair of particles,
which is the hitting time of the diagonal set

	≡ {
(x, x) :x ∈V

}
by the Markov chain Q(2) given by a pair of independent realizations of Q. More
generally, M(i+1) = Ci −Ci+1 is the hitting time of

	(i+1) = {(
x(1), . . . , x(i + 1)

)
:∃1≤ i1 < i2 ≤ i + 1, x(i1)= x(i2)

}
.

The mean-field picture suggests that each M(i+1) should be close in distribution
to Zi . Indeed, it is known that:

General principle: Let HA be the hitting time of a subset A of states. If the mix-
ing time t

Q
mix is small relative to E[HA], then HA is approximately exponentially

distributed.
This is a general meta-result for small subsets of the state space of a Markov

chain; precise versions (with different quantitative bounds) are proven in [3, 4]
when the chain starts from the stationary distribution. However, we face a few
difficulties when trying to use these off-the-shelf results:

(1) For each i, M(i+1) is the first hitting time of 	(i+1) after time Ci+1. The
random walkers are not stationary at this random time, so we need to “do” expo-
nential approximation from nonstationary starting points.

(2) In order to get Wasserstein approximations, we need better control of the
tail of M(i+1).

(3) To prove that Zi and M(i+1)/m(Q) are close, we must show something like
that E[M(i+1)] ≈ E[M]/( i+1

2

)
, that is, that M(i+1) behaves like the minimum of( i+1

2

)
independent exponentials.

(4) Finally, we should not expect the exponential approximation to hold when
	(i+1) is too large. That means that the “big bang” phase (to use Durrett’s phrase)
at the beginning of the process has to be controlled by other means.
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It turns out that we can deal with points 1 and 2 via a different kind exponential
approximation result, stated as Theorem 3.1. This result will give bounds of the
following form:

Px(HA > t)= (
1+ o(1)

)
exp

(
− t

(1+ o(1))E[HA]
)

(1.4)

as long as

t
Q
mix = o

(
E[HA]) and Px

(
HA ≤ t

Q
mix

)= o(1).

Notice that this holds even for nonstationary starting points x if the chain started
from x is unlikely to hit A before the mixing time. This is discussed in Section 3
below. We also take some time in that section to develop a specific notion of “near
exponential random variable.” Although this takes up some space, we believe it
provides a useful framework for tackling other problems. We note that a version
of Theorem 3.1 for stationary initial states result is implicit in [3].

We now turn to point 3. The key difficulty in our setting is that, unlike Cox [7]
or Cooper et al. [6], we do not have a good “local” description of the graphs under
consideration which we could use to compute E[M(i+1)] directly. We use instead
a simple general idea, which we believe to be new, to address this point. Clearly,
M(i+1) is a minimum of

( i+1
2

)
hitting times. Let us consider the general problem

of understanding the law of

HB = min
1≤i≤


HBi
where B =


⋃
i=1

Bi,

under the assumption that E[HBi
] = μ does not depend on i when the initial distri-

bution is stationary (this covers the case of M(i+1)). Assume also that (1.4) holds
for all A ∈ {B,B1,B2, . . . ,B
}. Then the following holds for ε in a suitable range:

∀A ∈ {B,B1,B2, . . . ,B
} P
(
HA ≤ εE[HA])≈ ε.

Morally speaking, this means that εE[HA] is the ε-quantile of HA for all A as
above; this is implicit in [3] and is made explicit in our own Theorem 3.1. Now
apply this to A= B , with ε replaced by εμ/E[HB], and obtain

εμ

E[HB] ≈ P(HB ≤ εμ)= P

(

⋃

i=1

{HBi
≤ εμ}

)
.

If we can show that the pairwise correlations between the events {HBi
≤ εμ} are

sufficiently small, then we may obtain

εμ

E[HB] ≈ P

(

⋃

i=1

{HBi
≤ εμ}

)
≈


∑
i=1

P(HBi
≤ εμ)= 
ε.
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This gives

E[HB] ≈ μ




as if the times HB1, . . . ,HB

were independent exponentials. The reasoning pre-

sented here is made rigorous and quantitative in Theorem 3.2 below.
Finally, we need to take care of point 4, that is, the “big bang” phase. In the

setting of Theorem 1.2, we simply use our results on the coalescence times for
smaller number of particles, which seems wasteful but is enough to prove our
results. For the reversible/transitive case, we use a bound from [14] which is of the
optimal order. Incidentally, the differences in the bounds of the two theorems come
from this better bound for the big bang phase and from a more precise control of
the correlations between meeting times of different pairs of walkers.

1.5. Outline. The remainder of the paper is organized as follows. Section 2
contains several preliminaries. Section 3 contains a general discussion of random
variables with nearly exponential distribution and our general approximation re-
sults for hitting times. In Section 4 we apply these results to the first meeting time
among k particles, after proving some technical estimates. Section 5 contains the
formal definition of the coalescing random walks process and proves mean field
behavior for a moderate initial number of walkers. Finally, Section 6 contains the
proofs of Theorems 1.1 and 1.2. Related results and open problems are discussed
in the final sections.

2. Preliminaries.

2.1. Basic notation. We write N for nonnegative integers and [k] = {1,2, . . . ,

k} for any k ∈ N \ {0}. Given a set S, we let |S| denote its cardinality. Moreover,
for k ∈N, we let (

S

k

)
≡ {

A⊂ S : |A| = k
}
.

Notice that with this notation,

|S| finite⇒
∣∣∣∣(S

k

)∣∣∣∣= ( |S|
k

)
≡ |S|!

k!(|S| − k)! .

We will often speak of universal constants C > 0. These are numbers that do not
depend on any of the parameters or mathematical objects under consideration in
a given problem. We will also use the notation “a =O(b)” in the universal sense
prescribed in Notational convention 1.1. In this way we can write down expressions
such as

eb = 1+ b+O
(
b2) and ln

(
1

1− b

)
= b+O

(
b2)=O(b).
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Given a finite set S, we let M1(S) denote the set of all probability measures
over S. Given p,q ∈M1(S), their total variation disance is defined as follows:

dTV(p, q)≡ 1

2

∑
s∈S

∣∣p(s)− q(s)
∣∣= sup

A⊂S

[
p(A)− q(A)

]
,

where p(A)=∑
a∈A p(a). For S not finite, M1(S) will denote the set of all prob-

ability measures over the “natural” σ -field over S. For instance, for S = R we
consider the Borel σ -field, and for S = D([0,+∞),V) (see Section 2.3.1 for a
definition) we use the σ -field generated by projections.

If X is a random variable taking values over S, we let Law(X) ∈M1(S) denote
the distribution (or law) of X. Here we again assume that there is a “natural” σ -
field to work with.

2.2. Wasserstein distance. The L1 Wasserstein distance is a metric over prob-
ability measures over R with finite first moments, given by

dW(λ1, λ2)=
∫

R

∣∣λ1(x,+∞]− λ2(x,+∞]∣∣dx
(
λ1, λ2 ∈M1(R)

)
.

A classical duality result gives

dW(λ1, λ2)= sup
f : R→R1-Lipschitz

(∫
R

f (x)λ1(dx)−
∫

R
f (x)λ2(dx)

)
.

NOTATIONAL CONVENTION 2.1. Whenever we compute Wasserstein dis-
tances, we will assume that the distributions involved have first moments. This
can be checked in each particular case.

REMARK 2.1. If Z1,Z2 are random variables, we sometimes write

dW(Z1,Z2) instead of dW

(
Law(Z1),Law(Z2)

)
.

Note that

dW(Z1,Z2)=
∫

R

∣∣P(Z1 ≥ t)− P(Z2 ≥ t)
∣∣dt.

Also notice that ∣∣E[Z1] −E[Z2]
∣∣≤ dW(Z1,Z2).

This is an equality if Z1 ≥ 0 a.s. and Z2 = CZ1 for some constant C > 0,

∀C ∈R dW(Z1,CZ1)= |C − 1|E[Z1],(2.1)

since |f (CZ1)− f (Z1)| ≤ |C − 1|Z1 for every 1-Lipschitz function f : R→R.

We note here three useful lemmas on Wasserstein distance. These are probably
standard, but we could not find references for them, so we provide proofs for the
latter two lemmas in Section 7 of the Appendix. The first lemma is immediate.
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LEMMA 2.1 (Sum lemma for Wasserstein distance; Proof omitted). For any
two random variables X,Y with finite first moments and defined on the same prob-
ability space,

dW(X,X+ Y)≤ E
[|Y |].

For the next lemma, recall that, given two real-valued random variables X,Y ,
we say that X is stochastically dominated by Y and write X �d Y if P(X > t) ≤
P(Y > t) for all t ∈R.

LEMMA 2.2 (Sandwich lemma for Wasserstein distance). Let Z, Z−, Z+ and
W be real-valued random variables with finite first moments and Z− �d Z �d Z+.
Then

dW(Z,W)≤ dW(Z−,W)+ dW(Z+,W).

LEMMA 2.3 (Conditional lemma for Wasserstein distance). Let W1, W2, Z1,
Z2 be real-valued random variables with finite first moments. Assume that Z1 and
Z2 independent and that W1 is G -measurable for some sub-σ -field G . Then

dW

(
Law(W1 +W2),Law(Z1 +Z2)

)
≤ dW

(
Law(W1),Law(Z1)

)+E
[
dW

(
Law(W2 | G),Law(Z2)

)]
.

REMARK 2.2. Here we are implicitly assuming that Law(W2 | G) is given by
some regular conditional probability distribution.

