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WRIGHT–FISHER DIFFUSION WITH NEGATIVE
MUTATION RATES

BY SOUMIK PAL

University of Washington

We study a family of n-dimensional diffusions, taking values in the unit
simplex of vectors with nonnegative coordinates that add up to one. These
processes satisfy stochastic differential equations which are similar to the
ones for the classical Wright–Fisher diffusions, except that the “mutation
rates” are now nonpositive. This model, suggested by Aldous, appears in the
study of a conjectured diffusion limit for a Markov chain on Cladograms.
The striking feature of these models is that the boundary is not reflecting,
and we kill the process once it hits the boundary. We derive the explicit exit
distribution from the simplex and probabilistic bounds on the exit time. We
also prove that these processes can be viewed as a “stochastic time-reversal”
of a Wright–Fisher process of increasing dimensions and conditioned at a
random time. A key idea in our proofs is a skew-product construction using
certain one-dimensional diffusions called Bessel-square processes of nega-
tive dimensions, which have been recently introduced by Göing-Jaeschke and
Yor.

1. Introduction. An n-leaf Cladogram is an unrooted tree with n ≥ 4 labeled
leaves (vertices with degree one) and (n − 2) other unlabeled vertices (internal
branchpoints) of degree three (see Figure 1). The number of edges in such a tree is
exactly 2n − 3. Sometimes they are also referred to as phylogenetic trees. Aldous,
in [3], proposes the following model of a reversible Markov chain on the space of
all n-leaf Cladograms, which consists of removing a random leaf (and its incident
edge) and reattaching it to one of the remaining random edges.

For a precise description we first define two operations on Cladograms. More
details, with figures, can be found in [3].

(i) To remove a leaf i. The leaf i is attached by an edge e1 to a branchpoint
b where two other edges e2 and e3 are incident. Delete edge e1 and branchpoint
b, and then merge the two remaining edges e2 and e3 into a single edge e. The
resulting tree has 2n − 5 edges.

(ii) To add a leaf to an edge f . Create a branchpoint b′ which splits the edge f

into two edges, f2, f3, and attach the leaf i to branchpoint b′ via a new edge, f1.
This restores the number of leaves and edges to the tree.

Received February 2010; revised August 2011.
MSC2010 subject classifications. 60G99, 60J05, 60J60, 60J80.
Key words and phrases. Wright–Fisher diffusion, Markov chain on cladograms, continuum ran-

dom tree, Bessel processes of negative dimension.

503

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/11-AOP704
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


504 S. PAL

Let Tn denote the finite collection of all n-leaf Cladograms. Write t′ ∼ t if t′ �= t
and t′ can be obtained from t by following the two operations above for some
choice of i and f . Thus a Tn valued chain can be described by saying: remove
leaf i uniformly at random, and then pick edge f at random and reattach i to
f . If we assume every edge to be of unit length, then it also involves resizing the
edge length after every operation. In particular the transition matrix of this Markov
chain is

P(t, t′) =

⎧⎪⎪⎨⎪⎪⎩
1

n(2n − 5)
, if t′ ∼ t,

n

n(2n − 5)
, if t′ = t.

This leads to a symmetric, aperiodic, and irreducible finite state space Markov
chain. Schweinsberg [16] proved that the relaxation time for this chain is O(n2),
improving a previous result in [3].

On his webpage [2] Aldous asks the following question: what is an appropri-
ate diffusion limit of this Markov chain? The invariant distribution for the Markov
chain on n-leaf Cladograms is clearly the Uniform distribution. It is known (see
Aldous [1]) that the sequence of Uniform distributions on n-leaf Cladograms con-
verge weakly to the law of the (Brownian) Continuum Random Tree (CRT). Hence,
it is natural to look for an appropriate Markov process on the support of the CRT,
which can be thought of as a limit of the sequence of Markov chains described
above. At this point it is important to understand that the support of the CRT con-
sists of compact real trees with a measure describing the distribution of leaves.
These trees are called continuum trees. For a formal definition of these concepts,
we refer the reader to the seminal work by Aldous in [1]. However, for an intuitive
visualization, one should think of a typical continuum tree as a compact metric
space on which branch points are dense, and all edges are infinitesimally small.
This implies that the Markov process that mimics the operation of removing and
inserting a new leaf on a continuum tree should not jump; in other words, we can
call it a diffusion.

A detailed description of this diffusion on continuum trees is forthcoming in Pal
[13]. In this article we consider several important features of this limiting diffusion
that are of interest by themselves and provide bedrock for the followup construc-
tion.

Consider the branchpoint b in the 7-leaf Cladogram t in Figure 1. It divides the
collection of leaves naturally into three sets. Let X(t) = (X1,X2,X3)(t) denote
the vector of proportion of leaves in each set. The corresponding number of edges
in these sets are (2nX1 − 1,2nX2 − 1,2nX3 − 1). For example, at time zero in our
given tree, going clockwise from the right we have X(0) = (3/7,2/7,2/7).

Let Sn denote the unit simplex

Sn =
{
x ∈ R

n :xi ≥ 0 for all i and
n∑

i=1

xi = 1

}
.(1)
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FIG. 1. A 7-leaf Cladogram.

Some simple algebra will reveal that for any point x = (x1, x2, x3) in S3, given
X(t) = x, the difference X1(t′) − X1(t) can only take values in {−1/n,0,1/n}
with corresponding probabilities

qx1 = x1
2n(1 − x1) − 2

2n − 5
, 1 − px1 − qx1, px1 = (1 − x1)

2nx1 − 1

2n − 5
.

Thus

E
(
X1(t′) − X1(t) | X(t) = x

) = 1

n

2x1 − (1 − x1)

2n − 5
≈ − 1

n2

1

2
(1 − 3x1),

E
((

X1(t′) − X1(t)
)2 | X(t) = x

) = 1

n2

4nx1(1 − x1) − x1 − 1

2n − 5
(2)

≈ 1

n2 2x1(1 − x1).

