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RANDOM FIELDS AND THE GEOMETRY OF WIENER SPACE1

BY JONATHAN E. TAYLOR AND SREEKAR VADLAMANI

Stanford University and TIFR-CAM

In this work we consider infinite dimensional extensions of some finite
dimensional Gaussian geometric functionals called the Gaussian Minkowski
functionals. These functionals appear as coefficients in the probability con-
tent of a tube around a convex set D ⊂ Rk under the standard Gaussian law
N(0, Ik×k). Using these infinite dimensional extensions, we consider geo-
metric properties of some smooth random fields in the spirit of [Random
Fields and Geometry (2007) Springer] that can be expressed in terms of rea-
sonably smooth Wiener functionals.

1. Introduction and motivation. We start with a description of a certain class
of set functionals determined by the canonical Gaussian measure on Rk . By canon-
ical, we shall mean centered and having covariance Ik×k . Its density with respect to
the Lebesgue measure on Rk is therefore given by (2π)−k/2e−‖x‖2/2. For this mea-
sure, we consider computing the probability content of a tube around M , leading
us to a Gaussian tube formula which we state as

γk(M + ρBk)= γk(M)+
∞∑

j=1

ρj

j !Mγk

j (M),(1.1)

where Mγk

j (M) is the j th Gaussian Minkowski Functional (GMF) of the set M .
If M is compact and convex, that is, if M is a convex body, then we can take the
right-hand side (1.1) to be a power series expansion for the left-hand side. For cer-
tain M , this expansion must be taken to be a formal expansion, in the sense that up
to terms of some order, the left and right-hand side above agree. For example, if M

is a centrally-symmetric cone such as the rejection region for a T or F statistic,
then M has a singularity at the origin in the sense that the geometric structure of
the cone around 0 is nonconvex and the expansion above is accurate only up to
terms of size O(ρn−1).

Our interest in this tube formula lies in the appearance of these coefficients in
the expected Euler characteristic heuristic [1, 17–19].

1.1. Expected Euler characteristic heuristic. The Euler characteristic heuris-
tic was developed by Robert Adler and Keith Worsley (cf., e.g., [1, 17–19]) to
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approximate the probability

P
(

sup
x∈M

f (x)≥ u
)

with E(χ(At(f ;M))), where At(f ;M)= {x ∈M :f (x) ≥ t} ⊂M , and χ is the
Euler–Poincaré characteristic.

Let M be an m-dimensional reasonably smooth manifold, with (ξ1, . . . , ξk)

identically and independently distributed copies of a Gaussian random field de-
fined on M . Subsequently, for any F : Rk → R, with two continuous derivatives,
we can define a new random field on M given by f (x)= F(ξ1(x), . . . , ξk(x)), for
each x ∈M .

Using the above Euler characteristic heuristic for approximating the P -value for
appropriately large values of u, and Theorem 15.9.5 of [1], we have

P
(
max
x∈M f (x)≥ u

)
≈ E(χ(Au(f ;M)))

(1.2)

=
m∑

j=0

(2π)−j/2Lj (M)Mγk

j (F−1[u,∞)),

where Mγk

j (F−1[u,∞)) for j = 0,1, . . . are the GMFs of the set F−1[u,∞)⊂Rk

that appear in (1.1), and Lj (M) for j = 0,1, . . . ,m are the Lipschitz–Killing cur-
vatures (LKCs) of the manifold M defined with respect to the Riemannian metric
given by g(X,Y )=E(Xξ1Yξ1), where X and Y are two vector fields on M , with
Xξ1 and Yξ1 representing the directional derivatives of ξ1.

1.2. Curvature measures. The LKCs for a large class of subsets of any finite
dimensional Euclidean space can be defined via a Euclidean tube formula. In par-
ticular, let M ⊂ Rk be an m-dimensional set with convex support cone, then writ-
ing λk as the standard k-dimensional Euclidean measure, Bk as the k-dimensional
unit ball centered at origin, for small enough values of ρ, we have

λk(M + ρBk)=
m∑

j=0

π(n−j)/2

�((n− j)/2+ 1)
ρn−j Lj (M)

(1.3)

=
m∑

j=0

ρn−j

(n− j)!θn−j (M),

where Lj (M) is the j th LKC of the set M with respect to the usual Euclidean
metric, and θj (M)’s are called the Minkowski functionals of the set M .

Geometrically, Lk−1(M) for a smooth (k−1)-dimensional manifold embedded
in Rl is the (k − 1)-dimensional Lebesgue measure of the set M , and the other
LKCs can be defined as

Lj (M)= 1

sk−j (k − 1− j)!
∫
∂M

Pk−1−j (λ1(x), . . . , λk−1(x))Hk−1(dx),
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where sj is the surface area of a unit ball in Rj , (λ1(x), . . . , λk−1(x)) are the
principal curvatures at x ∈ ∂M , and Pi(λ1(x), . . . , λk−1(x)) is the ith symmetric
polynomial in (k−1) indices. In the case when the set M is not unit codimensional,
then the definition involves another integral over the normal bundle.

The (generalized) curvature measures defined this way are therefore signed
measures induced by the Lebesgue measure of the ambient space. By replacing
the Lebesgue measure in (1.3) with an appropriate Gaussian measure, we can de-
fine a parallel Gaussian theory. The GMFs in (1.1) play the role of Minkowski
functionals in the Gaussian theory. In particular,

Mγk

j (M)
�= (2π)−k/2

j−1∑
m=0

(
j − 1

m

)
�m+1

(
M,Hj−1−m(〈η, x〉)e−|x|2/2)

,(1.4)

where �m+1(M,Hj−1−m(〈η, x〉)e−|x|2/2) is the integral of Hj−1−m(〈η, x〉)e−|x|2/2

with respect to the (m+1)th generalized Minkowski curvature measure, and Hk(y)

is the kth Hermite polynomial in y (cf. [1]).

1.3. Our object of study: A richer class of random fields. In this paper we
intend to extend (1.2) to a larger class of random fields f , which can be ex-
pressed using F :C0[0,1] → R, where C0[0,1] is the space of continuous func-
tions f : [0,1] → R, such that f (0) = 0, also referred to as the classical Wiener
space, when equipped with the standard Wiener measure on this sample space.
In other words, we shall consider random fields which can be expressed as some
smooth Wiener functional. For instance, let us start with a smooth manifold M

together with a Gaussian field {Bx(t) : t ∈ R+, x ∈M} defined on it, such that its
covariance function is given by

E(Bx(t)By(s))= s ∧ tC(x, y),(1.5)

where C :M ×M → R is assumed to be a smooth function, with more details
appearing in Section 6, where we actually prove an extension of (1.2). This infinite
dimensional random field can be used to construct many more random fields on M ,
for instance, the following:

EXAMPLE 1.1 (Stochastic integrals). Let V : R→ R be a smooth function,
and consider the following random field,

f (x)=
∫ 1

0
V (Bx(s)) dBx(s)= F(Bx(·)),(1.6)

where F :C0→R is the Wiener functional

F(ω)=
(∫ 1

0
V (B(t)) dB(t)

)
(ω).
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This is clearly an extension of the random fields in (1.2). As a consequence of our
extension of the Gaussian Minkowski functionals to smooth Wiener functionals,
we prove that, under suitable smoothness conditions on V ,

E(χ(Au(f ;M)))=
dim(M)∑

j=0

(2π)−j/2Lj (M)Mμ
j (F−1[u,+∞)).

Our smoothness conditions are rather strong in this paper: we assume V is C4

with essentially polynomial growth. We need such strict assumptions to ensure
regularity of various conditional densities derived from the random field (1.6) and
its first two derivatives at a point x ∈M .

A quick look at (1.2) reveals that in order to extend it to the case when
F :C0[0,1] → R, we must be able to define GMFs for infinite dimensional sub-
sets of C0[0,1], as F−1[u,∞) ⊂ C0[0,1]. In the present form, that is, (1.4), the
definition of GMFs appears to depend on the summability of the principal cur-
vatures of the set ∂(F−1[u,∞)) at each point x ∈ ∂(F−1[u,∞)) as well as the
integrability of these sums. In infinite dimensions this summability requirement is
equivalent to an operator being trace class. This is quite a strong requirement, and
may be very hard to check. Indeed, the natural summability requirements of oper-
ators in the natural infinite dimensional calculus on C0, the Malliavin calculus, is
the Hilbert–Schmidt class rather than the trace class.

Therefore, we shall first modify the definition of GMFs, from (1.4) to one which
is more amenable for an extension to the infinite dimensional case. This will be
done in Section 2.

After setting up the notation and some technical background on the Wiener
space in Section 3, the all important step, that of extending the appropriate defini-
tion of GMFs to the case of codimension one, smooth subsets of the Wiener space,
is accomplished in Section 5. The characterization of GMFs in the infinite dimen-
sional case will be done precisely the same way as in the case of finite dimensions,
where, as noted earlier, the GMFs are identified as the coefficients appearing in the
Gaussian tube formula.

Finally, in Section 6, we use the infinite dimensional extension of the GMFs to
obtain an extension of (1.2), for random fields which can be expressed as stochastic
integrals driven by Bx(·) as defined in Example 1.1, and discuss other possible
implications of the extension. Most of our methods in Section 6 are invariant to the
formulation of the random field as a stochastic integral. Hence, should a random
field satisfy all the regularity conditions appearing in Section 6, we expect our
methods to work, modulo a few changes.

