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RANDOM NETWORKS WITH SUBLINEAR PREFERENTIAL
ATTACHMENT: THE GIANT COMPONENT

BY STEFFEN DEREICH AND PETER MÖRTERS1

Universität Münster and University of Bath

We study a dynamical random network model in which at every con-
struction step a new vertex is introduced and attached to every existing vertex
independently with a probability proportional to a concave function f of its
current degree. We give a criterion for the existence of a giant component,
which is both necessary and sufficient, and which becomes explicit when f

is linear. Otherwise it allows the derivation of explicit necessary and suffi-
cient conditions, which are often fairly close. We give an explicit criterion
to decide whether the giant component is robust under random removal of
edges. We also determine asymptotically the size of the giant component and
the empirical distribution of component sizes in terms of the survival proba-
bility and size distribution of a multitype branching random walk associated
with f .

1. Introduction.

1.1. Motivation and background. Since the publication of the highly influen-
tial paper of Barabási and Albert [1] the preferential attachment paradigm has cap-
tured the imagination of scientists across the disciplines and has led to a host of,
from a mathematical point of view mostly nonrigorous, research. The underlying
idea is that the topological structure of large networks, such as the World-Wide-
Web, social interaction or citation networks, can be explained by the principle that
these networks are built dynamically, and new vertices prefer to be attached to
vertices which have already a high degree in the existing network.

Barabási and Albert [1] and their followers argue that, by building a network in
which every new vertex is attached to a number of old vertices with a probability
proportional to a linear function of the current degree, we obtain networks whose
degree distribution follows a power law. This degree distribution is consistent with
that observed in large real networks, but quite different from the one encountered in
the Erdős–Rényi model, on which most of the mathematical literature was focused
by this date. Soon after that, Krapivsky and Redner [13] suggested to look at more
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general models, in which the probability of attaching a new vertex to a current one
could be an arbitrary function f of its degree, called the attachment rule.

In this paper we investigate the properties of preferential attachment networks
with general concave attachment rules. There are at least two good reasons to do
this: on the one hand it turns out that global features of the network can depend in
a very subtle fashion on the function f , and only the possibility to vary this param-
eter gives sufficient leeway for statistical modeling and allows a critical analysis of
the robustness of the results. On the other hand we are interested in the transitions
between different qualitative behaviors as we pass from absence of preferential
attachment, the case of constant attachment rules f , effectively corresponding to
a variant of the Erdős–Rényi model, to strong forms of preferential attachment as
given by linear attachment rules f . In a previous paper [8] we have studied degree
distributions for such a model. We found the exact asymptotic degree distributions,
which constitute the crucial tool for comparison with other models. The main re-
sult of [8] showed the emergence of a perpetual hub, a vertex which from some
time on remains the vertex of maximal degree, when the tail of f is sufficiently
heavy to ensure convergence of the series

∑
1/f (n)2. In the present paper, which

is independent of [8], we look at the global connectivity features of the network
and ask for the emergence of a giant component, that is, a connected component
comprising a positive fraction of all vertices present.

Our first main result gives a necessary and sufficient criterion for the existence
of a giant component in terms of the spectral radii of a family of compact linear
operators associated with f ; see Theorem 1.1. An analysis of this result shows that
a giant component can exist for two separate reasons: either the tail of f at infin-
ity is sufficiently heavy so that due to the strength of the preferential attachment
mechanism the topology of the network enforces existence of a giant component,
or the bulk of f is sufficiently large to ensure that the edge density of the network
is high enough to connect a positive proportion of vertices. We show that in the for-
mer case the giant component is robust under random deletion of edges, whereas
it is not in the latter case. In Theorem 1.6 we characterize the robust networks by
a completely explicit criterion.

The general approach to studying the connectivity structure in our model is
to analyze a process that systematically explores the neighborhood of a vertex in
the network. Locally this neighborhood looks approximately like a tree, which
is constructed using a spatial branching process. The properties of this random
tree determine the connectivity structure. We show that the asymptotic size of the
giant component is determined by the survival probability (see Theorem 1.8), and
the proportion of components with a given size is given by the distribution of the
total number of vertices in this tree; see Theorem 1.9. It should be mentioned that
although the tree approximation holds only locally it is sufficiently powerful to
give global results through a technique called sprinkling.

