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RANDOM NETWORKS WITH SUBLINEAR PREFERENTIAL
ATTACHMENT: THE GIANT COMPONENT

BY STEFFEN DEREICH AND PETER MORTERS'
Universitdt Miinster and University of Bath

We study a dynamical random network model in which at every con-
struction step a new vertex is introduced and attached to every existing vertex
independently with a probability proportional to a concave function f of its
current degree. We give a criterion for the existence of a giant component,
which is both necessary and sufficient, and which becomes explicit when f
is linear. Otherwise it allows the derivation of explicit necessary and suffi-
cient conditions, which are often fairly close. We give an explicit criterion
to decide whether the giant component is robust under random removal of
edges. We also determine asymptotically the size of the giant component and
the empirical distribution of component sizes in terms of the survival proba-
bility and size distribution of a multitype branching random walk associated
with f.

1. Introduction.

1.1. Motivation and background. Since the publication of the highly influen-
tial paper of Barabdsi and Albert [1] the preferential attachment paradigm has cap-
tured the imagination of scientists across the disciplines and has led to a host of,
from a mathematical point of view mostly nonrigorous, research. The underlying
idea is that the topological structure of large networks, such as the World-Wide-
Web, social interaction or citation networks, can be explained by the principle that
these networks are built dynamically, and new vertices prefer to be attached to
vertices which have already a high degree in the existing network.

Barabasi and Albert [1] and their followers argue that, by building a network in
which every new vertex is attached to a number of old vertices with a probability
proportional to a linear function of the current degree, we obtain networks whose
degree distribution follows a power law. This degree distribution is consistent with
that observed in large real networks, but quite different from the one encountered in
the Erd6s—Rényi model, on which most of the mathematical literature was focused
by this date. Soon after that, Krapivsky and Redner [13] suggested to look at more
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general models, in which the probability of attaching a new vertex to a current one
could be an arbitrary function f of its degree, called the attachment rule.

In this paper we investigate the properties of preferential attachment networks
with general concave attachment rules. There are at least two good reasons to do
this: on the one hand it turns out that global features of the network can depend in
a very subtle fashion on the function f, and only the possibility to vary this param-
eter gives sufficient leeway for statistical modeling and allows a critical analysis of
the robustness of the results. On the other hand we are interested in the transitions
between different qualitative behaviors as we pass from absence of preferential
attachment, the case of constant attachment rules f, effectively corresponding to
a variant of the Erd6s—Rényi model, to strong forms of preferential attachment as
given by linear attachment rules f. In a previous paper [8] we have studied degree
distributions for such a model. We found the exact asymptotic degree distributions,
which constitute the crucial tool for comparison with other models. The main re-
sult of [8] showed the emergence of a perpetual hub, a vertex which from some
time on remains the vertex of maximal degree, when the tail of f is sufficiently
heavy to ensure convergence of the series Y 1/f (n)2. In the present paper, which
is independent of [8], we look at the global connectivity features of the network
and ask for the emergence of a giant component, that is, a connected component
comprising a positive fraction of all vertices present.

Our first main result gives a necessary and sufficient criterion for the existence
of a giant component in terms of the spectral radii of a family of compact linear
operators associated with f; see Theorem 1.1. An analysis of this result shows that
a giant component can exist for two separate reasons: either the tail of f at infin-
ity is sufficiently heavy so that due to the strength of the preferential attachment
mechanism the topology of the network enforces existence of a giant component,
or the bulk of f is sufficiently large to ensure that the edge density of the network
is high enough to connect a positive proportion of vertices. We show that in the for-
mer case the giant component is robust under random deletion of edges, whereas
it is not in the latter case. In Theorem 1.6 we characterize the robust networks by
a completely explicit criterion.

The general approach to studying the connectivity structure in our model is
to analyze a process that systematically explores the neighborhood of a vertex in
the network. Locally this neighborhood looks approximately like a tree, which
is constructed using a spatial branching process. The properties of this random
tree determine the connectivity structure. We show that the asymptotic size of the
giant component is determined by the survival probability (see Theorem 1.8), and
the proportion of components with a given size is given by the distribution of the
total number of vertices in this tree; see Theorem 1.9. It should be mentioned that
although the tree approximation holds only locally it is sufficiently powerful to
give global results through a technique called sprinkling.

This approach as such is not new; for example, it has been carried out for the
class of inhomogeneous random graphs by Bollobés, Janson and Riordan in the
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seminal paper [5]. What is new here is that the approach is carried forward very
substantially to treat the much more complex situation of a preferential attachment
model with a wide range of attachment functions including nonlinear ones. The
increased complexity originates in the first instance from the fact that the presence
of two potential edges in our model is not independent if these have the same left
end vertex. This is reflected in the fact that in the spatial branching process un-
derlying the construction, the offspring distributions are not given by a Poisson
process. Additionally, due to the nonlinearity of the attachment function, informa-
tion about parent vertices has to be retained in the form of a type chosen from an
infinite-type space. Hence, rather than being a relatively simple Galton—Watson
tree, the analysis of our neighborhoods has to be built on an approximation by a
multitype branching random walk, which involves an infinite number of offspring
and an uncountable type space. In the light of this it is rather surprising that we
are able to get very fine explicit results, even in the fully nonlinear case, in par-
ticular the explicit characterisation of robustness; see Theorem 1.6. Moreover, in
the nonlinear case the abstract criterion for the existence of a giant component can
be approximated and allows explicit necessary or sufficient estimates, which are
typically rather close; see Proposition 1.10.

Although our results focus on the much harder case of nonlinear attachment
rules, they are also new in the case of linear attachment rules f and so represent
very significant progress on several fronts of research. Indeed, while the criterion
for existence of a giant component is abstract for a general attachment function,
it becomes completely explicit if this function is linear; see Proposition 1.3. Simi-
larly our formula for the percolation threshold becomes explicit in the linear case,
and our result also includes behavior at criticality; see Remark 1.7. Fine results like
this are currently unavailable for the most studied variants of preferential attach-
ment models with linear attachment rules, in particular those reviewed by Dom-
mers et al. [9].

1.2. The model. We call a concave function f:{0,1,2,...} —> (0, o0) with
f(©0) <1and
Afk):=fk+1)— fk) <1 forall k >0

an attachment rule. With any attachment rule we associate the parameters y+ :=
maxg>0 Af (k) and y~ := ming>o Af (k), which satisfy 0 <y~ <yT < 1. By
concavity the limit

(1) y = lim L

exists and =y

Observe also that any attachment rule f is nondecreasing with f(k) <k 41 for
all k > 0.

Given an attachment rule f, we define a growing sequence (Gy)nen of random
networks by the following iterative scheme:
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e the network G consists of a single vertex (labeled 1) without edges;
e ateach time N > 1, given the network Gy, we add a new vertex (labeled N + 1);
e insert for each old vertex M a directed edge N + 1 — M with probability
f (indegree of M at time N)
N

to obtain the network Gy 1.

The new edges are inserted independently for each old vertex. Note that our condi-
tions on f guarantee that in each evolution step the probability for adding an edge
is smaller or equal to 1. Edges in the random network Gy are dependent if they
point toward the same vertex and independent otherwise. Formally we are dealing
with directed networks, but indeed, by construction, all edges are pointing from the
younger to the older vertex, so that the directions can trivially be recreated from
the undirected (labeled) graph. All the notions of connectedness, which we discuss
in this paper, are based on the undirected networks.

Our model differs from that studied in the majority of publications in one re-
spect: we do not add a fixed number of edges in every step but a random number,
corresponding formally to the outdegree of vertices in the directed network. It turns
out (see Theorem 1.1(b) in [8]) that this random number is asymptotically Poisson
distributed and therefore has very light tails. The formal universality class of our
model is therefore determined by its asymptotic indegree distribution which, by
Theorem 1.1(a) in [8], is given by the probability weights

| ())
= I1
L+ fk) g 1+ FO)

Note that these are power laws when f (k) is of order k (but f need not be linear).
More precisely, as k 1 oo,

k —1 1
&eye(o,l) — M_)1+_’
k logk y

m for k € N U {0}.

so that the LCD-model of Bollobds et al. [6, 7] compares to the case y =

N[—

1.3. Statement of the main results. Fix an attachment rule f, and define a pure
birth Markov process (Z; : ¢t > 0) started in zero with generator

Lg(k) = f(k)Ag(k),

which means that the process leaves state k with rate f (k). Given a suitable 0 <
o < 1 we define a linear operator A, on the Banach space C(S) of continuous,
bounded functions on S := {£} U [0, oo] with £ being a (nonnumerical) symbol, by

Ag(r) i= /0 (e dM(1) + /0 (0 dMT (1),
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where the increasing functions M, respectively, M?, are given by

t
M(r) = fo eELf(Z)]ds,  MAH) =E[Z,],
M® (1) =E[Z;|AZ; = 1] — L7,00)(1) for T € [0, 00).