2.3. Continuous-time Markov chains.

2.3.1. State space and trajectories. Let V be some nonempty finite set, called
the state space. We write D≡D([0,+∞),V) for the set of all paths

ω : t ≥ 0 �→ ωt ∈V

for which there exist 0= t0 < t1 < t2 < · · ·< tn < · · · with tn↗+∞ and ω con-
stant over each interval [tn, tn+1) (n ∈ N). Such paths will sometimes be called
càdlàg.

For each t ≥ 0, we let Xt : D→ V be the projection map sending ω to ωt . We
also define X = (Xt)t≥0 as the identity map over D. Whenever we speak about
probability measures and events over D, we will implicitly use the σ -field σ(D)

generated by the maps Xt , t ≥ 0. We define an associated filtration as follows:

Ft ≡ σ {Xs : 0≤ s ≤ t} (t ≥ 0).

We also define the time-shift operators

�T :ω(·) ∈D �→ ω(· + T ) ∈D (T ≥ 0).
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2.3.2. Markov chains and their generators. Let q(x, y) be nonnegative real
numbers for each pair (x, y) ∈ V2 with x �= y. Define a linear operator Q : RV →
RV, which maps f ∈RV to Qf ∈RV satisfying

(Qf )(x)≡ ∑
y∈V\{x}

q(x, y)
(
f (x)− f (y)

)
(x ∈V).

It is a well-known result that there exists a unique family of probability mea-
sures {Px}x∈V with the properties listed below:

(1) for all x ∈V, Px(X0 = x)= 1;
(2) for all distinct x, y ∈V, limε↘0

Px(Xε=y)
ε

= q(x, y);
(3) Markov property: for any x ∈ V and T ≥ 0, the conditional law of X ◦�T

given FT under measure Px is given by PXT
.

The family {Px}x∈V satisfying these properties is the Markov chain with genera-
tor Q. We will often abuse notation and omit any distinction between a Markov
chain and its generator in our notation.

For λ ∈M1(V), Pλ denotes the mixture

Pλ ≡
∑
x∈V

λ(x)Px.

This corresponds to starting the process from a random state distributed according
to λ. For x ∈ V or λ ∈M1(V) and Y : D→ S a random variable, we let Lawx(Y )

or Lawλ(Y ) denote the law of Y under Px or Pλ (resp.).

2.3.3. Stationary measures and mixing. Any Markov chain Q as above has at
least one stationary measure π ∈M1(V); this is a measure such that for any T ≥ 0,

Lawπ(X ◦�T )= Lawπ(X).

We will be only interested in mixing Markov chains, which are those Q with a
unique stationary measure that satisfy the following condition:

∀α ∈ (0,1),∃T ≥ 0,∀x ∈V dTV
(
Law(x)XT ,π

)≤ α.

The smallest such T is called the α-mixing time of Q and is denoted by t
Q
mix(α).

By the Markov property and the definition of total-variation distance, we also have
that for all α ∈ (0,1), all t ≥ t

Q
mix(α), all x ∈V and all events S,∣∣Px(X ◦�t ∈ S)− Pπ(X ∈ S)

∣∣≤ α.

The specific value t
Q
mix ≡ t

Q
mix(1/4) is called the mixing time of Q. We note that

for all ε ∈ (0,1/2),

t
Q
mix(ε)≤ C ln(1/ε)t

Q
mix,(2.2)

where C > 0 is universal; this is proven in [12], Section 4.5, for discrete time
chains, but the same argument works here.



3432 R. I. OLIVEIRA

2.3.4. Product chains. Letting Q be as above, we may consider the joint tra-
jectory of k independent realizations of Q,

X
(k)
t = (

Xt(1), . . . ,Xt (k)
)

(t ≥ 0)

where each (Xt(i))t≥0 has law Px(i). It turns out that this corresponds to a Markov
chain Q(k) on Vk with transition probabilities

q(k)(x(k), y(k))
=
{

q
(
x(i), y(i)

)
, if x(i) �= y(i)∧ ∀j ∈ [k] \ {i}, x(j)= y(j);

0, otherwise.

REMARK 2.3. In what follows we will always denote elements of Vk [resp.,
M1(Vk)] by symbols like x(k), y(k), . . . (resp., λ(k), ρ(k), . . .). We will then denote
the distribution of Q(k) started from x(k) or λ(k) by Px(k) or Pλ(k) . This is a slight
abuse of our convention for the Q chain, but the initial state/distribution will al-
ways make it clear that we are referring to the product chain.

The following result on Q(k) will often be useful.

LEMMA 2.4. Assume Q is mixing and has (unique) stationary distribution π .
Then Q(k) is also mixing, and the product measure π⊗k is its (unique) stationary
distribution. Moreover, the mixing times of Q(k) satisfy

∀α ∈ (0,1/2) t
Q(k)

mix (α)≤ t
Q
mix(α/k)≤C ln(k/α)t

Q
mix

with C > 0 universal.

PROOF SKETCH. Notice that the law of X
(k)
T has a product form

Lawx(k)

(
X

(k)
T

)= Lawx(1)(XT )⊗ Lawx(2)(XT )⊗ · · · ⊗ Lawx(k)(XT ).

It is well known (and not hard to show) that the total-variation distance between
product measures is at most the sum of the distances of the factors. This gives

dTV
(
Lawx(k)

(
X

(k)
T

)
, π⊗k)≤ k∑

i=1

dTV
(
Lawx(i)(XT ),π

)
.

The RHS is ≤ α if each term in the sum is less than α/k. This is achieved when
T ≥ t

Q
mix(α/k); (2.2) then finishes the proof. �
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3. Nearly exponential hitting times.

3.1. Basic definitions. We first recall a standard definition: the exponential
distribution with mean m > 0, denoted by Exp(m), is the unique probabilty dstri-
bution μ ∈M1(R) such that, if Z is a random variable with law μ,

P(Z ≥ t)= e−t/m (t ≥ 0).

We write Z =d Exp(m) when Z is a random variable with Law(Z)= Exp(m).
Similarly, given m > 0 as above and parameters α > 0, β ∈ (0,1), we say that

a measure μ ∈M1(R) has distribution Exp(m,α,β) if it is the law of a random
variable Z̃ with Z̃ ≥ 0 almost surely, and for all t > 0,

(1− α)e−t/((1−β)m) ≤ P(Z̃ ≥ t)≤ (1+ α)e−t/((1+β)m).

We will write μ = Exp(m,α,β) or Z̃ =d Exp(m,α,β) as a shorthand for this.
Notice that Exp(m,α,β) does not denote a single distribution, but rather a family
of distributions that obey the above property, but we will mostly neglect this minor
issue.

Random variables with law Exp(m,α,β) will naturally appear in our study of
hitting times of Markov chains. We compile here some simple results about them.
The first proposition is trivial and we omit its proof.

PROPOSITION 3.1 (Proof omitted). If μ ∈M1(R) satisfies

μ= Exp(m,α,β),

and m′ > 0, γ ∈ (0,1) are such that β + γ + βγ < 1,

(1− γ )m′ ≤m≤ (1+ γ )m′,

then

μ= Exp
(
m′, α,β + γ + βγ

)
.

We now show that random variables Exp(m,α,β) are close to the corresponding
exponentials.

LEMMA 3.1 [Wasserstein distance error for Exp(m,α,β)]. We have the fol-
lowing inequality for all α > 0, 0 < β < 1:

dW

(
Exp(m),Exp(m,α,β)

)≤ 2(α + β)m.

That is, if Z̃ =d Exp(m,α,β), the Wasserstein distance between Law(Z̃) and
Exp(m) is at most 2αm+ 2βm.
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PROOF. Assume Z̃ =d Exp(m,α,β) and Z =d Exp(m) are given. By convex-
ity,

dW(Z̃,Z) =
∫ +∞

0

∣∣P(Z̃ ≥ t)− e−t/m
∣∣dt

≤
∫ ∞

0
max

ξ∈{−1,+1}
∣∣(1+ ξα)+e−t/((1+ξβ)m) − e−t/m

∣∣dt

≤
∫ ∞

0

∣∣(1+ α)e−t/((1+β)m) − e−t/m
∣∣dt

+
∫ ∞

0

∣∣(1− α)+e−t/((1−β)m) − e−t/m
∣∣dt

=: (I )+ (II).

For the first term on the RHS, we note that

∀t ≥ 0 (1+ α)e−t/((1+β)m) − e−t/m ≥ 0,

hence

(I )=
∫ ∞

0

{
(1+ α)e−t/((1+β)m) − e−t/m}dt = [α + β + αβ]m.

Similarly, for term (II) we have

∀t ≥ 0 (1− α)+e−t/((1−β)m) − e−t/m ≤ 0

hence

(II)=
∫ ∞

0

{
e−t/m − (1− α)+e−t/((1−β)m)}dt ≤ [α+ β − αβ]m.

Hence

dW(Z̃,Z)≤ (I )+ (II)= 2(α + β)m. �

3.2. Hitting times are nearly exponential. In this section we consider a mixing
continuous-time Markov chain {Px}x∈V with generator Q, taking values over a
finite state space V, with unique stationary distribution π . Given a nonempty A⊂
V with π(A) > 0, we define the hitting time of A to be

HA(ω)≡ inf
{
t ≥ 0 :ω(t) ∈A

} (
ω ∈D

([0,+∞),V
))

.

The condition π(A) > 0 ensures that Ex[HA]<+∞ for all x ∈V.
Our first result in this section presents sufficient conditions on A and μ ∈M1(V)

that ensure that HA is approximately exponentially distributed.