If we take scaled limits, as n goes to infinity, of the first two conditional moments
(the mixed moments can be similarly verified), it is intuitive (and follows by stan-
dard tools) that as n goes to infinity, this Markov chain (run at n2/2 speed) will
converge to a diffusion with a generator

1

2

3∑
i,j=1

xi(1{i = j} − xj )
∂2

∂xi ∂xj

− 1

2

n∑
i=1

1

2
(1 − 3xi)

∂

∂xi

.(3)

The generator written as above is similar to the generator for the well-known dif-
fusion limit of the Wright–Fisher (WF) Markov chain models in population genet-
ics. The WF model is one of the most popular models in population genetics. This
is a multidimensional Markov chain which keeps track of the vector of proportions
of certain genetic traits in a population of nonoverlapping generations. A good
source for an introduction to these models is Chapter 1 in the book by Durrett [6].
For computational purposes one often takes recourse to a diffusion approximation,
which, in its standard form, leads to a family of diffusions parametrized by n “mu-
tation rates.” The state space of the diffusion is given by Sn and is parametrized
by a vector (δ1, . . . , δn) of nonnegative entries. A weak solution of the WF diffu-
sion with parameters δ = (δ1, . . . , δn) solves the following stochastic differential
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equation for i = 1,2, . . . , n:

dJi(t) = 1

2

(
δi − δ0Ji(t)

)
dt +

n∑
j=1

σ̃i,j (J ) dβj (t), δ0 =
n∑

i=1

δi .(4)

Here β = (β1, . . . , βn) is a standard multidimensional Brownian motion, and the
diffusion matrix σ̃ is given by

σ̃i,j (x) = √
xi

(
1{i = j} − √

xixj

)
, 1 ≤ i, j ≤ n.(5)

We define the Wright–Fisher diffusion with negative mutation rates to be a
family of n-dimensional diffusions, parametrized by n nonnegative parameters
δ = (δ1, . . . , δn), which is a weak solution of the following differential equation:

dμi(t) = −1

2

(
δi − δ0μi(t)

)
dt +

n∑
j=1

σ̃i,j (μ)dβj (t), δ0 =
n∑

i=1

δi.(6)

The initial condition μ(0) is in the interior of Sn and the process has a drift that
pushes it outside the simplex. We will show later that the process is sure to hit the
boundary of the simplex at which point we stop it. In the next section we will ex-
plicitly construct a weak solution of (6). The uniqueness in law of such a solution,
until it hits the boundary, follows since the drift and the diffusion coefficients are
smooth (hence, Lipschitz) inside the open unit simplex. The law of this process
will then be denoted uniquely by NWF(δ1, . . . , δn).

Equivalently this process can be identified by its Markov generator. Expanding
σ̃ σ̃ ′ and using the fact that

∑n
i=1 xi = 1, we get

An = 1

2

n∑
i,j=1

xi(1{i = j} − xj )
∂2

∂xi ∂xj

−
n∑

i=1

1

2
(δi − δ0xi)

∂

∂xi

,(7)

which identifies (3) as the generator for NWF(1/2,1/2,1/2).
In this text we focus on properties of NWF models as a family of diffusions

on the unit simplex and explore some of their properties that are important in the
context of the Markov chain model on Cladograms.

Part (1). We show that, just like Wright–Fisher diffusions (see [12]), the NWF
processes can be recovered from a far simpler class of models, the Bessel-square
(BESQ) processes with negative dimensions. A comprehensive treatment of BESQ
processes can be found in the book by Revuz and Yor [15]. This family of one-
dimensional diffusions is indexed by a single real parameter θ (called the dimen-
sion) and are solutions of the stochastic differential equations

Z(t) = x + 2
∫ t

0

√
|Z(s)|dβ(s) + θt, x ≥ 0, t ≥ 0,(8)

where β is a one-dimensional standard Brownian motion. We denote the law of
this process by Qθ

x . It can be shown that the above SDE admits a unique strong
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solution until it hits the origin. The classical model only admits paramater θ to be
nonnegative. However, an extension, introduced by Göing-Jaeschke and Yor [7],
allows the parameter θ to be negative. It is important to note that Qθ

x is the diffusion
limit of a Galton–Watson branching process with a |θ | rate of immigration (for
θ ≥ 0) or emigration (for θ < 0).

In Section 3 we show that the NWF(δ1, . . . , δn) law, starting at (x1, . . . , xn),
can be recovered via a stochastic time-change from a collection of n independent
processes with laws Q

−2δi
xi , i = 1, . . . , n, and dividing each coordinate by the total

sum. For the corresponding discrete models this is usually referred to as Pois-
sonization.

In this article we utilize this relationship to infer several properties about the
NWF processes. For example, we prove that these diffusions, almost surely, hit
the boundary of the simplex. We derive the explicit exit density supported on the
union of the boundary walls in Theorem 9.

Part (2). We also prove an interesting duality relationship between WF and
NWF models. To describe the duality relationship we let the NWF continue in
the lower dimensional simplex when any of the coordinates hit zero. Thus, every
time a coordinate hits zero, the dimension of the process gets reduced by one,
and ultimately the process is absorbed at the scalar one. Such a process can be
obtained by running a WF model with appropriate parameters that initially starts
with dimension one and value 1. At independent random times, the dimension of
the process increases by one, and the newly added coordinate is initialized at zero.
Finally we condition on the values of the process at a chosen random time. The
resulting process, backwards in time and suitably time-changed, is the original
NWF model.

Part (3). The time that the NWF process takes to exit the simplex is a crucial
quantity due to a reason which we describe below. We keep our exposition mostly
verbal without going into too much detail since the details require considerable
formalism from the theory of continuum trees and will be discussed elsewhere.
In [13] we show how Part (1) points toward a Poissonization of the entire Aldous
Markov chain, which is simpler for considering scaled limits. The Poissonized
version of the Markov chain on n-leaf Cladograms stipulates: every existing leaf
has an exponential clock of rate 2 attached to it which determines the instances of
their deaths, and every existing edge has an independent exponential clock of rate
1 attached to it, at which point the edge is split, and a new pair of vertices (one of
which is a leaf) is introduced. It is an easy verification that the rates are consistent
with the BESQ limit that we claimed in Part (1) above. Hence, one would expect
that the limit of the Poissonized chains on continuum trees, normalized to give
a leaf-mass measure one, and suitably time-changed would give the conjectured
Aldous diffusion. This is the strategy followed in [13].

Now, the Poissonized chain has some beautiful and interesting structures. Please
see [1] for the details about continuum trees that we use below. A continuum tree
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T comes with its associated (infinite) length measure (analogous to the Lebesgue
measure) and a leaf-mass probability measure, which describes how the leaves are
distributed on it. We will denote the length measure by Leb(T) and the leaf-mass
probability measure by μ(T). Suppose we sample n i.i.d. elements from μ(T)

and draw the tree generated by them, which produces an n-leaf Cladogram with
edge-lengths (or, a proper n-tree, according to [1]). Thus, by using the fact that the
continuum tree is compact, one can approximate a continuum tree by a sequence
of n-leaf Cladograms.

Now consider an n-leaf Cladogram for a very large n, and further consider
m internal branchpoints. For example, in Figure 1, we have three branchpoints
{a, b, c} in a 7-leaf Cladogram. These branchpoints generate a skeleton subtree of
the original tree and partition the leaves as internal or external to the skeleton. The
components of the vector of external leaf masses grow as independent continuous
time, binary branching, Galton–Watson branching processes with a rate of branch-
ing/dying 2 and a rate of emigration 1. Note that this is consistent with the diffusion
limit as BESQ with θ = −1. As the Markov chain (Poissonized or not) proceeds,
there comes a time when one of these external leaf masses gets exhausted. When
this happens, one of the internal branch points becomes a leaf. The distribution
of every coordinate of external leaf-masses at this exit time is derived in Part (2).
Until this time, supported on the skeleton, new subtrees can grow and decay. We
show, in [13], that the dynamics of the sizes of these subtrees on the internal part
can be modeled as the age process of a chronological splitting tree. Chronological
splitting trees are a special kind of biological tree, where an individual lives up to
a certain (possibly nonexponential) lifetime and produces children at rate one dur-
ing that lifetime. Her children behave in an identical manner with an independent
and identically distributed lifetime of their own. The age process refers to the point
process of current ages of the existing members in the family. More details about
splitting trees can be found in the article by Lambert [10].

