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MULTI-POINT GREEN’S FUNCTIONS FOR SLE AND AN
ESTIMATE OF BEFFARA

BY GREGORY F. LAWLER1 AND BRENT M. WERNESS

University of Chicago

In this paper we define and prove of the existence of the multi-point
Green’s function for SLE—a normalized limit of the probability that an SLEκ

curve passes near to a pair of marked points in the interior of a domain. When
κ < 8 this probability is nontrivial, and an expression can be written in terms
two-sided radial SLE. One of the main components to our proof is a refine-
ment of a bound first provided by Beffara [Ann. Probab. 36 (2008) 1421–
1452]. This work contains a proof of this bound independent from the origi-
nal.

1. Introduction. The Schramm–Loewner evolution (SLE) is a random pro-
cess first introduced by Oded Schramm in [12] as a candidate for scaling limits
of models from statistical physics which are believed to be conformally invariant.
Since its introduction, SLE has been rigorously established as the scaling limit for
a number of these processes, including the loop-erased random walk [10], the per-
colation exploration process [14] and the interface of the Gaussian free field [13].
For a general introduction to SLE see, for example, [5, 9, 15].

Chordal SLEκ for κ > 0 in the upper half-plane (H) is a one-parameter family
of noncrossing random curves γ : [0,∞) → H with γ (0) = 0 and γ (∞−) = ∞.
Depending on κ , the geometry of the curve has several different phases. When
0 < κ ≤ 4, the curves are simple (no self intersections). When κ > 4, the curves
are no longer simple, but they remain noncrossing. When κ ≥ 8, the curve is space
filling, passing through every point in H.

When examining geometric questions about the SLE curves, such as the almost
sure Hausdorff dimension in [3], it is often useful to be able to provide estimates
on the probability that the process γ (t) passes near a series of marked points in H.
However, the non-Markovian nature of this process makes estimating such proba-
bilities difficult.

When trying to understand the probability that SLEκ gets near to some point
z ∈ H it is convenient to consider the conformal radius of z in Ht := H \ γ (0, t],
which we denote by ϒt(z), instead of the Euclidean distance from z to γ (0, t];
see Section 2.1 for the definition. This change does little to the geometry of the
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problem being considered since the conformal radius differs from the Euclidean
distance by at most a universal multiplicative constant.

The Green’s function for SLEκ from 0 to ∞ in H for κ < 8 is a form of the
normalized probability of passing near to a point in H. It is defined by

lim
ε→0

εd−2
P{ϒ∞(z) < ε} = c∗GH(z;0,∞),

where d := 1+κ/8 is the Hausdorff dimension of the SLEκ , and c∗ is some known
constant depending on κ . The Green’s function was first computed in [11] (al-
though they neither used this name nor definition), and the exact formula found
there is given in Section 2.1. The existence of the limit requires some argument,
and a form of it is proven in Lemma 2.10.

We wish to show analogously that

lim
ε,δ→0

εd−2δd−2
P{ϒ∞(z) < ε;ϒ∞(w) < δ}

exists and can be written as

c2∗GH(z;0,∞)E∗
z [GHTz

(w; z,∞)] + c2∗GH(w;0,∞)E∗
w[GHTw

(z;w,∞)],
where E

∗
z is the expectation of a particular form of SLE called two-sided radial

SLE, which can be understood as chordal SLE conditioned to pass though the
point z, and GHTz

is the Green’s function for SLE in the domain remaining at the
time it does so. The form of the limit as the sum of two similar terms comes from
the two possible orders that the curve can pass through z and w, and each term
individually can be thought of as an ordered Green’s function.

To prove this result, we will use techniques similar to those used in [3], where
Beffara (in slightly different notation) established the estimate that there exists
some c > 0 such that for any two points z,w ∈ H with Im(z), Im(w) ≥ 1

P{ϒ∞(z) < ε;ϒ∞(w) < ε} < cε2(2−d)|z − w|d−2.

Similar techniques arise since both proofs need to make rigorous the heuristic
that an SLE curve conditioned to pass through z and then w will do so directly—
without first approaching very near w before passing through z. Figure 1 demon-
strates some of the issues which can occur which make this a tricky statement to
make rigorous.

In the process of proving the existence of the multi-point Green’s function
for SLE, we also obtain an independent proof of a mild generalization of Bef-
fara’s estimate—that there exists a c > 0 such that for any z,w ∈ H with Im(z),
Im(w) ≥ 1

P{ϒ∞(z) < ε;ϒ∞(w) < δ} < cε2−dδ2−d |z − w|d−2.

While it may be possible to derive some of the lemmas we require directly from
the proof in [3], we include a complete proof of them, along with Beffara’s original
estimate, so that the proof of our main result is completely self-contained.
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FIG. 1. We wish to show that curves that get near z then near w concentrate on curves like those
in the left image. Estimating the probability of such curves is easy by repeated application of the
Green’s function. However, such simple estimation gives the same order of magnitude to curves like
those in the center image. This issue can be overcome as long as getting near to w before z decreases
the probability that the SLE gets even closer to w later on. This is often the case; however, the right
image shows an example where it is not. In this case, once the curve gets near to z, it is essentially
guaranteed to pass near w. Controlling for these issues forms the bulk of this work.

It is worth noting that Beffara’s estimate itself immediately yields an upper
bound on the multi-point Green’s function. For a lower bound, and an application
of the multi-point Green’s function to the proof of the existence of the “natural
parametrization” of SLE, a parametrization of SLE by what can be thought of as a
form d-dimensional arc length; see [8].

The paper is structured as follows. Section 2.1 begins by establishing the no-
tation used throughout the paper, and to provide a few simple deterministic and
random bounds required in the proofs that follow. Section 2.4 then gives a brief
introduction to two-sided radial SLE and collects the facts about this process that
we require to show the existence of the multi-point Green’s function. Section 3
provides a proof of the existence of the multi-point Green’s function assuming an
estimate derived from our proof of Beffara’s estimate. The rest of the paper is ded-
icated to our independent proof of Beffara’s estimate. To aid in the presentation
of this proof, we have separated the bounds required by the type of argument re-
quired: topological lemmas, probabilistic lemmas and combinatorial lemmas. The
proof of one of the topological lemmas is left to the Appendix as the result is in-
tuitive and the formal proof of it does little to aid the understanding of our main
results.

In this paper we fix κ < 8 and constants implicitly depend on κ .

2. Preliminaries.

2.1. Notation. We set

a = 2

κ
, d = 1 + κ

8
= 1 + 1

4a
,

β = 8

κ
− 1 = 4a − 1 > 0.
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The Green’s function for chordal SLEκ (from 0 to ∞ in H) is

G(x + iy) = G(reiθ ) = rd−2 sin4a+1/(4a)−2 θ = yd−2 sinβ θ.

The Green’s function can be defined for other simply connected domains as we
now demonstrate. If D is a simply connected domain, z1, z2 are distinct bound-
ary points, let 	D :D → H be a conformal transformation with 	D(z1) = 0,
	D(z2) = ∞. This is unique up to a final dilation. If w ∈ D, we define

SD(w; z1, z2) = sin arg	D(w),

which is independent of the choice of 	D and gives a conformal invariant. We
let ϒD(w) be (twice the) conformal radius of w in D; that is, if f : D → D is a
conformal transformation with f (0) = w, then ϒD(w) = 2|f ′(0)|. This satisfies
the scaling rule

ϒf (D)(f (w)) = |f ′(w)|ϒD(w).

It is easy to check that ϒH(x + iy) = y, and, more generally,

ϒD(w) = Im(	D(w))

|	′
D(w)| .

The Green’s function for SLEκ from z1 to z2 in D is defined by

GD(w; z1, z2) = ϒD(w)d−2S(w; z1, z2)
β.

It satisfies the scaling rule

GD(w; z1, z2) = |f ′(w)|2−dGf (D)(f (w);f (z1), f (z2)).

For a proof that the Green’s function so defined satisfies the limit claimed in the
Introduction; see Lemma 2.10.

Let inradD(w) = dist(w, ∂D) denote the inradius. Using the Koebe (1/4)-
theorem, we know that

1
2 inradD(w) ≤ ϒD(w) ≤ 2 inradD(w).(1)

Therefore,

GD(w; z1, z2) 	 inradD(w)d−2SD(w; z1, z2)
β,

where we write f1 	 f2 if there exists some constant c such that f1 ≤ cf2 and
f2 ≤ cf1. We write

∂D = ∂1D ∪ ∂2D ∪ {z1, z2},
where ∂1D,∂2D denote the two open arcs of ∂D with endpoints z1, z2. Let
ŜD(w; z1, z2) be the minimum of the harmonic measures of ∂1D,∂2D from w.
This is a conformal invariant, and a simple computation in H shows that

ŜD(w; z1, z2) = 1

π
min{arg	D(w),π − arg	D(w)},
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and hence

ŜD(w; z1, z2) 	 SD(w; z1, z2)

and

GD(w; z1, z2) 	 inradD(w)d−2ŜD(w; z1, z2)
β.

To bound the harmonic measure, it is often useful to use the Beurling estimate.
We recall it here; for a proof see, for example, [2], Chapter V. Let Bt be a standard
Brownian motion and τD denote the first exit time of some domain D for this
Brownian motion.

PROPOSITION 2.1 (Beurling estimate). There is a constant c > 0 such that if
z ∈ D, and K is a connected compact subset of D with 0 ∈ K and K ∩ ∂D �= ∅,
then

P
z{B[0, τD] ∩ K = ∅} ≤ c|z|1/2.

We may derive from this the following consequence.

PROPOSITION 2.2. There is a constant c > 0 such that if K is a connected
compact subset of H with K ∩ R �= ∅, and z0 ∈ H, ε > 0 are such that Bε(z0) ∩
K �= ∅ then for w ∈ H,

P
w{B[0, τH\K ] ∩ Bε(z0) �= ∅} ≤ c

[
ε

|z0 − w|
]1/2

.

PROOF. Consider the map

g(z) := ε

z − z0
, g : C \ Bε(z0) → D.

Let K ′ = g([C\H]∪[K \Bε(z0)]), and note that K ′ is a connected compact subset
of D with 0 ∈ K ′ and K ′ ∩ ∂D �= ∅. Thus by Proposition 2.1 we know

P
g(w){B[0, τD] ∩ K ′ = ∅} ≤ c|g(w)|1/2,

which, by the conformal invariance of Brownian motion and the definition of g, is
the desired statement. �

If j = 1,2, let D,j (w; z1, z2) be the infimum of all s such that there exists
a curve η : [0,1) → D contained in the disk of radius s about w with η(0) =
w,η(1−) ∈ ∂jD. Note that

inradD(w) = min{D,1(w; z1, z2),D,2(w; z1, z2)}.
We let

∗
D(w; z1, z2) = max{D,1(w; z1, z2),D,2(w; z1, z2)}.
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The Beurling estimate implies that there is a c < ∞ such that the probability a
Brownian motion starting at w reaches distance ∗

D(w; z1, z2) before leaving D is
bounded above by

c

[
inradD(w)

∗
D(w; z1, z2)

]1/2

.

Therefore,

SD(w; z1, z2) 	 ŜD(w; z1, z2) ≤ c

[
inradD(w)

∗
D(w; z1, z2)

]1/2

,(2)

which gives us the upper bound

GD(w; z1, z2) ≤ c inradD(w)d−2+β/2∗
D(w; z1, z2)

−β/2.

We will also need a fact which is a form of continuity of the Green’s function
under a small perturbation of the domain. First consider the following two lemmas
on the conformal radius.

LEMMA 2.3. Let Br denote the closed disk of radius e−r about the origin.
Suppose D is a simply connected subdomain of D containing the origin and e−r <

inradD(0). Suppose Bt is a Brownian motion starting at the origin, and let

τD = inf{t :Bt /∈ D}, τD = inf{t :Bt /∈ D}, σr,D = inf{t ≥ τD :Bt ∈ Br}.
Then

P{τD < σr,D < τD} = −1

r
log[ϒD(0)/2].