THEOREM 3.1. In the above Markov chain setting, assume that 0 < ε < δ <

1/5 are such that

Pπ

(
HA ≤ t

Q
mix(δε)

)≤ δε.
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Let tε(A) be the ε-quantile of Lawπ(HA), that is, the unique number tε(A) ∈
[0,+∞) with Pπ(HA ≤ tε(A)) = ε [this is well defined since Pπ(HA ≤ t) is a
continuous and strictly increasing function of t in our setting]. Given λ ∈M1(V),
write

rλ ≡ Pλ

(
HA ≤ t

Q
mix(δε)

)
.

Then

Lawλ(HA)= Exp
(

tε(A)

ε
,O(ε)+ 2rλ,O(δ)

)
.

Moreover, ∣∣∣∣εEπ [HA]
tε(A)

− 1
∣∣∣∣=O(δ)

and

Lawλ(HA)=d Exp
(
Eπ [HA],O(ε)+ 2rλ,O(δ)

)
.

We emphasize that results similar to this are not new in the literature [3, 4], but
the lower-tail part of our result does not seem to be explicit anywhere. The proof
is strongly related to that in [3], but we wish to stress the relationship between the
quantile tε(A) and the exponential approximation, which we will need below.

The second result considers what happens when we have an union of events

A=A1 ∪A2 ∪ · · · ∪A
.

As described in the Introduction, we give a sufficient condition under which the
hitting time HA behaves like a minimum of independent exponentials.

THEOREM 3.2. Assume that the set A considered above can be written as

A=

⋃

i=1

Ai,

where the sets A1, . . . ,A
 are nonempty and

m := Eπ [HA1] = Eπ [HA2] = · · · = Eπ [HA

].

Assume 0 < δ < 1/5, 0 < ε < δ/2
 are such that for all 1≤ i ≤ 
,

∀i ∈ [
] Pπ

(
HAi

≤ t
Q
mix(δε/2)

)≤ δε

2
.

Then for all λ ∈M1(V),

Lawλ(HA)= Exp
(

m



,2rλ +O(
ε),O(δ + ξ)

)
,
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where

rλ ≡ Pλ

(
HA ≤ t

Q
mix(δε)

)
and

ξ ≡ 1


ε

∑
1≤i<j≤


Pπ(HAi
≤ εm,HAj

≤ εm).

REMARK 3.1. If the HAi
are in fact independent, then ξ =O(ε
).

The remainder of the section is devoted to the proof of these two results.

3.3. Hitting time of a single set: Proofs. We first present the proof of Theo-
rem 3.1 modulo two important lemmas, and subsequently prove those lemmas.

PROOF OF THEOREM 3.1. Let λ ∈M1(V) be arbitrary. Throughout the proof
we will assume implicitly that δ + rλ + ε is smaller than some sufficiently small
absolute constant; the remaining case is easy to handle by increasing the value of
C0 if necessary.

We begin with an upper bound for Pλ(HA ≥ t) in terms of tε(A).

LEMMA 3.2 (Proven in Section 3.3.1). Under the assumptions of Theo-
rem 3.1,

∀t ≥ 0 Pλ(HA ≥ t)≤ (
1+O(ε)

)
e−ε(1+O(δ))t/tε(A).

In particular, this implies

∀μ ∈M1(V) Eμ[HA] =
∫ +∞

0
Pμ(HA ≥ t) dt ≤ (

1+O(δ)
) tε(A)

ε
.(3.1)

It turns out that the upper bound in the above lemma can be nearly reversed if we
start from some distribution that is “far” from A.

LEMMA 3.3 (Proven in Section 3.3.2). With the assumptions of Theorem 3.1,
if 2ε+ rλ < 1/2,

∀t ≥ 0 Pλ(HA ≥ t)≥ (
1−O(ε)− rλ

)
+e−ε(1+O(δ))t/tε(A).

Notice that the combination of these two lemmas already implies the first state-
ment in the proof, as it shows that for all t ≥ 0,

Pλ(HA ≥ t)

∈ [(1−O(ε)− 2rλ
)
e−εt/((1+O(δ))tε(A)),

(
1+O(ε)

)
e−εt/((1+O(δ))tε(A))].
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To see this, notice that the upper bound is always valid by Lemma 3.2. For the
lower bound, we use Lemma 3.3 if 2ε + rλ ≤ 1/2, and note that the lower bound
is 0 if 2ε+ rλ > 1/2 and the constant in the O(ε) term is at least 4.

We now prove the assertion about expectations in the theorem. We use
Lemma 3.1 and deduce∣∣∣∣Eπ [HA] − tε(A)

ε

∣∣∣∣≤ dW

(
Lawπ(HA),Exp

(
ε−1tε(A)

))
≤O(δ + rπ )

tε(A)

ε
,

and the assertion follows from dividing by ε−1tε(A) and noting that

rπ = Pπ

(
HA ≤ t

Q
mix(δε)

)≤ δε

by assumption. The final assertion in the theorem then follows from Proposi-
tion 3.1. �

3.3.1. Proof of Lemma 3.2.

PROOF. Set T = t
Q
mix(δε). We note for later reference that T < tε(A), since

Pπ(HA ≤ T )≤ δε < ε = Pπ

(
HA ≤ tε(A)

)
.

Our main goal will be to show the following inequality:

∀k ∈N Pλ

(
HA > (k + 1)tε(A)

)≤ (1− ε+ 2δε)Pλ

(
HA > ktε(A)

)
.(3.2)

Once established, this goal will imply

∀k ∈N Pλ

(
HA ≥ ktε(A)

)≤ (1− ε+ 2δε)k

and

∀t ≥ 0 Pλ(HA ≥ t)≤ e−ε(1+O(δ))�t/tε(A)� = (
1+O(ε)

)
e−εt/((1+O(δ))tε(A)),

which is the desired result. To achieve the goal, we fix some k ∈ N and use T ≤
tε(A) to bound

Pλ

(
HA > (k + 1)tε(A)

) ≤ Pλ

(
HA > ktε(A),

HA ◦�ktε(A)+T > tε(A)− T

)
,

(Markov prop.)= Pλ

(
HA > ktε(A)

)
P�

(
HA > tε(A)− T

)
,

where � is the law of Xktε(A)+T conditioned on {HA > ktε(A)}. Since this event
belongs to Fktε(A) and T = t

Q
mix(δε), � is δε-close to π in total variation distance.

We deduce

Pλ(HA > (k + 1)tε(A))

Pλ(HA > ktε(A))
≤ Pπ

(
HA > tε(A)− T

)+ δε.(3.3)
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Now observe that

Pπ

(
HA > tε(A)− T

) ≤ Pπ

(
HA > tε(A)

)
+ Pπ

(
HA ∈ (tε(A)− T , tε(A)

])
≤ Pπ

(
HA > tε(A)

)
+ Pπ(HA ◦�tε(A)−T ≤ T ),(

defn. of tε(A)
)= 1− ε+ Pπ(HA ◦�tε(A)−T ≤ T ),

(π stationary)= 1− ε+ Pπ(HA ≤ T ),(
T = t

Q
mix(δε)+ assumption

) ≤ 1− ε+ δε,

and plugging this into (3.3) gives

Pλ(HA > (k + 1)tε(A))

Pλ(HA > ktε(A))
≤ (

1− ε(1− 2δ)
)

as desired. �

3.3.2. Proof of Lemma 3.3.

PROOF. The general scheme of the proof is similar to that of Lemma 3.2, but
we will need to be a bit more careful in our estimates. In particular, we will need
that (1+ 5δ)ε < 1/2 and 2ε+ rλ < 1/2.

Define T ≡ t
Q
mix(δε) as in the proof of Lemma 3.2 in Section 3.3.1. Again ob-

serve that T < tε(A). Define

f (k)≡ Pλ

(
HA ≥ ktε(A)

)
(k ∈N).

Clearly, f (0)= 1 and

f (1)≥ Pλ

(
HA ◦�T ≥ tε(A)

)− Pλ(HA ≤ T )≥ 1− ε− δε− rλ
(3.4)

≥ 1− 2ε− rλ

since T = t
Q
mix(δε), and by the properties of mixing times,

Pλ

(
HA ◦�T ≥ tε(A)

)≥ Pπ

(
HA ≥ tε(A)

)− δε.

We now claim the following:

CLAIM 3.1. For all k ∈N \ {0},
f (k + 1)

f (k)
≥ (1− ε− 5δε).
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Notice that the claim and (3.4) imply

∀t ≥ 0 Pλ(HA ≥ t) ≥ f
(⌈

t/tε(A)
⌉)

≥ (1− 2ε− rλ)(1− ε− 5δε)�t/tε(A)�−1

= (
1−O(ε)− rλ

)
(1− ε− 5δε)t/tε(A)

≥ (
1−O(ε)− rλ

)
e−(1+O(δ))εt/tε(A),

which is precisely the bound we wish to prove. We spend the rest of this proof
proving the claim.

Fix some k ≥ 1, and notice that

f (k + 1) ≥ Pλ

(
HA ≥ ktε(A),HA ◦�ktε(A)+T ≥ tε(A)− T

)
− Pλ

(
HA ≥ ktε(A),HA ◦�ktε(A) < T

)
(3.5)

=: (I )− (II).