When one of the internal vertices gets exposed, the above dynamics breaks
down, and we need to find a slightly different set of internal vertices to proceed.
Hence, it is important to derive estimates of the times at which this change hap-
pens. We provide quantitative bounds on the value of this stopping time under the
special situation of symmetric choice of parameters, which is the case at hand.

The article is divided as follows. Our main tool in this analysis is to establish a
relationship between NWF processes and Bessel-square processes of negative di-
mensions, much in the spirit of Pal [12]. This has been done in Section 3 where we
also establish Theorem 7. The relevant results about BESQ processes have been
listed in Section 2. Most of these results are known, and appropriate citations have
been provided. Proofs of the rest can be found in the Appendix. Exact computa-
tions of exit density from the simplex have been done in Section 4. Estimates of
the exit time have been established in Section 5.
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2. Some results about BESQ processes. The Bessel-square processes of
negative dimensions −θ , where θ ≥ 0, are one-dimensional diffusions which are
the unique strong solution of the SDE

X(t) = x − θt + 2
∫ t

0

√
X(s)dβ(s), t ≤ T0,(9)

where T0 is the first hitting time of zero for the process X, and x is a positive
constant. The process is absorbed at zero. We will denote the law of this process
Q−θ

x just as BESQ of a positive dimension θ will be denoted by Qθ
x .

The following collection of results is important for us. All the proofs can be
found in the article by Göing-Jaeschke and Yor [7].

LEMMA 1 (Time-reversal). For any θ > −2 and any x > 0, Q−θ
x (T0 < ∞) =

1, while for θ ≥ 2, one has Qθ
x(T0 < ∞) = 0.

Moreover the following equality holds in distribution:(
X(T0 − u),u ≤ T0

) = (
Y (u),u ≤ Lx

)
,(10)

where Y has law Q4+θ
0 , and Lx is the last hitting time of x for the process Y .

In particular:

(i) Both Lx and T0 are distributed as x/2G, where G is a Gamma random
variable with parameter (θ/2 + 1).

(ii) The transition probabilities pθ
t (x, y) for x, y > 0 satisfy the identity

p−θ
t (x, y) = p4+θ

t (y, x).

The following results have been proved in the Appendix.

LEMMA 2. The scale function for Q−θ , θ ≥ 0, is given by the function

s(x) = xθ/2+1, x ≥ 0.

Moreover:

(i) The origin is an exit boundary for the diffusion and not an entry.
(ii) The change of measure

x−θ/2−1Q−θ
x (X(t)θ/2+11(·))

on the σ -algebra generated by the process up to time t is consistent for various t

and is the law of Q4+θ
x . Thus, we say Q4+θ

x is Q−θ
x conditioned never to hit zero.

The previous fact is the generalization of the well-known observation that
Brownian motion, conditioned never to hit the origin, has the law of the three-
dimensional Bessel process.
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LEMMA 3. Let {Z(t), t ≥ 0} denote a BESQ process of dimension θ for some
θ > 2. Then

lim
ε→0

1

log(1/ε)

∫ t

ε

du

Z(u)
= 1

θ − 2
for all t > 0.

3. Changing and reversing time. Our objective in this section is to establish
a time-reversal relationship between NWF and WF models.

THEOREM 4. Let z1, . . . , zn and θ1, . . . , θn be nonnegative constants. Let
Z = (Z1, . . . ,Zn) be a vector of n independent BESQ processes of dimensions
−θ1, . . . ,−θn, respectively, starting from (z1, . . . , zn). Let ζ be the sum

∑n
i=1 Zi .

Define

Ti = inf{t ≥ 0 :Zi(t) = 0}, τ =
n∧

i=1

Ti.

Then, there is an n-dimensional diffusion μ, satisfying the SDE in (6) for
NWF(θ1/2, . . . , θn/2), for which the following equality holds:

Zi(t ∧ τ) = ζ(t ∧ τ)μi(4Ct), 1 ≤ i ≤ n, Ct =
∫ t∧τ

0

ds

ζ(s)
.(11)

Thus, in particular, equation (6) admits a weak solution for all nonnegative pa-
rameters (δ1, . . . , δn).

PROOF. The proof is almost identical to the case of WF model as shown in
[12], Proposition 11, with obvious modifications. For example, unlike the WF case,
the time-change clock is no longer independent of the NWF process. We outline
the basic steps below.

We know from (9) that

dZi(t ∧ τ) = −θid(t ∧ τ) + 2
√

Zi dβi(t ∧ τ), i = 1,2, . . . , n.

Define θ0 = ∑n
i=1 θi . Let Vi(t) = Zi/ζ(t) for t ≤ τ . Then by Itô’s rule, we get

dVi(t ∧ τ) = −ζ−1[θi − θ0Vi]d(t ∧ τ) + √
Vi(1 − Vi) dMi(t),(12)

where

dMi(t) = 2ζ−1/2
√

1 − Vi

n∑
j=1

(
1{i = j} −

√
ViVj

)
dβj (t ∧ τ),(13)

and 〈Mi〉(t) = 4Ct .
Let {ρu,u ≥ 0} be the inverse of the increasing function 4Ct . Applying this

time-change to the SDE for Vi in (12), we get

dμi(t) = −1
4 [θi − θ0μi]dt + √

μi(1 − μi)W̃i(t),(14)
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where W̃i is the Dambis–Dubins–Schwarz (DDS; see [15], page 181) Brownian
motion associated with Mi . This turns out to be the SDE for NWF(θ1/2, . . . , θn/2).

�

Let θ1, θ2, . . . , θn be nonnegative and z1, z2, . . . , zn be positive constants. For
i = 1,2, . . . , n define independent random variables (G1, . . . ,Gn) where Gi is
distributed as Gamma(θi/2 + 1). Let

Ri = zi

2Gi

, i = 1,2, . . . , n.(15)

Also, independent of (G1, . . . ,Gn), let Y1, Y2, . . . , Yn be n independent BESQ
processes of positive dimensions (4 + θ1), (4 + θ2), . . . , (4 + θn), respectively, all
of which are starting from zero.