2. Preliminaries I: The finite dimensional theory. In this section we shall
use the standard finite dimensional theory of transformation of measure for Gaus-
sian spaces to modify the definition (1.4) of the GMFs to one which is more suited
to extension to the infinite dimensional case.
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We begin by recalling some well-known facts about analysis on finite dimen-
sional Gaussian spaces from Section 6.6.3 of Chapter II of [4], and Chapter 3
of [15]. Let γk be the Gaussian measure on Rk given by (2π)−k/2e−‖x‖2/2 dx, and
T a mapping from Rk into itself, given by T (x) = x + u(x), where u : Rk → Rk

is Sobolev differentiable and |u(x)− u(y)| ≤ c(ρ)|x − y| for any x, y ∈ Rk with
|x − y| < ρ. Then, the Radon–Nikodym derivative of γk ◦ T with respect to the
measure γk is given by

dγk ◦ T

dγk

= |det2(IRk +∇u)| exp
(
−δ(u)− 1

2
‖u‖2

)
,(2.1)

where ‖ · ‖ is the usual Euclidean norm, and det2 is the generalized Carleman–
Fredholm determinant.

Subsequently, for a smooth, unit codimensional, convex set A⊂ Rk , let us de-
fine the tube Tube(A,ρ) of width ρ around the set A as the set (A ⊕ B(0, ρ)),
where B(0, ρ) is the k-dimensional ball of radius ρ centered at the origin. Next,
we shall define a signed distance function given by

d∂A(x)=
⎧⎨
⎩

inf
y∈∂A

‖y − x‖, for x /∈A,

− inf
y∈∂A

‖y − x‖, for x ∈ Int(A),

where Int(A) denotes the interior of the set A.
Applying the co-area formula, and using the fact that ‖∇d∂A‖ = 1, we get

γk(Tube(A,ρ))= γk(A)+
∫ ρ

0

∫
d−1
A (r)

exp(−‖x‖2/2)

(2π)n/2 dx dr.(2.2)

For r < ρ fixed, we can now use equation (2.1) with any suitable transformation
Tr : Rk → Rk that agrees with x �→ x + rηx on {y :dA(y) ∈ (−ν,ρ)} for some
small positive ν. Any such transformation maps Tube(d−1

A (r), ε) to Tube(∂A, ε)

for r < ρ and any ε < ν. Two further applications of the co-area formula yield∫
d−1
A (r)

exp(−‖x‖2/2)

(2π)n/2 dx

=
∫
∂A
|det2(IRk + r∇2 d∂A)| exp

(
−rδ(∇d∂A)− 1

2
r2

)
exp(−‖x‖2/2)

(2π)n/2 dx.

Therefore, equation (2.2) simplifies to

γk(Tube(A,ρ))

= γk(A)+
∫ ρ

0

∫
∂A
|det2(IRk + r∇2 d∂A)| exp

(
−rδ(∇d∂A)− 1

2
r2

)
(2.3)

× exp(−‖x‖2/2)

(2π)n/2 dx dr.
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Using a yet-to-be justified Taylor series expansion of the integrand appearing in
the above integral, we can finally rewrite the GMFs as

Mγk

j+1(A)=
∫
∂A

dj

dρj

(
det2(I + ρ∇η) exp

(−ρδ(η)− ρ2/2
))∣∣∣∣

ρ=0
da∂A(x),(2.4)

where η = ∇d∂A is the outward unit normal vector field to the set ∂A, and da∂A

is the surface measure of the set ∂A. Note that in the above expression we have
removed the modulus around the det2 part, which can be justified by taking rea-
sonably small values of ρ. This new definition of GMFs involves terms which have
obvious extensions in the infinite dimensional case.

3. Preliminaries II: The infinite dimensional theory. In this section we re-
call some established concepts in Malliavin calculus which we shall need in later
sections. We begin with an abstract Wiener space (X,H,μ), where H , equipped
with the inner product 〈·, ·〉H , is a separable Hilbert space, called the Cameron–
Martin space, X is a Banach space into which H is injected continuously and
densely, and, finally, μ is the standard cylindrical Gaussian measure on H . For
the sake of simplicity, one can appeal to the classical case when we have H as
the space of real-valued, absolutely continuous functions on [0,1] with L2([0,1])
derivatives, which is continuously embedded in X = C0([0,1]) the space of real-
valued continuous functions f on [0,1], such that f (0)= 0.

Sobolev spaces on Wiener space
Following the notation used in [4, 5, 16], Sobolev spaces D

p
α (X;E) for p > 1

and α > 0 are defined as the class of E -valued functions f ∈ Lp(X;E) such that

‖f ‖p,α
�= ‖(I −L)α/2f ‖Lp(X;E) <∞,

where L is the Ornstein–Uhlenbeck operator defined on the Wiener space. Writ-
ing D as the Gross–Sobolev derivative and δ as its dual under the Wiener measure,
L = −δD. The Sobolev spaces D

p
−α(X;R) for α > 0 are the spaces of distribu-

tions, defined as the dual of D
q
α(X;R), where, as usual, p−1+ q−1 = 1. Through-

out this paper, whenever appropriate, we will adopt this convention.
The space of infinitely integrable, α-smooth Wiener functionals is given by

D∞−α (X;R)
�= ⋂

1<p<∞
Dp

α (X;R).

Consequently, let us define the analogous infinitely integrable random variables as

L∞−(X;R)
�=D∞−0 (X;R). Finally, we shall end this section with another defini-

tion which translates to the regularity of Wiener functionals.

DEFINITION 3.1. For an Rk-valued Wiener functional F = (F1, . . . ,Fk), the
Malliavin covariance (matrix) σF = (〈DFi,DFj 〉H )ij , and the functional F itself,
is called nondegenerate in the sense of Malliavin if (detσF )−1 ∈ L∞−, whenever
detσF is well defined.
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H-Convexity
In order to characterize the class of subsets of the Wiener space for which we

shall define the GMFs, we shall recall the notion of H -convexity.

DEFINITION 3.2. An H -convex functional is defined as a measurable func-
tional F :X→ : R∪ {∞} such that for any h, k ∈H , α ∈ [0,1]

F
(
ω+ αh+ (1− α)k

)≤ αF(ω+ h)+ (1− α)F (ω+ k) a.s.(3.1)

One of the properties of H -convex functionals which will be used in later sec-
tions is that a necessary and sufficient condition for a Wiener functional F ∈ Lp

for some p > 1 to be H -convex is that the corresponding D2F must be a positive
and symmetric Hilbert–Schmidt operator valued distribution on X (cf. [15]).

3.1. Quasi-sure analysis. In this section, most of which is based upon [4, 13],
we shall resolve some technical aspects of defining integrals of Wiener functionals
with respect to measures concentrated on μ-zero sets. Since all Wiener functionals
are de facto defined up to μ-zero sets, thus, in order to be able to define the integral
of Wiener functionals with respect to measures which are concentrated on μ-zero
sets, we must resort to what is referred to as quasi-sure analysis, which in turn
relies on the concept of capacities on the Wiener space.

DEFINITION 3.3. Let 1 < p <∞ and α > 0. For an open set O of X, we
define its (p,α)-capacity C

p
α (O) by

Cp
α (O)= inf{‖U‖p,α :U ∈Dp

α (X;R),U ≥ 1 μ-a.e. on O}.
For each subset of A of X, we define its (p,α)-capacity C

p
α by

Cp
α (A)= inf{Cp

α (O) : O is open and O ⊃A}.
These capacities are finer scales to estimate the size of sets in X than μ. In

particular, a set of (p,α)-capacity zero is always a μ-zero set, but the converse is
not true in general.

A property π is said to be true (p,α)-quasi-everywhere (q.e.) if

Cp
α (π is not satisfied)= 0.

One of the most crucial steps in obtaining the co-area formula in the Wiener
space, which in turn is a necessary step to obtain the tube-formula in the Wiener
space, is to be able to extend ordinary Wiener functionals to sets of μ-zero mea-
sure. Quasi-sure analysis lets us do precisely that and much more.

DEFINITION 3.4. A measurable functional F is said to have a (p,α)-
redefinition F ∗, satisfying F ∗ = F μ-almost surely, and F ∗ is (p,α)-quasi-
continuous, if for all ε > 0, there exists an open set Oε of X, such that C

p
α (Oε) < ε

and the restriction of F ∗ to the complement set Oc
ε is continuous under the norm

of uniform convergence on X.
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It can easily be seen that two redefinitions of the same functional differ only
on a set of (p,α)-capacity zero, thereby implying the uniqueness of a (p,α)-
redefinition up to (p,α)-capacity zero sets. According to Theorem 2.3.3 of [4],
every functional F ∈D

p
α (X;Rk) has a (p,α)-quasi-continuous redefinition, which

can be taken to be in the first Baire class.
In what follows in the remainder of this section, we recall some facts from

the Malliavin calculus that will be helpful in our description of a tube below. If
α > 1, one can make a statement similar to Theorem 2.3.3 of [4] related to the
differentiability of F ∈ D

p
α (X;R), essentially a form of Taylor’s theorem with

remainder.

LEMMA 3.5. Suppose F ∈D
p
α (X;R), α > 1. Then, for each h ∈H

1

ε

(
F(x + εh)− F(x)

)− 〈DF(x),h〉H
D

p1
α−1(X;R)−→ 0

for any p1 < p.