PROOF. Let f :D → D be the conformal transformation with f ′(0) > 0.
Since ϒD(0) is twice the usual conformal radius, − log[ϒD(0)/2] = logf ′(0).
Let g(z) = log[|f (z)|/|z|] which is a bounded harmonic function on D, and hence

logf ′(0) = g(0) = E[g(Bτ )] = −E[log|Bτ |].
For e−r ≤ |w| < 1, −log|w|/r is the probability that a Brownian motion starting
at w hits B about the origin before leaving the D. Therefore,

logf ′(0) = rP{τD < σr,D < τD}. �

LEMMA 2.4. There exists a c > 0 such that for any two simply connected
domains D1 ⊆ D2 and a point w ∈ D1 ∩ D2, then

0 ≤ ϒD2(w) − ϒD1(w) ≤ c diam(D2 \ D1).
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PROOF. Without loss of generality, we may assume inrad(D2) = 1. If
inrad(D1) ≤ 7/8, then diam(D2 \ D1) ≥ 1/8, and we can use the estimate
inrad(D) 	 ϒ(D). If inrad(D1) ≥ 7/8, then we can use the previous lemma,
conformal invariance, and the Koebe (1/4)-theorem to see ϒD2(w) − ϒD1(w)

is comparable to the probability that a Brownian motion starting at w hits D2 \ D1
and returns to B = B1/16(w), the disk of radius 1/16 about w without leaving D2.
Using the Beurling estimate, we see the probability of hitting D2 \ D1 is bounded
above by c diam(D2 \ D1)

1/2 and using it again the probability of getting back to
B before leaving D2 is bounded by c diam(D2 \ D1)

1/2. �

We will need some notion of closeness of two nested domains before we can
state our lemma. Although the following definitions are very general, we will use
them only in the case where the domains are the complements of a single curve
considered up to two different times.

DEFINITION. Given two nested simply connected domains D1 ⊆ D2 ⊆ H

with marked boundary points z1 ∈ ∂D1 and z2 ∈ ∂D2, we say (D1, z1) and
(D2, z2) are R-close near z if the following holds. Let B

(i)
R (z) denote the con-

nected component of BR(z) ∩ Di which contains z. Then:

• z1 ∈ ∂B
(1)
R (z),

• z2 ∈ ∂B
(2)
R (z) and

• D2 \ D1 ⊆ BR(z).

LEMMA 2.5. There exists c > 0 such that the following holds. Suppose z,w ∈
H, D1 ⊆ D2 ⊆ H are simply connected domains, and z1 ∈ ∂D1, z2 ∈ ∂D2. If:

• z,w ∈ D1 ∩ D2,
• (D1, z1) and (D2, z2) are R-close near z for R ≤ inradD1(w) ∧ 1

2 |z − w|,
• ∞ ∈ ∂D1 ∩ ∂D2,

then

|GD1(w; z1,∞) − GD2(w; z2,∞)| ≤ c inradD1(w)d−2−(β∧1)/2R(β∧1)/2.

One need not fix the point z in the beginning of this lemma by simply making the
second bullet point of this lemma say that there exists some z so that the domains
are R-close near z; however we write it in this form since we will always use this
lemma with a fixed z and w already in mind.

PROOF OF LEMMA 2.5. Recall that

GD(w; z1, z2) = ϒD(w)d−2SD(w; z1, z2)
β,
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where S(w; z1, z2) is the sine of the argument of w after applying the unique (up
to scaling) conformal map, 	D , that sends D to H while sending z1 to 0 and z2
to ∞. Writing, as before,

∂D = ∂1D ∪ {z1} ∪ ∂2D ∪ {z2},
where the union is written in counter-clockwise order, this argument is conformally
invariant and can be computed by

arg	D(w) = π · P
w{Bτ ∈ ∂2D} where τ = inf{t :Bt ∈ ∂D},

where P
w is the probability for a standard Brownian motion started at w.

Consider our case. Write

∂D1 = ∂1D1 ∪ {z1} ∪ ∂2D1 ∪ {∞} and ∂D2 = ∂1D2 ∪ {z2} ∪ ∂2D2 ∪ {∞}
again with the union written in counter-clockwise order. Note that the condition
that (D1, z1) and (D2, z2) are R-close near z implies that

∂1D1 \ BR(z) = ∂1D2 \ BR(z) and ∂2D1 \ BR(z) = ∂2D2 \ BR(z).(3)

Define

τ1 = inf{t :Bt ∈ ∂D1} and τ2 = inf{t :Bt ∈ ∂D2}
and note that, since B0 = w, τ1 ≤ τ2.

We may write that

|arg	D1(w) − arg	D2(w)| = |π · P
w{Bτ1 ∈ ∂2D1} − π · P

w{Bτ2 ∈ ∂2D2}|
≤ 2π · P

w{Bt ∈ BR(z) for some t ≤ τ2},
where the last line follows since, if considered path-wise, the Brownian motion
must enter BR(z) if it is to hit a different side of the boundary in D1 versus D2
by (3). By the Beurling estimate (Proposition 2.2),

|arg	D1(w) − arg	D2(w)| ≤ c

(
R

|z − w|
)1/2

.

By noting that inradD1(w) ≤ c|z − w| by the choice of R and the definition of
R-close, and splitting into the cases when β ≥ 1 versus β < 1 we see

|SD1(w; z1,∞)β − SD2(w; z2,∞)β | ≤ c

(
R

inradD1(w)

)(β∧1)/2

.

Consider the term involving the conformal radius. By using Lemma 2.4 and
recalling that d − 2 < 0 and ϒD1(w) ≤ ϒD2(w), we see

|ϒD2(w)d−2 − ϒD1(w)d−2| ≤ (2 − d)ϒD1(w)d−3|ϒD2(w) − ϒD1(w)|
≤ cϒD1(w)d−2

(
R

inradD1(w)

)
.
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Combining these, noting that R < inradD1(w), gives

|GD1(w; z1,∞) − GD2(w; z2,∞)|
≤ |ϒD1(w)d−2SD1(w; z1,∞)β − ϒD1(w)d−2SD2(w; z2,∞)β |

+ |ϒD1(w)d−2SD2(w; z2,∞)β − ϒD2(w)d−2SD2(w; z2,∞)β |

≤ cϒD1(w)d−2
(

R

inradD1(w)

)(β∧1)/2

+ cϒD1(w)d−2
(

R

inradD1(w)

)

≤ c inradD1(w)d−2−(β∧1)/2R(β∧1)/2

as desired. �

2.2. Schramm–Loewner evolution. The chordal Schramm–Loewner evolution
with parameter κ (from 0 to ∞ in H parametrized so that the half-plane capacity
grows at rate a = 2/κ) is the random curve γ : [0,∞) → H with γ (0) = 0 satis-
fying the following. Let Ht denote the unbounded component of H \ γ (0, t], and
let gt be the unique conformal transformation of Ht onto H with gt (z) − z → 0 as
z → ∞. Then gt satisfies the Loewner differential equation

∂tgt (z) = a

gt (z) − Ut

, g0(z) = z,(4)

where Ut = −Bt is a standard Brownian motion. For z ∈ H \ {0}, the solution of
this initial value problem exists up to time Tz ∈ (0,∞].

Suppose z ∈ H, and let

Zt = Zt(z) = Xt + iYt = gt (z) − Ut .

Then the Loewner differential equation becomes the SDE

dZt = a

Zt

dt + dBt .(5)

Let

St = St (z) = SHt (z;γ (t),∞) = sin argZt,

ϒt = ϒt(z) = ϒHt (z;γ (t),∞) = Yt

|g′
t (z)|

,

Mt = Mt(z) = GHt (z;γ (t),∞) = ϒd−2
t S

β
t .

Either by direct computation or by using the Schwarz lemma, we can see that ϒt

decreases in t , and hence we can define ϒ = ϒTz−. If 0 < κ ≤ 4, the SLE paths
are simple and with probability one Tz = ∞. If 4 < κ < 8, Tz < ∞ and by (1) we
know

ϒ 	 dist
[
z, γ (0, Tz] ∪ R

] = dist[z, γ (0,∞) ∪ R].(6)
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Using Itô’s formula, we can see that Mt is a local martingale satisfying

dMt = aXt

X2
t + Y 2

t

Mt dBt .

We will need the following estimate for SLE; see [1] for a proof. By a crosscut
in D we will mean a simple curve η : (0,1) → D with η(0+), η(1−) ∈ ∂D. We call
η(0+), η(1−) the endpoints of the crosscut.

PROPOSITION 2.6. There exists c < ∞ such that if η is a crosscut in H with
−∞ < η(1−) ≤ η(0+) = −1, then the probability that an SLEκ curve from 0 to
∞ intersects η is bounded above by c diam(η)β where β = 4a − 1 is as defined in
Section 2.1.

2.3. Radial parametrization. In order to prove the existence of multi-point
Green’s functions, we will need to study the behavior of the SLE curve from the
perspective of z ∈ H. To do so, it is useful to parametrize the curve so that the
conformal radius seen from z decays deterministically. We fix z ∈ H and let

σ(t) = inf{s :ϒs = e−2at }.
Under this parametrization, the “starting time” is − log(ϒ0)/2a, and the total life-
time of the curve is log(ϒ0/ϒ)/2a. Let �t = argZσ(t)(z), Ŝt = Sσ(t)(z) = sin�t .
Using Itô’s formula one can see that �t satisfies

d�t = (1 − 2a) cot�t dt + dŴt ,

where Ŵt is a standard Brownian motion. Since a > 1/4, comparison to a Bessel
process shows that solutions to this process leave (0, π) in finite time. This reflects
that fact that chordal SLEκ does not reach z for κ < 8 and hence ϒ > 0. Let

M̂t = Mσ(t)(z) = e−2at (d−2)Ŝ
β
t = e−(2a−1/2)t Ŝ

β
t .

This is a time change of a local martingale and hence is a local martingale; indeed,
Itô’s formula gives

dM̂t = (4a − 1) cot�t dŴt .

Using Girsanov’s theorem (see, e.g., [4]), we can define a new probability measure
P

∗ which corresponds to paths “weighted locally by the local martingale M̂t .” For
the time being, we treat this as an arbitrary change of measure; however, in Sec-
tion 2.4 we will see that is precisely the change of measure which gives two-sided
radial SLE. Intuitively, M̂t weights more heavily those paths whose continuations
are likely to get much closer to z. For more examples of the application of Gir-
sanov’s theorem to the study of SLE, and a general outline of the way Girsanov’s
theorem is used below, see [6].

In this weighting,

dŴt = (4a − 1) cot�t dt + dWt,
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where Wt is a standard Brownian motion with respect to P
∗. In particular,

d�t = 2a cot�t dt + dWt .(7)

Since 2a > 1/2, we can see by comparison with a Bessel process that with respect
to P

∗, the process stays in (0, π) for all times. Using this we can show that M̂t is
actually a martingale, and the measure P

∗ can be defined by

P
∗[V ] = M̂−1

0 E[M̂t1V ] for V ∈ Ft ,

where Ft denotes the σ -algebra generated by {Ŵs : 0 ≤ s ≤ t}. Much of the analy-
sis of SLEκ as it gets close to z uses properties of the simple SDE (7). Recall that
we assume that a > 1/4 and all constants can depend on a.

LEMMA 2.7. There exists c < ∞ such that if �t satisfies (7) with �0 = x ∈
(0, π/2), then if 0 < y < 1 and

τ = inf
{
t :�t ∈ {y,π/2}},

then

P
∗{�τ = y} ≤ c(y/x)1−4a.

PROOF. Itô’s formula shows that F(�t∧τ ) is a P
∗-martingale where

F(s) =
∫ π/2

s
(sinu)−4a du,

F ′′(s)
F ′(s)

= −4a cot s.

Note that F(π/2) = 0 and

F(s) ∼ s1−4a

1 − 4a
, s → 0+.