For any permutation π of n labels, condition on the event

Rπ1 > Rπ2 > · · · > Rπn and let R∗ = Rπ2 .(16)

We now construct the following n dimensional process (X1, . . . ,Xn):

Xi(t) = Yi

(
(t − R∗ + Ri)

+)
, t ≥ 0.(17)

Notice that at time t = 0, every Xi is at zero except the π1th.
Let S(t) denote the total sum process

∑n
i=1 Xi(t). Note that S(t) > 0 for all

t ≥ 0 with probability one. Define the process

Ct :=
∫ t

0

du

S(u)
, t > 0.(18)

The process Ct is finite almost surely for every t (unfortunately, we cannot define
R∗ = Rπ1 precisely because Ct will be infinity; see Lemma 3). Let A denote the
inverse function of the continuous increasing function 4C. That is,

At = inf{u ≥ 0 : 4Cu ≥ t}, t ≥ 0.(19)

LEMMA 5. There is an n-dimensional diffusion ν such that the following time-
change relationship holds:

νi(t) = Xi

S
(At) or Xi(t) = S(t)νi(4Ct), t ≥ 0.(20)

The distribution of ν is supported on the unit simplex

Sn = {xi ≥ 0 :x1 + x2 + · · · + xn = 1}.
Conditional on the values of G1, . . . ,Gn and the process S, the law of ν can be
described as below.

Let π be any permutation of n labels. On the event Rπ1 > R∗ = Rπ2 > · · · >

Rπn . Let V2 < · · · < Vn be defined by

AVi
= R∗ − Rπi

or, equivalently 4CR∗−Rπi
= Vi.
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Note that V2 = 0.
For i ≥ 2 and Vi ≤ t ≤ Vi+1, the process ν is zero on all coordinates except

(π1, . . . , πi). The process ν(π1, . . . , πi), given the history of the process till time
Vi (and the Gi’s and S), is distributed as the classical Wright–Fisher diffusion
starting from

1

S
(Xπ1, . . . ,Xπi

)(AVi
) = 1

S
(Xπ1, . . . ,Xπi

)(R∗ − Rπi
),

and with parameters (γπ1, . . . , γπi
) where

γj = θj /2 + 2, j = 1,2, . . . , n.

PROOF. The Gamma random variables G1, . . . ,Gn are independent of the
BESQ process Y1, . . . , Yn. Thus, conditional on G1, . . . ,Gn, the vector of pro-
cesses (X1, . . . ,Xn) has the following description. For

R∗ − Rπi
≤ t ≤ R∗ − Rπi+1, i ≥ 2,

all coordinates other than the π1th, π2th, . . . , πi th are zero. And, (Xπ1, . . . ,Xπi
),

conditioned on the past, are independent BESQ processes of dimensions (4 +
θπ1, . . . ,4 + θπi

) and starting from (Xπ1, . . . ,Xπi
)(R∗ − Rπi

).
Thus, on this interval of time, the existence of the process ν, identifying its

law as the WF law, and the claimed independence from the process S, all follow
from [12], Proposition 11. The proof of the lemma now follows by combining the
argument over the distinct intervals. �

LEMMA 6. Consider the set-up in (15), (17) and (19). Let Z1,Z2, . . . ,Zn be
n stochastic processes defined such that {Zi(t),0 ≤ t ≤ R∗} is the time-reversal of
the process {Xi(t),0 ≤ t ≤ R∗}, conditioned on Xi(R

∗) = zi . That is, conditioned
on Xi(R

∗) = zi for every i,

Zi(t) = Xi(R
∗ − t) = Yi(Ri − t)+ for 0 ≤ t ≤ R∗.

Then (Z1, . . . ,Zn) are independent BESQ processes of dimensions −θ1, . . . ,−θn,
starting from z1, . . . , zn, and absorbed at the origin.

PROOF. It suffices to prove the following:

CLAIM. Let {Y (t), t ≥ 0} denote a BESQ process of dimension (4 + θ) start-
ing from 0. Fix a z > 0. Let T be distributed as z/2G, where G is a Gamma random
variable with parameter (θ/2 + 1). Then, conditioned on T = l and Y(l) = z, the
time-reversed process {Y ((l − s)+),0 ≤ s < ∞} is distributed as Q−θ

z , absorbed
at the origin, conditioned on T0 = l. Here T0 is the hitting time of the origin for
Q−θ

z .
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Once we prove this claim, the lemma follows since the law of T0 is exactly
z/2G. See Lemma 1.

PROOF OF CLAIM. For the case of θ = 0, this is proved in [14], page 447. The
general proof is exactly similar and we outline just the steps and give references
within [14] for the details.

For any θ ∈ R, t > 0, x, y ≥ 0, let Qθ,t
x→y denote the law of the BESQ bridge

of dimension θ , length t , from points x to y. That is to say, if Y follows Qθ
x ,

then Qθ,t
x→y is the law of the process {Y(s),0 ≤ s ≤ t} conditioned on the event

{Y(t) = y}.
Now, BESQ bridges satisfy time-reversal [14], page 446. Thus, if we define P̂

to be the P -distribution of a process {X(t − s),0 ≤ s ≤ t}, then Qθ,t
x→y = Q̂θ,t

y→x .
We consider the case when the dimension is (4 + θ), θ ≥ 0, x = 0, y = z > 0.

Then

Q
4+θ,t
z→0 = Q̂

4+θ,t
0→z .

Now, from Lemma 2 (also see [14], Section 3, page 440), we know that Q4+θ
z

is Q−θ
z conditioned never to hit zero (or equivalently, Q−θ

z can be interpreted as
Q4+θ

z conditioned to hit zero). Since the origin is an exit distribution for Q−θ
z and

not an entry (Lemma 2; see [14], page 441, for the details of these definitions), the
conditional law Q

4+θ,t
z→0 is nothing but Q−θ

z , conditioned on T0 = t . This completes
the proof. �

The following is a more precise statement.
Let (z1, . . . , zn) be a point in the n-dimensional unit simplex Sn. Fix n nonnega-

tive parameters δ1, . . . , δn. Let G1, . . . ,Gn denote n independent Gamma random
variables with parameters δ1 + 1, . . . , δn + 1, respectively. Define Ri = zi/2Gi .

For any permutation π of n labels, condition on the event Rπ1 > Rπ2 > · · · >

Rπn , and let R∗ = Rπ2 .
Define the continuous process S by prescribing S(0) = Z1(Rπ1 −R∗) where Z1

is distributed as Q
4+2δπ1
0 , and for any t such that

R∗ − Rπi
≤ t ≤ R∗ − Rπi+1, i ≥ 2, Rπn+1 = 0.

Given the history, the process is distributed as a Bessel-square process of dimen-
sion

∑i
j=1(4 + 2δπj

) starting from S(R∗ − Rπi
).

Define the stochastic clocks

Ct =
∫ t

0

du

S(u)
, Ĉt =

∫ R∗

R∗−t

du

S(u)
, 0 ≤ t ≤ R∗,

and let Ât denote the inverse function of 4Ĉt . Let V2 < · · · < Vn be defined by
4CR∗−Rπi

= Vi . Note that V2 = 0. The 4 is a standardization constant that appears
due to the factor of 2 in the diffusion coefficient in (8).
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Define an n-dimensional process ν, given R1, . . . ,Rn, and the process S. For
i ≥ 2 and Vi ≤ t ≤ Vi+1, the process ν is zero on all coordinates, except possibly
at indices (π1, . . . , πi). At time zero, the process starts at the vector that is 1 in the
π1th coordinate and zero elsewhere.