PROOF. Define

Xn,h = n
(
F(x + h/n)− F(x)

) ∈D
p1
α−1

=�α−1Yn,h, Yn,h ∈ Lp1,

where �= (I −L)−1/2 is the inverse of the Cauchy operator [4]. For each h ∈H ,
Xn,h converges in Lp1 , so the Kree–Meyer inequalities imply that Yn,h also con-
verges in Lp1 . A second application of the Kree–Meyer inequalities implies that

‖Yn,h − Ym,h‖Lp ≈ ‖Xn,h −Xm,h‖Dp1
α−1

.

Or, Xn,h is Cauchy in D
p1
α−1, hence, its limit 〈DF(x),h〉H ∈D

p1
α−1. �

Hence, by the Borel–Cantelli property for the capacities C
p1
α (Corollary IV.1.2.4

of [4]), for each h ∈H we can extract a sequence εn(h) such that

C
p1
α−1

({
x : lim

n→∞
1

εn(h)

(
F

(
x + εn(h)h

)− F(x)
)= 〈DF(x),h〉

}c)
= 0.(3.2)

COROLLARY 3.6. Suppose F ∈ D
p
α (X;R), α > 1 is nondegenerate and

H∞ ⊂H is a countable dense subset. Then,

C
p1
α−1

({
x :DF(x) �= 0 ∀h ∈H∞ ∃εn(h)→ 0 such that

(3.3)

lim
n→∞

(
1

εn(h)

(
F ∗

(
x + εn(h)h

)− F ∗(x)
)− 〈DF ∗(x), h〉H

)
= 0

}c)
= 0.
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PROOF. The only thing that needs verifying beyond what was pointed out
above is that C

p1
α−1({x :DF(x) �= 0}c)= 0. This follows from the Tchebycheff in-

equality (Theorem IV.2.2 of [4]) applied to ‖DF‖H ∈D
p1
α−1 and a Borel–Cantelli

argument. �

There is an obvious higher order Taylor expansion of F ∗(x + εn(h)h), which
we will use upto the second order term in our description of the tube below. If we
are willing to sacrifice some moments, we can further specify in Corollary 3.6 that
the existence of the partial derivatives of F as a limit at x implies their existence
as limits at x + h for all h ∈H∞,‖h‖ ≤K for some fixed, large K .

COROLLARY 3.7. Suppose F ∈D
p
α (X;R) and H∞ ⊂H is a countable dense

subset. Then, for all p1 < p

C
p1
α−1

({
x :∀h1, h2 ∈H∞,‖h1‖ ≤K ∃εn(h1, h2)→ 0 such that

lim
n→∞

(
1

εn(h1, h2)

(
F ∗

(
x + h1 + εn(h1, h2)h2

)− F ∗(x + h1)
)

(3.4)

− 〈DF ∗(x + h1), h2〉H
)
= 0

})
= 0.

PROOF. This follows from the fact that the translation operator f (·) Th�→ f (· +
h) is a continuous map from D

p
α to D

p1
α for any p1 < p which follows directly

from the Cameron–Martin theorem. �

REMARK 3.8. Finally, we note that we can, by choosing H∞ appropriately,
choose the set, say, A in Corollary 3.7, in such a way that y ∈ A and y + εh ∈ A

for all h ∈H∞ and for all ε in some countable dense subset of R.

4. Key ingredients for a tube formula. In this section we shall adopt a step-
wise approach to reach our first goal, that of obtaining a (Gaussian) volume of the
tube formula, for reasonably smooth subsets of the Wiener space. The three main
steps are as follows: (i) characterizing subsets of the Wiener space via Wiener
functionals, for which tubes, and thus GMFs, are well defined; (ii) assurance that
the surface measures are well defined for the sets defined via the Wiener func-
tionals; and finally, (iii) a change of measure formula for surface area measures
corresponding to the lower dimensional surfaces of the Wiener space.

We shall first characterize the functionals for which the surfaces measures are
well defined, subsequently, we shall prove a change of measure formula for the
surfaces defined via such functionals. Finally, we shall define the class of sets for
which the tube formula and GMFs are well defined by imposing more regularity
conditions on the Wiener functionals.
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4.1. The Wiener surface measures. Let us start with a reasonably smooth, Rk

valued Wiener functional F = (F1, . . . ,Fk). For u= (u1, . . . , uk) ∈ Rk , we write
Zu =⋂k

i=1 F−1
i (ui). The sets {Zu}u∈Rk define a foliation of hypersurfaces imbed-

ded in X.
The surface measures of these foliations Zu are closely related to the density pF

of the push-forward measure F∗(μ) on Rk with respect to the Lebesgue measure
on Rk .

Heuristically, writing δu for the Dirac delta at u ∈ Rk , the density pF can be
defined as

pF (u)=E(δu ◦ F)(4.1)

as long as we can make sense of the composition δu ◦F . For a smooth, real-valued
Wiener functional G, we also expect the following relation to hold:

E[Gδu ◦ F ] =EF=u(G)× pF (u),(4.2)

where EF=u(G) is the conditional expectation of G given F = u, assuming the
composition δu ◦ F is well defined.

Making this heuristic calculation rigorous leads us back to the Sobolev spaces of
Section 3, where the object (δu ◦ F) is related to a generalized Wiener functional,
that is, an element of some D

p
−α for p > 1, α > 0 through the pairing

〈G,δu ◦ F 〉Dq
α,D

p
−α
=E[Gδu ◦ F ],

representing conditional expectation given F = u for any G ∈D
q
α . What is left to

determine is, for a given F , which Sobolev spaces contain δu ◦ F .
The following theorem, the proof of which can be found in [16], provides the

answer, taking us one step closer to defining the surface measure corresponding to
the conditional expectation.

THEOREM 4.1. Let F be an Rk-valued, nondegenerate Wiener functional
such that F ∈ D∞−1+ε (X;Rk) for ε > 0, and the density pF of the law of F is
bounded. Also, let 0≤ β < min(ε,α) and 1 < p <∞ satisfy

1 < p <
k

max{(k + β −min(α, ε)),0} ,(4.3)

and, finally, O = {z ∈ Rk :pF (z) > 0}. Then for G ∈D
q
α(X;R), with 1

p
+ 1

q
= 1,

we have

ζ(u)=E(Gδu ◦ F) ∈W
q
β (O),(4.4)

where W
q
β (O) is the Sobolev space of real-valued, weak β-differentiable functions

which are q-integrable.
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Recall that for F = (F1, . . . ,Fk) ∈D∞−1+ε , the density pF ∈W∞−ε (O) (cf. [5]).
Now using the differentiability of the density pF together with equations (4.2),
(4.4) and the algebraic structure of the Sobolev spaces, we have EF (G) ∈W

q
β (O),

for any G ∈D
q
α(X;R), where (EF (G))(u)=EF=u(G).

That is, for each F ∈ D∞−1+ε (X;R), there exists a continuous mapping EF :
D

q
α(X;R) → W

q
β (O). This, in turn, induces a dual map (EF )∗ :Wp

−β(O) →
D

p
−α(X;R) defined via the dual relationship

〈EF (G), v〉Wq
β (O),W

p
−β(O) = 〈G,(EF )∗v〉Dq

α(X;R),D
p
−α(X;R).(4.5)

Informally, this map, sometimes referred to as the Watanabe map (see Section 6 of
Chapter III of [4]), is just composition, that is, (EF )∗v = v ◦ F.

The object (EF )∗δu is almost the surface measure needed in (2.4), but it is just
a generalized Wiener functional, that is, distribution on X, at this point. If we are
to justify our Taylor series expansion via a dominated convergence argument, we
need to know that it has a representation as a measure on X.

Clearly, for positive G ∈D
q
α(X;R), we shall have

〈G,(EF )∗δu〉Dq
α(X;R),D

p
−α(X;R) =EF=u(G) > 0.

Therefore, (EF )∗δu ∈ D
p
−α(X;R) defines a positive generalized Wiener func-

tional. Next, Theorem 4.3 of [12] together with the conditions stated in Theo-
rem 4.1 implies that for each u ∈ O, there exists a finite positive Borel measure
νF,u defined on Borel subsets of the Wiener space X, supported on F−1(u), such
that

EF=u(G)=
∫
X

G∗(x)νF,u(dx)

for all G ∈D
q
α(X;R), with G∗ its (q,α)-quasi continuous redefinition.

The measure νF,u defined is a probability measure on the set F−1(u). Using
Airault and Malliavin’s arguments in [2], an appropriate area measure daZu , cor-
responding to the measure νF,u, can be defined as∫

X
G∗(x) daZu(x)

�= pF (u)

∫
G∗(x)(det(σF ))1/2νF,u(dx),(4.6)

where σF is the Malliavin covariance matrix. Note that the surface measure de-
pends only on the geometry of the set Zu, whereas the conditional probability
measure depends on the functional from which the set is derived, thus the super-
scripts on the respective measures. We are now in a position to justify at least part
of (2.4).

THEOREM 4.2. Let F be a R-valued nondegenerate Wiener functional such
that F ∈D∞−2+ε (X;Rk) and the density pF of the law of F is bounded. Define the
unit normal vector field η=DF/‖DF‖H . Furthermore, suppose that:
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• E(exp(ρδ(η))) <∞ for ρ in some neighborhood of 0;
• E(exp(ρ2‖Dη‖2

⊗2H
)) <∞ for ρ in some neighborhood of 0.