We shall see in Remark 2.6 that M™ < M? for all T > ¢/ > 0, and therefore M™® =
lim; _, oo M® is well defined. We shall see in Lemma 3.1 that

Ayl1(0) < 00 — Ay is a well-defined compact operator.

In particular, the set Z of parameters where A, is a well-defined (and therefore
also compact) linear operator is a (possibly empty) subinterval of (0, 1).

Recall that we say that a giant component exists in the sequence of networks
(GN)Nen if the proportion of vertices in the largest connected component Cy C Gy
converges, for N 1 0o, in probability to a positive number.

THEOREM 1.1 (Existence of a giant component). No giant component exists if
and only if there exists 0 < a < 1 such that A, is a compact operator with spectral
radius p(Ay) < 1.

EXAMPLE 1.2. A sufficient but unnecessary criterion for existence of a giant
component is that y > %, where y is as defined in (1); see Remark 1.11 below for
the proof.

The most important example is the linear case f (k) = yk + B. In this case the
family of operators A, can be analyzed explicitly; see Section 1.4.2. We obtain the
following result.

PROPOSITION 1.3 (Existence of a giant component: linear case). If f(k) =
vk + B for some 0 <y <1 and 0 < B <1, then there exists a giant component if
and only if

2
yzl or ,8>7(1/2_y) .
2 11—y

This result corresponds to the following intuition: if the preferential attachment
is sufficiently strong (i.e., y > %), then there exists a giant component in the net-
work for purely topological reasons and regardless of the edge density. However,
if the preferential attachment is weak (i.e., y < %) then a giant component exists
only if the edge density is sufficiently large.

EXAMPLE 1.4. If y =0, the model is a dynamical version of the Erd6s—Rényi
model sometimes called Dubins’ model. Observe that in this case there is no pref-
erential attachment. The criterion for existence of a giant component is 8 > %,
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a fact which is essentially known from work of Shepp [17]; see Bollobds, Janson
and Riordan [4, 5] for more details.

EXAMPLE 1.5. Ify = % the model is conjectured to be in the same universal-
ity class as the LCD-model of Bollobds et al. [6, 7]. In this case we obtain that a
giant component exists regardless of the value of g, that is, of the overall edge den-
sity. This is closely related to the robustness of the giant component under random
removal of edges, obtained in [6].

As the last example indicates, in some situations the giant component is robust
and survives a reduction in the edge density. To make this precise in a general
setup, we fix a parameter 0 < p < 1, remove every edge in the network indepen-
dently with probability 1 — p and call the resulting network the percolated net-
work. We say the giant component in a network is robust, if, for every 0 < p < 1,
the percolated network has a giant component.

THEOREM 1.6 (Percolation). Suppose f is an arbitrary attachment rule and
recall the definition of the parameter y from (1). Then the giant component in the
preferential attachment network with attachment rule f is robust if and only if

1
V=5

REMARK 1.7. The criterion y > % is equivalent to the fact that the size biased
indegree distribution, with weights proportional to ki, has infinite first moment.
Precise criteria for the existence of a giant component in the percolated network
can be given in terms of the operators (Ay o € 7):

(i) The giant component in the network is robust if and only if Z = &. Other-
wise the percolated network has a giant component if and only if

1
> —.
mingez p(Aa)
(i1) In the linear case f(k) = yk + B, for y > 0, the network is robust if and

only if y > % Otherwise, the percolated network has a giant component if and
only if

@) p><$—1)(\/@_1).

Observe that running percolation with retention parameter p on the network Gy
with attachment rule f leads to a network which stochastically dominates the net-
work with attachment rule pf. Only if f is constant, say f (k) = 8, these random
networks coincide, and the obvious criterion for existence of a giant component
in this case is p > #. This is in line with the formal criterion obtained by letting

v 1 0in (2).
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FI1G. 1.  Offspring of an L-type particle in the branching random walk. A particle generates finitely
many offspring to its left, but infinitely many offspring to its right.

We now define a multitype branching random walk, which represents an ideal-
ization of the exploration of the neighborhood of a vertex in the infinite network
Goo and which is at the heart of our results on the sizes of connected components
in the network. A heuristic explanation of the approximation of the local neigh-
borhoods of typical points in the networks by this branching random walk will be
given at the beginning of Section 6.

In the multitype branching random walk particles have positions on the real line
and fypes in the space S.? The initial particle is of type £ with arbitrary starting
position. Recall the definition of the pure birth Markov process (Z;:¢ > 0). For
T >0, let (Z,[T] :t > 0) be the same process conditioned to have a birth at time t.

Each particle of type £ in position x generates offspring:

e to its right of type £ with relative positions at the jumps of the process (Z;:¢ >
0);

e to its left with relative positions distributed according to the Poisson point pro-
cess I on (—oo, 0] with intensity measure

¢'E[f(Z-p]dt,
and type being the distance to the parent particle.
Each particle of type t > 0 in position x generates offspring:

e to its left in the same manner as with a parent of type ¢;
e to its right of type ¢ with relative positions at the jumps of (Ztm —Liz,00)(t) 1t >
0).

This branching random walk with infinitely many particles is called the ideal-
ized branching random walk (IBRW); see also Figures 1 and 2 for an illustration of

2Although the distinction of type and space appears arbitrary at this point, it turns out that the
resulting structure of a branching random walk with a compact typespace, rather than a multitype
branching process with noncompact typespace, is essential for the analysis.
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FI1G. 2. Offspring of a particle of type t € [0, 00) in the branching random walk. Offspring to the
right have type £, offspring to the left have type given by the distance to the parent.

the branching mechanism. Note that the functions M featuring in the definition of
our operators A, are derived from the IBRW: M() is the expected number of par-
ticles within distance 7 to the left of any given particle, and M* (¢) is the expected
number of particles within distance ¢ to the right of a given particle of type 7.

Equally important to us is the process representing an idealization of the explo-
ration of the neighborhood of a typical vertex in a large but finite network. This
is the killed branching random walk obtained from the IBRW by removing all
particles which have a position x > 0 together with their entire descendancy tree.
Starting this process with one particle in position xg < O (the root), where —xg is
standard exponentially distributed, we obtain a random rooted tree called the ide-
alized neighborhood tree (INT) and denoted by €. The genealogical structure of
the tree approximates the relative neighborhood of a typical vertex in a large but
finite network. We denote by #% the total number of vertices in the INT and say
that the INT survives if this number is infinite.

The rooted tree ¥ is the weak local limit in the sense of Benjamini and
Schramm [2] of the sequence of graphs in our preferential attachment model. An
interesting result about weak local limits for a different variant of the preferen-
tial attachment network with a linear attachment function, including the LCD-
model, was recently obtained by Berger et al. [3]. In the present paper we shall not
make the abstract notion of weak local limit explicit in our context. Instead, we
go much further and give some fine results based on our neighborhood approxima-
tion, which cannot be obtained from weak limit theorems alone. The following two
theorems show that the INT determines the connectivity structure of the networks
in a strong sense.

THEOREM 1.8 (Size of the giant component). Let f be an attachment rule,
and denote by p(f) the survival probability of the INT. We denote by C](\}) and Cj(\%)
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Relative size of giant component

1.0

0.8

0.4

0.0 0.2 0.4 0.6 0.8 1.0

F1G. 3. Simulation of the proportion of vertices in the giant component in the linear case. The curve
forming the lower envelope is determined explicitly in Proposition 1.3. The plot is based on 15,000
Monte Carlo simulations of the branching process for 80 times 80 gridpoints in the (B, y)-plane.

the largest and second largest connected component of Gy. Then

(1 #C(Z)
TN — p(f) and TN — 0 in probability.

In particular, there exists a giant component if and only if p(f) > 0.

The results of a Monte Carlo simulation for the computation of p(f) for lin-
ear f can be found in Figure 3. The final theorem shows the cluster size distri-
bution in the case that no giant component exists. In this case typical connected
components, or clusters, are of finite size.