We bound the two terms (I ), (II) separately. By the Markov property,

(I )= Pλ

(
HA ≥ ktε(A)

)
P�

(
HA ≥ tε(A)

)
,

where � is the conditional law of Xktε(A)+T given HA ≥ ktε(A). Since T =
t
Q
mix(εδ), � is within distance δε from π . We deduce

(I )≥ Pλ

(
HA ≥ ktε(A)

)(
Pπ

(
HA ≥ tε(A)

)− δε
)= f (k)(1− ε− δε).(3.6)

We now upper bound term (II) in (3.5). Notice that (again because of the Markov
property)

(II)≤ Pπ

(
HA ≥ (k − 1)tε(A),HA ◦�ktε(A) < T

)= f (k − 1)P�′(HA < T ),

where �′ is the law of Xktε(A) conditioned on {HA ≥ (k− 1)tε(A)}. Recalling that
tε(A)≥ T = t

Q
mix(δε), we see that �′ is δε-close to π . Since we have also assumed

that Pπ(HA ≤ T )≤ δε, we deduce

(II)≤ f (k − 1)
(
Pπ(HA < T )+ δε

)≤ 2δεf (k − 1).

We combine this with (3.6) and (3.5) to obtain

∀k ∈N \ {0,1}f (k + 1)≥ f (k)(1− ε− δε)− f (k − 1)(2δε).

One can argue inductively that f (k)/f (k − 1) ≥ 1/2 for all k ≥ 1. Indeed, this
holds for k ≥ 2 by the claim applied to k − 1. For k = 1 we may use (3.4) and the
assumption on 2ε + rλ to deduce the same result. Applying this to the previous
inequality, we obtain

∀k ∈N \ {0}f (k + 1)≥ f (k)(1− ε− 5δε),

which finishes the proof of the claim and of the lemma. �
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3.4. Hitting times of a union of sets: Proofs. We present the proof of Theo-
rem 3.2 below.

PROOF OF THEOREM 3.2. There are three main steps in the proof, here out-
lined in a slightly oversimplified way:

(1) We show that Theorem 3.1 is applicable to the hitting times of A1, . . . ,A
.
In particular, this shows that Pπ(HAi

≤ εm)≈ ε.
(2) We show that

Pπ(HA ≤ εm)≈

∑

i=1

Pπ(HAi
≤ εm)≈ 
ε,

so that t
ε(A)≈ εm.
(3) Finally, we apply Theorem 3.1 to HA and deduce that this random variable

is approximately exponential with mean

Eπ [HA] ≈ tε
(A)/ε
≈m/
.

The actual proof is only slightly more complicated than this outline. We begin
with a claim corresponding to step 1 above.

CLAIM 3.2. For all 1≤ i ≤ 
,

εi ≡ Pπ(HAi
≤ εm)= (

1+O(δ)
)
ε.

PROOF. Consider some ε′ ∈ [ε/2,2ε]. Notice that

t
Q
mix

(
δε′

)≤ t
Q
mix(δε/2),

and therefore,

Pπ

(
HAi

≤ t
Q
mix

(
δε′

))≤ δε

2
≤ δε′.

This shows that Theorem 3.1 is applicable with Ai replacing A and ε′ replacing ε.
We deduce in particular that

∀ε

2
≤ ε′ ≤ 2ε

∣∣∣∣ε′Eπ [HAi
]

tε′(Ai)
− 1

∣∣∣∣≤O
(
δ + ε′

)=O(δ).

In particular, there exists a universal constant c > 0 such that if ε′ ≤ (1 − cδ)ε,
then tε′(Ai) < εEπ [HAi

], whereas if ε′ > (1+ cδ)ε, tε′(Ai) > εEπ [HAi
]. In other

words,

(1− cδ)ε ≤ Pπ

(
HAi

≤ εEπ [HAi
])≤ (1+ cδ)ε. �

We now come to the second part of the proof.



MEAN FIELD COALESCING R. W. 3441

CLAIM 3.3. Let ξ be as in the statement of Theorem 3.2. Then

Pπ(HA ≤ εm)= (
1+O(δ + ξ)

)

ε.

In particular, there exists a number η= (1+O(δ + ξ))
ε with εm= tη(A).

PROOF. To see this, we note that

{HA ≤ εm} =

⋃

i=1

{HAi
≤ εm}.

The union bound gives

Pπ(HA ≤ εm)≤

∑

i=1

Pπ(HAi
≤ εm)≤ (

1+O(δ)
)

ε.

A lower bound can be obtained via the Bonferroni inequality,

Pπ(HA ≤ εm) ≥

∑

i=1

Pπ(HAi
≤ εm)

− ∑
1≤i<j≤


Pπ(HAi
≤ εm,HAj

≤ εm)

= (
1+O(δ + ξ)

)

ε,

using the definition of ξ . �

We now need to show that the assumptions of Theorem 3.1 are applicable to HA,
with the value of η in Claim 3.3 replacing ε. We assume that δ+ξ is small enough,
which we may do because otherwise the theorem is trivial. In particular, we can
assume that the O(ξ + δ) term in the expression for η is between −1/2 and 1, so
that

ε


2
≤ η ≤ 2ε
.

Since we also assumed ε < δ/2
, we have η < δ. Moreover, t
Q
mix(δη)≤ t

Q
mix(δε/2).

This implies

Pπ

(
HA ≤ t

Q
mix(δη)

)≤ 
∑
i=1

Pπ

(
HAi

≤ t
Q
mix(δε/2)

)≤ 
δε/2≤ δη.

We may now apply Theorem 3.1 (with η replacing ε) to deduce that for any λ ∈
M1(V),

Lawλ(HA)= Exp
(
tη(A)/η,O(η)+ 2rλ,O(δ+ ξ)

)
.

To finish the proof, we note that η=O(
ε),

tη(A)/η= εm/
(
1+O(δ + ξ)

)

ε = (

1+O(δ + ξ)
)m



and apply Proposition 3.1. �
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4. Meeting times of multiple random walks. We now put our two expo-
nential approximation results to use, showing that the meeting times we are in-
terested in are well approximated by exponential random variables. Much of the
work needed for this is contained in technical estimates whose proofs can be safely
skipped in a first reading.

4.1. Basic definitions. For the remainder of this section, V is a finite set, and Q

is the generator of a mixing Markov chain over V with mixing times t
Q
mix(·) and

stationary measure π . For each k ∈ N \ {0,1} we will also consider the Markov
chains Q(k) over Vk that correspond to k independent realizations of Q from pre-
scribed initial states, as defined in Section 2.3.4. We will also follow the notation
from that section.

For k = 2, we define the first meeting time

M ≡ inf
{
t ≥ 0 :Xt(1)=Xt(2)

}
(4.1)

and the parameters

m(Q)≡ Eπ⊗2[M],(4.2)

ρ(Q)≡ t
Q
mix

m(Q)
.(4.3)

We also define an extra prameter err(Q) which will appear as an error term at
several different points in the paper. Ths parameter err(Q) is defined as

err(Q)= c0

√
ρ(Q) ln

(
1/ρ(Q)

)
if Q is reversible and transitive.(4.4)

For other Q, we define it as

err(Q)= c1

√√√√(
1+ qmaxt

Q
mix

)
πmax ln

(
1

(1+ qmaxt
Q
mix)πmax

)
.(4.5)

The numbers c0, c1 > 0 are universal constants that we do not specify explicitly.
We choose them so as to satisfy Propositions 4.1, 4.4 and 4.5 below.

We now take k > 2 and consider the process Q(k), with trajectories(
X

(k)
t = (

Xt(1),Xt(2), . . . ,Xt (k)
))

t≥0

corresponding to k independent realizations of Q; cf. Section 2.3.4. This has sta-
tionary distribution π⊗k .

We write M(k) for the first meeting time among these random walks,

M(k) ≡ inf
{
t ≥ 0 :∃1≤ i < j ≤ k,Xt(i)=Xt(j)

}
.(4.6)

One may note that

M(k) = min
{i,j}∈(

[k]
2 )

Mi,j ,
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where
( [k]

2

)
was defined in Section 2, and for 1≤ i < j ≤ k,

Mi,j =Mj,i ≡ inf
{
t ≥ 0 :Xt(i)=Xt(j)

}
(4.7)

is distributed as M for a realization of Q(2) starting from (X0(i),X0(j)).

4.2. Technical estimates for reversible and transitive chains. In this subsec-
tion we collect the estimates that we will use in the case of chains that are reversible
and transitive.

PROPOSITION 4.1. Assume Q is reversible and transitive and define err(Q)

accordingly. If err(Q)≤ 1/4, then

Pπ⊗2
(
M ≤ t

Q
mix

(
err(Q)2))≤ err(Q)2.

REMARK 4.1. The proof is entirely general, but we will only use this estimate
in the transitive/reversible case.

PROOF. We will prove a result in contrapositive form: if 0 < β < 1/4 is such
that

Pπ⊗2
(
M ≤ t

Q
mix(β)

)
> β,

then β < c2
0ρ(Q) ln(1/ρ(Q)) for some universal c0 > 0.

Notice that for any x(2) ∈V2,

Px(2)

(
M > t

Q
mix(β/4)+ t

Q
mix(β)

) ≤ Px(2)

(
M ◦�

t
Q
mix(β/4)

> t
Q
mix(β)

)
≤ Pπ⊗2

(
M > t

Q
mix(β)

)+ β/2

< (1− β/2),

where the middle inequality follows from the fact that t
Q
mix(β/4) is an upper bound

for the β/2-mixing time of Q(2); cf. Lemma 2.4. A standard argument using the
Markov property implies that for any k ∈N,

Px(2)

(
M > k

(
t
Q
mix(β/4)+ t

Q
mix(β)

))
< (1− β/2)k,

so that

m(Q)= Eπ⊗2[M] ≤ C
t
Q
mix(β)+ t

Q
mix(β/4)

β
.