Then, for 0≤ ρ < ρc for some nonzero critical radius∫ ρ

0

∫
F−1(u)

det2(IH + rDη) exp
(
−rδ(η)− 1

2
r2

)
daZu dr

(4.7)

=∑
j≥1

ρj

j !
∫
F−1(u)

dj−1

drj−1

(
det2(IH + rDη) exp

(−rδ(η)− r2/2
))∣∣∣∣

r=0
daZu .

Before proving the above theorem, we shall state a few results concerning the
regularity of functions of smooth Wiener functionals.

PROPOSITION 4.3. Let α > 0 and U ∈D∞−α (X;R).

• If exp(U) ∈ Lp(X;R), then exp(U) ∈D
p′
α′ where p′ = p2(α − α′) for α′ < α.

• If U > 0 μ almost surely and 1/U ∈ Lp , then 1/U ∈D
p′
α′ where p′ = p2(α−α′)

for α′ < α.

We shall skip the proofs of the above, as these can be proved by replicating the
proofs of Theorems 1.4 and 1.5 of Watanabe [16].

PROOF OF THEOREM 4.2. This is just dominated convergence combined with
the nondegeneracy of F as well as the following bound (cf. Theorem 9.2 of [11]):

|det2(I +A)| ≤ exp(C‖A‖2
⊗2H

)

for some fixed C > 0.
Note that while using the dominated convergence, we are inherently assuming

the well definedness of integrals of exp(ρδ(η)) and exp(ρ2‖Dη‖2
⊗2H

) with respect

to the surface measure daZu , which requires

exp(ρδ(η)) ∈Dq
α(X;R) such that q > 1/(min{α,1+ ε}),(4.8)

exp(ρ2‖Dη‖2
⊗2H

) ∈Dq
α(X;R) such that q > 1/(min{α,1+ ε}).(4.9)

Now, using Theorem 1.5 of [16], we have η ∈D∞−1+ε′ for all ε′ < ε. Subsequently,
using the above proposition together with the assumption involving the existence
of exponential moments, we have exp(ρδ(η)), exp(ρ2‖Dη‖2

⊗2H
) ∈ D

p

ε′′(X;R),

such that p = (
ρc

ρ
)2(ε′ − ε′′), where ε′′ < ε′. In order to satisfy (4.8) and (4.9),

we must choose ε′ and ε′′ such that ρ < ρ2
c ε′′(ε′ − ε′′). �

REMARK 4.4. Note that Theorem 4.2 does not say that the Gaussian measure
of the tube is given by the power series in (4.7). Rather, it gives conditions on the
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sets Zu = F−1(u) for which the coefficients in the power series are well defined.
These conditions allow us to define GMFs for level sets of functions that are not
necessarily H -convex. However, for such functions we will lose the interpretation
of the power series in (4.7) as an expansion for the Gaussian measure of the tube.
This is similar to the distinction between the formal and exact versions of the
Weyl/Steiner tube formulae [14].

4.2. Change of measure formula: A Ramer type formula for surface measures.
After assuring ourselves of the existence of the surface Wiener measures, we shall
now move onto proving a change of measure formula for the surface measures
given by equation (4.6).

To begin with, let F ∈D∞−1+ε (X;Rk) so that we can define the surface measure
using Theorem 4.1. In order to obtain a change of measure formula for the lower-
dimensional subspaces of the Wiener space, we shall start with the standard change
of measure formula on the Wiener space X. Let us define a mapping Tη :X→X

given by Tη(x)= x+ηx , for some smooth η :X→H . Moreover, let U be an open
subset of X, and:

(1) Tη is a homeomorphism of U onto an open subset of X,
(2) η is an H -valued C1 map and its H derivative at each x ∈ U is a Hilbert–

Schimdt operator on H .

This transformation induces two types of changes on the initial measure μ defined
on X. These two induced measures can be expressed as

P(A)= μ(T −1
η (A))= T ∗η μ(A),

Q(A)= μ(Tη(A))= (T −1
η )∗μ(A)

for A a Borel set of X.
Ramer’s formula for change of measure on X, induced by a transformation de-

fined on X and satisfying the above conditions, gives an expression for the Radon–
Nikodym derivative of μ ◦ Tη with respect to μ and can be stated as follows:

dQ

dμ
= ∣∣det2

(
IH +∇η(x)

)∣∣ exp
(
−δ(η)− 1

2
‖η(x)‖2

H

)
�= Yη(x),(4.10)

where δ(η) denotes the Malliavin divergence of an H -valued vector field η in X.
The proof of this result can be found in [7, 15]. It is to be noted here that, for
appropriately smooth transformations, a similar result for d(μ ◦ T −1

η )/dμ can be
obtained by using the relationship between d(μ ◦ Tη)/dμ and d(μ ◦ T −1

η )/dμ

given by

dμ ◦ Tη

dμ
(x)=

(
dμ ◦ T −1

η

dμ
(Tηx)

)−1

.

The following theorem is the first step toward obtaining similar formulae for
change of measure on lower-dimensional subsets of the Wiener space.
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THEOREM 4.5. Let F ∈ D∞−1+ε (X;Rk) satisfy the conditions from Theo-
rem 4.1, and α,β and p be as given in (4.3). Then, there exists a sequence of
probability measures {νF,u

n }n≥1 defined on Borel subsets of X such that the mea-
sures {νF,u

n }n≥1 are absolutely continuous with respect to the Wiener measure μ

and the sequence {νF,u
n }n≥1 converges weakly to νF,u.

PROOF. Let us choose a sequence of positive distributions on O given by
{vn}n≥1 ⊂ W

p
−β(O), such that it converges to δu weakly in W

p
−β(O) and that∫

vn(ξ) dξ = 1 for all n≥ 1. Then define the measures νF,u
n as∫

G(x)νF,u
n (dx)= 1

pF (u)

∫
G(x)vn(F (x))μ(dx)

for all measurable G on (X,μ). In view of (4.5), we can clearly identify the re-
striction of the measures νF,u

n to D
q
α(X;R) with (EF )∗vn. Now, by construction,

{(EF )∗vn}n≥1 converges to (EF )∗δu in D
p
−α(X;R) and their limit is a nonnega-

tive generalized Wiener functional. Therefore, using Lemma 4.1 of [12], we see
that the measures νF,u

n converge weakly to νF,u. �

Thus, the surface (probability) measure of Zu, or the conditional probability
measure corresponding to {F = u}, for any u ∈O can also be defined as∫

G∗(x)νF,u(dx)= lim
n

∫
G∗(x)νF,u

n (dx)

(4.11)

= lim
n

1

pF (u)

∫
G∗(x)vn(F (x))μ(dx)

for the appropriate class of Wiener functionals G, which, as noted earlier, depends
on the regularity of F .

Let us now define a mapping Tρ,η :X→ X given by Tρ,η(x) = x + ρηx , for
some η ∈D∞−1+ε (X;H). We shall study the change that the mapping Tρ,η induces
on the surface measure of F−1(u). Note that

Tρ,η(F
−1(u))= {x + ρηx :x ∈ F−1(u)}.

Set Fρ,η = F ◦ T −1
ρ,η ∈D∞−1+ε , so that

F−1
ρ,η(u)= Tρ,η(F

−1(u))
�=Zη,ρ

u .

Using the above theorem and the relationship (4.6), the area measure for Z
η,ρ
u can

now be identified as∫
Z

η,ρ
u

G∗ daZ
η,ρ
u = lim

n

∫
X

G∗(y)[detσFρ,η (y)]1/2vn(Fρ,η(y))μ(dy).
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Now using the transformation y = Tρ,η(x) and replacing the function G∗(·) by
G∗(T −1

ρ,η(·)) and, finally, using the standard Ramer’s formula from equation (4.10),
we get∫

Z
η,ρ
u

G∗(T −1
ρ,ηy) daZ

η,ρ
u

= lim
n

∫
X

G∗(x)[detσFρ,η (Tρ,ηx)]1/2vn(Fρ,η(Tρ,ηx))Y η
ρ (x)μ(dx)(4.12)

= lim
n

∫
X

G∗(x)[detσFρ,η (Tρ,ηx)]1/2vn(F (x))Y η
ρ (x)μ(dx),

where Yρ,η(x) is the Radon–Nikodym derivative of the measure μ ◦ Tρ,η with
respect to the measure μ and, as a result of (4.10), can be expressed as

Yη
ρ (x)= ∣∣det2

(
IH + ρ∇η(x)

)∣∣ exp
(−ρδ(η)− 1

2ρ2‖η‖2
H

)
.(4.13)

Using the definitions of Fρ , the surface (probability and area) measures and,
finally, rearranging the terms, we can rewrite (4.12) as∫

Z
η,ρ
u

G∗(T −1
ρ,ηy) daZ

η,ρ
u

= lim
n

∫
X

G∗(x)[detσFρ,η (Tρ,ηx)]1/2Yη
ρ (x)vn(F (x))μ(dx)

= lim
n

pF (u)

∫
X

G∗(x)

(detσFρ (Tρ,ηx)

detσF (x)

)1/2

Yη
ρ (x)[detσF (x)]1/2νF,u

n (dx)(4.14)

= pF (u)

∫
Zu

G∗(x)

(detσFρ,η (Tρ,ηx)

detσF (x)

)1/2

Yη
ρ (x)[detσF (x)]1/2νF,u(dx)

=
∫
Zu

G∗(x)

(detσFρ,η (Tρ,ηx)

detσF (x)

)1/2

Yη
ρ (x) daZu,

which proves the following theorem.