THEOREM 1.9 (Empirical distribution of component sizes). Let f be an at-
tachment rule, and denote by Cy (v) the connected component containing the ver-
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tex v € Gy. Then, for every k € N,
1 N
~ > 1{#Cn(v) =k} —> PH#T=k)  in probability.
v=1

1.4. Examples.

1.4.1. Explicit criteria for general attachment rules. The necessary and suffi-
cient criterion for the existence of a giant component given in terms of the spectral
radius of a compact operator on an infinite-dimensional space appears unwieldy.
However, a small modification gives upper and lower bounds, which allow very
explicit necessary or sufficient criteria that are close in many cases; see Figure 4.

PROPOSITION 1.10. Suppose f is an arbitrary attachment rule, and let

alf1=3 ﬁ SO
=i 12+ 0

and

oo k .
. fG+1D
clf1 .—/;)j]:[o—l/ﬂf(jﬂ) >alf].

@) Ifalfl> %, then there exists a giant component.

Phase boundary (nonlinear case)

1.0

0.8

0.4

0.2

0.0 0.1 0.2 0.3 0.4 0.5

B

FIG. 4. For the attachment function f (k) = y~/k + B the figure shows the curves a[ f] = % and

al f1+al flcl f]1= 1, which form lower and upper bound for the boundary between the two phases,
nonexistence and existence of the giant component, in the (8, y)-plane.
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(i1) If%(a[f] + Jalflelf]) < %, then there exists no giant component.

REMARK 1.11.

e The term %(a[f] + J/al flclf]) differs from a[ /] by no more than a factor of

1 12+ £(0)
—11 —— .
2( o )

e a[ f] converges if and only if y < % Hence a giant component exists if y >

%, as announced in Example 1.2. Otherwise there exists ¢ > 0 depending on

f(), f(2), ... such that no giant component exists if f(0) < ¢.

PROOF OF PROPOSITION 1.10. (i) For a lower bound on the spectral radius
we recall that M® > M, and therefore we may replace M” in the definition of A,
by M?. Then A, g(t) no longer depends on the value of T € [0, co] but only on the
fact whether T = £ or otherwise. Hence the operator collapses to become a 2 x 2
matrix of the form

_f(a(a) a(l —a)
A‘(a(a) a(l—a))

with
a(a) = /ooe_“’Ef(Zt)dt.
0

Recalling that (Z;:¢ > 0) is a pure birth process with jump rate in state k given
by f(k), we can simplify this expression, using 7} as the entry time into state k,
as follows:

[ emmr@par=EY roo [ e tar
0 k=0 Ty

0 1
=Y fl)—[Ee Tk — EeoTkr1],
k=0 o

Recalling that 7} is the sum of independent exponential random variables with
parameter f(j), j=0,...,k— 1, we obtain

k—1 .
Fe—oTk — 1—[ f(])
j=o fU) T
and hence
oo k .
_ f()
a=2 1757

k=0 j=0
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Now note that p(A) = a(a) + a(l — «) and since a is convex this is minimal
for o = %, whence p(A) > 2a(%) = 2a[ f]. This shows that the given criterion is
sufficient for the existence of a giant component.

(i1) For an upper bound on the spectral radius, we use Lemma 2.5 to see that
M?® < M°, and therefore we may replace M7 in the definition of A, by M°, again
reducing the operator Ay to a 2 x 2 matrix which now has the form

- (al@) a(l—-a)
A‘(e(a) a(l—a))

with a(«) as before and
o0
el = [ e B 20N,
0

where E! is the expectation with respect to the Markov process (Z; : ¢t > 0) started
with Zg = 1. As before we obtain

e o o
c(a) = El |:Z f(k)f k+1 o dl] — Z f(k)l[El[e_aTk] _ El[e_“Tk+l]]
k=1 T =1 o

S £ ) Lorg-n o M f(j—l)}
gf [/l_lzf(J Dte 5fG-D+e
oo k

_ fG+D

_an(J+1)+ot

k=0 j=0

Choosing o = 5, we get p(A) =al f1+ al flc[f], which finishes the proof. [

1.4.2. The case of linear attachment rules. We show how in the linear case
f (k) = yk + B the operators (A, :« € 7) can be analyzed explicitly and allow to
infer Proposition 1.3 from Theorem 1.1. We write P* and EF for probability and
expectation with respect to the Markov process (Z; : t > 0) started with Zg = k.

LEMMA 1.12. For f(k) =yk+ B we have, for all k > 0,

ELf(Zol=fRe",  EFZ)Y=(f0)?+ fhy)e? — flye”
and therefore

dM(r) = BeY D! gr, dMt(t) = Be" dt, dM® (1) = (B + y)e" dt
Jor T €0, o0].

PROOF. Recall the definition of the generator L of (Z;:¢ > 0). The process
(X;:t > 0) given by

t t
X, = f(Z)) —/O Lf(Zs)dSZf(Zz)—V/O £(Zs)ds
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is a local martingale. Let (7,),en be a localizing sequence of stopping times, and
note that

AT,
BN/ (201 = lim B“f (Zuns) = F(0 +7 lim B [ £(Z0)ds

t
= fk)+y /0 EXLf (Zy)]ds.

‘We obtain the unique solution EX[ f(Z)]= f(k)e”". The analogous approach with
f replaced by f? gives

t t
B £2(Z0)] = 32 fo E* £(Zy)ds + 2y fo EFLF2(Z)1ds + f (k)2

t
= Fly e =D +2y [ ELAZds + 1),
and we obtain the unique solution

ELf2(Z)1= (f()* + f(K)y)e™" — fkyye’".

The results for M and M¢ follow directly from these formulas. To characterize M?
for T € [0, 00), we observe that, for t > T,

A D) kel
E[f(Z)|AZ, —H—kZOIP(Z ")Ef(z, E* L f(Zi—0)]
eV (1=21) X
= D P(Ze =k) fk) fk+1)
k=0
eV (1=27) 5
= B (Ef (Zr)+VEf(ZI))
ey, 2 ‘
=3 (B”+ By)e™" =(y + B’
and, fort < 7,
E¥[f(Zr-)]
E[f(Z)|IAZ, =11=Y P(Z, =k) f (k) ————=
[f(Z))] ] ;;) (Z; =k) f (k) EF(Z)
o k —yt
=Y Pz = k)f(k)ﬁo; )
=0
=y +Be" —y.
From this we obtain
B B
M (1) = E[Z"] — Ljr.o0 :<_ Neri—1- 8.
(l‘) [ h ] 11[7 )(l‘) Y + )e y
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and, by differentiating, this implies dM?(¢) = (B + y)e?'dt. O

PROOF OF PROPOSITION 1.3.  As M? depends only on whether T = £ or not,
the state space S can be collapsed into a space with just two points. The operator
A, becomes a 2 x 2-matrix which, as we see from the formulas below, has finite
entries if and only if y <« < 1 — y. This implies that there exists a giant com-
ponent if y > %, as in this case the operator A, is never well defined. Otherwise,

denoting the collapsed state of [0, c0) by the symbol ¢, the matrix equals

00 ) B
A?f:ﬁ/ e Vigr— = forq et}
0 l—y—«a
.0 o ﬂ
14(;\(7 :’3/ e(y_a)tdt:—v
0 oa—y
o +
AE;‘:(/3+V)/ v g =LY
0 oa—y

Then p(Ag) is the (unique) positive solution of the quadratic equation

(l—y —a)a—y)—x(B—28y)— By =0.

This function is minimal when the factor in front of x2 is maximal, that is, when

o= % We note that
VB +By +8

p(Ay) =

12—y~
which indeed exceeds one if and only if
(1/2-y)
B> =y 0

1.5. Overview. The remainder of this paper is devoted to the proofs of the
main results. In Section 2 we discuss the process describing the indegree evolution
of a fixed vertex in the network and compare it to the process (Z;:¢t > 0). The re-
sults of this section will be frequently referred to throughout the main parts of the
proof. Section 3 is devoted to the study of the idealized branching random walk
and explores its relation to the properties of the family of operators (Ay : o € 7).
The main result of this section is Lemma 3.3 which shows how survival of the
killed IBRW can be characterized in terms of these operators. Two important tools
in the proof of Theorem 1.1 are provided in Section 4, namely the sprinkling ar-
gument that enables us to make statements about the giant component from local
information (see Proposition 4.1) and Lemma 4.2 which ensures by means of a
soft argument that the oldest vertices are always in large connected components.