Since t
Q
mix(α)≤ C ln(1/α)t

Q
mix, we deduce that

β

c ln(1/β)
< ρ(Q),

with c > 0 universal, which implies the desired result. �

We now prove an estimate on correlations.
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PROPOSITION 4.2. Assume Q is transitive. Then for all t, s ≥ 0 and
{i, j}, {
, r} ⊂V with {i, j} �= {r, 
},

Pπ⊗k (Mi,j ≤ t,M
,r ≤ s)≤ 2Pπ⊗2(M ≤ s)Pπ⊗2(M ≤ t).

PROOF. If {i, j} ∩ {
, r} =∅, the events {Mi,j ≤ t} and {M
,r ≤ t} are inde-
pendent. Since the laws of both Mi,j and M
,r under π⊗k are equal to the law of
M under π⊗2, we obtain

Pπ⊗k (Mi,j ≤ t,M
,r ≤ s)≤ Pπ⊗2(M ≤ s)Pπ⊗2(M ≤ t)

in this case. Assume now {i, j}∩ {
, r} has one element. Without loss of generality
we may assume k = 3, {i, j} = {1,2} and {
, r} = {1,3}. We have

Pπ⊗3(M1,2 ≤ t,M1,3 ≤ s)≤ Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s)
(4.8)

+ Pπ⊗3(M1,3 ≤ s,M1,2 ◦�M1,3 ≤ t).

Consider the first term on the RHS. By the Markov property,

Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s)= Pπ⊗2(M ≤ t)Pλ(2) (M ≤ s),

where λ(2) is the law of XM1,2(1),XM1,2(3) conditionally on M1,2 ≤ t . Since
(Xt(3))t is stationary and independent from this event, λ(2) = λ ⊗ π for some
λ ∈M1(V) which is the law of XM1,2(1) under Pπ⊗2 . The transitivity of Q (which
implies that π is uniform) implies that λ= π and therefore

Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s)= Pπ⊗2(M ≤ t)Pπ⊗2(M ≤ s).

The same bound can be shown for the other term in the RHS of (4.8), and this
implies the proposition. �

4.3. Technical estimates for the general case. We will need the following gen-
eral result:

PROPOSITION 4.3. For any λ ∈M1(V) and T ≥ 0,

Pλ⊗π(M ≤ T )≤ (1+ 2T qmax)πmax.

PROOF. Let (Xt)t be a single realization of Q. One may imagine that the tra-
jectory of (Xt)t≥0 is sampled as follows. First, let P be a Poisson process with
intensity qmax independent from the initial state X0. At each time t ∈ P , one up-
dates the value of Xt as follows: if Xs = x for s immediately before t , one sets

Xt = y with probability
q(x, y)

qmax

(
y ∈V \ {x})

and Xt = x with the remaining probability. This implies that, at the points of the
Poisson process, Xt is updated as in the discrete-time Markov chain with matrix
P = (I +Q/qmax), and it is easy to see that π is stationary for this chain.
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Now let Xt(1),Xt(2) be independent trajectories of Q, with Xt(1) started
from λ and Xt(2) started from the stationary distribution π . We will imagine that
each Xt(i) has its own Poisson process P(i) and was generated in the way de-
scribed above. It then follows that

Pλ⊗π

(
M ≤ T | P(1), P(2)

)≤ Pλ⊗π

(
X0(1)=X0(2)

)
+∑

t∈P
Pλ⊗π

(
Xt(1)=Xt(2) | P(1), P(2)

)
,

where P = P(1) ∪ P(2), since the processes can only change values at the times
of the two Poisson processes. At time 0, we have

Pλ⊗π

(
X0(1)=X0(2)

)=∑
x∈V

λ(x)π(x)≤∑
x∈V

λ(x)πmax ≤ πmax.

For t ∈ P , the law of Xt(1),Xt (2) equals(
λP k1

)⊗ (
πP k2

)
,

where ki = |P(i)∩(0, t]| (i = 1,2). Crucially, π is stationary for P , hence πP k2 =
π , and we obtain

Pλ⊗π

(
Xt(1)=Xt(2) | P(1), P(2)

)=∑
x∈V

(
λP k1

)
(x)π(x)≤ πmax

as for t = 0. We deduce

Pλ⊗π

(
M ≤ T | P(1), P(2)

)≤ (
1+ ∣∣(P(1)∪P(2)

)∩ (0, T ]∣∣)πmax.

The proposition follows from taking expectations on both sides and noticing that

E
[∣∣(P(1)∪P(2)

)∩ (0, T ]∣∣]= 2T qmax. �

We now prove an estimate corresponding to Proposition 4.1 in this general set-
ting.

PROPOSITION 4.4. Assume err(Q) is as defined in (4.5). Then

Pπ⊗2
(
M ≤ t

Q
mix

(
err(Q)2))≤ err(Q)2.

PROOF. The previous proposition implies

Pπ⊗2
(
M ≤ t

Q
mix

(
err(Q)2))≤ (

1+ 2t
Q
mix

(
err(Q)

)
qmax

)
πmax

≤ C
(
1+ 2t

Q
mixqmax

)
πmax ln

(
1/err(Q)

)
.

This is ≤ err(Q)2 by definition of this quantity, if we choose c1 in (4.5) to be large
enough. �

We now prove an estimate on correlations that is similar to Proposition 4.2, but
with an extra term. Recall that

( [k]
2

)
was defined in Section 2.1.
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PROPOSITION 4.5. For any mixing Markov chain Q, if one defines err(Q)

as in (4.5), we have the following inequality for k ≥ 3 and all distinct pairs
{i, j}, {
, r} ∈ ( [k]2 ):

Pπ⊗k (Mi,j ≤ t,M
,r ≤ s)≤ 2Pπ⊗2(M ≤ t)Pπ⊗2(M ≤ s)+O
(
err(Q)2).

PROOF. The case {i, j}∩{
, r} =∅ follows as in the proof of Proposition 4.2.
In case {i, j} ∩ {
, r} has one element, we may again assume that i = 
= 1, j = 2
and k = 3. Equation (4.8) still applies, so we proceed to bound

Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s),

which is upper bounded by

Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s)

≤ Pπ⊗3
(
M1,2 ≤ t,M1,3 ◦�M1,2 ≤ t

Q
mix(η)

)
+ Pπ⊗3(M1,2 ≤ t,M1,3 ◦�

M1,2+t
Q
mix(η)

≤ s)= (I )+ (II)

for some η ∈ (0,1/4) to be chosen later.
Term (I ) is equal to

Pπ⊗3(M1,2 ≤ t)Pλ(2)

(
M ≤ t

Q
mix(η)

)
,

where λ(2) is the law of (XM1,2(2),XM1,2(3)) conditionally on {M1,2 ≤ t}. As in
the previous proof, (Xt(3))t is stationary and independent from the conditioning,
hence λ(2) = λ⊗ π for some λ ∈M1(V). We use Proposition 4.3 to deduce

(I )≤ Pπ⊗3(M1,2 ≤ t)O
((

1+ t
Q
mix(η)qmax

)
πmax

)
.

The analysis of term (II) is simpler: we have

(II)= Pπ⊗3(M1,2 ≤ t)Pλ∗⊗π(M ≤ s)

for some λ∗ ∈M1(V) which is the law of X
M1,2+t

Q
mix(η)

conditionally on {M1,2 ≤ t}.
The time shift by t

Q
mix(η) implies that λ∗ is η-close to stationary, hence

(II)≤ Pπ⊗3(M1,2 ≤ t)
(
η+ Pπ⊗2(M ≤ s)

)
.

We deduce that

Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s)

≤ Pπ⊗2(M ≤ t)Pπ⊗2(M ≤ s)

+ Pπ⊗2(M ≤ t)O
(
η+ (

1+ t
Q
mix(η)qmax

)
πmax

)
.

Recall t
Q
mix(η)≤ Ct

Q
mix ln(1/η) for some universal C > 0. If

η0 ≡ (
1+ qmaxt

Q
mix

)
πmax ≤ 1/2,
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we may take η= η0 to obtain

Pπ⊗3(M1,2 ≤ t,M1,3 ◦�M1,2 ≤ s)≤ Pπ⊗2(M ≤ t)Pπ⊗2(M ≤ s)

+ Pπ⊗2(M ≤ t)O

(
η ln

(
1

η

))
.

The case of η0 ≥ 1/2 is covered “automatically” by the big-oh notation.
An analogous bound can be obtained with the roles of (t,2) and (s,3) reversed.

Plugging these into (4.8) gives the desired bound. �

4.4. Exponential approximation for a pair of particles. We now come back to
the setting of Section 4.1 and show M is approximately exponentially distributed.

LEMMA 4.1. Define err(Q) as in (4.4) (if Q is reversible and transitive) or as
in (4.5) (if not). Then ∀λ(2) ∈M1(V(2))

Lawλ(2) (M)= Exp
(
m(Q),O

(
err(Q)

)+ 2rλ(2),O
(
err(Q)

))
,

where

rλ(2) = Pλ(2)

(
M ≤ t

Q
mix

(
err(Q)2)).