This approach as such is not new; for example, it has been carried out for the
class of inhomogeneous random graphs by Bollobás, Janson and Riordan in the



PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 331

seminal paper [5]. What is new here is that the approach is carried forward very
substantially to treat the much more complex situation of a preferential attachment
model with a wide range of attachment functions including nonlinear ones. The
increased complexity originates in the first instance from the fact that the presence
of two potential edges in our model is not independent if these have the same left
end vertex. This is reflected in the fact that in the spatial branching process un-
derlying the construction, the offspring distributions are not given by a Poisson
process. Additionally, due to the nonlinearity of the attachment function, informa-
tion about parent vertices has to be retained in the form of a type chosen from an
infinite-type space. Hence, rather than being a relatively simple Galton–Watson
tree, the analysis of our neighborhoods has to be built on an approximation by a
multitype branching random walk, which involves an infinite number of offspring
and an uncountable type space. In the light of this it is rather surprising that we
are able to get very fine explicit results, even in the fully nonlinear case, in par-
ticular the explicit characterisation of robustness; see Theorem 1.6. Moreover, in
the nonlinear case the abstract criterion for the existence of a giant component can
be approximated and allows explicit necessary or sufficient estimates, which are
typically rather close; see Proposition 1.10.

Although our results focus on the much harder case of nonlinear attachment
rules, they are also new in the case of linear attachment rules f and so represent
very significant progress on several fronts of research. Indeed, while the criterion
for existence of a giant component is abstract for a general attachment function,
it becomes completely explicit if this function is linear; see Proposition 1.3. Simi-
larly our formula for the percolation threshold becomes explicit in the linear case,
and our result also includes behavior at criticality; see Remark 1.7. Fine results like
this are currently unavailable for the most studied variants of preferential attach-
ment models with linear attachment rules, in particular those reviewed by Dom-
mers et al. [9].

1.2. The model. We call a concave function f : {0,1,2, . . .} −→ (0,∞) with
f (0) ≤ 1 and

�f (k) := f (k + 1) − f (k) < 1 for all k ≥ 0

an attachment rule. With any attachment rule we associate the parameters γ + :=
maxk≥0 �f (k) and γ − := mink≥0 �f (k), which satisfy 0 ≤ γ − ≤ γ + < 1. By
concavity the limit

γ := lim
n→∞

f (n)

n
exists and γ = γ −.(1)

Observe also that any attachment rule f is nondecreasing with f (k) ≤ k + 1 for
all k ≥ 0.

Given an attachment rule f , we define a growing sequence (GN)N∈N of random
networks by the following iterative scheme:
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• the network G1 consists of a single vertex (labeled 1) without edges;
• at each time N ≥ 1, given the network GN , we add a new vertex (labeled N +1);
• insert for each old vertex M a directed edge N + 1 → M with probability

f (indegree of M at time N)

N

to obtain the network GN+1.

The new edges are inserted independently for each old vertex. Note that our condi-
tions on f guarantee that in each evolution step the probability for adding an edge
is smaller or equal to 1. Edges in the random network GN are dependent if they
point toward the same vertex and independent otherwise. Formally we are dealing
with directed networks, but indeed, by construction, all edges are pointing from the
younger to the older vertex, so that the directions can trivially be recreated from
the undirected (labeled) graph. All the notions of connectedness, which we discuss
in this paper, are based on the undirected networks.

Our model differs from that studied in the majority of publications in one re-
spect: we do not add a fixed number of edges in every step but a random number,
corresponding formally to the outdegree of vertices in the directed network. It turns
out (see Theorem 1.1(b) in [8]) that this random number is asymptotically Poisson
distributed and therefore has very light tails. The formal universality class of our
model is therefore determined by its asymptotic indegree distribution which, by
Theorem 1.1(a) in [8], is given by the probability weights

μk = 1

1 + f (k)

k−1∏
l=0

f (l)

1 + f (l)
for k ∈ N ∪ {0}.