The core of the proof of all our theorems is provided in Sections 5 and 6. In
Section 5 we introduce the exploration process, which systematically explores the
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neighborhood of a given vertex in the network. We couple this process with an
analogous exploration on a random labeled tree and show that with probability
converging to one both find the same local structure; see Lemma 5.2. This random
labeled tree, introduced in Section 5.1, is still dependent on the network size N,
but significantly easier to study than the exploration process itself. Section 6 uses
further coupling arguments to relate the random labeled tree of Section 5.1 for
large N with the idealized branching random walk. The main result of these core
sections is summarized in Proposition 6.1.

In Section 7 we use a coupling technique similar to that in Section 5 to produce
a variance estimate for the number of vertices in components of a given size; see
Proposition 7.1. Using the machinery provided in Sections 4 to 7 the proof of
Theorem 1.8 is completed in Section 8 and the proof of Theorem 1.9 is completed
in Section 9. Recall that Theorem 1.8 provides a criterion for the existence of a
giant component given in terms of the survival probability of the killed idealized
branching random walk. In Theorem 1.1 this criterion is formulated in terms of the
family of operators (A, : o € Z), and the proof of this result therefore follows by
combining Theorem 1.8 with Lemma 3.3.

The proof of the percolation result, Theorem 1.6, requires only minor modifi-
cations of the arguments leading to Theorem 1.1 and is sketched in Section 10. In
a short Appendix we have collected some auxiliary coupling lemmas of general
nature, which are used in Section 6. Throughout the paper we use the convention
that the value of positive, finite constants ¢, C can change from line to line, but
more important constants carry an index corresponding to the lemma or formula
line in which they were introduced.

2. Properties of the degree evolution process. For m < n, we denote by
Z[m, n] the indegree of vertex m at time n. Then, for each m € N, the degree evo-
lution process (Z[m,n]:n > m) is a time inhomogeneous Markov process with
transition probabilities in the time-step n — n + 1 given by

k
p,(cnlzﬂ = & Al and p,((ni =1- p,i",iH for integers k > 0.
Moreover, the evolutions (Z[m, -] : m € N) are independent. We suppose that under
P* the evolution (Z[m, n]:n > m) starts in Z[m, m] = k. We write

Pungk)= Ek[g(Z[m, n)] for any g:{0,1,...} = (0, c0).

We provide several preliminary results for the process (Z[m,n]:n > m) and
its continuous-time analog (Z;:¢ > 0) in this section. These form the basis for
the computations in the network. We start by analysing the pure birth process
(Z;:t > 0) and its associated semigroup (P :t > 0) in Section 2.1, and then give
the analogous results for the processes (Z[m, n]:n > m) in Section 2.2. We then
compare the processes in Section 2.3.
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2.1. Properties of the pure birth process (Z;:t > 0). We start with a simple
upper bound.

LEMMA 2.1. Suppose that f is an attachment rule. Then, for all s,t > 0 and
integers k > 0,

ENLF(ZD1 < Fi)e’ ™ and  Pryf(k) < e’ ' Py f (k).

PROOF. Note that (Z; :t > 0) is stochastically increasing in f. We can there-
fore obtain the result for fixed k > 0 by using that f(n) < f(k) +y T (n — k) for
n > k, and comparing with the linear model described in Lemma 1.12. [J

We now look at the conditioned process (ZI[T] :t > 0). The next two lemmas
allow a comparison of the processes (Zt[r] :t > 0) for different values of 7.

LEMMA 2.2. For an attachment rule f, an integer k > 0 and t > 0, one has
P fk+1) - fk+1)
Pfky — fk)
forall t > 0. Moreover, if f is linear, then equality holds in the display above.

PROOF. In the following, we work under the measure P = P**!, and we sup-
pose that (U;: j > 0) is a sequence of independent random variables, uniformly
distributed in [0, 1], that are independent of (Z;:¢ > 0). We denote by T1, T3, ...
the random jump times of (Z; : ¢ > 0) in increasing order, set Ty = 0, and consider
the process (Y; :t > 0) starting in k that is constant on each interval [T}, T;11) and
satisfies

3) Yr, =Yr, + U < f(Y1)/f(Z1)}-

It is straightforward to verify that (¥; : ¢ > 0) has the same distribution as (Z; : ¢t >
0) under P¥. By the concavity of f we conclude that

fn) _ f0)+(r =0 (Z1) = f()/(Z1, = k)
FZr) = F®) + (Zr, =0 Zr,) — F6)/(Z1, — k)

F(Zr)=f k)
Zr,—k

and < Af(k), so that

f(r) _ Yr, + F)/AF(R) —k
FZr) = Zr, + fR/Af ) — K

Next, we couple the processes (Yr;:j = 0) and (Z7; 2] = 0) with a Pélya urn
model. Initially the urn contains balls of two colors, blue balls of weight By =

& := f(k)/Af(k), and red balls of weight one. In each step a ball is picked with
probability proportional to its weight and a ball of the same color is inserted to the

“4)
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urn which increases its weight by one. Recalling that the total weight after j draws
is j + & + 1, it is straightforward to see that we can choose the weight of the blue
balls after j steps as

B; =B'+1{U-§.7j}-
j+l J =i e+
Now (3) and (4) imply that whenever we pick a blue ball in the jth step, the evo-

lution (Y; :7 > 0) increases by one at time 7. Note that (Z; : 1 > 0) is independent
of (Uj:j >0) so that

EY}|Zi=n+k+ 1] —k = E[B, — Bol =

1+§(n+§+1)_$

_&n f(b) .
1+ E flk+1)

and, by the concavity of f,
Elf(Y)|Z; =n+k+1]
fn+k+1)— fk+1)

(5) > fk)+ " EY|Z, =n+k+1]—k)
~ f L fitk+D)
> fl)+ (fn+k+1) f(k+1))7f(k+1) _f(k)if(k-i-l) :

so that
P f(k+1) _ E[f(Z))] - Sk+1)
P f (k) E[f(YD] = fk)

If f is linear, all inequalities above become equalities. [

Next, we show that the semigroup (P;) preserves concavity.

LEMMA 2.3. For every concave and monotonically increasing g and every
t > 0, the function P;g is concave and monotonically increasing.

PROOF. We use an urn coupling argument similar to the one of the proof of
Lemma 2.2. Fix k£ > 0 and let (Y,(Z) :t > 0) be the pure birth process (Z;:t > 0)
started in Zp = k + 2. Denote Tp =0 and let (T;: j =1, 2, ...) be the breakpoints
of the process in increasing order. Suppose (U; : j > 0) is a sequence of indepen-
dent random variables that are uniformly distributed on [0, 1]. For i € {0, 1}, we
now denote by (Y,(l) :t > 0) the step functions starting in k 4+ i which have jumps
of size one precisely at those times 71, j > 0, where

Fre)y

<
"o
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By concavity of f we get

ONE (0) 1 _ O

an _ o o JY) - Y-

(6) P(AYT/'H - llAYTjH =0)= 2 UNEe) ©)"
fOE) = fOg)) Yo =Yg,

Let (Tj :j =1,2,...) denote the elements of the possibly finite set {7;:j > 1,
AY. }Q) =0} in increasing order. We consider a Pélya urn model starting with one

blue and one red ball. We denote by B, the number of blue balls after n steps. By
(6) we can couple the urn model with our indegree evolutions such that

_ €]
AB; < AYTj ,
and such that the sequence (B;) jen is independent of (Y,(z) :t>0) and (Y,(O) >

0). Let g be the linear functionon [/, [ 4+2+m] with g(I) = g(I) and g(I+2+m) =
g(l 4+ 2+ m). Then

Elg(r"NY? =1,¥2 =1+ 2+ m]

> gEY YO =1,YP =142+m]) =30 —14+EByn)

g(l bl %) _ %[g(l) + el +24+m)].

Therefore,
Pigtk+1) =E[g(v\")] = M E[¢(v") ]+ E[¢(Y?)]] = L[ Pig (k) + Prg(k+2)],

which implies the concavity of P;g. [

The fact that the semigroup preserves concavity allows us to generalize Lem-
ma 2.2.