Conditioned on the history till time Vi , the process {ν(π1, . . . , πi)(t),Vi ≤
t ≤ Vi+1} is distributed as the classical Wright–Fisher diffusion, starting from
ν(π1, . . . , πi)(Vi) and with parameters (γπ1, . . . , γπi

), where

γj = δj + 2, j = 1,2, . . . , n.

Finally, consider the conditional law of the process, conditioned on the event

S(R∗)νi(4CR∗) = zi for all i = 1,2, . . . , n.

THEOREM 7. Define the time-reversed process

μ(t) = ν(Â ◦ 4CR∗−t ),

where ◦ denotes composition. Then this conditional stochastic time-reversed pro-
cess, until the first time any of the coordinates hit zero, has a marginal distribution
(when Gi ’s and S are integrated out) NWF(δ1, . . . , δn) starting from (z1, . . . , zn).

PROOF. We start with given values of Rπ1 > Rπ2 > · · · > Rπn and the pro-
cess S and apply equation (20) in Lemma 5 to obtain the processes (X1, . . . ,Xn),
defined by

Xi(t) = S(t)νi(4Ct), 0 ≤ t ≤ R∗.

Then, the vector (X1,X2, . . . ,Xn) has the law prescribed by (17).
Now we apply Lemma 6 to obtain (Z1, . . . ,Zn) by conditioning (X1, . . . ,Xn)

and reversing time. Finally the construction in Theorem 4 gives us the vector
(μ1, . . . ,μn) from (Z1, . . . ,Zn), as desired. �

4. Exit density. Let Z1,Z2, . . . ,Zn be independent BESQ processes of di-
mensions −θ1, . . . ,−θn, where each θi ≥ 0. We assume that at time zero, the vec-
tor Z = (Z1, . . . ,Zn) starts from a point z = (z1, . . . , zn) where every zi > 0. De-
fine Ti to be the first hitting time of zero for the process Zi , and let τ = ∧

i Ti

denote the first time any coordinate hits zero. We would like to determine the joint
distribution of (τ,Z(τ )).

Note that since each Ti is a continuous random variable, the minimum is attained
at a unique i. Thus, for a fixed 1 ≤ i ≤ n, conditioned on the event τ = Ti , the
distribution of Zi(τ ) is the unit mass at zero, and the distribution of every other
Zj(τ) is supported on (0,∞). Now, let hi denote the density of the stopping time
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Ti on (0,∞), and let q−θ
t refer to the transition density of Q−θ . It follows that for

any aj > 0, j �= i, we get

P
(
τ = Ti, τ ≤ t,Zj (τ ) ≥ aj for all j �= i

)
= P

(
Ti ≤ t, Tj > Ti,Zj (Ti) ≥ aj for all j �= i

)
=

∫ t

0
hi(s)

∏
j �=i

P
(
Tj > s,Zj (s) ≥ aj

)
ds =

∫ t

0
hi(s)

∏
j �=i

P
(
Zj(s) ≥ aj

)
ds

since aj > 0

=
∫ t

0
hi(s)

[∏
j �=i

∫ ∞
aj

q
−θj
s (zj , yj ) dyj

]
ds.

Our first job is to find closed form expressions of the integral above. To do this
we start by noting that Ti is distributed as zi/2Gi (see Lemma 1), where Gi is a
Gamma random variable with parameter (4 + θi)/2 − 1 = θi/2 + 1. That is, the
density of Gi is supported on (0,∞) and is given by

yθi/2

�(θi/2 + 1)
e−y.

It follows that

hi(s) = (zi/2)θi/2+1

�(θi/2 + 1)
s−θi/2−2e−zi/2s, 0 ≤ s < ∞.

On the other hand, it follows from time reversal (Lemma 1) that q
−θj
s (zj , yj ) =

q
4+θj
s (yj , zj ). For any positive a, the transition density qa

s (y, z) is explicitly
known (see, e.g., [12]) to be s−1f (z/s, a, y/s), where f (·, k, λ) is the density of a
noncentral Chi-square distribution with k-degrees of freedom and a noncentrality
parameter value λ. In particular, it can be written as a Poisson mixture of central
Chi-square (or, Gamma) densities. Thus we have the following expansion:

q
−θj
s (zj , yj ) = q

4+θj
s (yj , zj ) = s−1

∞∑
k=0

e−yj /2s (yj /2s)k

k! gθj+4+2k(zj /s),(21)

where gr is the Gamma density with parameters (r/2,1/2). That is,

gr(x) = 2−r/2xr/2−1

�(r/2)
e−x/2, x ≥ 0.

Now, define

�yi = ∑
j �=i

yj , �θi = ∑
j �=i

θj , �zi = ∑
j �=i

zj .



516 S. PAL

Thus

hi(s)
∏
j �=i

q
−θj
s (zj , yj )

= (zi/2)θi/2+1

�(θi/2 + 1)
s−θi/2−2e−zi/2s

∏
j �=i

s−1
∞∑

k=0

e−yj /2s (yj /2s)k

k! gθj+4+2k(zj /s)

= (zi/2)θi/2+1

�(θi/2 + 1)
s−θi/2−2e−zi/2s

× ∏
j �=i

s−1
∞∑

k=0

e−yj /2s (yj /2s)k

k!
2−θj /2−2−k(zj /s)

θj /2+k+1

�(θj/2 + 2 + k)
e−zj /2s

= (zi/2)θi/2+1

�(θi/2 + 1)
s−θi/2−2−(n−1)e−zi/2s

× e−(�yi+�zi)/2s2−�θi/2−2(n−1)
∏
j �=i

∞∑
k=0

(yj /2s)k

k!
2−k(zj /s)

θj /2+k+1

�(θj/2 + 2 + k)
.

We now exchange the product and the sum in the above. We will need some
more notations for a compact representation. For any two vectors a and b, denote
by

ab = ∏
i

a
bi

i , a! = ∏
i

ai !.

Also let �i ,yi , zi stand for the vectors (θj , j �= i), (yj , j �= i) and (zj , j �= i),
respectively.

Let k denote the vector (kj , j �= i), where every kj takes any nonnegative inte-
ger values. Let k′1 be the sum of the coordinates of k. Then∏

j �=i

∞∑
k=0

(yj /2s)k

k!
2−k(zj /s)

θj /2+k+1

�(θj/2 + 2 + k)

=
∞∑

N=0

(4s)−Ns−�θi/2−N−(n−1)z�i/2+1
i

∑
k′1=N

yk
i

k!
zk
i∏

j �=i �(θj /2 + 2 + kj )
.