PROOF. This is a direct application of Theorem 3.1 to the hitting time of the
diagonal set

	≡ {
(x, x) :x ∈V

}⊂V2

by the chain with generator Q(2) defined in Section 2 and with ε = err(Q), δ =
2err(Q). All we need to show is that

Pπ⊗2
(
M ≤ t

Q(2)

mix (δε)
)≤ εδ,

where t
Q(2)

mix (·) denotes the mixing times of Q(2). This inequality follows from

t
Q(2)

mix

(
2err(Q)2)≤ t

Q
mix

(
err(Q)2) (Lemma 2.4)

and

Pπ⊗2
(
M ≤ t

Q
mix

(
err(Q)2))≤ err(Q)2 < δε,

which follows from Proposition 4.1 in the reversible/transitive case and Proposi-
tion 4.4 in the general case. �
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4.5. Exponential approximation for many random walkers. We now consider
the more complex problem of bounding the meeting times among k ≥ 2 particles.
We take the notation in Section 4.1 for granted.

LEMMA 4.2. Let 
 = ( k
2

)
> 0, and assume that the quantity err(Q) defined

in (4.4) (if Q is reversible and transitive) or as in (4.5) (if not) satisfies err(Q) ≤
1/10
. Then for all λ(k) ∈M1(Vk),

Lawλ(k)

(
M(k))= Exp

(
m(Q)



,O

(
k2err(Q)

)+ 2rλ(k) ,O
(
k2err(Q)

))
,

where rλ(k) = Pλ(k)(M(k) ≤ t
Q
mix(err(Q)2)).

PROOF. M(k) is the hitting time of a union of 
 sets:

	(k) ≡ ⋃
{i,j}∈(

k
2 )

	{i,j} where 	{i,j} ≡ {
x(k) ∈Vk :x(k)(i)= x(k)(j)

}
.

We will apply Theorem 3.2, applied to the product chain Q(k), to show that this
hitting time is approximately exponential. We set δ = 2
err(Q), ε = err(Q) and
verify the conditions of the theorem:

• 0 < δ < 1/5, 0 < ε < δ/2
: These conditions follow from err(Q) < 1/10
.

• Pπ⊗k (Mi,j ≤ t
Q(k)

mix (δε/2))≤ δε/2. To prove this we simply observe that

t
Q(k)

mix (δε/2)≤ t
Q
mix

(
err(Q)2) (Lemma 2.4 and defn. of ε, δ)

and that

Pπ⊗2
(
M ≤ t

Q
mix

(
err(Q)2))≤ err(Q)2 = δε

2

≤ δε

2
by Proposition 4.1 (in the reversible/transitive case) or by Proposition 4.4 (in
general).

• Eπ⊗k [H	{i,j} ] =m(Q) is the same for all {i, j} ∈ ( [k]2 ): this is obvious.

The lemma will then follow once we show that the ξ quantity in Theorem 3.2,
which in this case equals

ξ = ∑
{i,j}�={
,r} in (

[k]
2 )

Pπ⊗k (M{i,j} ≤ εm(Q),M{
,r} ≤ εm(Q))


ε
,

and satisfies ξ = O(k2err(Q)). To start, we go back to Claim 3.2 in the proof of
Theorem 3.2 and observe that whenever the assumptions of that theorem hold,

Pπ⊗k

(
M{i,j} ≤ εm(Q)

)=O(ε).(4.9)

Now note that Propositions 4.2 (in the reversible/transitive case) and 4.5 (in the
general case) imply that each term in the sum defining ξ is O(err(Q)2). We deduce

ξ ≤ O(ε2)
( 


2

)

ε

≤O(
ε)=O
(
k2err(Q)

)
. �
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5. Coalescing random walks: Basics. In this section we formally define the
coalesing random walks process. We then show that if the initial number of parti-
cles is not large, mean field behavior follows from the exponential approximation
of meeting times.

5.1. Definitions. Fix a Markov chain Q on a finite state space V. Given a
number k ∈ [|V|] \ {1} and an initial state x(k) ∈Vk , consider a realization of Q(k)(

X(k))
t≥0 ≡

(
Xt(1), . . . ,Xt (k)

)
t≥0.

We build the coalescing random walks process from X(k) by defining the trajecto-
ries of the k walkers one by one. We first set

Xt(1)=Xt(1), t ≥ 0.

Given j ∈ [k] \ {1}, assume that Xt(i) has been defined for all 1≤ i < j and t ≥ 0.
We let Tj be the first time t ≥ 0 at which Xt(j)=Xt(Ij ) for some 1≤ Ij < i, and
then set

Xt(j)≡
{

Xt(j), t < Tj ;
Xt(Ij ), t ≥ Tj .

Intuitively, this says that as soon as j encounters a walker with lower index, it
starts moving along with it. The process(

X
(k)

t

)
t≥0 ≡

(
Xt(j)

)
t≥0

is what we call the coalescing random walks process based on Q, with initial
state x(k).

REMARK 5.1. For any j ≥ 3, there might be more than one index i < j such
that XTj

(i)=XTj
(j). However, it is easy to see that all such i will have the same

trajectory after time Tj because they must have met by that time. This implies that
there is no ambiguity in the definition of Xt(j) for any j .

We also define

Ci ≡ inf
{
t ≥ 0 :

∣∣{Xt(j) : j ∈ [k]}∣∣≤ i
}

and C≡ C1. The fact that we are working in continuous time implies the following:

PROPOSITION 5.1 (Proof omitted). Assume that the initial state x(k) =
(x(1), x(2), . . . , x(k)) is such that x(i) �= x(j) for all 1 ≤ i < j ≤ k. Then Ck =
0 < Ck−1 < Ck−2 < · · ·< C1 almost surely.

It is sometimes useful to view the coalescing random walks process as a process
with killings. Define a random 2[k]-valued process (At )t≥0 as follows:



3450 R. I. OLIVEIRA

• 1 ∈At for all t ;
• proceeding recursively, for each j ∈ [k] \ {1}, we have j ∈ At if and only if

τj > t , where τj is the first time t at which Xt(i)=Xt(j) for some i < j with
i ∈At .

Intuitively, At is the set of all walkers that are “alive” at time t ≥ 0, and a walker
dies at the first time it meets an alive walker with smaller index. One may check
that coalescing random walks is equivalent to the killed process in the following
sense.

PROPOSITION 5.2 (Proof omitted). We have τj = Tj for all j ∈ [k] \ {1}.
Moreover, for all t ≥ 0, we have{

Xt(j) : j ∈At

}= {
Xt(j) : j ∈ [k]}.

Finally, for all i ∈ [k− 1],
Ci = inf

{
t ≥ 0 : |At | ≤ i

}
.

Recall that Mi,j is the meeting time between walkers i and j ; cf. (4.7). We have
the following simple proposition:

PROPOSITION 5.3 (Proof omitted). Assume that the initial state

x(k) = (
x(1), x(2), . . . , x(k)

)
is such that x(i) �= x(j) for all 1≤ i < j ≤ k. Then for each 1≤ p ≤ k− 1,

Cp −Cp+1 = min{i,j}⊂ACp+1

Mi,j ◦�Cp+1 .

Moreover, each time Cp equals Mi,j for some {i, j} ∈ ( [k]2 ).
5.2. Mean-field behavior for moderately large k. We now prove a mean-field-

like result for an initial number of particles k that is not too large, assuming that
meeting times of up to k walkers satisfy our exponential approximation property.

LEMMA 5.1. Assume that Q, err(Q) and k satisfy the assumptions of
Lemma 4.2. Let x(k) ∈Vk . Then for all p ∈ [k− 1],

dW

(
Lawx(k)

(
Cp

m(Q)

)
,Law

(
k∑

i=p+1

Zi

))
= O(k2err(Q))+ 12η(x(k))

p
,

where

η
(
x(k))= Px(k)

(
M(k) ≤ t

Q
mix

(
err(Q)2))

+ Px(k)

⎛⎝ ∃{i, j}, {
, r} ∈
( [k]

2

)
:

{
, r} �= {i, j} but Mi,j ◦�M
,r
≤ t

Q
mix

(
err(Q)2)

⎞⎠ ,

and the Zi are the random variables described in (1.1).
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PROOF. Write x(k) = (x(1), . . . , x(k)). We will prove the similar bound

“∀1≤ i < j ≤ k :x(i) �= x(j)”

⇒ dW

(
Lawx(k)

(
Cp

m(Q)

)
,Law

(
k∑

i=p+1

Zi

))
(5.1)

= O(k2err(Q))+ 4η(x(k))

p
.

To see how this implies the general result, consider some x(k) such that some of
its coordinates are equal, so that in particular η(x(k))≥ 1. One still has the trivial
bound

dW

(
Lawx(k)

(
Cp

m(Q)

)
,Law

(
k∑

i=p+1

Zi

))
≤ Ex(k)

[
Cp

m(Q)

]
+E

[
k∑

i=p+1

Zi

]
.

The second term on the RHS is ≤ 2/p. For the first term, let j be the number of
distinct coordinates of x and

y(j) = (
y(1), . . . , y(j)

) ∈Vj

have distinct coordinates with{
y(1), . . . , y(j)

}= {
x(1), . . . , x(k)

}
.

Then clearly,

Ex(k)

[
Cp

m(Q)

]
= Ey(j)

[
Cp

m(Q)

]
.

If p ≥ j , the RHS is 0. If not, it can be upper bounded using the bound in (5.1),

Ey(j)

[
Cp

m(Q)

]
≤ E

[
k∑

i=p+1

Zi

]
+ dW

(
Lawy(j)

(
Cp

m(Q)

)
,Law

( j∑
i=p+1

Zi

))

≤ 2+ 4η(y(j))+O(k2err(Q))

p
.