LEMMA 2.4. For an attachment rule f and integers k > 0 and s,t > 0, one
has
Piosfl+1) _ Poftk+1)
Pt-l—sf(k) - Psf(k) '

PROOF. The statement follows by a slight modification of Lemma 2.2. We use
Z and Y as in the proof of the latter lemma and observe that by Lemma 2.3 the
function

g(k) := Py f (k)
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is concave and increasing. Similarly as in (5) we get
Elg(Y)|Z;=n+k+1]
gn+k+1)—glk+1)

> g(k) + p EY:Zi=n+k+1]—k)

S k)
zg(k)+(8(n+k+1)—g(k+1))m

g(k) g (k)
>gk)+ (gn+k+1)—gk+1)——— (k+1) gn+k+1)—— TERTE

The rest of the proof is in line with the proof of Lemma 2.2. [J

LEMMA 2.5 (Stochastic domination). One can couple the process (Z,[T] >
0) with start in Z([)T] = k and the process (Z;:t > 0) with start in Zo =k + 1 in
such a way that

{t>0:AZ =1} cr>0:AZ, =1} Uz}

In particular, this implies that Zt[r] +1{t <t} < Z; forallt > 0. In the linear case
we have equality in both formulas.

PROOF. Suppose (Y,(z) :t > 0) has the distribution of (Z;:¢# > 0) with start
in Zy=k+1,let Ty =0 and (T;:j =1,2,...) the times of discontinuities of
(Y,(z) :t > 0) in increasing order. Denote by (U; : j > 0) a sequence of independent

random variables that are uniformly distributed on [0, 1]. Now define (Y, t(l) :1>0)
as the step function starting in k which increases by one: (i) at time 741 < T if

1 1
FOLE) Peory f(VE) + 1)
2 1
FOEY Peor fOV)

(i1) at time 7 and (iii) at time T4 > T if
1
_ )
2
f(Y( N

Clearly, we have Y ,(1) +1< Y,(z) forallz € [0, T) and Yt(l) < Y,(z) for general ¢t > 0.
Moreover, by Lemma 2.2, the right-hand sides of inequalities (7) and (8) are not
greater than one, and it is straightforward to verify that (Y,(l) :t > 0) has the same
law as the process (Z,[ 1t > 0) with start in Z[t] k. O

(N Uj <

®) Uj <

REMARK 2.6. In analogy to above, one can use Lemma 2.4 to prove that two
evolutions Z!?1 and Z![*! started in k with 0 < o < 7 can be coupled such that

[t>=0:AZT =1\ {r} c{r>0:AZIT = 1}\ {o}.
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2.2. Properties of the degree evolutions (Z[m,n]:n > m). For the processes
(Z[m,n]:n > m) we get an analogous version of Lemma 2.1.

LEMMA 2.7. For any attachment rule f, and all integers k >0 and 0 <m <
n,
+

Y
AL £ (Z[m, n])] < f(k)(%) .

PROOF. Note that (¥, :n > m) with ¥, := f(Z[m, n) [I/ZL(1 + 2~ is a
supermartingale. Hence

EXLf (Zlm, D] < £ &) 1_:[1(1 + y,—+> =/ “”(%)w 0

We also get the following analog of Lemma 2.2.

LEMMA 2.8. For an attachment rule [ and integers k > 0 and 0 < m < n one
has

Punfk+1) _ flk+1)
Puaf®) = 0

If fislinearand f(k+1+1) <m+Ilforalll €{0,...,n—m — 1}, then equality
holds.

PROOF. The statement follows by a slight modification of the proof of Lem-
ma2.2. O

We now provide two lemmas on stochastic domination of the degree evolutions.

LEMMA 2.9 (Stochastic domination I). For any integers 0 <m <n; <--- <
n;j the process (Z[m,n]:n > m) conditioned on the event AZ[m,n;] =0 for all
i €{l,...,j}is stochastically dominated by the unconditional process.

PROOF. First suppose that m < n{. For any k > 0, we have
PY(AZ[m,m]=1|AZ[m,n;1=0Vie{l,...,j})
f k) PKYYAZ[m 4+ 1,n;1=0 Vi)
m PK(AZ[m,n;1=0Vi)
The denominator on the right is equal to

%PkH(AZ[m +1,n]=0Vi)+ (1 — %)P"(AZW +1,n;]=0Vi)

>PMYAZIm 4+ 1,n;]1=0Vi),
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and hence we get
PK(AZ[m,m]=1|AZ[m,n;1=0Vi €{1,...,j})

SRAC. PK(AZ[m, m] =1),
m

©)

which is certainly also true if m = n1. The result follows by induction. [J
The next lemma is the analog of Lemma 2.5.

LEMMA 2.10 (Stochastic domination II). For integers 0 < k < m < n there
exists a coupling of the process (Z|m,l]:l > m) started in Z[m,m] =k and
conditioned on AZ[m,n] = 1 and the unconditional process (Z[m,l]:l > m)
started in Z[m,m] = k 4+ 1 such that for the coupled random evolutions, say
QYWOM:1 > m) and YP[1]:1 > m), one has

AYOI < AYP[ + 14 = n},
and therefore in particular Y V(1] < YPI] for all | > m.

PROOF. Note that
PKAZ[m,ml=1,AZ[m,n]=1)
PK(AZ[m,n]=1)
_ S R)/mEHf(Zlm +1,n)](A/n)
EXLf (Z[m, n])](1/n)
_ S Pugrnfk+1)
m Pn f (k)

PY(AZ[m,m]=1|AZ[m,n]=1) =

By Lemma 2.8, we get

JE) Pniinfk+D _ fk+D
m Perl,nf(k) o m ’

Now the coupling of the processes can be established as in Lemma 2.5. [

PK(AZ[m,m]=1|AZ[m,n]=1) <

LEMMA 2.11. Forall m <n <n’ one has

P(AZ[m,n]=1)>P(AZ[m,n']=1).

PROOF. It suffices to prove the statement for n’ =n + 1 and n > m arbitrary.
The statement follows immediately from

1 1 &
B(AZ[m,n]=1) = ELf(Z[m.n)] = Y B(Zlm.n]=k) f &)
k=0
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and
P(AZ[m,n+1]=1)

— i_o:IP’(Z[ ]_k)[&f(k—i- D+ (1 - @>f(k)]

Z T Af(k) FOOP(Zm, n] =k).
k 0 0

We finally look at degree evolutions (Z[m, n]:n > m) conditioned on both the
existence and nonexistence of some edges. In this case we cannot prove stochastic
domination, and comparison requires a constant factor.

LEMMA 2.12. Suppose that (CN)NEN, (nN)NeN are sequences of integers

such that limy _, oo ny = 00 and C%\f”% is bounded from above. Then there ex-

ists a constant C».12 > 0, such that for all Ly, 1, disjoint subsets of {ny, ..., N}
with #Ig < cy and #L; <1 and, forany m € {1, ..., N} with n > m, we have

P(AZ[m,n — 11=1|AZ[m,il=1Vi eI, AZ[m,i]=0Vi €Ly
< CrpP(AZ[m,n—1]=1|AZ[m,i]=1VieT)).

PROOF. We have
P(AZ[m,n —11=1|AZ[m,i]l=1Vi e, AZ[m,i]=0Vi € Ip)
_ _PAZimn—11=1|AZ[m,i]=1Vi eT))
T P(AZ[m,il=0VieTg|AZ[m,il=1VieI)’

and it remains to bound the denominator from below by a positive constant.
Using Lemma 2.10 and denoting k = #7; we obtain that

P(AZ[m,i]=0VieTo|AZ[m,i]=1Vi eI
>PY(AZ[m,i]=0VieTy) > [[ P'(AZ[m, j1=0)
Jj€To
1 {1 _ IE%f(Z_[m,j])]}'
J

J€lp

By Lemma 2.7 the expectation is bounded from above by f (k) j)’+ and moreover
fk) <k+1<2cy for N large enough. Hence we get,

1 .
I {1 _E [f(Z'[m, J])]} > [T - 2en i N = (1= 2enny? ey
J€Ip J J€Zo

using that #Zg < cy. As clzvn N ¥"=1 is bounded from above, the expression on the
right is bounded from zero. This implies the statement. [
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2.3. Comparing the degree evolution and the pure birth process. The aim of
this section is to show that the processes (Z[m,n]:n > m) and (Z;:t > 0) are
intimately related. To this end, we set

n—1

1 1
(10) =) P and Aty =ty —ly = —.
k=1 n

LEMMA 2.13. For fixed n € N, one can couple the random variables Z z;,
and Z[n,n + 1] under Pk such that, almost surely,

P(Zas, # Zln,n+ 1) < (f(k + 1)Atn)2 and (k+1)ANZpy, < Z[n,n+1].
PROOF. Note that

1 Aty
PX(Zar, =k + 1) = f(k) Atye /DA ___ / NI
Aty Jo
> f(k)mne—f(kﬂ)mn_
The same lower bound is valid for the probability Pk (Z[n,n+1]=k+1). More-
over,

PK(Zpy, = k) = e 08 > (1 — f(k)AL,) vVO=PX(Z[n,n+1]=k).