Thus, combining the expressions, we get

hi(s)
∏
j �=i

q
−θj
s (zj , yj )

= z
θi/2+1
i

�(θi/2 + 1)
2−θi/2−1−�θi/2−2(n−1)(22)

× s−θi/2−2−(n−1)e−zi/2se−(�yi+�zi)/2s
∞∑

N=0

4−Ns−�θi/2−2N−(n−1)BN,
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where

BN = z�i /2+1
i

∑
k′1=N

yk
i

k!
zk
i∏

j �=i �(θj /2 + 2 + kj )
.

We can now integrate over s in (22) to obtain∫ ∞
0

hi(s)
∏
j �=i

q
−θj
s (zj , yj ) ds =

∞∑
N=0

B ′
N

∫ ∞
0

s−aN e−b/s ds,

where

B ′
N = z

θi/2+1
i

�(θi/2 + 1)
2−θ0/2−2n+14−NBN, θ0 =

n∑
i=1

θi,(23)

aN = θi/2 + �θi/2 + 2n + 2N = θ0/2 + 2n + 2N,(24)

b = zi/2 + (�yi + �zi)/2 = (�yi + z0)/2, z0 =
n∑

i=1

zi .(25)

Now a simple change of variable w = 1/s shows∫ ∞
0

s−aN e−b/s ds =
∫ ∞

0
waN e−bww−2 dw =

∫ ∞
0

waN−2e−bw dw,

�(aN − 1)

baN−1

∫ ∞
0

baN−1

�(aN − 1)
waN−2e−bw dw = �(aN − 1)

baN−1 .

Since the ith coordinate of the exit point is zero, one can define yi = 0 and
y0 = ∑n

j=1 yj = �yi to simplify notation. Thus we obtain∫ ∞
0

hi(s)
∏
j �=i

q
−θj
s (zj , yj ) ds

=
∞∑

N=0

z
θi/2+1
i

�(θi/2 + 1)
2−θ0/2−2n+14−NBN

�(aN − 1)

baN−1

= z
θi/2+1
i z�i/2+1

i

�(θi/2 + 1)
2−θ0/2−2n+1

∞∑
N=0

(
(�yi + z0)/2

)−θ0/2−2n−2N+1

× �(θ0/2 + 2n + 2N − 1)4−N
∑

k′1=N

yk
i

k!
zk
i∏

j �=i �(θj /2 + 2 + kj )

= z�/2+1

�(θi/2 + 1)
2−θ0/2−2n+1

∞∑
N=0

(y0 + z0)
−θ0/2−2n−2N+12θ0/2+2n+2N−1

× �(θ0/2 + 2n + 2N − 1)4−N
∑

k′1=N

yk
i

k!
zk
i∏

j �=i �(θj /2 + 2 + kj )



518 S. PAL

= z�/2+1

�(θi/2 + 1)

∞∑
N=0

(y0 + z0)
−θ0/2−2n−2N+1

× �(θ0/2 + 2n + 2N − 1)
∑

k′1=N

yk
i

k!
zk
i∏

j �=i �(θj /2 + 2 + kj )
.

We have the following result.

THEOREM 8. Let Z1,Z2, . . . ,Zn be independent BESQ processes of dimen-
sions −θ1, . . . ,−θn, where each θi ≥ 0. Assume that Zi(0) = zi(0) > 0, for every i.

The distribution of (τ,Z(τ)) is supported on the set (0,∞) × ⋃n
i=1 Hi , where

Hi is the subspace orthogonal to the ith canonical basis vector ei . That is,

Hi = {(y1, y2, . . . , yn) :yi = 0}.

(i) Let Gi, i = 1,2, . . . , n be independent Gamma random variables with pa-
rameters θi/2 + 1, i = 1,2, . . . , n. The law of τ is the same as that of mini

zi

2Gi

and

P(τ = Ti) = P

(
Gi

zi

>
Gj

zj

for all j �= i

)
,

where Ti is the first hitting time of Hi .
(ii) The restriction of the law of the random vector Z(τ), restricted to the hy-

perplane Hi , admits a density with respect to all the variables yj ’s, j �= i, which
is given by

= S1−θ0/2−2n

�(θi/2 + 1)

n∏
j=1

z
θj /2+1
j

∞∑
N=0

�(θ0/2 + 2n + 2N − 1)S−2N

(26)

× ∑
∑

j �=i kj=N

∏
j �=i

(yj zj )
kj

kj !�(θj/2 + 2 + kj )
.

Here

S =
n∑

i=1

(yi + zi), yi = 0, θ0 =
n∑

i=1

θi.

Using Theorem 4, we get that the exit distribution of NWF(δ1, . . . , δn), starting
from a point (z1, . . . , zn) ∈ Sn, is the image under the map

xi �→ xi∑n
j=1 xj

, 1 ≤ i ≤ n,

of the exit density of independent BESQ processes of dimensions −θ1, . . . ,−θn,
where each θi = 2δi .
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THEOREM 9. The exit density of μ ∼ NWF(δ1, . . . , δn) starting from (z1, . . . ,

zn) ∈ Sn is supported on the set
⋃n

i=1 Fi , where Fi is the face {x ∈ Sn : xi = 0},
and admits the following description:

(i) Let Gi, i = 1,2, . . . , n, be independent Gamma random variables with pa-
rameters δi + 1, i = 1,2, . . . , n. Then

P(μ exits through Fi) = P

(
Gi

zi

>
Gj

zj

for all j �= i

)
.(27)

(ii) Let δ represent the vector (δ1, . . . , δn), and let δ0 = ∑n
i=1 δi . The exit dis-

tribution of the process μ, restricted to Fi , admits a density with respect to all the
variables xj ’s, j �= i, which is given by

(δi +1)

∞∑
N=0

�(N + n + δ0)

�(N + 2n + δ0)

∑
∑

j �=i kj=N

Dirn(z;k+δ+2)Dirn−1(x;k+1).(28)

Here the inner sum above is over all nonnegative integers (kj , j �= i), such that∑
j �=i kj = N . The vector k represents a vector whose j th coordinate is kj for all

j �= i, and ki = 0. The vectors k + δ + 2 and k + 1 represent vector additions of
k, δ and the vector of all twos, and k and the vector of all ones, respectively. The
factor Dirn−1 is a density with respect to the (n−1)-dimensional vector (xj , j �= i)

with corresponding parameters (kj + 1, j �= i). It can also be interpreted as the
conditional density of the n-dimensional Dirn(x;k + 1), conditioned on xi = 0.

Note that the density in (28) is a mixture of Dirichlet densities, strikingly sim-
ilar to those appearing as transition probabilities of the Wright–Fisher diffusions
themselves. See Griffiths [8], Barbour, Ethier and Griffiths [4] and Pal [12].

PROOF OF THEOREM 9. This is a straightforward integration. We have as-
sumed that

∑
i zi = 1. Thus, S = 1 + ∑

j yj ; define y0 = ∑
j yj , and

xj = yj/y0, 1 ≤ j ≤ n.