The optional sampling theorem implies that

F(x) = P
∗{�τ = y}F(y). �

LEMMA 2.8. The invariant density for the SDE (7) is

f (x) = C4a sin4a x, 0 < x < π, C4a :=
[∫ π

0
sin4a x

]−1
.(8)

PROOF. This can be quickly verified and is left to the reader. �

One can use standard techniques for one-dimensional diffusions to discuss the
rate of convergence to the equilibrium distribution. We will state the one result that
we need; see [8] for more details. If F is a nonnegative function on (0, π), let

IF := C4a

∫ π

0
F(x) sin4a x dx.
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LEMMA 2.9. There exists u < ∞ such that for every t0 > 0 there exists c < ∞
such that if F is a nonnegative function with IF < ∞ and t ≥ t0,

|E[F(�t)] − IF | ≤ ce−ut IF .

Note that this estimate applies uniformly over all starting points x.
An important case for us is F(x) = [sinx]−β = sin1−4a x. Let

c∗ = IF = C4a

C1
= 2∫ π

0 sin4a x dx
.(9)

We will take advantage of this uniform bound to give a concrete estimate on how
well the Green’s function approximates the probability of getting near a point.

LEMMA 2.10. There exists u > 0 such that if D is a simply connected domain,
and z1, z2 are points in its boundary, r ≤ 3/4, γ is an SLEκ curve from z1 to z2,
w ∈ D, and D∞ denotes the connected component of D \ γ (0,∞) containing w,
then

P{ϒD∞(w) ≤ r · ϒD(w)} = c∗r2−dSD(w; z1, z2)
β [1 + O(ru)]

= c∗r2−dϒD(w)2−dGD(w; z1, z2)[1 + O(ru)],
where c∗ is as defined in (9). In particular, there exists c < ∞ such that for all
r ≤ 3/4,

P{ϒD∞(w) ≤ r · ϒD(w)} ≤ cr2−dSD(w; z1, z2)
β.

PROOF. By conformal invariance we may assume ϒD(w) = 1 and define t by
r = e−2at . Let σ = inf{s :ϒs = r}. Then,

P{σ < ∞} = E[1{σ < ∞}]
= r2−d

E[M̂t Ŝ
−β
t ]

= r2−dSD(w; z1, z2)
β
E

∗[Ŝ−β
t ]

= c∗r2−dSD(w; z1, z2)
β[1 + O(e−ut )]

= c∗r2−dϒD(w)2−dGD(w; z1, z2)[1 + O(e−ut )]. �

Using (1) and (2), we immediately get the following lemma which is in the form
that we will use.

LEMMA 2.11. There exists C < ∞, such that if D is a simply connected do-
main, and z1, z2 are points in its boundary, r ≤ 3/4, and γ is an SLEκ curve from
z1 to z2, then

P{dist[w,γ [0,∞)] ≤ r · inradD(w)} ≤ Cr2−d

[
inradD(w)

∗
D(w; z1, z2)

]β/2

.
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2.4. Two-sided radial SLE. We call SLEκ under the measure P
∗ in the previ-

ous subsection two-sided radial SLEκ (from 0 to ∞ through z in H stopped when
it reaches z). Roughly speaking it is chordal SLEκ conditioned to go through z

(stopped when it reaches z). Of course this is an event of probability zero, so we
cannot define the process exactly this way. We may provide a direct definition by
driving the Loewner equation by the process defined in (7) rather than a standard
Brownian motion. This definition uses the radial parametrization. We could also
just as well use the capacity parametrization, in which case with probability one
Tz < ∞.

One may justify the definition above examining its relationship to SLEκ condi-
tioned to get close to z. This next proposition is just a restatement of the definition
of the measure P

∗ when restricted to curves stopped at a particular stopping time.

PROPOSITION 2.12. Suppose γ is a chordal SLEκ path from 0 to ∞ and
z ∈ H. For ε ≤ Im(z), let ρε = inf{t :ϒt(z) = ε}. Let μ,μ∗ be the two measures on
{γ (t) : 0 ≤ t ≤ ρε} corresponding to chordal SLEκ restricted to the event {ρε < ∞}
and two-sided radial SLEκ through z, respectively. Then μ,μ∗ are mutually abso-
lutely continuous with respect to each other with the Radon–Nikodym derivative

dμ∗

dμ
= GHρε

(z;γ (ρε),∞)

GH(z;0,∞)
= εd−2Sρε(z)

β

GH(z;0,∞)
.

Note that as ε → 0 the Radon–Nikodym derivative tends to infinity. This reflects
the fact that μ∗ is a probability measure and that the total mass of μ is of order
ε2−d (see Lemma 2.10).

This proposition seems to indicate that there is a still a significant difference be-
tween two-sided radial SLEκ going though z and SLEκ conditioned to get within
a specific distance. However, by using the methods of Lemma 2.9 we get the fol-
lowing improvement.

PROPOSITION 2.13. There exists u > 0, c < ∞ such that the following is true.
Suppose γ is a chordal SLEκ path from 0 to ∞ and z ∈ H. For ε ≤ Im(z), let ρε =
inf{t :ϒt(z) = ε}. Suppose ε′ < 3ε/4. Let μ′,μ∗ be the two probability measures
on {γ (t) : 0 ≤ t ≤ ρε} corresponding to chordal SLEκ conditioned on the event
{ρε′ < ∞} and two-sided radial SLEκ through z, respectively. Then μ′,μ∗ are
mutually absolutely continuous with respect to each other and the Radon–Nikodym
derivative satisfies ∣∣∣∣dμ∗

dμ′ − 1
∣∣∣∣ ≤ c(ε′/ε)u.

From the definition, it is easy to show that there is a subsequence tn ↑ Tz with
γ (tn) → z. In fact, in [7], a stronger fact is proven: for 0 < k < 8, with probability
one, the two-sided radial measure produces a curve, by which we mean that with
probability one γ (T −

z ) = z.
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LEMMA 2.14. Let ρε = inf{t :ϒt(z) = ε}. There exists α > 0 so that for any
z ∈ H there exists cz < ∞, so that for any ε and R with ε ≤ R ≤ Im(z) we have

P
∗{γ [ρε, Tz] �⊆ BR(z)} ≤ cz

(
ε

R

)α

.

PROOF. This result was shown for a two-sided radial through 0 from 1 to −1
in D in [7], Theorem 3. Since cz is allowed to depend on z, the form in this lemma
can be obtained by conformal invariance. �

We will also need this bound in a chordal form, rather than two-sided radial
form. In order to prove the chordal form, we need the following lemma.

LEMMA 2.15. Let ρε = inf{t :ϒt(z) = ε}. There exists c < ∞, such that if
z ∈ H and ε ≤ Im(z)/2, 0 < θ0 ≤ π/2,

P{Sρε(z) < sin(θ0)|ρε < ∞} ≤ cθ2
0 .

PROOF. First note that by Proposition 2.12 and Lemma 2.10 we have that

P{Sρε(z) < sin(θ0)|ρε < ∞} ≤ cE
∗[S−β

ρε
(z)1{Sρε(z) < sin(θ0)}].

By applying the techniques from Lemma 2.9 with the function

F(θ) = sin(θ)−β1{sin(θ) < sin(θ0)},
and noting that the integral is∫ π

0
sin(θ)−β1{sin(θ) < sin(θ0)} sin4a dθ = 2

∫ θ0

0
sin(θ) dθ = O(θ2

0 ),

we get the result. �

LEMMA 2.16. Let ρε = inf{t :ϒt(z) = ε}. Fix ε < η < R < 1 and z ∈ H, then
there exists some c depending only on z and α > 0 such that

P{γ [ρη,ρε] �⊆ BR(z)|ρε < ∞} ≤ c

(
η

R

)α

.

PROOF. Let 0 < θ < π/2 be arbitrary; we will fix its precise value later. We
apply Lemmas 2.15 and 2.14 with the above to see that

P{γ [ρη,ρε] �⊆ BR(z)|ρε < ∞}
= P{γ [ρη,ρε] �⊆ BR(z);Sρε(z) ≥ sin(θ)|ρε < ∞}

+ P{γ [ρη,ρε] �⊆ BR(z);Sρε(z) < sin(θ)|ρε < ∞}
≤ cE

∗[
S−β

ρε
(z)1{γ [ρη,ρε] �⊆ BR(z);Sρε(z) ≥ sin(θ)}] + cθ2
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≤ cθ−β
P

∗{γ [ρη,ρε] �⊆ BR(z)} + cθ2

≤ cθ−β
P

∗{γ [ρη,Tz] �⊆ BR(z)} + cθ2

≤ cθ−β(η/R)α + cθ2,

where c is being used generically. Thus by an appropriate choice of θ , for example,

θ = (η/R)α/(2+β),

we get the desired bound. �

3. Multi-point Green’s function. In this section we consider two distinct
points z,w ∈ H. To simplify notation, we write

ξ = ξε = ξz,ε = inf{t :ϒt(z) ≤ ε},
χ = χδ = χw,δ = inf{t :ϒt(w) ≤ δ}.

Although we will write ξ,χ , it is important to remember that these quantities de-
pend on z, ε,w, δ. We let P,E denote probabilities and expectations for SLEκ

from 0 to ∞ in H and P
∗,E

∗ for the corresponding quantities for a two-sided
radial through z. The multi-point Green’s function, which we write

G(z,w) = GH(z,w;0,∞),

roughly corresponds to the probability that SLE in H from 0 to ∞ goes through
z and then through w. This quantity is not symmetric. Although we do not have a
closed from for this quantity, we can define it precisely.

DEFINITION. The multi-point Green’s function G(z,w) is defined by

G(z,w) = G(z)E∗[GH(w; z,∞)],
where H is the unbounded component of H \ γ (0, Tz].

It is worth noting that if w is swallowed by the two-sided radial SLE curve
before reaching z, this Green’s function gives that event weight zero since the
curve w is unreachable no matter how close the curve was to w before reaching z.

In [11], the exact formula for GH(z;0,∞) was found by considering the mar-
tingale GHt (z, γ (t),∞) and then using Itô’s formula and scaling to find the ODE
that it satisfies, which could then be explicitly solved. When attempting the same
technique here, a three real variable PDE result, which does not immediately seem
to admit a closed form solution. A derivation of this PDE may be found in Ap-
pendix B.

The justification for this definition comes from the following theorem. Implicit
in the statement is that the limit can be taken along any sequence of ε, δ going to
zero.
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THEOREM 1. If z,w ∈ H, then

lim
ε,δ→0+ εd−2δd−2

P{ξ < χ < ∞} = c2∗G(z,w),

where c∗ is as defined in (9).

When

d =
(

1 + κ

8

)
∧ 2

is the dimension rather than simply d = 1 + κ/8, this theorem still defines an
interesting quantity for κ ≥ 8. Since the curve is space filling for κ ≥ 8, the limit
is trivial and

lim
ε,δ→0+ εd−2δd−2

P{ξ < χ < ∞} = P{ξ0 < χ0} = c∗G(z,w).

This agrees with the above definition of G(z,w) since we may take two-sided
radial through z for κ ≥ 8 to be the measure on γ stopped at the time the curve
passes through z and

GD(w; z1, z2) = 1{w ∈ D}.
Since this case requires no further work, we will continue to assume that κ < 8.

We will need one lemma that will follow from our work on Beffara’s estimate,
which we will prove in Section 4.

LEMMA 3.1. There exists α > 0, such that if z,w ∈ H, then there exists c =
cz,w < ∞, such that for all ε, δ, r > 0,

P{ξ < χ < ∞; inradξ (w) ≤ r} ≤ cε2−dδ2−drα.

More precise results than this are obtained in this paper, but this is all that is
required in this section.

Before going through the details of the proof, we briefly sketch the argument.
To estimate

P{ξ < χ < ∞},
we wish to show that this probability is carried mostly on curves which get within
ε of z in conformal radius before decreasing the conformal radius of w much at all.
To show that the curves which do not do this are negligible, we use Lemma 3.1.