Note that these are power laws when f (k) is of order k (but f need not be linear).
More precisely, as k ↑ ∞,

f (k)

k
→ γ ∈ (0,1) 	⇒ −logμk

log k
→ 1 + 1

γ
,

so that the LCD-model of Bollobás et al. [6, 7] compares to the case γ = 1
2 .

1.3. Statement of the main results. Fix an attachment rule f , and define a pure
birth Markov process (Zt : t ≥ 0) started in zero with generator

Lg(k) = f (k)�g(k),

which means that the process leaves state k with rate f (k). Given a suitable 0 <

α < 1 we define a linear operator Aα on the Banach space C(S) of continuous,
bounded functions on S := {�}∪ [0,∞] with � being a (nonnumerical) symbol, by

Aαg(τ) :=
∫ ∞

0
g(t)eαt dM(t) +

∫ ∞
0

g(�)e−αt dMτ (t),
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where the increasing functions M, respectively, Mτ , are given by

M(t) =
∫ t

0
e−s

E[f (Zs)]ds, M�(t) = E[Zt ],
Mτ (t) = E[Zt |�Zτ = 1] − 1[τ,∞)(t) for τ ∈ [0,∞).

We shall see in Remark 2.6 that Mτ ≤ Mτ ′
for all τ ≥ τ ′ ≥ 0, and therefore M∞ =

limτ→∞ Mτ is well defined. We shall see in Lemma 3.1 that

Aα1(0) < ∞ ⇐⇒ Aα is a well-defined compact operator.

In particular, the set I of parameters where Aα is a well-defined (and therefore
also compact) linear operator is a (possibly empty) subinterval of (0,1).

Recall that we say that a giant component exists in the sequence of networks
(GN)N∈N if the proportion of vertices in the largest connected component CN ⊂ GN

converges, for N ↑ ∞, in probability to a positive number.

THEOREM 1.1 (Existence of a giant component). No giant component exists if
and only if there exists 0 < α < 1 such that Aα is a compact operator with spectral
radius ρ(Aα) ≤ 1.

EXAMPLE 1.2. A sufficient but unnecessary criterion for existence of a giant
component is that γ ≥ 1

2 , where γ is as defined in (1); see Remark 1.11 below for
the proof.

The most important example is the linear case f (k) = γ k + β . In this case the
family of operators Aα can be analyzed explicitly; see Section 1.4.2. We obtain the
following result.

PROPOSITION 1.3 (Existence of a giant component: linear case). If f (k) =
γ k + β for some 0 ≤ γ < 1 and 0 < β ≤ 1, then there exists a giant component if
and only if

γ ≥ 1

2
or β >

(1/2 − γ )2

1 − γ
.

This result corresponds to the following intuition: if the preferential attachment
is sufficiently strong (i.e., γ ≥ 1

2 ), then there exists a giant component in the net-
work for purely topological reasons and regardless of the edge density. However,
if the preferential attachment is weak (i.e., γ < 1

2 ) then a giant component exists
only if the edge density is sufficiently large.

EXAMPLE 1.4. If γ = 0, the model is a dynamical version of the Erdős–Rényi
model sometimes called Dubins’ model. Observe that in this case there is no pref-
erential attachment. The criterion for existence of a giant component is β > 1

4 ,
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a fact which is essentially known from work of Shepp [17]; see Bollobás, Janson
and Riordan [4, 5] for more details.

EXAMPLE 1.5. If γ = 1
2 the model is conjectured to be in the same universal-

ity class as the LCD-model of Bollobás et al. [6, 7]. In this case we obtain that a
giant component exists regardless of the value of β , that is, of the overall edge den-
sity. This is closely related to the robustness of the giant component under random
removal of edges, obtained in [6].

As the last example indicates, in some situations the giant component is robust
and survives a reduction in the edge density. To make this precise in a general
setup, we fix a parameter 0 < p < 1, remove every edge in the network indepen-
dently with probability 1 − p and call the resulting network the percolated net-
work. We say the giant component in a network is robust, if, for every 0 < p < 1,
the percolated network has a giant component.