THEOREM 4.6. Let F ∈D∞−1+ε satisfy the conditions of Theorem 4.1 and η ∈
D∞−1+ε (X;H) be such that:

• (I + ρη) is one-to-one and onto when restricted to a domain Bη with comple-
ment having C

p
ε capacity 0 for all p;

• (IH + ρ∇η) is an invertible operator on H , when restricted to Bη.

Then,

daZu ◦ Tρ,η

daZu
(x)=

(detσFρ,η (Tρ,ηx)

detσF (x)

)1/2

Yη
ρ (x)

(4.15)
�= JZu

ρ,η.
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REMARK 4.7. (1) In order to better understand the above theorem, we shall
now try to simplify the expression involved in (4.15), for the simple case where
F = δ(h), for some h ∈ H , and η = ∇F = h, is a constant vector field. Clearly,
∇η≡ 0, implying DTρ =DT −1

ρ = IH . Then the whole expression boils down to

JZu
ρ,η = Yη

ρ (x)

= exp
(−ρδ(η)− ρ2‖η‖2

H/2
)
.

(2) The above expression in (4.15) can be rewritten as

JZu
ρ,η =

(det(〈DT −1
ρ,η(x)∇Fi(x),DT −1

ρ,η(x)∇Fj(x)〉H )ij

det(〈∇Fi(x),∇Fj(x)〉H )ij

)1/2

Yη
ρ (x),

where DT −1
ρ is the operator given by (IH + ρ∇η)−1.

(3) From the definition of Y
η
ρ (x), note that the expression in (4.15) is well de-

fined as long as ∇η is a Hilbert–Schmidt class-valued operator acting on H ×H .
Next, in order to be able to use the formula in (4.15), we need JZu

ρ,η to be integrable
with respect to the surface measure daZu .

(4) Note that the submanifold Zu and the measure daZu are not dependent
on F . Therefore, to make the above calculation simpler, we can choose an ap-
propriate functional F ′, such that {F ′(x) = v} = Zu, for some v ∈ Rk , and that
{∇F ′i } form an orthonormal basis of the normal space of Zu.

(5) Finally, we note that aZu ◦ Tρ,η is defined only up to capacity C
p
ε sets for

any p. That is, C
p
ε (A) = 0 implies aZu ◦ Tρ,η(A) = 0. Hence, the image of the

discontinuities of Zu under Tρ,η has C
p
ε capacity 0.

4.3. The set and its tube. Finally, we shall define the class of sets for which
we shall prove a tube formula, and, therefore, define the GMFs. In our bid to keep
the calculations much easier to handle, we shall restrict our attention to the unit
codimensional case.

Continuing the way we have been defining subsets of the Wiener space
via Wiener functionals, we shall start with a nondegenerate Wiener functional
F ∈ D∞−2+ε (X;R), such that F is an H -convex functional. We shall write Au =
F−1(−∞,u] for u ∈O. This is an H -convex set and its boundary ∂Au is a smooth
unit codimensional submanifold of the Wiener space.

For each x ∈Au define the support cone

Sx(Au)= {h ∈H : for any δ > 0, ∃0 < ε < δ such that x + εh ∈Au}
and its dual, the (convex) normal cone

Nx(Au)= {h ∈H : 〈h,h′〉 ≤ 0 ∀h′ ∈ Sx(Au)},
where Sx(Au) is the closure of Sx(Au) in H .
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The following lemmas describe some of the properties of the tube around Au.
For clarity we state the results only for the case of unit codimension, though similar
statements hold for k-codimension.

Define the smooth points of F ,

Sm(F )
�=

{
x :∇F(x) �= 0 ∀h1, h2 ∈H∞ ∃εn(h1, h2),↓ 0

(4.16)
such that lim

n→∞T2(F, x,h1, h2, εn)= 0
}
,

where

T2(F, x,h1, h2, ε)= F(x + h1)+ ε〈∇F(x + h1), h2〉H
+ ε2〈∇2F(x + h1), h2⊗ h2〉H⊗H − F(x + h1 + εh2)

is the difference between the second-order Taylor expansion of F(x + h1 + εh2)

evaluated at x + h1 and its true value.

LEMMA 4.8. Suppose F ∈D∞−2+ε (X;R). Then, C
p
ε (Sm(F )c)= 0 ∀p > 1. At

every x ∈ ∂Au ∩ Sm(F ),

Nx(Au)= {c∇F(x) : c ≥ 0}.(4.17)

PROOF. The first conclusion follows essentially directly from Corollary 3.6.
Suppose now that x ∈ Sm(F ). Then, for any h ⊥ ∇F(x),‖h‖ ≤ K we can find
a sequence H∞ � hn

n→∞→ h satisfying 〈hn,∇F(x)〉H < −1/n. Because the 2nd
order Taylor expansion holds at x, we see that hn ∈ Sx(Au) for all n. Hence, h ∈
Sx(Au). This is enough to conclude that any η ∈ Nx(Au) is parallel to ∇F(x). It
is not hard to see that it must therefore be a positive multiple of ∇F(x). �

LEMMA 4.9. Suppose F ∈ D∞−2+ε is H -convex. Then, for each r > 0, the re-
striction of

x �→ x + r∇F(x)/‖∇F(x)‖ �= x + rηx

to Sm(F )∩ ∂Au is one-to-one in the sense that for each x ∈ Sm(F )∩ ∂Au

{y ∈ Sm(F )∩ ∂Au :‖y − (x + rηx)‖H ≤ r} =∅.

PROOF. Given x ∈ Sm(F ) ∩ ∂Au, suppose such a y exists with ‖x + rηx −
y‖ < r . As y is a smooth point of F , we can find some h ∈ H∞ such that
‖x+ rηx − (y+ h)‖H < r and F(y+ h) < u with F continuous at y+ h. Choose
ν(x, y) ∈ H∞ such that x + ν(x, y) is arbitrarily close to y + h. Then, by con-
tinuity of F on Sm(F ), F(x + ν(x, y)) < u and ‖x + rηx − (x + ν(x, y))‖H =
‖rηx − ν(x, y)‖H < r . Note that this implies 〈ν(x, y), ηx〉H > 0, or, alternatively,
ν(x, y) /∈ Sx(Au).
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Now consider the restriction of F to the line segment joining [x, x + ν(x, y)],
denoted by

f (t)= F
(
x + t

(
x − ν(x, y)

))
, 0≤ t ≤ 1,

which, by Remark 3.8, is continuous, twice-differentiable and convex on a dense
subset of t ∈ [0,1], hence, we can find a continuous, twice-differentiable convex
function f̃ on all of [0,1] that agrees with f on this dense subset.

There are two possibilities, the first being that f̃ (t) ≤ u for all t ∈ [0,1]. This
would imply η(x, y) ∈ Sx(Au), contradicting our previous observation. The sec-
ond alternative is that there exists t such that f̃ (t) > u. However, f̃ (0)= u, f̃ (1) <

u and this would violate convexity. By contradiction, there can be no such y. This
proves the assertion that there are no points y of distance strictly less than r to
x + rηx . Now, suppose there exists a smooth point y �= x of distance exactly r

from x + rηx . Then, for any δ > 0 it is not hard to show that∥∥y − (
x + (δ + r)ηx

)∥∥
H < δ+ r,

but we just proved that there can be no such y. �

We are now in a position to define the tube

Tube(Au, ρ)= {y ∈X :∃x ∈Au,‖y − x‖H ≤ ρ} = {y ∈X :dH (y,Au)≤ ρ},
where the distance function is defined as

dH (y,Au)= inf
h∈H∞ : y−h∈Au

‖h‖H .(4.18)

The level sets of the distance function are hypersurfaces at distance r ,

∂Ar
u = {y ∈X :dH (y,Au)= r}.(4.19)

Lemma 4.9 asserts that the restriction of x �→ x+rηx to Au∩Sm(F ) is one-to-one.
On the image of Sm(F ), its inverse is easily defined as x+ rηx �→ (x, ηx), and, as
noted in the remarks following Theorem 4.6, the image of ∂Au ∩ Sm(F ) has C

p
ε -

capacity 0. Hence, up to a set of C
p
ε -capacity 0, it is a bijection and Theorem 4.6

can be applied to study the surface measure of ∂Ar
u.

Moreover, the following theorem further corroborates the fact that the change
of measure formula established in Theorem 4.6 is the appropriate result to use in
order to obtain a tube formula, as will be seen later.

THEOREM 4.10. Let C∞−ε (A) = 0, then under hypotheses (H2) and (H3)
of [9], for ε1 < ε,

C∞−ε1

(
A⊕BH(0, r)

)= 0,

where BH(0, r) is a ball in H centered at 0 with radius r .
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Since capacities are continuous from below, it suffices to prove that C∞−ε1
(A⊕

BEn(0, r)) = 0, for each n, whenever C∞−ε (A) = 0, where BEn(0, r) is a ball of
radius r , centered at 0, in the vector space En = span(h1, . . . , hn), where {hi}i≥1 is
the orthonormal basis of H . Also, note that the proof is given for an open subset A

of the Wiener space X, but, using the arguments of [9], we can extend it to general
subsets of the Wiener space.

Before proving the above theorem, we shall, first, obtain some estimates on
functionals derived from the Wiener functionals. Note that

A⊕BEn(0, r)= {(
A+ 〈

s, h(n)〉) : s ∈ BRn(0, r)
}
,

where 〈s, h(n)〉 = ∑n
i=1 sihi . Further, for the later part, we shall denote In ⊂

BRn(0, r) as the set of all rationals in the set BRn(0, r). The following result is,
essentially, an extension of Theorem 2.1 of [8].