Hence, we can couple Zx;, and Z[n,n + 1] under P* such that that they differ
with probability less than

1= [f() Atye™FEFDA L1 £ (k) A, ]
(11D
= f) At (1 — e~/ EHDA) < (£, + 1) AL)?,

and moreover we have (k + 1) A Za;, < Z[n,n+1]. 0O

PROPOSITION 2.14. There exist constants ng € N and C».14 > 0 such that for
all integers ngo <m <n and 0 <k <m,

J (k)
B f (K) = Pyt f )| = Co1a= = Pinn f (K).

The proof of the proposition uses several preliminary results on the semigroups
(Py:t = 0) and (P, ,:n > m), which we derive first. For a stochastic domina-
tion argument we introduce a further time inhomogeneous Markov process. For
integers n, k > 0, we suppose that

PYZnn+1l=k+1)=1-PZn,n+1]1=k)
= <@ + lf(k)Af(O)eAf(O)iz) Al
n 2 n

The corresponding semigroup is denoted by (ISm,n)mEn.
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LEMMA 2.15. Assume that there exists ng € N such that, for all integers
n = no,

(12) fm) 1
n

T3

Then, for all integers n > ng and 0 < k < n, and an increasing concave
g:{0,1,2,...} = R,

FAF©OA O <1,
n

Pay, 8 (k) < Py py18(k).
PROOF. Consider f(I) = f (k) + Af (k)(I — k). Note that by comparison with
the linear model
FU) + AF R EZ] - k) =B [ f(Z)] < fk)e .
Hence, for t € [0, 1], using that e* <1+ x + %xzex for x >0,

Bzl —k < L0 (a0 1) < o+ %f () Af (ke P12,

T AfK)

Therefore, Ek[ZAtn] < fEk[Z[n, n + 1]] for all n > ng. As g is increasing and con-
cave, and Z has only increments of size one, we get

EF[g(Zai)] < g(k) + (gk + 1) — g (k) EF[Z s, — kI
<gk) + (g + 1) — g()E [Z[n, n+ 11— k]
=E¥[g(Z[n,n+ 1D)]
as required to complete the proof. [J
LEMMA 2.16. There exists a constant C».16 > 0, depending on f, such that

for all integers 0 <k <m and 0 <m < n, we have

Pun f(k) < Ca16Pmn f (k).

PROOF. For n,m € N with n > m let ¢, 1= ]_[;’;nll(l + l%) where « =

%(A f (0))2e27 O we prove by induction (over n — m) that for all 0 < m <n
and 0 <k <m,

Pun f (k) < o Prn f(K).

Certainly the statement is true if n = m. Moreover, we have

ﬁm,nJrlf(k) = Pm,m+1 ﬁm+l,n+1f(k) + (ﬁm,erl - Pm,m+l)ﬁm+1,n+1f(k)a

and applying the induction hypothesis we get

ﬁm,n-i—lf(k) =< Cm-i-l,n-i—lpm,n—i-lf(k) + (ﬁm,m-i—l — Pm,m—l—l)ﬁm-i—l,n-i-lf(k)-
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Moreover, for a function g:{0, 1,2, ...} - R, we have
~ 1 1
(13) Post = Prmi 1)) < 2 FOAS @O —5 Ag(k).
Note that the transition probabilities of the new inhomogeneous Markov process
have a particular product structure: for all integers a > 1 and b > 0, one has

- 1 1 1
PP (Zla,a+11=b+ 1) =(Ya- fF(D)A1  fory,:=—+ EAf(O)eAf(O)—z.
a a
This structure allows one to literally translate the proof of Lemma 2.8 and to obtain
Paras f(2) _ f(b2)
a1,a2f(b1) B f(bl)

for integers ay,az > 1 and by, by > 0 with a; < a> and by < by. Consequently,
using (13) and the induction hypothesis,
(ﬁm,m+l - Pm,m+1)ﬁm+l,n+1f(k)
) L AF() 5

1
(14) < SF AL — o Pt f0)

K ~ K
< me+1,n+1f(k) < Wcm+1,i1+lpm+1,n+1f(k)‘

Altogether, we get

~ K
Pm,n+1f(k) =< (1 + W)Cm—i-l,n—%—le,n-i-lf(k) = Cm,n—HPm,n-Hf(k)»

and the statement follows since all constants are uniformly bounded by []72, (1 +
K
1—2) <oo. O

PROOF OF PROPOSITION 2.14. We choose ng as in Lemma 2.15, and let
k,m,n be integers with no <m <n and 0 < k < m. We represent Ek[f(Z[m,
n])] — Ek[f(Z,n,,m)] as the telescoping sum

n—1

(15) Py f (k) = Pyy_i, f(K) =" Pua(Pris1 — Pyyy—y) Pry—iyy, f(K).

I=m

=%

In the following, we fix [ € {m, ..., n — 1} and analyze the summand ¥;. First note
that by Lemma 2.2, one has for arbitrary integers 0 < a < b,

@(a, by :=EP[f(Zy, -y, )] = ELf (Zty—ty, )]

_f® - f@
)

(16)
]Ea [f(Zl‘,l—tH_l)]-
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In the first part of the proof, we provide an upper bound for
V(a) = |(Pri+1 — Pypy—1) Pyt f(@)] forO<a <.

We couple Za, and Z[l, [+ 1] under P as in Lemma 2.13 and denote by YO and
Y@ the respective random variables. There are two possibilities for the coupling
to fail: either YV >ag+2and Y@ =a+ 1, or YV =g and Y® =qa + 1.
Consequently,

Y(a@) <P(YD =a, TP =a+1)p,a+1)
+ E[l{y(1>2a+l}(p(a + 1, T(l))]

Since, by Taylor’s formula,

P(YP =a,YP =a+1)=e /D% _ (1 - fa)An) < L(f(@)An)?,
we get for the first term of (17), using (16),

P(YD =a, Y =a + 1)p(a,a+ 1)
pAf@ Af(a)
fla)
< f@ADE L f (Z,—4.1)].
Now consider the second term in (17). We have
19 E[lpyoseinela+ L, Y] <P(T® =a + 1) E g + 1, Zay))-
=fl@Ay

By Lemma 2.1 we have E“*[f(Za,)] < f(a + 1)eA/@FDAU 5o that we con-
clude with (16) that

E M (a4 1, Zag)] < (€A @FDA DR £(Z, 0. )]
<2A4ENF(Z - )],

where we used in the last step that Af(a + 1) < 1 and that ¢* <1+ 2x for x €
[0, 1]. We combine this with the estimates (17), (18) and (19), and get

V(@) <3f @A B f(Z—i, )]
In the next step, we deduce an estimate for |X;| defined in (15). One has
%] < P9 (k) < 3AGE [ An f (ZIm, IDEPV I £(Z,, )]

= 3A4EN 1 azpm =y EZ N £ (20— 1)
By Lemma 2.10 we get
1| < 3A4PH(AZ[m, 11 = DEF B2 f(Z, _, 1]

(20) = 3(A)’E £ (ZIm, B B2 £z, ) ]
= 3(A)? Pt f () Pony1 Py f (K + 1),

A7)

1
(18) =5 (f@An — B f(Z—y))]
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We write Py, f(k+1)= Py, 4., P-4, f(k+ 1) and note that, by Lem-
ma 2.3, P4, f is concave. Therefore, we get with Lemma 2.15 that
Py fk+1) < 151+1,l+2 Py, 1, f (k + 1). Successive applications of this esti-
mate and Lemma 2.16 yield

2D P i1 Py J (k4 1) < Pyyp f(k+1) < Cot6 P f (k +1).

Recall from Lemma 2.7 that Py, ; f (k) < (%)Jﬁf(k). Combining with (15), (20)
and (21) yields

| Ponn [ (k) — Pp,—,, | (k)]
n—1

(22) <3Ca16f (k) Pun f Gk + Dm™ " 3172477

I[=m

k
< C2.14%Pm,nf(k)7

for a suitably defined constant C» 14 depending only on f, as required. [

3. Properties of the family (A4 :0 < « < 1) of operators. The objective of
this section is to study the operators A, and relate them to the tree INT. We start
with two lemmas on the functional analytic nature of the family (A, :« € 7).