On the event that the curve stays bounded away from w, we know the Green’s
function for getting to w stays uniformly bounded, allowing us to use convergence
of the conditioned measures E[· |ξ < ∞] to E

∗[·], the two-sided radial measure, as
measures on the SLE curve up until some fixed conformal radius η � ε.
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FIG. 2. A diagram of the proof of Theorem 1. Dotted circles represent conformal radii and solid
circles refer to geometric radii. The bold curve gives an example of the approximate shape of a curve
contributing to the leading order event.

This would be everything if it were not for the fact that the tip of the curves
(the portion very near z) under the conditioned measure versus the two-sided ra-
dial measure have very different distribution. To handle this, we use Lemmas 2.14
and 2.16 to show that under both measures the tip stays close to z most of the time
in Euclidean distance, and then Lemma 2.5 tells us that the Green’s function for
getting to w is insensitive to these changes.

To aid in the understanding of the proof, Figure 2 shows diagrammatically the
various distances considered and the approximate shape of a curve in the main
term.

PROOF OF THEOREM 1 GIVEN LEMMA 3.1. We first split according to how
close we get to w before getting close to z. Fixing some r < |z − w|/2, by
Lemma 3.1 we see that for some α > 0

P{ξ < χ < ∞} = P{ξ < χ < ∞; inradξ (w) > r}
+ P{ξ < χ < ∞; inradξ (w) < r}

= P{ξ < χ < ∞; inradξ (w) > r} + O(ε2−dδ2−drα).

Let Fξ denote the σ -algebra generated by the stopping time ξ . By applying
Lemma 2.10 to w in the domain Hξ , we see if δ ≤ r/2,

P{ξ < χ < ∞; inradξ (w) > r|Fξ }
= 1{ξ < ∞; inradξ (w) > r}c∗δ2−dGHξ (w;γ (ξ),∞)

[
1 + O

(
(δ/r)u

)]
.
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Applying Lemma 2.10 to z in H combined with the previous equation implies

c−2∗ εd−2δd−2GH(z;0,∞)−1
P{ξ < χ < ∞; inradξ (w) > r}

= [
1 + O

(
εu + (δ/r)u

)]
E[GHξ (w;γ (ξ),∞)1{inradξ (w) > r}|ξ < ∞].

For simplicity of notation, given a stopping time τ , we let

Eτ [·] = E[· |τ < ∞] and Gτ,r = GHτ (w;γ (τ),∞)1{inradτ (w) > r},
and hence we may rewrite this as

P{ξ < χ < ∞; inradξ (w) > r}
= c2∗ε2−dδ2−dGH(z;0,∞)

[
1 + O

(
εu + (δ/r)u

)]
Eξ [Gξ,r ].

We wish to transform this expression from the conditioned measure to the two-
sided radial measure, and from considering the situation at time ξ (the time it first
gets within conformal radius ε) to Tz (the time under the two-sided radial measure
that z is first contained in the boundary of HTz ). To do so we will pass through a
series of steps.

Fix some η,R so that ε < η < R < |z−w|/2. We wish to control the difference

|Eξ [Gξ,r ] − Eξ [Gξη,r ]| ≤ Eξ

[|Gξ,r − Gξη,r |1{γ [ξη, ξ ] ⊆ BR(z)}]
+ Eξ

[|Gξ,r − Gξη,r |1{γ [ξη, ξ ] �⊆ BR(z)}].
By Lemma 2.5 and the fact that the inradius about w cannot decrease between ξη

and ξ if γ [ξη, ξ ] ⊆ BR(z), we see that

Eξ

[|Gξ,r − Gξη,r |1{γ [ξη, ξ ] ⊆ BR(z)}] = O
(
rd−2−(β∧1)/2R(β∧1)/2)

.

On the second term, the difference is no bigger than O(rd−2) on an event, which
by Lemma 2.16 is O((η/R)α

′
) for some α′ > 0. Putting it all together yields

|Eξ [Gξ,r ] − Eξ [Gξη,r ]| = O
(
rd−2−(β∧1)/2R(β∧1)/2 + rd−2(η/R)α

′)
.

By Lemma 2.13, we know for events in Fξη we have∣∣∣∣dP
∗

dPξ

− 1
∣∣∣∣ = O

(
(ε/η)u

)
,

and hence we have

|Eξ [Gξη,r ] − E
∗[Gξη,r ]| = O

(
rd−2(ε/η)u

)
.

Analogously to before, consider splitting the difference

|E∗[Gξη,r ] − E
∗[GTz,r ]| ≤ E

∗[|Gξη,r − GTz,r |1{γ [ξη, Tz] ⊆ BR(z)}]
+ E

∗[|Gξη,r − GTz,r |1{γ [ξη, Tz] �⊆ BR(z)}].
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By Lemma 2.5 and the fact that the inradius about w cannot decrease between ξη

and Tz if γ [ξη, Tz] ⊆ BR(z), we again see

E
∗[|Gξη,r − GTz,r |1{γ [ξη, Tz] ⊆ BR(z)}] = O

(
rd−2−(β∧1)/2R(β∧1)/2)

.

The second term is on an event which by Lemma 2.14 is O((η/R)α
′
), and hence

|E∗[Gξη,r ] − E
∗[GTz,r ]| = O

(
rd−2−(β∧1)/2R(β∧1)/2 + rd−2(η/R)α

′)
.

We may easily see that

P
∗{inradTz(w) = 0} ≤ ∑

k≥1

P
∗{inradξ1/k

(w) = 0} = 0

by the fact that P
∗ is absolutely continuous with respect to P until the stopping

time ξ1/k combined with that fact that two-sided radial SLE generates a curve
with probability one. Hence, since GTz(w; z,∞) ≥ 0, we have that

E
∗[GTz(w; z,∞)1{inradTz(w) > r}] → E

∗[GTz(w; z,∞)] as r → 0.

Combining all these terms and by combining exponents, we see there exists
some b > 0 such that

εd−2δd−2
P{ξ < χ < ∞}

= c2∗GH(z;0,∞)
[
1 + O

(
εb + (δ/r)b

)]
E

∗[GTz,r ]
+ O

(
rb + (R/r)b + (R/r)b(η/R)b + (ε/r)b(ε/η)b

)
.

Thus by choosing r , η and R so that as ε, δ → 0 we also have

r → 0, δ/r → 0, ε/r → 0,

R/r → 0, η/R → 0, ε/η → 0,

we see that

εd−2δd−2
P{ξ < χ < ∞} → c2∗GH(z;0,∞)E∗[GTz(w; z,∞)]

as desired. �

This same argument generalizes to show that we can define higher-order Green’s
functions of SLE as well (those that give normalized probabilities for passing
through k marked points in the interior), and that the resulting multi-point Green’s
functions can be written in terms of expectations under the two-sided radial mea-
sure of lower-order Green’s functions, for instance,

lim
ε1,ε2,ε3→0

εd−2
1 εd−2

2 εd−2
3 P{ξε1,z1 < ξε2,z2 < ξε3,z3}

= c3∗GH(z1;0,∞)E∗[GHTz1
(z2, z3; z1,∞)],
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where E
∗ is the two-sided radial measure passing through z1.

Note that we may obtain the multi-point Green’s function as defined in the In-
troduction by summing this over the case where it gets near to z then w and the
case where it gets near to w then z.

The remainder of this paper is dedicated to providing a proof of Lemma 3.1 and
a sharpened version of Beffara’s estimate.

4. Proof of Beffara’s estimate and Lemma 3.1. To complete our proof of
the existence of multi-point Green’s functions we require a proof of Lemma 3.1.
We also wish to prove Befarra’s estimate which is the following theorem.

THEOREM 2 (Beffara’s estimate). There exists a c > 0 such that for all z,
w ∈ H with Im(z), Im(w) ≥ 1 we have that

P{ϒ∞(z) < ε,ϒ∞(w) < δ} ≤ cε2−dδ2−d |z − w|d−2.(10)

The hard work will be establishing the result when z,w are far apart. We use the
notation introduced in Section 2.1. For later convenience, we write this proposition
in terms of the usual radius rather than the conformal radius, but it is easy to convert
to conformal radius using the Koebe (1/4)-theorem. We use the notation

t(z) = inradHt (z).

PROPOSITION 4.1. For every 0 < θ < ∞, there exists c < ∞, such that if
z,w ∈ H with

Im(z), Im(w) ≥ θ and |z − w| ≥ θ/9,

then

P{∞(z) ≤ ε,∞(w) ≤ δ} ≤ cε2−dδ2−d .

PROOF OF THEOREM 2 GIVEN PROPOSITION 4.1. Without loss of generality
we assume that 1 ≤ Im(z) ≤ Im(w). We first claim that is suffices to prove (10)
when 1 = Im(z) ≤ Im(w). Indeed, if this is true and r > 1, scaling implies that

P{ϒ∞(rz) < ε,ϒ∞(rw) < δ} = P{ϒ∞(z) < ε/r,ϒ∞(w) < δ/r}
≤ c(ε/r)2−d(δ/r)2−d |z − w|d−2

< cε2−dδ2−d |rz − rw|d−2.

Suppose ε > |z − w|/10. Then, using the one-point estimate Lemma 2.10, we
get

P{ϒ∞(z) < ε,ϒ∞(w) < δ} ≤ P{ϒ∞(w) < δ}
≤ cδ2−d

≤ c102−dε2−dδ2−d |w − z|d−2.
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A similar argument with δ shows that it suffices to prove (10) with Im(z) = 1 and
ε, δ < |z − w|/10. If |z − w| ≥ 1/9, we can apply Proposition 4.1 directly. So for
the remainder of the proof, we let u = |z − w| and assume

1 = Im(z) ≤ Im(w), u ≤ 1

9
, ε, δ ≤ u

10
.

We will use the growth and distortion theorems which we now recall (see,
e.g., [9], Section 3.2). Suppose f : D → C is a univalent function with f (0) =
0, |f ′(0)| = 1. Then if |ζ | < 1,

|ζ |
(1 + |ζ |)2 ≤ |f (ζ )| ≤ |ζ |

(1 − |ζ |)2 ,(11)

1 − |ζ |
(1 + |ζ |)3 ≤ |f ′(ζ )| ≤ 1 + |ζ |

(1 − |ζ |)3 .(12)

Let τ = inf{t : |γ (t) − z| = 8u} = inf{t :t(z) = 8u}. The triangle inequality
implies that 7u ≤ τ(w) ≤ 9u. Lemma 2.10 implies that

P{τ < ∞} ≤ cu2−d .(13)

Let gτ be the usual conformal map, and let h = sgτ where s > 0 is chosen so
that Im(h(z)) = 1. By the Schwarz lemma and the Koebe (1/4)-theorem, 4u ≤
ϒHτ (z) ≤ 16u, and since ϒH(h(z)) = 1,

1

16u
≤ |h′(z)| ≤ 1

4u
.

Since h is a conformal transformation of the disk of radius 8u about z, (11) implies
4
81 ≤ (8/9)2u|h′(z)| ≤ |h(w) − h(z)| ≤ (8/7)2u|h′(z)| ≤ 16

49 .

Since ε ≤ u/10 = (8u)/80, if |z − ζ | ≤ ε, (11) implies

|h(ζ ) − h(z)| ≤
(

80

79

)2

ε|h′(z)| ≤
(

80

79

)2 ε

4u
≤ 2ε

7u
.

Applying (12), we can see that

|h′(w)| ≤ (10/9)

(8/9)3 |h′(z)| ≤ (10/9)

(8/9)3

1

4u
.

Applying (11) to the disk of radius 7u about w and using δ ≤ u/10 = (7u)/70, we
see that for |ζ − w| ≤ δ,

|h(ζ ) − h(w)| ≤
(

70

69

)2

δ|h′(w)| ≤
(

70

69

)2

δ
(10/9)

(8/9)3

1

4u
≤ 3δ

7u
.