THEOREM 4.11. Let f ∈ D
p
α (X) for α ∈ (1/p,1), and Rn � t �→ ξ(t, ·) =

f (·+ 〈t, h(n)〉), such that |t | ≤ T , for some fixed T , that is, t belongs to some large
enough cube. Then for all p′ ∈ (1/α,p) there exists a C = C(p,p′, α, T ), such
that

‖ξ(t)− ξ(s)‖p′ ≤ C‖f ‖p,α|t − s|α.

PROOF. Before we shall start proving the above result, we shall recall that the
estimates of Lemma 4.1 of [8] remain unchanged in our setup. Now we need an
estimate analogous to the one obtained in Lemma 4.2 of [8], for which we recall
the Ramer’s change of measure formula,

∥∥G(· + 〈
t2, h

(n)〉)−G
(· + 〈

t1, h
(n)〉)∥∥

p′

=
∥∥∥∥G

(
· + 1

2

〈
t1 + t2, h

(n)〉+ 1

2

〈
t2 − t1, h

(n)〉)

−G

(
· + 1

2

〈
t1 + t2, h

(n)〉− 1

2

〈
t2 − t1, h

(n)〉)∥∥∥∥
p′

(4.20)

=
(∫

X

∣∣∣∣G
(
x + 1

2

〈
t2 − t1, h

(n)〉)−G

(
x − 1

2

〈
t2 − t1, h

(n)〉)∣∣∣∣p
′

× exp
(
−1

2

∥∥∥∥1

2

〈
t1 + t2, h

(n)〉∥∥∥∥2

H

− δ

(
1

2

〈
t1 + t2, h

(n)〉))
μ(dx)

)1/p′
.

Now writing h1 = |t2 − t1|−1〈t2 − t1, h
(n)〉, h2 = |t1 + t2|−1〈t1 + t2, h

(n)〉, and
Y

h2|t1+t2|/2 = exp[−‖|t1 + t2|h2/8‖2
H − δ(|t1 + t2|h2/2)], we can rewrite the above
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as ∥∥G(· + 〈
t2, h

(n)〉)−G
(· + 〈

t1, h
(n)〉)∥∥

p′

=
(∫

X

∣∣∣∣G
(
x + 1

2
|t2 − t1|h1

)
−G

(
x − 1

2
|t2 − t1|h1

)∣∣∣∣p
′

(4.21)

× Y
h2|t1+t2|/2(x)μ(dx)

)1/p′
.

This reduces the above expression to the case dealt in [8]. Therefore, using the
rest of the calculations of Lemma 4.2 of [8], and writing G= Taf , where {Ta}a≥0
is the semigroup associated with the Ornstein–Uhlenbeck operator L, we get the
desired estimate expressed as∥∥Taf

(· + 〈
t2, h

(n)〉)− Taf
(· + 〈

t1, h
(n)〉)∥∥

p′ ≤ C(p,p′, α)‖Taf ‖p,1|t2 − t1|.
Thereafter, we can mimic the proof of Theorem 2.1 of [8] and get the desired
estimate. �

Now coming back to our case, let eA be the potential equilibrium of A (cf. [10])
and eA ∈D∞−ε , therefore, there exists a vA ∈ L∞−, such that

eA = (I −L)−ε/2vA
�= (I −L)−ε1/2v(ε−ε1),A,

where ε1 is some number strictly smaller than ε and L is the Ornstein–Uhlenbeck
operator. Then, clearly,

eA

(·+ 〈
t, h(n)〉)= (I−L)−ε/2vA

(·+ 〈
t, h(n)〉) �= (I−L)−ε1/2v(ε−ε1),A

(·+ 〈
t, h(n)〉).

Now, writing ξ(t)
�= eA(· + 〈t, h(n)〉) and ξ(ε−ε1)(t)

�= v(ε−ε1),A(· + 〈t, h(n)〉), and
also, in the process, choosing the appropriate quasi-continuous redefinitions of the
processes ξ and ξ(ε−ε1), and choosing a large p′ (conditions on p′ will appear
later), such that by Kree–Meyer inequalities, we have

‖ξ(t)− ξ(s)‖p′,ε1 ≤ C
∥∥ξ(ε−ε1)(t)− ξ(ε−ε1)(s)

∥∥
p′ .(4.22)

Now using the above theorem with f replaced by v(ε−ε1),A, we get∥∥ξ(ε−ε1)(t)− ξ(ε−ε1)(s)
∥∥
p′

= ∥∥v(ε−ε1),A

(· + 〈
t, h(n)〉)− v(ε−ε1),A

(· + 〈
t, h(n)〉)∥∥

p′
(4.23)

≤C
∥∥v(ε−ε1),A

∥∥
p,(ε−ε1)

|t − s|(ε−ε1)

=C‖eA‖p,ε|t − s|(ε−ε1),

where p′ ∈ (2/ε,p). Combining (4.22) and (4.23), we get

‖ξ(t)− ξ(s)‖p′,ε1 ≤ C‖eA‖p,ε|t − s|(ε−ε1),(4.24)



2744 J. E. TAYLOR AND S. VADLAMANI

which can be rewritten as

sup
s �=t

‖ξ(t)− ξ(s)‖p′p′,ε1

|t − s|p′(ε−ε1)
≤ C‖eA‖p′p,ε.(4.25)

Now we can list the assumptions on the various indices as follows: we start with
any fixed ε1 < ε, then choose a large enough p such that (ε − ε1) ∈ (1/p,1), and
then we choose p′ such that p′ ∈ (1/(ε − ε1),p) and p′(ε − ε1) > n. This can
be achieved by choosing p and p′ of the order of n, in particular, choosing p =
an/(ε− ε1) and p′ = bn/(ε− ε1), for a > b > 0 will do. Then, using Theorem 3.4
of [10], we get

Cp
ε1

(
sup
s �=t

|ξ(t)− ξ(s)|
)
≤ C‖eA‖p′p,ε.(4.26)

PROOF OF THEOREM 4.10. Now let us consider

Cp
ε1

(
A⊕BEn(0, r)

)= Cp
ε1

(
sup

s∈BRn(0,r)

1A

(· + 〈
s, h(n)〉))

≤ Cp
ε1

(
sup
s∈In

eA

(· + 〈
s, h(n)〉)) as eA ≥ 1A

(4.27)
≤ Cp

ε1

(
sup

s∈BRn(0,r)

ξ(s)
)

≤ Cp
ε1

(
sup

s∈BRn(0,r)

|ξ(s)− ξ(0)| + |ξ(0)|
)
.

Now using (4.26), we shall get

Cp
ε1

(
A⊕BEn(0, r)

)≤ (C + 1)‖eA‖p′p,ε = (C + 1)(Cp
ε (A))p

′/p,

which proves that C∞−ε1
(A⊕BEn(0, r))= 0, for all p > n(ε− ε1)

−1. Now by the
definition of the capacities and the hierarchy of the Sobolev spaces, we shall have
C∞−ε1

(A⊕BEn(0, r))= 0, thereby proving the result. �

Using the definition of the smooth points Sm(F ) and Tube(Au, ρ), we can con-
clude that

Tube(Au, ρ)= [(
Au ∩ Sm(F )

)⊕BH(0, ρ)
]

(4.28)
∪ [(

Au ∩ {Sm(F )}c)⊕BH(0, ρ)
]
.

Using the above calculations, we have

μ(Tube(Au, ρ))= μ
((

Au ∩ Sm(F )
)⊕BH(0, ρ)

)
,(4.29)

since C
p
ε1((Au ∩ {Sm(F )}c)⊕BH(0, ρ))= 0, implying that the μ-measure of the

set is zero. Therefore, it is enough, for the tube formula, to consider the set ((Au ∩
Sm(F ))⊕BH(0, ρ)), on which the transformation x �→ x + ηx is well defined up
to C

p
ε -zero sets, and, hence, we can use the change of measure formula for the

surface areas given in Theorem 4.6.
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5. A Wiener tube formula. After setting up the basics, definitions and the
conditions, concerning a tube formula in the Wiener space, we shall finally prove
one of the main results of this paper, which can be stated in the form of the follow-
ing theorem.

THEOREM 5.1. Let F ∈ D∞−2+δ (X;R) be an H -convex Wiener functional
such that it satisfies all the regularity conditions of Theorem 4.2, and Au =
F−1(−∞,u], then

μ(Tube(Au, ρ))=Mμ
0 (Au)+

∞∑
j=1

ρj

j !Mμ
j (Au),

where Mμ
j (Au) are the infinite dimensional versions of Gaussian Minkowski func-

tionals and, as usual, Mμ
0 (Au)= μ(Au).

PROOF. Let us start with recalling the definition of the outward pointing nor-
mal space Nx(Au) from (4.17) and writing N(Au)=⋃

x∈Au
Nx(Au). Then, let us

define a distance function, dAu : Tube(Au, ρ)→ R, such that for x ∈ Tube(Au, ρ)

writing the “residual” as

r̂x = argmin
r∈R;η∈N(Au)

d(x − rη,Au),

the distance function dAu is given by dAu(x)= ‖r̂x‖. Clearly, from the above def-
inition, d−1

Au
(0) = Au. Also, we can further express Tube(Au, ρ) as the disjoint

union of Au and Tube+(∂Au, ρ), where Tube+(∂Au, ρ) = Tube(∂Au, ρ) ∩ Ac
u.