LEMMA 3.1. (a) Forany 0 < a < 1 the following are equivalent:

(1) Ax1(0) < o0;
(i) Ayg € C(S) forall g € C(S).

The set of a where these conditions hold is denoted by 1.
(b) For any o € 1 the operator Ay is strongly positive.
(c) For any o € T the operator Ay is compact.

PROOF. Recalling the Arzela—Ascoli theorem, the only nontrivial claim is
that, if Ay1(0) < oo, then the family (Ayg: lIglloc < 1) is equicontinuous. To this
end recall that, for T < o < 0o, by Remark 2.6, we have M* > M and hence

Aag(t) — Aag(0)] < /0 AT — MO)(0).

Equicontinuity at oo follows from this by recalling the definition M*® =
lim; 400 M®. Elsewhere, for 0 < 0o, we use the straightforward coupling of the
processes (Z,[r] 1t >0) and (Z,[a] :t > 0) with the property that if Z([,U_], =0 then
Z[T] _ Z[U]

t — “t+o-t1°
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Hence we get

oo o0
/ e dM" — M) (1) < (1 — e—“@—f))/ e dM" (1)
0 0
(23) N
+ E[/O e~aziHi{zll - 0}]

Note that [5°e ™ dM*(t) < E[fs e “dZ"\(1)] < Aq1(0) < 0o, and that
IP’(Z([,(’_]r >0)<PY(Z,_;>1 J 0 as o | 7. Hence, both terms on the right-hand
side of (23) can be made small by making o — 7 small, proving the claim. [J

LEMMA 3.2. The function o +— log p(Ay) is convex on 1.

PROOF. By Theorem 2.5 of [12] the function o — log p (A ) is convex, if for
each positive g € C(S), € > 0 and triplet &1 < «g < «p in Z, there are finitely many
positive g; € C(S) and functions ¢;:Z — R, j € {1, ..., m}, with log¢; convex,
such that

Ay g — Y ¢j(ar)g;

j=1

<e¢ forall k € {0, 1, 2}.

This criterion is easily checked using the explicit form of A,,0 <o < 1. 0

With the help of the following lemma, Theorem 1.1 follows from Theorem 1.8.
The result is a variant of a standard result in the theory of branching random walks
adapted to our purpose; see, for example, Hardy and Harris [10] for a good account
of the general theory.

LEMMA 3.3. The INT dies out almost surely if and only if there exists 0 <
o < 1 such that A, is a compact linear operator with spectral radius p(Ay) < 1.

PROOF. Suppose that such an o exists. By the Krein—Rutman theorem (see,
e.g., Theorem 1.3 in Section 3.2 of [15]) there exists a eigenvector v:S — [0, 00)
corresponding to the eigenvalue p(Ag). Our operator A, is strongly positive, that
is, for every g > 0 which is positive somewhere, we have

minAyg(t) > 0,
TeS

so that v is also bounded away from zero. Let Y ,(") (dt dx) be the empirical measure
of types and positions of all the offspring in the nth generation of an IBRW started
by a single particle of type t positioned at the origin. With every generation of
particles in the IBRW we associate a score

v

X, = / YT(”)(dtdx)e_“xv(T).
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The assumption p(Ay) < 1 implies that (X, :n € N) is a supermartingale and thus
almost surely convergent. Now fix some N > 1, an integer n > 2 and the state at
generation n — 1. Suppose there is a particle with location x < N in the (n — 1)st
generation. Then there is a positive probability (depending on N but not on n) that
X, — Xu—1 > 1 and, as (X, :n € N) converges, this can only happen for finitely
many n. Hence the location of the leftmost particle in the IBRW diverges to +oo
almost surely. This implies that the INT dies out almost surely.

Conversely, we assume that Z is nonempty and fix o € Z. The Krein—Rutman
theorem gives the existence of an eigenvector of the dual operator, which is a
positive, finite measure v on the type space S such that [v(¢)v(dr) = 1 and, for
all continuous, bounded f:S — R,

/ Aa f(OV(dD) = p(Ag) / FOvn.

Because A, is a strongly positive operator, the Krein—Rutman theorem implies
that there exists Ao < p(Agy) such that [A] < Ag forall A € 0 (Ay) \ {0 (Ay)}, Wwhere
0 (Ay) denotes the spectrum of the operator. Hence p(Ay) is separated from the
rest of the spectrum and by Theorem 1V.3.16 in [11] this holds for all parameters
in a small neighborhood of «. Hence, arguing as in Note 3 on Chapter II in [11],
pages 568 and 569, the mapping o — p(Ay) is differentiable and its derivative
equals

, d 9
24) o (A0 i= - f Aqu(n)v(dr) = / = Agv(tyv(dn),

where the second equality can be inferred from the minimax characterisation of
eigenvalues; see, for example, Theorem 1 in [16]. Given t € S we define a martin-
gale by

W = p(Ae)” ”// ) e~ Y™ (dt dx)

and argue as in Theorem 1 of [14] that it converges almost surely to a strictly
positive limit W if

/
o (Aa) >0 and supE[WP1ogwW] < 00
p(Aa) e
Let us assume for the moment that the second condition holds true for all « € 7.
Then, if « is such that the limit W; exists and is positive, it also exists for the
offspring of any particle of type t in position x, and we denote it by W;(x). By
decomposing the population in the mth generation according to their ancestor in
the nth generation, and then letting m — oo, we get

(25  logp(Aa) —

We = p(Ag) ™" / v e W () Y™ (dt dx).
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Denoting by P; the law of the IBRW started with a particle at the origin of type t,
we now look at the IBRW under the changed measure

dQ= / v(dt)v(t) Wy dP;.
Given a sample IBRW we build a measure p on the set of all infinite sequences

((x0,70), (x1,11), ...,

where x; is the location and #; the type of a particle in the jth generation, which
is a child of a particle in position x;_1 of type #;_1, for all j > 1. This measure is
determined by the requirement that, for any permissible sequence

M{((}’O» SO)’ ()’1, Sl), .. ) Yo = X0, S0 = ,..., Yn = Xn,Sp = tn}
o —n v(ty) _ _ th (xn)
= p(Aw) V(i) exp{—a(x, — xo)} Wzo (x0) .

Looking unconditionally at the random sequence of particle types thus gener-
ated, we note that it is a stationary Markov chain on S with invariant distribution
v(t)v(dt) and transition kernel given by
qv@) [
v(f0) Jo
v(r)
v(1o)
Using first Birkhoff’s ergodic theorem and then (24) we see that, Q-almost surely,
pn-almost every path has speed

Py () = p(Aa)™ e” M am (),

Py, (dt) = p(Ay) ™! e dM(t)  fort > 0.

lim = p(; ) / IE[ f vV (ar dx)xe—“xﬁ}v(m)u(dzo)

n—oo n U(IO)
13 A
= ot ] e oG V@)
A d
oAy da log p(Aq).

Suppose that g € 7 is such that
P(Agy) =minp(Ag) > 1.
ael

From Lemma 3.2 we can infer that there exists a > o such that the first condition
in (25) holds and

d
——logp(Ay) <O.
da

This implies that, Q-almost surely, there exists an ancestral line of particles di-
verging to —oo. For the IBRW started with a particle at the origin of type ¢, we
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therefore have a positive probability that an ancestral line goes to —oo. This im-
plies that the INT has a positive probability of survival.

To ensure that the second condition in (25) holds, we can use a cut-off procedure
and replace the offspring distribution ¥ (") (dt dx) by one that takes only the first N
children to the right and left into account. It is easy to see that, for fixed 0 < o < 1
and sufficiently large N, we can ensure that the modified operator A((),N) is close to
the original one in the operator norm, and as large as we wish if the original oper-
ator is ill defined. Hence the continuity of the spectral radius in the operator norm
ensures that limy_, o ,o(AéN)) = p(Agy), with the spectral radius of an ill-defined
operator being infinity. Using Lemma 3.2 and the fact that a sequence of convex
functions, which converges pointwise, converges uniformly on every closed set, we
can choose N so that for all 0 < o < 1 the modified operators satisfy p(At(xN)) > 1,
while the cut-off ensures that the second criterion in (25) automatically holds. The
argument above can now be applied and yields the existence of an ancestral line
of particles diverging to —oo, which then automatically also exists in the original
IBRW. O

Our proofs, in particular the crucial sprinkling technique, rely on the following
continuity property of the survival probability p(f) of the INT for the attachment
rule f.

LEMMA 3.4. One has

gigp(f —¢&)=p(f).