Using the estimates of the previous paragraph, we can see by conformal invari-
ance and the Markov property, that

P{∞(z) ≤ ε,∞(w) ≤ δ|τ < ∞}
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is bounded above by the supremum of

P{∞(z′) ≤ ε′,∞(w′) ≤ δ′},
where the supremum is over

Im(z′) = 1,
4

81
≤ |z′ − w′| ≤ 16

49
, ε′ ≤ 2ε

7u
, δ′ ≤ 3δ

7u
.

Proposition 4.1 implies that there exists c′ such that this supremum is bounded by

c′(ε′)2−d(δ′)2−d ≤ cε2−dδ2−du2(d−2).

If we combine this with (13), we get

P{∞(z′) ≤ ε′,∞(w′) ≤ δ′} ≤ cε2−dδ2−dud−2,

which is what we needed to prove. �

By an analogous argument to how we obtained Theorem 2 from Proposition 4.1,
we may obtain Lemma 3.1 from Proposition 4.2.

PROPOSITION 4.2. For every 0 < θ < ∞, there exists c < ∞ and α > 0 such
that if z,w ∈ H with

Im(z), Im(w) ≥ θ and |z − w| ≥ θ/9,

then for ρ > δ

P{∞(z) ≤ ε,∞(w) ≤ δ,σ (w) ≤ ρ} ≤ cε2−dδ2−dρα,(14)

where σ = inf{t :t(z) ≤ ε or t(w) ≤ δ}.

This proposition will follow immediately from the work required to show
Proposition 4.1.

To prove the proposition, we will show that there exists a c < ∞ such that (14)
holds if |z − w| ≥ 2

√
2 and Im(z), (w) ≥ 1. By scaling one can easily deduce the

result for all θ > 0 with a θ -dependent constant. We fix z,w with |z − w| ≥ 2
√

2
and Im(z), Im(w) ≥ 1, and denote by I some fixed vertical or diagonal line such
that

dist(z, I),dist(w, I) ≥ 1,(15)

and z,w lie in different components of H \ I . We will further assume, without
loss of generality, that z is in the component of H \ I which contains arbitrarily
large negative real numbers in it’s boundary (more informally that z is in the left
component).
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4.1. An excursion measure estimate. Our main result will require an estimate
of the “distance” between two boundary arcs in a simply connected domain. We
will use excursion measure to gauge the distance; we could also use extremal dis-
tance, but we find excursion measure more convenient.

Suppose η is a crosscut in H with −∞ < η(1−) ≤ η(0+) ≤ −1. Let Hη denote
the unbounded component of H \ η. Let E (η) = EHη

(η, [0,∞)) denote the excur-
sion measure between η and [0,∞) in Hη, the definition of which we now recall
(see [9], Section 5.2, for more details). If z ∈ Hη, let hη(z) be the probability that
a Brownian motion starting at z exits Hη at η. For x ≥ 0, let ∂yhη(x) denote the
partial derivative. Then

E (η) =
∫ ∞

0
∂yhη(x) dx.

The excursion measure ED(V1,V2) is defined for any domain and boundary arcs
V1,V2 in a similar way and is a conformal invariant. If V2 is smooth, then we can
compute ED(V1,V2) by a similar integral

ED(V1,V2) =
∫
V2

∂nhV1(z)|dz|,
where n denotes the inward normal. We need the following easy estimate.

LEMMA 4.3. There exist c1, c2 such that if η is a crosscut in H with −∞ <

η(1−) ≤ η(0+) = −1 and diam(η) ≤ 1/2, then

c1 diam(η) ≤ E (η) ≤ c2 diam(η).

SKETCH OF PROOF. In fact, we get an estimate

∂yhη(x) 	 diam(η)

(x + 1)2 .

The key estimate used here is the fact that that if Re(z) ≥ 0,

hη(z) 	 Im(z)diam(η)

(|z| + 1)2 . �

LEMMA 4.4. There exists a C < ∞ such that the following is true. Sup-
pose H ⊂ C is a half-plane bounded by the line L = ∂H , D is a simply con-
nected subdomain of H and z ∈ ∂D with d(z,L) > 1

2 . Suppose I is a subin-
terval of L ∩ ∂D. Then for every ε < 1

2 , the excursion measure between I and
V := ∂D ∩ {w : |w − z| ≤ ε} is bounded above by Cε1/2.

PROOF. Without loss of generality we assume that H = H, z = i/2. Let h(w)

denote the probability that a Brownian motion starting at w exits D at V . Then the
excursion measure is exactly ∫

I
∂yh(x) dx.
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Hence it suffices to give an estimate

∂yh(x) ≤ cε1/2[1 ∧ x−2].(16)

For |x| ≤ 4, this follows from the Beurling estimate. For |x| ≥ 4, we first consider
the excursion “probability” to reach Re(w) = x/2. By the gambler’s ruin estimate,
this is bounded by O(|x|−1). Then we need to consider the probability that a Brow-
nian motion starting at z′ with Re(z′) = x/2 reaches the disk of radius 1 about z

without leaving D. By comparison with the same probability in the domain H, we
see that this is bounded above by O(|x|−1). Finally from there we need to hit V

which contributes a factor of O(ε1/2) by the Beurling estimate. Combining these
estimates gives (16). �

LEMMA 4.5. There exists c > 0 such that the following holds. Let D be a
simply connected domain, and let γ be a chordal SLEκ path from z1 to z2 in D.
Let η : (0,1) → D be a crosscut in D. Let ξ : (0,1) → D be another crosscut with
ξ(0+) = z1, and let D1,D2 denote the components of D \ ξ . Suppose η ⊂ D1 and
z2 ∈ ∂D2. Then,

P{γ (0,∞) ∩ η(0,1) �= ∅} ≤ cED(η, ξ)β.

See Figure 3 for a diagram of the setup of this lemma.

PROOF OF LEMMA 4.5. By conformal invariance, we may assume that D =
H, z1 = 0, z2 = ∞, and it suffices to prove the result when ED(η, ξ) ≤ 1 in which
case the endpoints of η are nonzero. Without loss of generality we assume that
they lie on the negative real axis, and by scale invariance we may assume η(1−) ≤
η(0+) = −1. Then monotonicity of the excursion measure implies that

ED(η, ξ) ≥ ED(η).

FIG. 3. The setup for Lemma 4.5.
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Lemma 4.3 implies that if diam(η) < 1/2, then ED(η) 	 diam(η). Since ED(η) ≤ 1
one can see there is a c0 so that diam(η) ≤ c0. The result then follows from Propo-
sition 2.6. �

Given the proof, the form of this lemma may seem odd as the curve ξ is dis-
carded half way through; indeed, the result could be stated with ED(η) rather than
ED(η, ξ) in the inequality. However, ED(η) is hard to estimate directly and, in ev-
ery case in this paper, the method of estimation is to find a curve ξ and proceed as
above.

4.2. Topological lemmas. The most challenging portion of this proof is gain-
ing simultaneous control of the distances to the near and far edges of the curve.
Luckily, we may eliminate a number of hard cases of the computations that follow
by purely topological means. For clarity of presentation, we have isolated these
topological lemmas here in a separate section. Let z,w, I be as described in the
paragraph around equation (15). We call γ a noncrossing curve (from 0 to ∞ in H)
if is generated by the Loewner equation (4) with some driving function Ut , and, as
before, we let Ht be the unbounded component of H \ γ (0, t] and ∂1Ht, ∂2Ht be
the preimages (considered as prime ends) under gt of (−∞,Ut ) and (Ut ,∞). We
call a simple curve ω : (0,∞) → Ht with ω(0+) = γ (t) and ω(∞) = ∞ an infi-
nite crosscut of Ht . Such curves can be obtained as preimages under gt of simple
curves from Ut to ∞ in H. An important observation is that infinite crosscuts of
Ht separate ∂1Ht from ∂2Ht .

We now define a particular crosscut of Ht contained in I that separates z

from w.

DEFINITION. Let γ be a noncrossing curve, and let It = I \ γ (0, t]. We de-
note by It = It (I, z,w,γ ) the unique open interval contained in I such that the
following four properties hold. For any t ≤ t ′ we have:

• It is a connected component of It ,
• It ′ ⊆ It ,
• Ht \ It has exactly two connected components, one containing z and one con-

taining w and
• It = It ′ whenever γ (t, t ′] ∩ I = ∅.

We let Hz
t ,Hw

t denote the components of Ht \It that contain z and w, respectively.

Seeing that this notion is well defined is nontrivial, despite the intuitive nature
what it should be (see Figure 4). To avoid breaking the flow of the document, the
proof that it is well defined has been deferred to Appendix A.

LEMMA 4.6. Suppose γ is a noncrossing curve with z,w /∈ γ (0,∞) and It =
It (I, z,w,γ ) as above. Suppose γ (t) ∈ I t . If It is not bounded, then

∗
Ht

(z, γ (t),∞) ≥ 1, ∗
Ht

(w,γ (t),∞) ≥ 1.
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FIG. 4. A few steps showing the behavior of It for some times 0 < t1 < t2 < t3.

PROOF. Suppose It is not bounded. Then It is an infinite crosscut of Ht . Sup-
pose that ∗

Ht
(z, γ (t),∞) < 1. Then there is a crosscut η contained in a disc of

radius strictly less than one centered on z which has one end point in ∂1Ht and one
end point in ∂2Ht . Hence η must intersect It . However, dist(z, It ) ≥ dist(z, I) ≥ 1
which is a contradiction. Therefore, ∗

Ht
(z, γ (t),∞) ≥ 1. �

LEMMA 4.7. Suppose γ is a noncrossing curve with z,w /∈ γ (0,∞) and It =
It (I, z,w,γ ) as above. Suppose γ (t) ∈ I t . If It is bounded, and Hz

t is bounded,
then

∗
Ht

(z, γ (t),∞) ≥ 1.

PROOF. Suppose It is bounded, Hz
t is bounded, and ∗

Ht
(z, γ (t),∞) < 1.

Then there is a crosscut η of Hz
t which has one end point in ∂1Ht and one end

point in ∂2Ht . Since Hz
t is bounded and γ (t) ∈ I t , we may find an infinite crosscut

ω of Ht that never enters Hz
t [take a simple curve from ∞ in Ht until it first hits It

and then continue the curve along It to reach γ (t)]. Since η and ω do not intersect,
we get a contradiction. �

Given these simple observations, we can restrict the manner in which the various
distances to the curve can be decreased.

LEMMA 4.8. Suppose γ is a noncrossing curve with z,w /∈ γ (0,∞) and It =
It (I, z,w,γ ) as above. Suppose t0 is a time so that γ (t0) ∈ I t0 . Let ζ = inf{t >

t0|γ (t) ∈ It−}. Then at most one of the following holds:

• Hζ ,1(z, γ (ζ ),∞) < Ht0 ,1(z, γ (t0),∞) ∧ 1, or
• Hζ ,2(z, γ (ζ ),∞) < Ht0 ,2(z, γ (t0),∞) ∧ 1.

PROOF. If ζ = t0, the above statement follows immediately, so we may as-
sume ζ > t0. Consider the noncrossing loop � = γ [t0, ζ ] ∪ L where L is the line
connecting γ (ζ ) and γ (t0). Partition H into two sets, the infinite component of
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H \ �, which we will denote by A∞, and the union of the finite components of
H \ �, which we will denote by A0. The point z is either in A∞ or A0. As the cases
are similar, assume z ∈ A∞. Since � is a noncrossing loop, we either have a curve
η : [0,1) → A∞ with η(0) = z and η(1−) ∈ ∂1Hζ or η(1−) ∈ ∂2Hζ , but not both.
This yields that only one of the Hζ ,j (z, γ (ζ ),∞) could have decreased past the
minimum of 1 and its previous value. �

LEMMA 4.9. Suppose γ is a noncrossing curve with z,w /∈ γ (0,∞) and It =
It (I, z,w,γ ) as above. Suppose t0 is a time so that γ (t0) ∈ I t0 , and let ζ = inf{t >

t0|γ (t) ∈ It−}. Suppose for some s < 1,

∗
ζ (z) ≤ s < ∗

t0
(z).