Since η(x(k))≥ 1≥ η(y(j))/2 in this case, we obtain

dW

(
Lawx(k)

(
Cp

m(Q)

)
,Law

(
k∑

i=p+1

Zi

))
≤ 12η(x(k))+O(k2err(Q))

p

for such x(k) with repetitions, which gives the lemma in general.
We prove (5.1) by reverse induction on p. The case p = k− 1 is trivial: Ck−1 is

simply M(k), and η(x(k)) is an upper bound for rδ
x(k)

, so we may apply Lemma 4.2
to deduce the desired bound.



3452 R. I. OLIVEIRA

For the inductive step, consider p0 < k− 1, and assume the result is true for all
p0 < p ≤ k − 1. We will use the easily proven fact that Cp0+1 is a stopping time

for the process (X
(k)
t )t≥0 process. Consider the corresponding σ -field FCp0+1 . We

will apply Lemma 2.3 with

Z1 =
k∑

i=p0+2

Zi ,

Z2 = Zp0+1,

W1 = Cp0+1

m(Q)
,

W2 = Cp0 − Cp0+1

m(Q)
=

min{i,j}⊂ACp0+1
Mi,j ◦�Cp0+1

m(Q)
,

G = FCp0+1 .

(We used Proposition 5.3 to obtain the second expression for W2 above.) Applying
Lemma 2.3 in conjunction with the induction hypothesis gives

dW

(
Lawx(k)

(
Cp0

m(Q)

)
,

k∑
i=p0+1

Zi

)

≤ O(k2err(Q))+ 4η(x(k))

p0 + 1
(5.2)

+Ex(k)

[
dW

(
Lawx(k)

(min{i,j}⊂ACp0+1
Mi,j ◦�Cp0+1

m(Q)

∣∣∣FCp0+1

)
,

Zp0+1

)]
.

Note that ACp0+1 is FCp0+1 -measurable. The strong Markov property for Q(k) im-
plies that

Lawx(k)

(min{i,j}⊂ACp0+1
Mi,j ◦�Cp0+1

m(Q)

∣∣∣FCp0+1

)
is the same as

Law
X

(k)
Cp0+1

(min{i,j}⊂ACp0+1
Mi,j

m(Q)

)
.

Now define Y (p0+1) as the vectors whose coordinates are the p0+1 distinct points
XCp0+1(i) with i ∈Ap0+1 (the order of the coordinates does not matter). Clearly,

Law
X

(k)
Cp0+1

(min{i,j}⊂ACp0+1
Mi,j

m(Q)

)
= LawY (p0+1)

(
M(p0+1)

m(Q)

)
.(5.3)
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By Lemma 4.2, this last law is approximately exponential,

Exp
(

1(p0+1
2

) ,O(
k2err(Q)

)+ 2rδ
Y(p0+1)

,O
(
k2err(Q)

))
,

and Lemma 3.1 gives

dW

(
LawY (p0+1)

(
M(p0+1)

m(Q)

)
,Zp0+1

)
≤

O(k2err(Q))+ 4rδ
Y(p0+1)

p0(p0 + 1)
.

Using the definition of rδ
Y(p0+1)

, we obtain from (5.2) the following inequality:

dW

(
Lawx(k)

(
Cp0

m(Q)

)
,

k∑
i=p0+1

Zi

)

≤ O(k2err(Q))+ 4η(x(k))

p0 + 1
(5.4)

+ O(k2err(Q))+ 4Ex(k)[PY (p0+1) (M(p0+1) ≤ t
Q
mix(err(Q)2))]

p0(p0 + 1)
.

To finish, we need to show that the expected value on the RHS is ≤ η(x(k)). For
this we recall (5.3) to note that

PY (p0+1)

(
M(p0+1) ≤ t

Q
mix

(
err(Q)2))

= P
X

(k)
Cp0+1

(
min{i,j}⊂ACp0+1

Mi,j ≤ t
Q
mix

(
err(Q)2))

= Px(k)

(
Cp0 −Cp0+1 ≤ t

Q
mix

(
err(Q)2) |FCp0+1

)
,

where the last line uses Proposition 5.3 and the strong Markov property. Averaging
shows that the expectation on the RHS of (5.4) is

Px(k)

(
Cp0 −Cp0+1 ≤ t

Q
mix

(
err(Q)2)),

and Proposition 5.3 implies that this is at most

Px(k)

( ⋃
{i,j}�={
,r}

{
Mi,j ◦�M
,r

≤ t
Q
mix

(
err(Q)2)}).

Since the RHS is ≤ η(x(k)), we are done. �
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6. Proofs of the main theorems.

6.1. The full coalescence time in the transitive case. In this section we prove
Theorem 1.1.

PROOF OF THEOREM 1.1. Recall that C= C1 by definition. Lemma 5.1 gives
the following bound for any k ≤√1/4err(Q)∧ |V| and x(k) ∈Vk :

dW

(
Lawx(k)

(
C

m(Q)

)
,

k∑
i=2

Zi

)
≤ 12η

(
x(k))+O

(
k2err(Q)

)
.

Notice that

dW

(
k∑

i=2

Zi ,

+∞∑
i=2

Zi

)
≤ E

[ ∑
j≥k+1

Zj

]
= 2

k+ 1
,

hence

dW

(
Lawx(k)

(
C1

m(Q)

)
,

+∞∑
i=2

Zi

)
= 12η

(
x(k))+O

(
k2err(Q)+ 1

k

)
.

Convexity of dW implies

PROPOSITION 6.1. Under the assumptions of Theorem 1.1, the following
holds for err(Q)≤ 1/4, 1≤ k ≤√1/4err(Q)∧ |V| and λ(k) ∈M1(Vk):

dW

(
Lawλ(k)

(
C1

m(Q)

)
,

+∞∑
i=2

Zi

)
≤ 12

∫
η
(
x(k))dλ(k)(x(k))

(6.1)

+O

(
k2err(Q)+ 1

k

)
.

Notice that our control of C1 gets worse as k increases, and we cannot use the
above bound to approximate the law of C1 started with one particle at each vertex
of V. What we use instead is a truncation argument combined with the Sandwich
lemma for dW (Lemma 2.2 above). For this we need to find two random variables

C− �d C1 �d C+

such that both C−/m(Q) and C+/m(Q) are close to
∑+∞

i=2 Zi . More specifically,
we will show that

dW

(
C±

m(Q)
,
∑
i≥2

Zi

)
=O

(
k2err(Q)+ k4err(Q)2 + 1

k+ 1
+ ρ(Q) ln

(
1/ρ(Q)

))
.
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Before we continue, let us show how this last bound implies our result. The Sand-
wich Lemma 2.2 gives

dW

(
C1

m(Q)
,
∑
i≥2

Zi

)
=O

(
k2err(Q)+ k4err(Q)2 + 1

k
+ ρ(Q) ln

1

ρ(Q)

)
.

Since ρ(Q) ln(1/ρ(Q)) = O(err(Q)), we may choose k = (err(Q))−1/3 [which
works for err(Q) sufficiently small] to obtain

dW

(
C1

m(Q)
,
∑
i≥2

Zi

)
=O

(
err(Q)1/3),

and this is precisely the bound we seek because

err(Q)=O
(√

ρ(Q) ln
(
1/ρ(Q)

))
.

We now construct C−,C+ and prove that they have the required properties.
Construction of C−: pick x(1), . . . , x(k) ∈V from distribution π , independently

and with replacement. Let C− denote the full coalescence time for k walkers
started from these positions. This might be degenerate: there might be more than
one walker starting from some element of V, but this only means those particles
will coalesce instantly.

Clearly, C− �d C1. Moreover,

Law
(

C−
m(Q)

)
= Lawπ⊗k

(
C1

m(Q)

)
.

Therefore by Proposition 6.1,

dW

(
Law

(
C−

m(Q)

)
,

+∞∑
i=2

Zi

)
= dW

(
Lawπ⊗k

(
C1

m(Q)

)
,

+∞∑
i=2

Zi

)

=O

(∫
η
(
x(k))dπ⊗k + k2err(Q)+ 1

k

)
.

Notice that the integral on the RHS is at most∫
η
(
x(k))dπ⊗k ≤ ∑

{i,j}∈(
[k]
2 )

Pπ⊗k

(
Mi,j ≤ t

Q
mix

(
err(Q)2))

+ ∑
{i,j},{
,r}∈(

[k]
2 ) :

{i,j}�={
,r}

Pπ⊗k

(
Mi,j ◦�M
,r

≤ t
Q
mix

(
err(Q)2)

)
(6.2)

=O
(
k4err(Q)2)
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as can be deduced from the proofs of Propositions 4.2 and 4.1. We conclude that

dW

(
Law

(
C−

m(Q)

)
,Law

(∑
i≥2

Zi

))
(6.3)

=O

(
k4err(Q)2 + k2err(Q)+ 1

k

)
.

Construction of C+: we will use the following simple stochastic domination
result, which we describe in the language of the process with killings. Let τ ≤ σ

be stopping times for the X(k) process. If all killings are suppressed between time τ

and σ , the resulting full coalescence time C+ stochastically dominates C1. We will
use this result, whose proof we omit, with the following choice of τ and σ :

τ = Ck and σ = Ck + t
Q
mix

(
err(Q)2).

Lemma 2.1 implies

dW

(
C+

m(Q)
,

C1 ◦�σ

m(Q)

)
≤ E[σ ]

m(Q)
= E[Ck]

m(Q)
+ t

Q
mix(err(Q)2)

m(Q)
.