Thus,

μ(Tube(Au, ρ))= μ(Au)+μ(Tube+(∂Au, ρ)).(5.1)

Now using the Wiener space version of Federer’s co-area formula as it appears
in [2], we shall obtain

μ(Tube+(∂Au, ρ))=
∫ ρ

0

∫
d−1
Au (r)

(σdAu
(x))−1 da∂+Ar

u dr,(5.2)

where ∂+Ar
u = d−1

Au
(r) ∩ Ac

u are the level sets of the distance function dAu in the
outward direction. Now note that ∇dAu = η, hence, σdAu

(x)= 1. Then let us de-
fine the transformation Tr,η :X→ X, such that its restriction to Au is given by
Tr,η(x) = x + rη. Clearly, Tr,η(∂Au) = ∂Ar

u. Then, we shall use our change of
measure formula for surfaces on

∫
d−1
Au (r)

to further simplify the expression in (5.2)

to obtain

μ(Tube+(∂Au, ρ))=
∫ ρ

0

∫
Au

J ∂Au
r,η da∂Au dr =

∫ ρ

0

∫
Au

Yη
r da∂Au dr,

where terms J
∂Au
r,η and Y

η
r are as they appear in Theorem 4.6.
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Now using a Taylor series expansion for Y
η
r with respect to r , we can rewrite

the above expression as

μ(Tube+(∂Au, ρ))

=
∞∑

j=0

ρj+1

(j + 1)!
∫
Au

dj

drj

(
det2(IH + r∇η) exp

(−rδ(η)− r2/2
))∣∣∣∣

r=0
da∂Au .

We note here that ρ must be within the radius of convergence of the Taylor series
of Y

η
r , which in turn will ensure the convergence of the above series.

Finally, plugging the above expression in (5.1), we get

μ(Tube(Au, ρ))

= μ(Au)
(5.3)

+
∞∑

j=1

ρj

j !
∫
Au

dj

drj

(
det2(IH + r∇η) exp

(−rδ(η)− r2/2
))∣∣∣∣

r=0
da∂Au

= μ(Au)+
∞∑

n=1

ρn

n!Mμ
n (Au),

where Mμ
n (Au) are Gaussian Minkowski functionals of the infinite dimensional

set Au, given by

Mμ
n (Au)=

∫
Au

dn

drn

(
det2(IH + r∇η) exp

(−rδ(η)− r2/2
))∣∣∣∣

r=0
da∂Au,(5.4)

which proves the theorem. �

6. Applications. In this section we shall invoke the existential results from
the previous section to obtain a kinematic fundamental formula akin to the one
obtained in Theorem 15.9.5 of [1], though, for a larger class of random fields.

Let us consider a real-valued random field f defined on a compact Riemannian
manifold M equipped with a metric τ . Then the modulus of continuity � of a
function F :M→R is defined as

�F (η)
�= sup

τ(x,y)≤η

|F(x)− F(y)|

for all η > 0. Continuing the setup introduced in the example stated in Section 1,
we shall consider a specific class of random fields f which can be represented as

f (x)=
N∑

i=1

∫ 1

0
Vi(B

x
i (s)) dBx

i (s),(6.1)
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where the integral is to be interpreted in the Itô sense, each Vi : R→R is a smooth
function, and Bx(·) = (Bx

i (·))Ni=1 is a RN -valued, zero-mean Gaussian process
defined on M × [0,1], whose covariance is given by

E(Bx
i (s)B

y
j (t))= (s ∧ t)Cij (x, y)= (s ∧ t)C(x, y),(6.2)

where C :M×M→R is a smooth function, such that for each fixed t ∈ [0,1], the
field B ·(t) is an isotropic Gaussian field over M (see Sections 5.7 and 5.8 of [1]).

The following are the basic assumptions on the functions Vi and the Gaussian
process Bx(t):

(A1) Vi ∈ C4,1 ≤ i ≤ N , the class of all 4-continuously differentiable func-
tions.

(A2) Writing V (k) as the kth derivative of V , let us define

Ci(k, s, x, y)
�= sup

0≤α≤1
V

(k)
i

(
αBx(s)+ (1− α)By(s)

)
for any x, y ∈M and k = 0,1,2,3,4. Then, for some p dim(M) and for all
i = 1, . . . ,N ,

sup
0≤s≤1

‖Ci(k, s, x, y)‖pp = ci,k(x, y,p) <∞.

Also, supx �=y ci,k(x, y,p) <∞, for all k = 0,1,2,3,4. Note that this is satisfied
whenever the Vi ’s are C4 with polynomial growth.

(A3) For each r ≥ 1, there exists a constant mr , such that

E|Bx(s)−By(s)|r ≤mr |x − y|r ∀0≤ s ≤ 1,

where mr depends solely on r .
(A4) All the above assumptions also hold true with Bx(s) replaced by ∇Bx(s)

and ∇2Bx(s), respectively.

Let us define the excursion set Au corresponding to f :M→R as

Au(f ;M)
�= {x ∈M :f (x)≥ u}.

Also, note that writing F(ω)= ∫ 1
0 V (ωs) dωs, one can consider the random field

defined above as f (x)= F(Bx).

THEOREM 6.1. Let M be a m-dimensional manifold and f be a random field
defined on M , represented as in (6.1), and satisfying the conditions (A1)–(A4).
Also, let f (x) and ∇f (x) be nondegenerate in the sense of Malliavin, for some
x ∈M , and that the corresponding Wiener functional F satisfies the exponential
moment condition specified in Theorem 4.2. Then writing Au(f ;M) as the excur-
sion set for the random field f , and Li (·) as the ith Lipschitz–Killing curvature
under the Gaussian induced metric, we have

E(L0(Au(f ;M)))=
m∑

j=0

(2π)−j/2Lj (M)Mμ
j (F−1[u,∞)),(6.3)
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where F−1([u,∞)) is a subset of the Wiener space X with Mμ
j as its GMF, as

defined in the previous section.

We shall approximate the LHS of (6.3) such that it has the form of the RHS and
that this approximation of the RHS indeed converges to the RHS of (6.3).

At this point, we note that all the results obtained below are for the case of
N = 1, whereas using similar methods, the same results are true for general N . We
shall start proving Theorem 6.1 by first listing some regularity properties of field f

defined in (6.1), in the form of the following theorem.

THEOREM 6.2. Let the random field f be as defined in (6.1), such that it also
satisfies (A1)–(A4), then:

(a) F ∈ D∞−3 (X;R), and under the assumption of nondegeneracy of F , the
density pF of F is bounded,

(b) f is continuous, and that for any ε > 0

P
(
�f (η) > ε

)= o
(
ηdim(M)) as η ↓ 0.

Also, the same is true for ∇f and ∇2f .

PROOF. Clearly, for the Wiener functional F = ∫ 1
0 V (B(t)) dB(t), we have

DF ∈ H . Therefore, by definition, there exists a unique (D̂F ) ∈ L2([0,1]) such
that DrF

�= (DF)(r)= ∫ r
0 (D̂sF ) ds. Using this notation, we shall have

(D̂rF )= V (B(r))+
∫ 1

0
V (1)(B(t))1[0,t](r) dB(t),

(
̂

Ds(̂DrF ))= V (1)(B(r))1[0,r](s)+ V (1)(B(s))1[0,s](r)

+
∫ 1

0
V (2)(B(t))1[0,t](r)1[0,t](s) dB(t).

Clearly, due to the moment conditions imposed on V and its derivatives, we can
conclude that F ∈ D∞−3 (X;R), and the boundedness of the density pF follows
using Proposition 2.1.1 of [5].

Now to prove continuity of f and its derivatives, we shall use Kolmogorov’s
continuity criterion for processes defined on smooth Riemannian manifolds. Note
that Kolmogorov’s continuity criterion is usually stated for processes with Eu-
clidean parameter space, but since continuity is a local phenomena, thus, it can
easily be extended to processes defined on smooth locally Euclidean spaces. There-
fore, we present the proof of continuity related results for the field f ◦φ−1 where φ

is the local chart, but we shall suppress the chart map, and will write f for both
the field f and its counterpart f ◦ φ−1.
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In order to use Kolmogorov’s continuity theorem, we must obtain Lp estimates
for (f (x)− f (y)). Writing V ∗ as any antiderivative of V , we have

V ∗(Bx(1))= V ∗(Bx(0))+
∫ 1

0
V (Bx(s)) dBx(s)+

∫ 1

0
V (1)(Bx(s)) ds.

Thus, for p ≥ 1, there exist m1,p and m2,p such that

‖f (x)− f (y)‖pp = E|f (x)− f (y)|p
≤m1,pE|V ∗(Bx(1))− V ∗(By(1))|p

+m2,pE

∣∣∣∣
∫ 1

0

(
V (1)(Bx(s))− V (1)(By(s))

)
ds

∣∣∣∣p

≤m1,pE
∣∣∣sup

α
V [αBx(1)+ (1− α)Bx(1)] × (

Bx(1)−By(1)
)∣∣∣p

+m2,p

∫ 1

0
E

∣∣V (1)(Bx(s))− V (1)(By(s))
∣∣p ds

≤m1,pE
∣∣C(0,1, x, y)

(
Bx(1)−By(1)

)∣∣p
+m2,pE

∥∥C(2, ·, x, y)
(
Bx(·)−By(·))∥∥p

Lp[0,1].