Then t0(z) ≤ s, and Hw
t0

and Hw
ζ are bounded.

PROOF. By the previous lemma, we have that either 1
ζ (z) ≥ 1

t0
(z) ∧ 1 or

2
ζ (z) ≥ 2

t0
(z)∧1. This implies that ∗

ζ (z) ≥ t0(z)∧1, and hence t0(z)∧1 ≤ s

which is the first assertion.
We now prove that Hw

ζ is bounded. Assume first that both Hw
ζ and Hz

ζ are
unbounded. Then Iζ is unbounded, and by Lemma 4.6 we have that

∗
Hζ

(z, γ (t),∞) ≥ 1,

which is a contradiction. Thus one of Hw
ζ or Hz

ζ is bounded. If Hz
ζ is bounded,

then by Lemma 4.7 we have

∗
Hζ

(z, γ (t),∞) ≥ 1,

which is again a contradiction. Thus Hw
ζ is bounded, as desired.

By the definition of ζ and It , we know γ (t0, ζ ) is contained in precisely one of
Hz

t0
or Hw

t0
. Since

∗
ζ (z) < 1 ≤ ∗

t0
(z)

by assumption, we know γ (t0, ζ ) ⊆ Hz
t0

. Assume that Hw
t0

were unbounded. Then
there is a curve η from w to ∞ contained in Hw

t0
. Since Hw

ζ is bounded η ∩ ∂Hw
ζ

is nonempty. By definition,

∂Hw
ζ ⊆ γ (0, t0] ∪ γ (t0, ζ ] ∪ Iζ .

We now show η cannot intersect any of the three sets on the right. Since η is in Hw
t0

,
we know η ∩ (γ (0, t0] ∪ It0) = ∅ and moreover, since Iζ ⊆ It0 , that η ∩ Iζ = ∅.
Since γ (t0, ζ ) ⊆ Hz

t0
, we know η ∩ γ (t0, ζ ) = ∅. Thus we have a contradiction,

and Hw
t0

must be bounded, as desired. �
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4.3. Main SLE estimates. We now use the above topological restrictions to
help us establish the needed SLE estimates. Let Tz (resp., Tw) denote the first time
that z (resp., w) is not in Ht , and let T = Tz ∧ Tw denote the first time that one of
z,w is not in Ht . Note that if the curve is to approach z and w to within ε and δ as
desired, it must do so before Tz ∨ Tw .

We also define the following recursive set of stopping times. Let τ0 = 0. Given
τj < T , define τ̂j as the infimum over times t > τj such that

t(z) ≤ 1
2τj

(z) or t(w) ≤ 1
2τj

(w).

Given this, let τj+1 be the infimum over times t > τ̂j such that γ (t) ∈ I τ̂j
. These

times are understood to be infinite when past T , and hence at least one of the points
can no longer be approached by the curve. The sequence of stopping times {τk}k≥0
are called renewal times. We let Rk+1 = 0 if τk+1 < ∞ and τk+1(z) ≤ 1

2τk
(z);

in this case, we can see that τk+1(w) > 1
2τk

(w). If τk+1 < ∞ and τk+1(w) ≤
1
2τk

(w), we set Rk+1 = 1. We set Rk+1 = ∞ if τk+1 = ∞. Less formally, the
renewal times encode when our curve halved its distance to either z or w and
then returned to It , while Rk specifies which point we halved the distance to. Let
Fk = Fτk

.

LEMMA 4.10. There exist c < ∞, α > 0 such that for all k ≥ 0, r ≤ 1/2,

P{Rk+1 = 0;τk+1(z) ≤ rτk
(z)|Fk} ≤ c1{τk < T }τk

(z)αr2−d .

PROOF. We assume τk < T , and we write τ = τk , ξ = ξ(z; rτ (z)). First,
consider the event that either Iτ is not bounded, or both Iτ and Hz

τ are bounded.
By Lemmas 4.6 and 4.7, we have ∗

τ (z) ≥ 1. Thus by Lemma 2.11, we get

P{ξ < ∞|Fk} ≤ cr2−dτ (z)
β/2.

Suppose that Iτ is bounded, and Hw
τ is bounded. We split into the following two

cases: ∗
τ (z) ≤ √

τ(z) and ∗
τ (z) >

√
τ(z). If ∗

τ (z) >
√

τ(z), then Lem-
ma 2.11 implies

P{ξ < ∞|Fk} ≤ cr2−dτ (z)
β/4.

Suppose ∗
τ (z) ≤ √

τ(z). Then there exist simple curves η1, η2 : [0,1) → Hz
τ

contained in the disk of radius 2∗
τ (z) about z with ηj (0) = z and ηj (1+) ∈ ∂jHτ .

At the time ξ we can consider the line segment L from γ (ξ) to z. There exists a
crosscut of Hξ , η̂, contained in L∪η1 or in L∪η2, one of whose endpoints is γ (ξ),
that disconnects Iξ from infinity. Using Lemma 4.4, we see that

EHξ (η̂, Iξ ) ≤ c∗
τ (z)

1/2 ≤ cτ (z)
1/4.

Thus, using Lemma 4.5 we see that

P{ξ < τk+1 < ∞|Fk} ≤ cτ (z)
β/4

P{ξ < ∞|Fk} ≤ cr2−dτ (z)
β/4. �
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REMARK. The proof of the last lemma was not difficult given the estimates
we have derived. However, it is useful to summarize the basic idea. If ∗

τ (z) is not
too small, then it suffices to estimate

P{Rk+1 = 0;τk+1(z) ≤ rτk
(z)|Fk}

by

P{ξ < ∞|Fk}.
However, if ∗

τk
(z) is not much bigger than τk

(z) this estimate is not sufficient.
In this case, we need to use

P{ξ < ∞|Fk}P{τk+1 < ∞|Fk, ξ < ∞}.
The above argument provides a good bound on the probability that the near side

gets even closer. To complete our argument, we must also provide a bound limiting
the probability that the far side can get closer as well.

LEMMA 4.11. There exists c < ∞ such that for all k ≥ 0, s ≤ 1/4, if

ξ∗ = inf{t > τk|∗
t (z) ≤ s} and η∗ = inf{t > ξ∗|γ (t) ∈ It−},

then

P{η∗ < ∞,∗
η∗(z) ≤ s|∗

τk
(z) > s, Fτk

} ≤ csβ/2.

PROOF. Assume ∗
τk

(z) > s. If η∗ < ∞ we may define

� = sup{t < η∗|γ (t) ∈ It−}
to be the previous time that γ crossed It− before η∗. Note that τk ≤ � < ξ∗ < η∗
and ∗

�(z) > s. By considering the two times � and η∗ in Lemma 4.9, we see
that Hw

� is bounded.
Consider the situation at time ξ∗. By the definition of the stopping times, there

must be a curve ν : (0,1) → Hξ∗ which contains z, is never more than distance
2s from z, has ν(0+) ∈ ∂1Hξ∗ and ν(1−) ∈ ∂2Hξ∗ such that ν separates Iξ∗ , and
hence w, from infinity. Since ν is at least distance 1/2 from Iξ∗ we know from
Lemma 4.4 that the excursion measure between ν and Iξ∗ in Hξ∗ is bounded above
by Cs1/2. Then an application of Lemma 4.5 tells us that the probability of γ

returning to Iξ∗ is bounded above by Csβ/2 which gives the lemma. �

The following two lemmas combine the methods of the above two bounds.

LEMMA 4.12. There exist c < ∞, α > 0 such that for all k ≥ 0, r ≤ 1/2,
s ≤ 1/4,

P{Rτk+1 = 0;τk+1(z) ≤ rτk
(z);∗

τk+1
(w) ≤ s|Fk}

≤ c1{τk < T }τk
(z)α[sα + 1{∗

τk
(w) ≤ s}]r2−d .
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PROOF. If ∗
τk

(w) ≤ s, then the desired statement reduces to Lemma 4.10.
Thus, we may assume that ∗

τk
(w) > s.

Let ζ ∗ = ζ ∗
k be the infimum over times t > τk so that ∗

t (w) ≤ s and γ (t) ∈ It− .
Let σ = σk = inf{t > τk|t(z) ≤ rτk

(z)}. If ∗
τk

(w) > s,∗
τk+1

(w) ≤ s, and
σ < ∞, then ζ ∗ < σ since the curve γ would need to intersect Iσ before approach-
ing w and hence would force the renewal time τk+1 before ζk .

By the same argument as in Lemma 4.11, we know if ∗
τk

(w) > s and ζ ∗ < ∞,
there is a time ω, τk ≤ ω < ζ ∗ for which there is a curve connecting ∂1Hω to ∂2Hω

passing through γ (ω) contained in a disk of radius 2s about w separating Iκ from
infinity. Then, by Lemma 4.5, we have that

P{ζ ∗ < ∞|∗
τk

(z) > s, Fτk
} ≤ csα.

By Lemma 4.9 we know Hz
ζ ∗ is bounded. Lemma 4.7 implies that ∗

ζ ∗(z) = 1,
and hence by Lemma 4.4

P{Rτk+1 = 0;τk+1 ≤ rτk
(z)|Fζ ∗, ζ ∗ < ∞} ≤ c1{τk < T }ζ ∗(z)αr2−d .

Combining the above two bounds gives the desired result. �

LEMMA 4.13. There exist c < ∞, α > 0 such that for all k ≥ 0, r ≤ 1/2,
s > 0,

P{Rτk+1 = 0;τk+1(z) ≤ rτk
(z);∗

τk+1
(z) ≤ s|Fk}

≤ c1{τk < T }τk
(z)α[sα + 1{∗

τk
(z) ≤ s}]r2−d .

PROOF. If ∗
τk

(z) ≤ s or s ≥ 1/4, the conclusion reduces to Lemma 4.10.
Thus we may assume that ∗

τk
(z) > s, s ≤ 1/4. Let E denote the event

E = {Rτk+1 = 0;τk+1(z) ≤ rτk
(z);∗

τk+1
(z) ≤ s;∗

τk
(z) > s}.

Let

σ = inf{t |t(z) ≤ rτk
(z)},

and note that on the event E,

τk+1 = inf{t > σ |γ (t) ∈ It−}.
Define ξ to be the infimum over times t ≥ σ such that there is a curve η : (0,1) →
Ht with η(0+) = γ (t) and η(1−) ∈ ∂Ht with η contained entirely in the ball of
radius 2s about z, and η separating It from ∞.

We now claim that given Fσ either ξ < τk+1 or ∗
τk+1

(z) > s. To see this, sup-
pose neither holds. Since ∗

τk+1
(z) ≤ s, for every s < s ′ ≤ 2s ≤ 1/2, there is a

crosscut η of Hτk+1 going through z whose endpoints are in ∂1Hτk+1, ∂2Hτk+1 , re-
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spectively, and which is contained in the disk of radius s′ about z. By Lemma 4.9
we know η must disconnect Iτk+1 from ∞ since Hw

τk+1
must be bounded. We can

choose such an η such that at least one endpoint of η is not in γ [0, τk], for oth-
erwise all such η would be a crosscuts of Hτk

separating w from infinity which
would imply that ∗

τk
(z) ≤ s.

Let ζ = sup{t ≤ τk+1|γ (t) ∈ η} > τk and note that τk < ζ < τk+1. If ζ ≥ σ we
are done since this η demonstrates that ξ < τk+1.