Hence (26) simplifies to

= (1 + y0)
1−θ0/2−2n

�(θi/2 + 1)

n∏
j=1

z
θj /2+1
j

∞∑
N=0

�(θ0/2 + 2n + 2N − 1)(1 + y0)
−2N

(29)

× yN
0

∑
∑

j �=i kj=N

∏
j �=i

(xj zj )
kj

kj !�(θj/2 + 2 + kj )
.

Now, to get to formula (28) we need to make a multivariate change of variables.
Without loss of generality, let i = n. Then, for any y ∈ Fi , we have yn = 0. Define
the change of variables

(y1, . . . , yn−2, yn−1) �→ (y0, x1, . . . , xn−2).
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In other words, yi = y0xi for all i = 1,2, . . . , n − 2 and yn−1 = y0(1 − x1 − · · · −
xn−2). The determinant of the well-known Jacobian matrix is given by yn−2

0 .
Thus, the density of (x1, . . . , xn) restricted to Fi is given by

1

�(θi/2 + 1)

n∏
j=1

z
θj /2+1
j

∞∑
N=0

�(θ0/2 + 2n + 2N − 1)

×
∫ ∞

0
yN+n−2(1 + y)1−θ0/2−2n−2N dy(30)

× ∑
∑

j �=i kj=N

∏
j �=i

(xj zj )
kj

kj !�(θj/2 + 2 + kj )
.

The following formula is easily verifiable for α ≥ 0, β > α + 1:∫ ∞
0

yα(1 + y)−β dy =
∫ 1

0
xβ−α−2(1 − x)α dx = B(α + 1, β − α − 1),

where B refers to the Beta function.
In other words, (30) reduces to

1

�(θi/2 + 1)

n∏
j=1

z
θj /2+1
j

∞∑
N=0

�(θ0/2 + 2n + 2N − 1)

(31)

× B(N + n − 1,N + n + θ0/2)
∑

∑
j �=i kj=N

∏
j �=i

(xj zj )
kj

kj !�(θj/2 + 2 + kj )
.

We now change θi/2 to δi and rewrite the above expression in terms of Dirichlet
densities. We use the notations in the statement of Theorem 9: the vector k rep-
resents a vector whose j th coordinate is kj for all j �= i, and ki = 0. The vectors
k + δ + 2 and k + 1 represent vector additions of k, δ and the vector of all twos,
and k and the vector of all ones, respectively. The factor Dirn−1 is a density with
respect to the (n − 1)-dimensional vector (xj , j �= i) with corresponding param-
eters (kj + 1, j �= i). It can also be interpreted as the conditional density of the
n-dimensional Dirn(x;k + 1), conditioned on xi = 0.

Hence, for any (kj , j �= i), integers

z
δi+1
i

�(δi + 1)

∏
j �=i

z
kj+δj+1
j

�(δj + 2 + kj )

x
kj

j

kj !

= (δi + 1)

�(δ0 + N + 2n)�(N + n − 1)

× Dirn(z;k + δ + 2)Dirn−1(x;k + 1).
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Thus (31) reduces to

(δi + 1)

∞∑
N=0

�(δ0 + 2n + 2N − 1)B(N + n − 1,N + n + δ0)

�(δ0 + N + 2n)�(N + n − 1)

(32)
× ∑

k′1=N

Dirn(z;k + δ + 2)Dirn−1(x;k + 1).

However,

�(δ0 + 2n + 2N − 1)B(N + n − 1,N + n + δ0)

�(δ0 + N + 2n)�(N + n − 1)

= �(δ0 + 2n + 2N − 1)

�(δ0 + N + 2n)�(N + n − 1)

�(N + n − 1)�(N + n + δ0)

�(2N + 2n + δ0 − 1)

= �(N + n + δ0)

�(N + 2n + δ0)
.

This completes the proof of formula (28).
The probability in (27) is a direct consequence of Theorem 8 conclusion (i). �

5. Exit time. Let X = (X1, . . . ,Xn) be distributed as NWF(−θ1/2, . . . ,

−θn/2) starting from a point (x1, . . . , xn) in the unit simplex. Let σ0 denote the
stopping time

σ0 = inf{t ≥ 0 :Xi = 0 for some i}.
Our objective is to find estimates on the law of σ0.

We will simplify the situation by assuming that all xi = 1/n and all θi = θ . To
this end we use the time-change relationship in Theorem 4. Let Z = (Z1, . . . ,Zn)

be independent BESQ processes starting from (z1, . . . , zn) as in the set-up of The-
orem 4, where each zi is now one. Then

σ0 = 4
∫ τ

0

ds

ζ(s)
, ζ(s) =

n∑
i=1

Zi(s).(33)

By Theorem 8, the distribution of τ is the same as considering n i.i.d.
Gamma(θ/2 + 1) random variables G1, . . . ,Gn, and defining

τ = 1

2 maxi Gi

.(34)

Our first step will be to prove a concentration estimate of maxi Gi .

LEMMA 10. Let G1,G2, . . . ,Gn be n i.i.d. Gamma random variables with
parameter r/2, for some r ≥ 2. Let χ be the random variable maxi Gi . Then, as n

tends to infinity,

E
√

χ = �
(√

logn
)
.
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PROOF. First let r ∈ N. Let {Z1(i), . . . ,Zn(i), i = 1,2, . . . , r} be a collection
of i.i.d. standard Normal random variables. Then 2Gj has the same law as Z2

j (1)+
· · · + Z2

j (r). Hence

E max
j

|Z|j (1) ≤ E
√

2χ ≤ √
rE max

i,j
|Z|j (i).

As n tends to infinity, the right-hand side above converges to
√

2r log(rn) while
the left-hand side converges to

√
2 logn. This completes the argument for r ∈ N.

For a general positive r , bound on both sides by �r� and �r� + 1. �

We also need a version of logarithmic Sobolev inequality for Gamma random
variables, which can be found in several articles, including [5].

LEMMA 11 ([5], page 2718). Let μθ denote the product probability measure
of n i.i.d. Gamma(θ) random variables. Then, for every f on R

n which is in C1

(i.e., once continuously differentiable), one has

Ent(f 2) ≤ 4
∫ (

n∑
i=1

xi(∂if (x))2

)
dμθ(x).(35)

Here Ent(·) refers to the entropy defined by

Ent(f 2) =
∫

f 2 log(f 2) dμθ −
(∫

f 2 dμθ

)
log

(∫
f 2 dμθ

)
.

And ∂i refers to the partial derivative with respect to the ith coordinate.

LEMMA 12. Consider the set-up in Lemma 11. Let F be a function on the
open positive quadrant (i.e., every xi > 0) which is C1 and satisfies

n∑
i=1

xi(∂iF )2 ≤ F.(36)

Then the following concentration estimate holds for any r > 0:

μθ (√
F − Eθ

√
F ≥ r

) ≤ exp(−r2), μθ
(√

F − Eθ

√
F ≤ −r

) ≤ exp(−r2),

where Eθ

√
F = ∫ √

F dμθ .