Since Q is transitive, m(Q) can be bounded from below in terms of the maximal
hitting time in Q [2], Chapter 14. Theorem 1.2 in [14] implies

E[Ck] ≤ Cm(Q)

k
+Ct

Q
mix

for some universal C > 0. Recalling the definition of ρ(Q) in (4.3), we obtain

E[Ck]
m(Q)

=O

(
1

k
+ ρ(Q)

)
.

Moreover, we also have

t
Q
mix

(
err(Q)2)=O

(
ln
(
1/err(Q)

)
t
Q
mix

)=O
(
t
Q
mix ln

(
1/ρ(Q)

))
,

hence

dW

(
C+

m(Q)
,

C1 ◦�σ

m(Q)

)
=O

(
1

k
+ ρ(Q) ln

(
1/ρ(Q)

))
.

This shows

dW

(
C+

m(Q)
,

k∑
i=2

Zi

)
=O

(
1

k
+ ρ(Q) ln

(
1/ρ(Q)

))+ dW

(
C1 ◦�σ

m(Q)
,

k∑
i=2

Zi

)
.

Now consider the time C1 ◦�σ . Since all killings were suppressed between times
τ = Ck and σ = Ck + t

Q
mix(err(Q)2), there are k alive particles at time σ−. Letting

λ(k) denote their law, we have

Law
(

C1 ◦�σ

m(Q)

)
= Lawλ(k)

(
C1

m(Q)

)
,
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and Proposition 6.1 implies

dW

(
C1 ◦�σ

m(Q)
,

k∑
i=2

Zi

)
=O

(∫
η
(
x(k))dλ(k)(x(k))+ k2err(Q)+ 1

k

)
.

Now observe that

t
Q
mix

(
err(Q)2)≥ t

Q(k)

mix

(
kerr(Q)2) (cf. Lemma 2.4),

hence the law of the k particles at time Ck + t
Q
mix(err(Q)2) is kerr(Q)2-close to

stationary, irrespective of their states at time Ck . We deduce that λ(k) is kerr(Q)2-
close to stationary, and

dW

(
C1 ◦�σ

m(Q)
,

k∑
i=2

Zi

)
=O

(∫
η
(
x(k))dπ⊗k + k2err(Q)+ kerr(Q)2 + 1

k

)
.

The integral on the RHS was estimated in (6.2), and we deduce

dW

(
C1 ◦�σ

m(Q)
,

k∑
i=2

Zi

)
=O

(
k2err(Q)+ k4err(Q)2 + 1

k

)
,

and we deduce

dW

(
C+

m(Q)
,

k∑
i=2

Zi

)
=O

(
k2err(Q)+ k4err(Q)2 + 1

k
+ ρ(Q) ln

(
1/ρ(Q)

))
.

�

6.2. The general setting. We now come to the proof of Theorem 1.2.

PROOF OF THEOREM 1.2. The proof is essentially the same as in the re-
versible/transitive case, but with the definition of err(Q) given in (4.5). In par-
ticular, we can still use the same definition of C− used in that proof to obtain

dW

(
C−

m(Q)
,

+∞∑
i=2

Zi

)
=O

(
k2err(Q)+ k4err(Q)2 + 1

k

)
.(6.4)

We will need a different strategy in the analysis of C+, where we need to bound
E[Ck] by different means. Note that Ck ≥ t if and only if there exist distinct
y(1), . . . , y(k) ∈ V such that there is no coalescence among the walkers started
from these vertices. The probability of this “no coalescence event” for a given
choice of y(i)’s is Py(k)(M(k) ≥ t) for y(k) = (y(1), . . . , y(k)). Therefore,

P(Ck ≥ t)≤
( ∑

y(k)∈Vk

Py(k)

(
M(k) ≥ t

))∧ 1.

By Lemma 4.2, each term in the RHS satisfies

Py(k)

(
M(k) ≥ t

)≤ Ce−t (
k
2 )/((1+O(k2err(Q)))m(Q))
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for some universal C > 0. Since there are ≤ |V|k terms in the sum, we have

P(Ck ≥ t)≤ (
C|V|ke−t (

k
2 )/((1+O(k2err(Q)))m(Q)))∧ 1.

Integrating the RHS gives

E[Ck]
m(Q)

≤C
ln |V|

k

for a potentially different, but still universal C. Going through the previous proof,
we see that this gives

dW

(
C+

m(Q)
,

k∑
i=2

Zi

)
(6.5)

=O

(
k2err(Q)+ k4err(Q)2 + ln |V|

k
+ t

Q
mix(err(Q)2)

m(Q)

)
.

To continue, we bound the term containing t
Q
mix(err(Q)2) in terms of err(Q) [this

was easier before because of the different definition of err(Q)]. Recall from Propo-
sition 4.4 that

Pπ⊗2
(
M ≤ t

Q
mix

(
err(Q)2))≤ err(Q)2.

Therefore, for all j ∈N,

Pπ⊗2
(
M ≤ j t

Q
mix

(
err(Q)2))

≤
j∑

i=1

Pπ⊗2
(
M ◦�

(i−1)t
Q
mix(err(Q)2)

t
Q
mix

(
err(Q)2))

≤ jerr(Q)2.

On the other hand, taking

j =
⌈

2Eπ⊗2[M]
t
Q
mix(err(Q)2)

⌉
,

we obtain

Pπ⊗2
(
M ≤ j t

Q
mix

(
err(Q)2))≥ 1− Eπ⊗2[M]

j t
Q
mix(err(Q)2)

≥ 1

2
.

Combining these two inequalities gives

t
Q
mix(err(Q)2)

Eπ⊗2[M] =O
(
err(Q)2).
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This implies that the term containing t
Q
mix(err(Q)2) on the RHS of (6.5) can be

neglected. Combining that equation with (6.4) and the Sandwich Lemma 2.2, we
obtain

dW

(
C1

m(Q)
,
∑
i≥2

Zi

)
=O

(
k2err(Q)+ k4err(Q)2 + ln |V|

k

)
.

We choose k = �(ln |V|/err(Q))1/3� to finish the proof, at least if this is smaller
than 1/5

√
err(Q). But the bound in the theorem is trivial if that is not the case, so

we are done. �

7. Final remarks.

• Cooper et al. [6] consider many other processes besides coalescing random
walks. It is not hard to modify our analysis to study those processes over more
general graphs, at least when the initial number of random walks is not too large
(this restriction is also present in [6]).

• Our Theorems 3.1 and 3.2 can be used to study other problems related to hitting
times. Alan Prata and the present author [16] have used these results to prove
the Gumbel law for the fluctuations of cover times for a large family of graphs,
including all examples where it was previously known. We have also used exten-
sions of these results to compute the asymptotic distribution of the k last points
to be visited, for any constant k: those are uniformly distributed over the graph,
as conjectured by Aldous and Fill [2].

APPENDIX: PROOFS OF TECHNCAL RESULTS ON L1 WASSERSTEIN
DISTANCE

A.1. Proof of Sandwich lemma (Lemma 2.2). Notice that for all t ∈R,

P(Z− ≥ t)≤ P(Z ≥ t)≤ P(Z+ ≥ t).

By convexity, this implies∣∣P(Z ≥ t)− P(W ≥ t)
∣∣≤ ∣∣P(Z− ≥ t)− P(W ≥ t)

∣∣
+ ∣∣P(Z+ ≥ t)− P(W ≥ t)

∣∣.
Integrate both sides to obtain the result.

A.2. Proof of conditional lemma (Lemma 2.3). First notice that the sigma
field σ(W1) generated by W1 is contained in G . This implies that for all t ∈R,

E
[∣∣P(W2 ≥ t | G)− P(Z2 ≥ t)

∣∣]
= E

[
E
[∣∣P(W2 ≥ t | G)− P(Z2 ≥ t)

∣∣|σ(W1)
]]

≥ E
[∣∣P(W2 ≥ t | σ(W1)

)− P(Z2 ≥ t)
∣∣].
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Integrating both sides in t and applying Fubini–Tonelli gives

E
[
dW

(
Law(W2 | G),Law(Z2)

)]≥ E
[
dW

(
Law

(
W2 | σ(W1)

)
,Law(Z2)

)]
.

Therefore it suffices to prove the theorem in the case G = σ(W1). For simplicity,
we will assume that (Z1,Z2,W1,W2) are all defined in the same probability space,
with (Z1,Z2) independent from (W1,W2). Let f : R→R be 1-Lipschitz. We have

E
[
f (W1 +W2) |W1 =w1

]= ∫
f (w1 +w2)P(W2 ∈ dw2 |W1 =w1).

By the duality version of dW , we have∫
f (w1 +w2)P(W2 ∈ dw2 |W1 =w1)

≤
∫

f (w1 + z2)P(Z2 ∈ dz2)+ dW

(
Law(W2 |W1 =w1),Law(Z2)

)
.

Integrating over W1 = w1 and using the fact that Z2 is independent from W1, we
obtain

E
[
f (W1 +W2)

]≤ E
[
f (W1 +Z2)

]+ dW

(
Law(W2 |W1),Law(Z2)

)
.

But we also have

E
[
f (W1 +Z2) |Z2 = z2

]= E
[
f (W1 + z2)

]≤ E
[
f (Z1 + z2)

]+ dW(W1,Z1),

and the independence of Z1,Z2 implies

E
[
f (W1 +Z2)

]≤ E
[
f (Z1 +Z2)

]+ dW(W1,Z1).

We conclude

E
[
f (W1 +W2)

]≤ E
[
f (Z1 +Z2)

]+ dW(W1,Z1)

+ dW

(
Law(W2 |W1),Law(Z2)

)
.

Since f is an arbitrary 1-Lipschitz function, we are done.
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