Now choosing p1,p2 > 0 such that p−1
1 + p−1

2 = p−1, we get

‖f (x)− f (y)‖pp ≤m1,p

(‖C(0,1, x, y)‖p1‖Bx(1)−By(1)‖p2

)p
+m2,p

∫ 1

0

(‖C(2, s, x, y)‖p1‖Bx(s)−By(s)‖p2

)p
ds

≤m1,pc0(x, y,p1)
p/p1mp/p2

p2
|x − y|p

+m2,pc2(x, y,p1)
p/p1mp/p2

p2
|x − y|p.

Next, fixing

M(p,p1,p2)= sup
x �=y

(
m1,pc0(x, y,p1)

p/p1mp/p2
p2
+m2,pc2(x, y,p1)

p/p1mp/p2
p2

)
,

we have

‖f (x)− f (y)‖ ≤M(p,p1,p2)|x − y|p.(6.4)

For large enough p we can use Theorem 1.4.1 in [3] to deduce that there exists f̃ ,
which is the continuous modification of f . Abusing the notation, we shall write f

for f̃ . Also, using the same result, we can infer that for any ε > 0, the modulus of
continuity of f satisfies

P
(
�f (η) > ε

)= o
(
ηdim(M)) as η ↓ 0.

Note that we needed supremum of c2(x, y) to be bounded to prove the continu-
ity of f and to control its modulus of continuity. We can further conclude that the
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conditions stated in (A1)–(A4) suffice to obtain similar results for the modulus of
continuity of ∇f and ∇2f . �

Recall from [1] that L0, also known as the Euler–Poincaré characteristic, of the
excursion set Au(f ;M) can be expressed as

L0(Au(f ;M))=
m∑

k=0

(−1)k#{x ∈M :f (x)≥ u,∇f (x)= 0, index(∇2f )= k}

=
m∑

k=0

(−1)kμk.

Now using the expectation metatheorem (Theorem 11.2.1 of [1]), and replac-
ing G and H by ∇f and (∇2f,f ), respectively, and B by Dk×[u,∞), where Dk

is the space of m×m matrices with index k, we can obtain a formula for the ex-
pected value of μk as defined above. However, in order to use this result for our
purpose, we must also check the conditions involving conditional densities, for
which we refer to Theorem 4.1 of [6]. Thus, using these results, we can write

E(L0(Au(f ;M)))
(6.5)

=
∫
M

E
(
det(−∇2f (x))1[u,∞)(f (x))|∇f (x)= 0

)
p∇f (x)(0) dx.

Next, in order to construct an approximating sequence to the LHS of (6.3) and
appeal to the results in [1], we shall use a cylindrical approximation of f (x). Let
{(i/n, (i + 1)/n]}n−1

i=0 be a partition of (0,1], then define

fn(x)=
n−1∑
i=0

V
(
Bx(i/n)

)(
Bx(

(i + 1)/n
)−Bx(i/n)

)
.

Standard results from stochastic analysis ensure the convergence of fn(x) to f (x).
Moreover, note that (Bx((i+1)/n)−Bx(i/n))n−1

i=0 forms an i.i.d. 0≤ i ≤ (n−1).
Therefore, we can write

fn(x)= Fn

(
y

(n)
1 (x), . . . , y(n)

n (x)
)
,

where y
(n)
i+1(x) are i.i.d. with the same distribution as

√
n(Bx((i + 1)/n) −

Bx(i/n)) and Fn is the appropriately defined real-valued function. Under the con-
ditions imposed on f for the expectation metatheorem to be true, fn also becomes
a valid candidate to apply the metatheorem, thereby giving us

E(L0(Au(fn;M)))
(6.6)

=
N∑

k=0

∫
M

E
(
det(−∇2fn(x))1[u,∞)(f (x))|∇fn(x)= 0

)
p∇fn(x)(0) dx.
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Using Theorem 15.9.5 of [1] for the random field fn, we shall have

E(L0(Au(fn;M)))=
m∑

j=0

(2π)−j/2Lj (M)Mμ
j (F−1

n [u,∞)),(6.7)

where F−1
n [u,∞) is a subset of Rn.

THEOREM 6.3. Let {Gn}n≥1 be a sequence of real-valued Wiener functionals,
such that Gn belongs to the nth Wiener chaos, and Gn→ G in D∞−3 , for some
G ∈D∞−3 . Also, let that each Gn and G satisfy all the assumptions of Theorem 4.2,
then Mγk

j (G−1
n [u,∞))→Mμ

j (G−1[u,∞)), as n→∞.

PROOF. Using the definition of GMFs in Theorem 4.2 and the convergence of
the densities pGn to pG, it suffices to prove that

EGn=u([det(σGn)]1/2 det2(IH + rDηn) exp
(−rδ(ηn)− 1

2r2))
→EG=u([det(σG)]1/2 det2(IH + rDη) exp

(−rδ(η)− 1
2r2))

,

where η=DG/‖DG‖H and ηn =DGn/‖DGn‖. Writing

An = ([det(σGn)]1/2 det2(IH + rDηn) exp
(−rδ(ηn)− 1

2r2))
,

and similarly defining A, we get

|EGn=uAn −EG=uA|
= |E(Anδu ◦Gn)−E(Aδu ◦G)|

(6.8)
≤ |E(Anδu(Gn))−E(Anδu(G))| + |E(Anδu(G))−E(Aδu(G))|
≤ ‖An‖Dp/(p−1)

α
‖δu(Gn)− δu(G)‖Dp

−α
+ ‖An −A‖

D
p/(p−1)
α

‖δu(G)‖Dp
−α

,

where we recall Theorem 4.1 for definitions of p and α. We also note that,
since Gn and G are elements of D∞−3 and they are nondegenerate, existence
of such p and α is ensured. Moreover, since Gn → G in D∞−3 , it’s easy to
see that supn ‖An‖Dp/(p−1)

α
<∞ and ‖An − A‖

D
p/(p−1)
α

→ 0. Also, ‖δu(Gn) −
δu(G)‖Dp

−α
→ 0, which proves the result. �

PROOF OF THEOREM 6.1 (Continued). We extend Fn from Rn to R∞ or,
equivalently, to X, by suppressing all the indices after the first n, that is, consid-
ering Fn as cylindrical Wiener functionals. Then, by using the invariance property
of GMFs, the Mμ

j ’s of the extended Fn remain the same as that of Fn when re-

stricted to Rn. Together with this, using the fact that Fn converges to F in D∞−3 ,
we clearly have

lim
n→∞Mμ

j (F−1
n [u,∞))=Mμ

j (F−1[u,∞)).(6.9)



2752 J. E. TAYLOR AND S. VADLAMANI

Therefore, using (6.7) and (6.9), we shall have

lim
n→∞E(L0(Au(fn;M)))=

N∑
j=0

cj Lj (M)Mμ
j (F−1[u,∞)).(6.10)

Now, it suffices to prove that the right-hand side of (6.6) converges to the right-
hand side of (6.5). Clearly,

lim
n→∞p∇fn(y)= p∇f (y),(6.11)

which follows from the fact that ∇fn converges to ∇f in a much stronger sense,
as is clear from the assumption fn→ f in D∞3+δ . Next, we need to prove∣∣E(|det∇2fn(x)|1Dk

(∇2fn(x))1[u,∞)(fn(x))|∇fn(x)= 0
)

(6.12)
−E

(|det∇2f (x)|1Dk
(∇2f (x))1[u,∞)(f (x))|∇f (x)= 0

)∣∣→ 0,

which is similar to the proof of Theorem 6.3. Using precisely the same techniques,
writing Bn(x)= (|det∇2fn(x)|1Dk

(∇2fn(x))1[u,∞)(fn(x))) and defining B(x) in
a similar fashion, we have∣∣E∇fn(x)=0Bn(x)−E∇f (x)=0B(x)

∣∣
≤ ∣∣E∇fn(x)=0Bn(x)−E∇f (x)=0Bn(x)

∣∣
+ ∣∣E∇f (x)=0Bn(x)−E∇f (x)=0B(x)

∣∣
= |E(Bn(x)δ0(∇fn(x)))−E(Bn(x)δ0(∇f (x)))|
+ |E(Bn(x)δ0(∇f (x)))−E(B(x)δ0(∇f (x)))|

≤ ‖Bn(x)‖Lp/(p−1)‖δ0(∇fn(x))− δ0(∇f (x))‖Lp

+ ‖Bn(x)−B(x)‖Lp/(p−1)‖δ0(∇f (x))‖Lp,

which, under the assumptions of fn(x)→ f (x) in D∞−3 and nondegeneracy of
∇f (x), converges to zero as n→∞, thus proving that the integrand of (6.6) con-
verges to that of (6.5) for each x ∈M . Then, in order to prove that the integral
involved in equation (6.6) converges to the integral in (6.5), note that the random
fields fn and f defined on the manifold M are chosen to be sufficiently smooth so
that we can use an uniform integrability argument to conclude that the right-hand
side of (6.6) converges to the right-hand side of (6.5). Therefore, we shall have

E(L0(Au(f ;M)))= lim
n→∞E(L0(Au(fn;M)))

= lim
n→∞

m∑
j=0

cj Lj (M)Mμ
j (F−1

n [u,∞))

=
m∑

j=0

cj Lj (M)Mμ
j (F−1[u,∞)),
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where in going from the first line to the second, we have used the finite dimensional
results set forth in [1], and in going from the second to the third line, we have used
Theorem 6.3. �
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