PROOF. Condition (36) implies that 4
∑n

i=1 xi(∂i

√
F)2 ≤ 1. Hence, from the

classical Herbst argument (e.g., the monograph by Ledoux [11]), with a gradient
defined by the right-hand side of (35), we get

μθ (√
F − Eθ

√
F > r

) ≤ exp(−r2).

Here μθ(
√

F) is the expectation of
√

F under μθ . Repeating the argument with
−√

F instead of
√

F , we get the result. �
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THEOREM 13. The random variable χ = maxi Gi , where Gi’s are i.i.d.
Gamma(θ) satisfies the following concentration estimate:

P
(√

χ > E
(√

χ
) + r

) ≤ e−r2
for all r > 0.(37)

PROOF. To prove (37) we start by noting that Lemma 12 is satisfied by the
family of L

k-norms, {Fk, k > 1}, defined by

Fk(x) =
(

n∑
i=1

xk
i

)1/k

.

This is because each Fk is smooth (when every xi is positive) and
n∑

i=1

xi(∂iFk(x))2 =
n∑

i=1

xi

[
xk−1
i

(
∑n

j=1 xk
j )1−1/k

]2

=
∑n

i=1 x2k−1
i

(
∑n

j=1 xk
j )2−2/k

.(38)

Since, for any nonnegative y1, y2, . . . , yn and any β > 1, one has

n∑
i=1

y
β
i ≤

(
n∑

i=1

yi

)β

,

applying it for yi = xk
i and β = 2 − 1/k, we get

n∑
i=1

x2k−1
i ≤

(
n∑

i=1

xk
i

)2−1/k

.

Combining the above with (38), we get

n∑
i=1

xi(∂iFk(x))2 ≤
(

n∑
i=1

xk
i

)1/k

= Fk(x).

Thus Fk satisfies condition (36).
Since Fk converges pointwise to maxi xi as k tends to infinity, by applying DCT,

Lemma 12 is true for the function maxi Gi . This proves (37). �

Our next step will be to prove estimate on the quantity σ0 in (33). The process
ζ(s) is non-Markovian and not distributed as Q−nθ . However, on an possibly en-
larged sample space, one can create a Q−nθ process ζ̃ , such that the paths of ζ and
ζ̃ are indistinguishable until σ0. This is possible by considering the SDE solved
by ζ ,

ζ(t) = n − nθt +
∫ t

0

√
ζ(s) dW(s), t < σ0.

To extend the process beyond σ0, one concatenates an independent Brownian mo-
tion W̃ and defines

β(t) =
{

W(t), t ≤ σ0,
W(t) + W̃ (t − σ0), t > σ0.
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Then β is a Brownian motion in the enlarged filtration. Since Q−nθ admits a strong
solution, the process

ζ̃ (t) = n − nθt + 2
∫ t

0

√
ζ̃ (s) dW̃ (s), t < T0,(39)

has law Q−nθ and pathwise indistinguishable from ζ until time σ0. Thus in the
following discussion we will treat as if ζ itself is distributed as Q−nθ , keeping in
mind the above construction.

THEOREM 14. Let μ be distributed as an n-dimensional NWF(δ, δ, . . . , δ)

starting from the point (1/n,1/n, . . . ,1/n). Let σ0 be the first time that any of the
coordinates of μ hit zero. Let

an = E max
1≤i≤n

√
Gi, Gi

i.i.d.∼ Gamma(δ + 1).

Then, an = �(
√

logn), σ0 has the law given by (33) where ζ is distributed as
Q−2nδ

1 , and τ is a random time.
Moreover, for any r > 0, we get

P

(
1

n(an + r)
≤ √

2τ ≤ 1

n(an + r)

)
≥ 1 − 2e−r2

.

REMARK 1. It is impossible to provide a simple description of the exact dis-
tribution of σ0, due to the distributional dependence of ζ and τ . The above theorem
shows that τ is about a constant, and one can compare the distribution of σ0 with
that of 4

∫ ·
0 du/ζ(u), where the upper limit of the integral is a constant. Limiting

large deviation behavior of such integrals, it is possible to derive by methods as in
[17].

PROOF OF THEOREM 14. The proof is obvious from Lemma 13 and expres-
sion (34). �

APPENDIX: PROOFS OF PROPERTIES OF BESQ PROCESSES

PROOF OF LEMMA 2. We use Exercise 3.20 in [15], page 311. The scale
function for Qθ for θ ≥ 0 is well known to be x−θ/2+1 (see [15], page 443). Nearly
identical calculations lead to the case when θ is replaced by −θ , and we obtain the
scale function s(x) = xθ/2+1.

The speed measure is the measure with the density

m′(x) = 2

s′(x)4x
= 1

2(θ/2 + 1)
x−θ/2−1.
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We now use Feller’s criterion to check if the origin is an entry and/or exit point
(see [9], page 108). Note that

m(ξ,1/2) = 1

2(θ/2 + 1)

∫ 1/2

ξ
x−θ/2−1 dx = 1

θ(θ/2 + 1)
(ξ−θ/2 − 2θ/2),

(40)
m(0, ξ ] = ∞ for all positive ξ.

Thus ∫ 1/2

0
m(ξ,1/2]s(dξ) < ∞ and

∫ 1/2

0
m(0, ξ ]s(dξ) = ∞.

This proves that the origin is an exit and not an entry.
Finally, to obtain part (ii) we apply Girsanov’s theorem [15], page 327. Let X

satisfy the SDE dX(t) = −θ dt + 2
√

X(t) dβ(t); then we take D(t) = Xθ/2+1(t)

(without the normalization, for simplicity) and apply Girsanov. Under the changed
measure, there is a standard Brownian motion β∗, such that

β(t) = β∗(t) +
∫ t

0
X−θ/2−1(s) d〈β,D〉s

= β∗(t) +
∫ t

0
X−θ/2−1(s)(θ + 2)Xθ/2+1/2(s) ds

= β∗(t) + (θ + 2)

∫ t

0
X−1/2(s) ds.

Thus under the changed measure,

dX(t) = −θ dt + 2X1/2(t) dβ(t) = −θ dt + 2(θ + 2) dt + dβ∗(t)
= (θ + 4) dt + dβ∗(t).

The interpretation as the conditional distribution is classical (see [14]). �

PROOF OF LEMMA 3. For the assertion it is enough to take t = 1. Note
that, under Qθ

0, the coordinate process satisfies time-inversion; that is, the process
{t2Z(1/t), t ≥ 0} has law Qθ

0. Thus, for 0 < ε < 1, if we define

Uε =
∫ 1

ε

du

Z(u)
=

∫ 1/ε

1

dt

t2Z(1/t)
,

then Uε has the same law as C1/ε − C1 = ∫ 1/ε
1 du/Z(u). Thus, by [17], Theo-

rem 1.1, we get limε→0 Uε/ log(1/ε) = (θ − 2)−1 almost surely. �
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