Thus assume ζ < σ . In this case, we will construct a curve in Hσ satisfying
the conditions in the definition of ξ . Since ζ < σ we know the curve η defined
above disconnects Iσ from infinity in Hσ . By the definition of σ as the first time
that σ(z) ≤ rτk

(z), the straight open line segment, L, from γ (σ ) to z is con-
tained in Hσ . Additionally, since σ(z) ≤ ∗

σ (z) ≤ s, we know η(0,1) ∪ L is
contained entirely in the ball of radius 2s about z. Thus we may find a curve η̂ con-
tained in η(0,1) ∪ L which separates Iσ from infinity in Hσ with η(0+) = γ (t)

and η(1−) ∈ ∂Ht and with η contained entirely in the ball of radius 2s about z,
proving that ξ = σ < τk+1. Thus we have reached a contradiction.

On the event E we know ∗
τk+1

(z) ≤ s, and thus the above argument tells us
ξ < τk+1. We have therefore shown that if ∗

τk
(z) > s, s ≤ 1/4, then

P(E|Fk) ≤ P{σ ≤ ξ < τk+1 < ∞|Fk}.
We may now argue as in the second part of the proof of Lemma 4.10 to obtain
P{σ < ∞|Fk} ≤ cτk

(z)α and P{τk+1 < ∞|Fξ } ≤ csα . �

4.4. Combinatorial estimates. We have now completed the bulk of the proba-
bilistic estimates. Most of what remains is a combinatorial argument to sum up the
bounds proven above across all possible ways that the SLE curve may approach z

and w in turn.
Without loss of generality, assume that δ = 2−m and ε = 2−n, and let

ξz = ξz,ε = inf{t :t(z) ≤ 2−n},
ξw = ξw,δ = inf{t :t(w) ≤ 2−m},
ξ = ξz ∨ ξw = inf{t :t(z) ≤ 2−n,t(w) ≤ 2−m}.

These are similar to χ and ξ from the previous sections; however now the times
denote the first time that the curve gets within a small Euclidean distance of the
point, rather than a small conformal radius of the point. Let σ be the minimal
τk such that τk

(z) < 2−n+1 or τk
(w) < 2−m+1. Let kσ be the index so that

σ = τkσ . If such a renewal time does not exist, let kσ = ∞ and σ = ∞. Note that
if ξ is finite, then so is σ .
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Let Vz,k,Vz denote the events (and their indicator functions)

Vz,k = {kσ = k,Rσ = 0}, Vz =
∞⋃

k=1

Vz,k.

We define Vw analogously. By the definition of σ , on the event the event Vz,

τkσ −1(z) ≥ 2−n+1, τkσ −1(w) ≥ 2−m+1, σ (z) < 2−n+1.

Also,

σ(w) > 2−m,

for if σ(w) ≤ 2−m, there would have been a renewal time after τkσ −1 but before
τk = σ . Note that

{ξ < ∞} ⊂ [Vz ∩ {ξw < ∞}] ∪ [Vw ∩ {ξz < ∞}].
We will concentrate on the event Vz ∩ {ξw < ∞}; similar arguments handle the
event Vw ∩ {ξz < ∞}.

Define the integers (il, jl) by stating that at the renewal time τl ,

2−il < τl
(z) ≤ 2−il+1, 2−jl < τl

(w) ≤ 2−jl+1.

If σ < ∞, we write (iσ , jσ ) = (ikσ , jkσ ). On the event kσ = k,Rσ = 0, there is a
finite sequence of ordered triples

π = [(i0, j0,0), (i1, j1,R1), . . . , (ik−1, jk−1,Rk−1), (ik, jk,Rk) = (iσ , jσ ,0)],
il, jl ∈ {1,2,3, . . .},Rl ∈ {0,1}.

We have the following properties for 0 ≤ l ≤ k − 1:

• If Rl+1 = 0, then il+1 ≥ il + 1 and jl ≤ jl+1 ≤ jl + 1.
• If Rl+1 = 1, then il ≤ il+1 ≤ il + 1 and jl+1 ≥ jl + 1.

We call any sequence of triples satisfying these two properties a legal sequence
of length k. For any i, j, k, let Sk(i, j,0) denote the collection of legal finite se-
quences of length k whose final triple is

(ik, jk,Rk) = (i, j,0).

If π is a legal finite sequence of length k, let Vz,π be the event that kσ = k, Rσ = 0
and the renewal times up to and including σ give the sequence π . Figure 5 illus-
trates this definition.

Define Kl for 1 ≤ l ≤ k by

Kl =
{

il−1, if Rl = 0,
jl−1, if Rl = 1.

The next proposition gives the fundamental estimate.
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FIG. 5. A curve γ (shown in bold) in Vz,π with π = [(0,0,0), (0,1,1), (2,1,0), (3,1,0)].

PROPOSITION 4.14. There exist c and an α > 0 such that the following holds.
Let i, j, k be integers, and let π ∈ Sk(i, j,0). Then

P[Vz,π ∩ {ξw < ∞}] ≤ ck2(m+n)(d−2)e−α(i+j−n)
k∏

l=1

e−αKl .

PROOF. Note that on the event Vz we may say by Lemma 2.11 that

P{ξw < ∞|Fk} ≤ c

[
2−j

∗
τk

(w)

]β/2

2(m−j)(d−2).

We will proceed by splitting the event Vz,π into the case where ∗
τk

(w) ≥ 2−j and
the case where it is not.

Before doing so, we will discuss how to estimate P[Vz,π ] without any further
conditions, as it is important to our bounds below. By the definition of Sk(i, j,0)

we have that

π = [(i0, j0,0), (i1, j1,R1), . . . , (ik, jk,0)],
where the sequence of triples is a legal sequence as described above.

We will estimate this probability by applying Lemma 4.10 to approximate
the probability of each step; which is to say the probability that given that the
SLE at time τl yields the triple (il, jl,Rl) we get the triple (il+1, jl+1,Rl+1)
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at the time τl+1. As the two cases are similar, we assume that Rl+1 = 0.
Since Kl+1 = il , we know the distance to z at time τl is less than 2−Kl+1 . We
wish the distance from z to the SLE curve to decrease by at least a factor of
2il+1−il−1. The probability of this is shown by Lemma 4.10 to be of the order
c2−αKl+12(2−d)(il+1−il ) by absorbing factors into α and c we may rewrite this
bound as ce−αKl+12(d−2)(il+1−il+jl+1−jl) as jl+1 can be at most one greater than jl .

To get the probability of Vz,π , we need only multiply through each of these k

individual probabilities to get that

P[Vz,π ] ≤
k∏

l=1

ce−αKl 2(d−2)(il−il−1+jl−jl−1)

= ck exp

{
log(2)(d − 2)

k∑
l=1

(il − il−1 + jl − jl−1)

}
k∏

l=1

e−αKl

= ck2(d−2)(i+j)
k∏

l=1

e−αKl ,

where we have absorbed the 2(d−2)(i0+j0) (bounded above by a constant given the
restrictions of z and w) into the ck term in the last line by redefining c.

We now return to our main estimate. Note that, when ∗
τk

(w) ≥ 2−j/2, we have

P[Vz,π ∩ {∗
τk

(w) ≥ 2−j/2} ∩ {ξw < ∞}]
≤ cP[Vz,π ∩ {∗

τk
(w) ≥ 2−j/2}]2−βj/42(m−j)(d−2)

≤ cP[Vz,π ]2−βj/42(m−j)(d−2)

≤ ck2−βj/42(m−j)(d−2)2(i+j)(d−2)
k∏

l=1

e−αKl

= ck2−βj/42(m+n)(d−2)2(i−n)(d−2)
k∏

l=1

e−αKl

≤ ck2(m+n)(d−2)2−μ(i+j−n)
k∏

l=1

e−αKl ,

where the third line follows from the above discussion, and the last line holds for
some choice of μ > 0.

Thus we need only understand the event

P[Vz,π ∩ {∗
τk

(w) < 2−j/2} ∩ {ξw < ∞}]
≤ cP[Vz,π ∩ {∗

τk
(w) < 2−j/2}]2(m−j)(d−2).
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For the event {∗
τk

(w) < 2−j/2} there must be at least one l such that ∗
τl
(w) ≥

2−j/2 and ∗
τl+1

(w) < 2−j/2. By using Lemma 4.12 for that single step if Rl = 1
or Lemma 4.13 if Rl = 0 and 4.10 for all other steps, we have that

P[Vz,π ∩ {∗
τk

(w) < 2−j/2}]

≤
k−1∑
l=0

P[Vz,π ∩ {∗
τl
(w) ≥ 2−j/2;∗

τl+1
(w) < 2−j/2}]

≤ kck2−αj/22(i+j)(d−2)
k∏

l=1

e−αKl .

By combining this with the above event we see that

P[Vz,π ∩ {∗
τk

(w) < 2−j/2} ∩ {ξw < ∞}]

≤ kck2(m−j)(d−2)2−αj/22(i+j)(d−2)
k∏

l=1

e−αKl

≤ ck2(m+n)(d−2)2−μ(j+i−n)
k∏

l=1

e−αKl

for some choice of μ and where c is being used generically to absorb the leading k.
Thus by choosing μ and α to be the same (which we can do by taking the minimum
for both) we get the desired result. �

We will now show how this proposition implies the main theorem. The proof
rests upon the following combinatorial lemma.

LEMMA 4.15. For every α > 0, there exist c and a u > 0 such that for all k

∑
π∈Sk(i,j,0)

k∏
l=1

e−αKl ≤ ce−uk2
.

PROOF. We fix α and allow all constants to depend on α. Let

�k = ∑
[m]k

k∏
l=1

e−αml ,

where the sum is over all strictly increasing finite sequences of positive integers,
written as [m]k := [m1,m2, . . . ,mk]. We first claim that

�k ≤ c1e
−αk2/4.
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Consider the following recursive relation:

�k = ∑
[m]k

k∏
l=1

e−αml

≤ ∑
[m]k−1

∞∑
mk=k

e−αmk

k−1∏
l=1

e−αml

= �k−1

∞∑
j=k

e−αj

≤ c2�k−1e
−αk.

Applying this bound inductively to �k yields

�k ≤ ck
2 exp

{
−α

k∑
i=1

i

}
≤ c1e

−αk2/4

as desired.
To choose a legal sequence in Sk(i, j,0), there are 2k−1 ways to choose the

values R1, . . . ,Rk−1. Given the values of R1, . . . ,Rk−1 we choose the increases of
the integers. If Rl = 0, then il > il−1 and jl = jl−1 or jl = jl−1 +1. The analogous
inequalities hold if R1 = 1. There are 2k ways to choose whether jl = jl−1 or
jl = jl−1 +1 (or the corresponding jump for il if R1 = 1). In the other components
we have to increase by an integer. We therefore get that the sum is bounded above
by

2k−1 max
0≤l≤k−1

2l�l · 2k−l−1�k−l−1 ≤ ck max
0≤l≤k−1

e−αl2/4e−α(k−l−1)2/4

≤ ce−uk2
. �

By combining Proposition 4.14 and Lemma 4.15, there exist c such that

∞∑
k=1

∑
π∈Sk(i,j,0)

P[Vz,π ∩ {ξw < ∞}] ≤ c2(m+n)(d−2)e−α(j+i−n),

and hence by summing over i ≥ n − 1, j ≥ 0 we get

P[Vz ∩ {ξ < ∞}] ≤ P[Vz ∩ {ξw < ∞}]

=
∞∑

i=n−1

∞∑
j=0

∞∑
k=1

∑
π∈Sk(i,j,0)

P[Vz,π ∩ {ξw < ∞}]

≤ c2(m+n)(d−2) = cε2−dδ2−d .
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By the symmetry of z,w we have the bound

P[Vw ∩ {ξ < ∞}] ≤ cε2−dδ2−d

and hence

P{∞(z) ≤ ε,∞(w) ≤ δ} = P{ξ < ∞} ≤ cε2−dδ2−d

as required to complete the proof of Proposition 4.1, and hence the proof of Bef-
fara’s estimate.