PROOF. We only need to consider the case where p(f) > 0, as otherwise both
sides of the equation are zero. We denote by p(«, f) the spectral radius of the
operator A, formed with respect to the attachment function f, setting it equal to
infinity if the operator is ill defined. The assumption p(f) > 0 implies, by Lem-
ma 3.3, that for all 0 < o < 1 we have p(«, f) > 1. As the operator norm ||Ay||
for the operator formed with respect to the attachment function f — ¢ depends
continuously on ¢ > 0, we can use the continuous dependence of the spectral radius
on the operator norm to obtain, for fixed «,

lsiﬁ}p(“’ f =& =p,f).

As a sequence of convex functions, which converges pointwise, converges uni-
formly on every closed set, we find ¢ > O such that p(c, f — ¢) > 1 for all
0 < a < 1. Thus, using again Lemma 3.3, we have p(f —¢) > 0.

Now we look at the IBRW started with one particle of type £ in position ¢,
constructed using the attachment rule f — ¢, such that any particle with position
> 0 is killed along with its offspring. We denote by E (e, ) the event this process
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survives forever, and by V (e, t, k) the event that a particle reaches a site < «. Then
we have
lim infP(E(e,t)) =1.
1<k

K—>—00

For fixed k <0 and 0 < & < g9 we have

P(E(e, 1)) > P(V (e, t,k))P(E(g0, k)) kad P(V (0,1, «))P(E (g0, k)).

Note that the first probability on the right is greater or equal to p(f) and that the
second probability tends to one, as « tends to —oco. [

4. The giant component. This section provides two crucial tools: a tool to
obtain global results from our local approximations of neighborhoods given by
the “sprinkling” argument in Proposition 4.1, and an a priori lower bound on the
size of the connected components of the oldest vertices in the system given in
Lemma 4.2. We follow the convention that a sequence of events depending on the
index N holds with high probability if the probability of these events goes to one
as N 1 oo.

_ PROPOSITION 4.1 (Sprinkling argument). Let ¢ € (0, (0)), « > 0, and
f(k) = f(k) — e for integers k > 0. Suppose that (cN)nNeN Is a sequence of in-
tegers with

i 1 ) clzv
lim | —kecy —logN|=00 and lim — =0,
Ntool 2 N—o00
and that, for the preferential attachment graphs (Gy) Nen with attachment rule f,
we have

N
Z 1{|Cn(v)| = 2¢n} > kN with high probability,

v=1

where Cn (v) denotes the connected component of the vertex v in Gn. Then there
exists a coupling of the graph sequences (GnN)NeN With (g_ N)NeN such that Q_N <
Gy and all connected components of Gy with at least 2cy vertices belong to one
connected component in Gy with at least k N vertices, with high probability.

PROOF. Note that we can couple Gy and an independent Erdés—Rényi graph
QEJR with edge probability ¢ /N with Gy such that

(26) Gy <Gn VG <Gy.

Here, Gy V QE,R denotes the graph in which all edges are open that are open in
at least one of the two graphs, and G’ < G” means that all edges that are open
in G’ are also open in G”. We denote by V}, the vertices in Gy that belong to
components of size at least 2cy and write V,(, as the disjoint union C{ U --- U Cyy,
where Cy, ..., Cys are sets of vertices such that:
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° |Cj| € [CN,ZCN] and
e C; belongs to one component in Gy, foreach j=1,..., M.

Recall (26), and note that given Q_N and the sets Cy, ..., Cy, the Erd6s—Rényi
graph QE,R connects two distinct sets C; and C; with probability at least

2
AN €
PN = 1-— (1 — N) = 1— e_(g/N)CIZV ~ NCIZV

By identifying the individual sets as one vertex and interpreting the QE,R—
connections as edges, we obtain a new random graph. Certainly, this dominates
an Erd6s—Rényi graph with M vertices and success probability py, which has
edge intensity M py. By assumption, %% < M < N with high probability. Hence
M — oo and Mpy —log M — oo in probability as N 1 co. By [18], Theorem 5.6,
the new Erd6s—Rényi graph is connected with high probability. Hence, all vertices
of V}, belong to one connected component in Gy, with high probability. [J

We need an “a priori” argument asserting that the connected components of the
old vertices are large with high probability. This will, in particular, ensure that the
connected component of any vertex connected to an old vertex is large.

LEMMA 4.2 (A priori estimate). Let (cy)neN and (ny)neN be sequences of
positive integers such that

. CN . logny
lim —— =0 and lim =0.
N—oo log N loglog N N—oo log N
Denote by Cn (v) C Gy the connected component containing v € {1, ..., N}. Then

P#Cy (v) < cn foranyve(l,...,ny}) — 0.

PROOF. We only need to show this for the case when f is constant, say equal
to B > 0, as all other cases stochastically dominate this one. Note that in this case
all edge probabilities are independent. We first fix a vertex v € {1,...,ny} and
denote by X| = X1 (v) the number of its direct neighbours in (ny, N/log N]. We
obtain, for any A > 0,

IN/log N]—1

Fe X1 = l_[ (é_e_}‘ + (1 — é)),
j=ny J J
and hence, for sufficiently large N,
x N \_N/logNJ—l1 3 N
logEe ™! < —B(1 —e™ —-<——B(0—e")logN.
ogEe _ﬁ(e)Zj_4ﬁ(e)0g

J=nn
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By the exponential Chebyshev inequality we thus get for sufficiently large N,
27 P( X, < glog N) < NGB < B/

choosing A = % and using that 1 —e™ > x — %xz for x > 0 in the last step. Now
let Xo = X, (v) be the number of direct neighbors in (N/log N, N] of any of the
X1(v) vertices who are direct neighbors of v in (ny, N/log N]. Since by assump-
tion f (k) = B for all k, we obtain, for any A > 0,

Ele *21X,] = N]:[1 (1+(e—1—1)(1—(1—é)X1)>

j=LN/logN| J

and hence, for sufficiently large N, on the event {X| > g log N},

—AX —A 313 = 1
logEle ™2 X 1< —(1—e ™)X > =
4 jonlogny

2
<—(1- e_k)%logNloglogN.

By (27) and the exponential Chebyshev inequality (with A = 1) we thus get for
sufficiently large N,

P(X2(v) <cn) < IP’<X1 < glogN) —I—}P’(Xz(v) < CN‘Xl > glogN)
< NP2 N—(/Sz/S)loglogN—i-cN/logN‘

Let A = % By our assumptions on (cy)nyen and (ny)nen the sum of the right-
hand sides over all v € {1, ..., ny} goes to zero, ensuring that #Cy (v) > X (v) >
cy forall v e {1, ..., ny} with high probability. [

5. The exploration process. Our aim is to “couple” certain aspects of the
network to an easier object, namely a random tree. To each of these objects we
associate a dynamic process called the exploration process. In general, an explo-
ration process of a graph successively collects information about the connected
component of a fixed vertex by following edges emanating from already discov-
ered vertices in a well-defined order, so that at each instance the explored part of
the graph is a connected subgraph of the cluster. We show that the exploration
processes of the network and the labeled tree can be defined on the same proba-
bility space in such a way that up to a stopping time, which is typically large, the
explored part of the network and the tree coincide.
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5.1. A random labeled tree. We now describe a tree T(w) which informally
describes the neighborhood of a vertex w € Gy . Any vertex in the tree is labeled by
two parameters: its location, an element of {1, ..., N}, and its fype, an element of
{£yU{l,..., N}. The root is given as a vertex with location w and type £. A vertex
v with location i and type £ produces independently descendants in the locations
1,...,i —1 (i.e., to its left) of type i with probability

P(v has a descendant in j of type i) = P(AZ[j,i — 1] =1).

Moreover, independently it produces descendants to its right, which are all of
type £, in such a way that the cumulative sum of these descendants is distributed
according to the law of (Z[i, j]:i + 1 < j <n). A vertex v of type k produces
descendants to the left in the same way as a vertex of type ¢, and independently it
produces descendants to the right, which are all of type £, in such a way that the
cumulative sum of these descendants is distributed as (Z[i, j] — L[k, 00)(j) :i +1 <
Jj <n) conditioned on AZ[i,k — 1] =1.

Observe that, given the tree and the locations of the vertices, we may reconstruct
the types of the vertices in a deterministic way: any vertex whose parent is located
to its left has the type ¢, otherwise the type of the vertex is the location of the
parent.

The link between this labeled tree and our network is given in the following
proposition, which will be proved in Section 5.