With the proof set up in this way, we may now rapidly complete our proof of
the existence of the multi-point Green’s function. By mirroring the proof above,
we may conclude that for ρ = e−� (and hence for all ρ) that

P[Vz ∩ {ξ < ∞,σ (w) ≤ ρ}] ≤ P[Vz ∩ {ξw < ∞,σ (w) ≤ ρ}]

=
∞∑

i=n−1

∞∑
j=�

∞∑
k=1

∑
π∈Sk(i,j,0)

P[Vz,π ∩ {ξw < ∞}]

≤ c2(m+n)(d−2)e−α� = cε2−dδ2−dρα.

This proves Proposition 4.2 and hence completes the proof of the existence of
the multi-point Green’s function.

APPENDIX A: THE EXISTENCE OF THE It

The aim of this Appendix is to prove the existence of the separating set It de-
sired above.

DEFINITION. Let γ be a curve in the upper half-plane, and let z,w, I be a
pair or distinct points in H separated by the line I . Let It = I \ γ (0, t]. We will
denote by It the unique open interval contained in I such that the following four
properties hold. For any t ≤ t ′ we have:

• It is a connected component of It ,
• the It are decreasing, which is to say It ′ ⊆ It ,
• Ht \ It has exactly two connected components, one containing z and one con-

taining w and
• It = It ′ whenever γ (t, t ′] ∩ I = ∅.

It may, at first glance, seem simple to define such sets inductively. However, in
general, the set of times that a curve γ crosses I may be uncountable and have no
well-defined notion of “the previous crossing.” To avoid this issue and show this
notion is well defined, we require a few topological lemmas.

LEMMA A.1. Let U be a connected open set in C separated by a smooth
simple curve η : [0,1] → U . Let V ⊂ U be a connected open subset. Then for any
points z,w ∈ V , there exits a curve ξ : [0,1] → V from z to w which intersects η

a finite number of times.
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PROOF. This proof mirrors the classic proof that a connected open set is path
connected. Define an equivalence relation on V where points z,w ∈ V are equiv-
alent, if z can be connected to w by a curve ξ which intersects η a finite number
of times. This can readily be shown to satisfy the requirements of an equivalence
relation.

Let Vα denote the open connected components of V \ η. If z,w are both in the
same Vα , then they may be connected by a curve which does not intersect η; hence
each Vα is contained entirely in a single equivalence class.

Consider a disc, D, contained in V centered on a point η(t0) for some t0 ∈ (0,1)

with components Vα and Vβ on either side of η near this point. Since η is smooth
and simple, by choosing D sufficiently small we may find a diffeomorphism φ

so that φ(D) = D and φ(η ∩ D) = {it : t ∈ (−1,1)}. Connect −1/2 to 1/2 by the
straight line between them, which only intersects the image of η once. Taking the
image of this line under φ−1 gives a curve ξ satisfying the conditions of the equiv-
alence relation connecting two points, one in Vα and one in Vβ . Thus components
of V \ η which are directly separated by η are in the same equivalence class. Since
V is connected, the only equivalence class is V itself. �

Suppose U is a connected open set in C separated by a curve η : (0,1) → U

into two components U1,U2 with points z ∈ U1 and w ∈ U2. Let V be a connected
subset of U . Define DV (z,w;η) to be the the set of connected components of
V ∩ η which disconnects z from w in V .

COROLLARY A.2. Let U be a connected open set in C separated by a smooth
simple curve η : [0,1] → U into two components U1,U2 with z ∈ U1 and w ∈ U2.
Let V ⊂ U be a connected open subset containing z and w. Then |DV (z,w,η)| is
finite and odd.

PROOF. To see that the number is finite, take the curve ξ between z and w as in
the above lemma, and note that any ηi which separates z from w must intersect ξ .

To see that it is odd, consider the connected components of V ′ := V \⋃
γ∈DV (z,w;η) γ . There are exactly |DV (z,w;η)|+1 such components. η separates

U into two components, and hence the components of V ′ are alternately contained
in U1 and U2. Since the component containing z is in U1, and the component con-
taining w is in U2, there must be an even number of components of V ′, which
makes |DV (z,w;η)| odd. �

This general topological lemma has the following consequence in our setting.
To simplify notation, we will define Dt = DHt (z,w, I).

COROLLARY A.3. Fix 0 ≤ t ′ ≤ t < ∞. Then a connected component I of It ′
separates z from w in Ht ′ if and only if the number of elements of Dt contained in
I is odd.
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PROOF. The “only if” direction is precisely Corollary A.2. Thus we wish to
show that if the number of elements of Dt contained in I is odd, then I separates
z from w.

Assume not, so the number of elements of Dt contained in I is odd but I does
not separate z from w. Ht ′ \ I has two components, one of which contains both z

and w. Consider any curve η connecting z to w. Without loss of generality assume
that η crosses each element of Dt exactly once by simply removing any portion of
the curve between the first and last times that it crosses each element of Dt . Since
η crosses each element of Dt contained in I precisely once, we know η crosses I

an odd number of times, and hence it must start and end in different components
of Ht ′ \ I which contradicts the fact that it connects z to w. �

We may now use this to prove that It is well defined.

PROOF OF WELL-DEFINEDNESS OF It . For a component I of It and t ′ < t ,
let Ct ′(I ) denote the component of It ′ which contains I . We claim there exists a
unique component of It , which we will denote It , such that for all 0 ≤ t ′ ≤ t , we
have Ct ′(It ) ∈ Dt ′ . Note that such an It clearly satisfies all the conditions of the
definition.

First we prove existence. Let {Ji}∞i=1 be the connected components of It .
Assume that none satisfy the above condition, which is to say that for each i

there exists a ti ≤ t so that Cti (Ji) does not separate z from w in Hti . Now
{Cti (Ji)}∞i=1 covers It since the Ji did as well, and moreover since by construc-
tion the Cti (Ji) are either contained in each other or disjoint, we may find a sub-
collection {Ctik

(Jik )}∞k=1 which covers It with all elements pairwise disjoint. By
Corollary A.3 there are an even number of elements of Dt contained in Ctik

(Jik )

for each k. However, since they cover disjointly, this implies that |Dt | is even,
which contradicts Corollary A.2 completing the proof of existence.

Now we establish uniqueness. Let I
(1)
t , I

(2)
t , . . . , I

(�)
t denote the components of

It such that for all 0 ≤ t ′ ≤ t we have Ct ′(I
(i)
t ) ∈ Dt ′ , and assume that � > 1.

Define

t0 = sup
{
t ′ :∃i �=j s.t. Ct ′

(
I

(i)
t

) = Ct ′
(
I

(j)
t

)}
.

By this definition, it is clear that γ (t0) ∈ I . Moreover, there exists a t1 < t0 such
that γ [t1, t0) ∩ I = ∅ since if there did not then γ (t0) is a limit point of γ (0,
t0) ∩ I which implies that an earlier time would have separated all the I

(i)
t from

each other contradicting the choice of t0. The components of It0 are precisely those
of It1 except for a single component, call it J , which is split into J1, J2 in It0 by

γ (t0). By the choice of t0, J is Ct1(I
(i)
t ) for some i and both of J1, J2 are Ct0(I

(i)
t )

for some i. This is a contradiction since by Corollary A.3 each of J,J1, J2 must
contain an odd number of elements of Dt . �
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APPENDIX B: THE PDE FOR THE GREEN’S FUNCTION

We outline here the derivation of the PDE which governs the ordered version
of the multi-point Green’s function. From Theorem 1, we know that for z,w ∈ H

with

ξ = ξε = ξz,ε = inf{t :ϒt(z) ≤ ε},
χ = χδ = χw,δ = inf{t :ϒt(w) ≤ δ},

we have that

GH(z,w;0,∞) = 1

c2∗
lim

ε,δ→0+ εd−2δd−2
P{ξ < χ < ∞}.

By the domain Markov property, and conformal invariance of SLE, one can
deduce that

Mt := E[GH(z,w;0,∞)|Ft ]
= GHt (z,w;0,∞)

= |Z′
t (z)|2−d |Z′

t (w)|2−d · GH(Zt (z),Zt (w);0,∞)

is a local martingale, where Zt is the unique conformal map defined by (5) which
maps Ht to H, sending γ (t) to 0. We will find the SDE which Mt satisfies and use
that the drift must zero to find the differential equation that G(x1, y1, x1, y2) :=
GH(x1 + iy1, x2 + iy2;0,∞) must satisfy.

From (5), we know that

dZt(z) = a

Zt(z)
dt + dBt ,

and hence, letting Zt(z) = Xt(z) + iYt (z), we see that

dXt(z) = aXt(z)

Xt(z)2 + Yt (z)2 dt + dBt ,

dYT (z) = − aYt (z)

Xt(z)2 + Yt (z)2 dt.

To compute the SDE for |Z′
t (z)|, we must use the logarithm. First note that

dZ′
t (z) = −aZ′

t (z)

Zt (z)2 dt

and hence that

d[logZ′
t (z)] = dZ′

t (z)

Z′
t (z)

= − a

Zt(z)2 dt.

We may thus recover the norm of the absolute value by considering the real part,
yielding

d|Z′
t (z)|2−d = a(d − 2)|Z′

t (z)|2−d Xt(z)
2 − Yt (z)

2

(Xt(z)2 + Yt (z)2)2 dt.
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From these, we may compute the equation for Mt . Note that only Xt(z) and
Xt(w) have nonzero diffusion coefficients. Suppressing the arguments of G in the
notation, we obtain the following:

dMt = Mt

[
a(d − 2)

Xt(z)
2 − Yt (z)

2

(Xt (z)2 + Yt (z)2)2 + a(d − 2)
Xt(w)2 − Yt (w)2

(Xt (w)2 + Yt (w)2)2

+ aXt(z)

Xt(z)2 + Yt (z)2

∂x1G

G
+ aXt(w)

Xt(w)2 + Yt (w)2

∂x2G

G

− aYt (z)

Xt(z)2 + Yt (z)2

∂y1G

G
− aYt (w)

Xt(w)2 + Yt (w)2

∂y2G

G

+ 1

2

∂x1x1G

G
+ 1

2

∂x2x2G

G
+ ∂x1x2G

G

]
dt

+ Mt

[
∂x1G

G
+ ∂x2G

G

]
dBt .

Collecting together the drift terms and specializing to t = 0 yields

0 = a(d − 2)
x2

1 − y2
1

(x2
1 + y2

1)2
G + a(d − 2)

x2
2 − y2

2

(x2
2 + y2

2)2
G

+ a
x1 ∂x1G − y1 ∂y1G

x2
1 + y2

1

+ a
x2 ∂x2G − y2 ∂y2G

x2
2 + y2

2

+ 1

2
∂x1x1G + 1

2
∂x2x2G + ∂x1x2G.

This PDE has a particularly nice structure. Let

Li = a(d − 2)
x2
i − y2

i

(x2
i + y2

i )2
+ a

xi ∂xi
− yi ∂yi

x2
i + y2

i

+ 1

2
∂xixi

.

This can be seen to be precisely the differential operator which arises in the com-
putation of the single point Green’s function, but now we have a copy for both z

and w. With this we can rewrite the equation for the multi-point Green’s function
as

(L1 + L2 + ∂x1x2)G = 0.

Given this simple form it may be reasonable to look for solutions which are, in
some sense, asymptotically G(z)G(w). Additionally, it is worth noting that this
extends to arbitrary n-point Green’s functions by[

n∑
i=1

Li + ∑
1≤i<j≤n

∂xixj

]
G = 0

as one might expect.
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The boundary conditions of this equation are not clear, and their determination
may provide bounds of intrinsic interest.

The above equation shows the PDE in its most symmetric form; however, in
order to find an explicit solution, it may be useful to exploit the scaling rule for the
Green’s function to reduce this to an equation for a function of three real variables.
There is no unique way to do so, and no such reductions have lead to a particularly
simple equation. A reasonable example would be to scale the above equation so
that y1 = 1 in which case we can find a three real variable function Ĝ so that

G(x1, y1, x2, y2) = y
2(d−2)
1 Ĝ

(
x1

y1
,
x2

y1
,
y2

y1

)
.

From this the PDE can be derived; however, the result is not illuminating.
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