THEOREM 1.6 (Percolation). Suppose f is an arbitrary attachment rule and
recall the definition of the parameter γ from (1). Then the giant component in the
preferential attachment network with attachment rule f is robust if and only if
γ ≥ 1

2 .

REMARK 1.7. The criterion γ ≥ 1
2 is equivalent to the fact that the size biased

indegree distribution, with weights proportional to kμk , has infinite first moment.
Precise criteria for the existence of a giant component in the percolated network
can be given in terms of the operators (Aα :α ∈ I):

(i) The giant component in the network is robust if and only if I = ∅. Other-
wise the percolated network has a giant component if and only if

p >
1

minα∈I ρ(Aα)
.

(ii) In the linear case f (k) = γ k + β , for γ > 0, the network is robust if and
only if γ ≥ 1

2 . Otherwise, the percolated network has a giant component if and
only if

p >

(
1

2γ
− 1

)(√
1 + γ

β
− 1

)
.(2)

Observe that running percolation with retention parameter p on the network GN

with attachment rule f leads to a network which stochastically dominates the net-
work with attachment rule pf . Only if f is constant, say f (k) = β , these random
networks coincide, and the obvious criterion for existence of a giant component
in this case is p > 1

4β
. This is in line with the formal criterion obtained by letting

γ ↓ 0 in (2).
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FIG. 1. Offspring of an �-type particle in the branching random walk. A particle generates finitely
many offspring to its left, but infinitely many offspring to its right.

We now define a multitype branching random walk, which represents an ideal-
ization of the exploration of the neighborhood of a vertex in the infinite network
G∞ and which is at the heart of our results on the sizes of connected components
in the network. A heuristic explanation of the approximation of the local neigh-
borhoods of typical points in the networks by this branching random walk will be
given at the beginning of Section 6.

In the multitype branching random walk particles have positions on the real line
and types in the space S .2 The initial particle is of type � with arbitrary starting
position. Recall the definition of the pure birth Markov process (Zt : t ≥ 0). For
τ ≥ 0, let (Z

[τ ]
t : t ≥ 0) be the same process conditioned to have a birth at time τ .

Each particle of type � in position x generates offspring:

• to its right of type � with relative positions at the jumps of the process (Zt : t ≥
0);

• to its left with relative positions distributed according to the Poisson point pro-
cess 	 on (−∞,0] with intensity measure

et
E[f (Z−t )]dt,

and type being the distance to the parent particle.

Each particle of type τ ≥ 0 in position x generates offspring:

• to its left in the same manner as with a parent of type �;
• to its right of type � with relative positions at the jumps of (Z

[τ ]
t −1[τ,∞)(t) : t ≥

0).

This branching random walk with infinitely many particles is called the ideal-
ized branching random walk (IBRW); see also Figures 1 and 2 for an illustration of

2Although the distinction of type and space appears arbitrary at this point, it turns out that the
resulting structure of a branching random walk with a compact typespace, rather than a multitype
branching process with noncompact typespace, is essential for the analysis.
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FIG. 2. Offspring of a particle of type τ ∈ [0,∞) in the branching random walk. Offspring to the
right have type �, offspring to the left have type given by the distance to the parent.

the branching mechanism. Note that the functions M featuring in the definition of
our operators Aα are derived from the IBRW: M(t) is the expected number of par-
ticles within distance t to the left of any given particle, and Mτ (t) is the expected
number of particles within distance t to the right of a given particle of type τ .

Equally important to us is the process representing an idealization of the explo-
ration of the neighborhood of a typical vertex in a large but finite network. This
is the killed branching random walk obtained from the IBRW by removing all
particles which have a position x > 0 together with their entire descendancy tree.
Starting this process with one particle in position x0 < 0 (the root), where −x0 is
standard exponentially distributed, we obtain a random rooted tree called the ide-
alized neighborhood tree (INT) and denoted by T. The genealogical structure of
the tree approximates the relative neighborhood of a typical vertex in a large but
finite network. We denote by #T the total number of vertices in the INT and say
that the INT survives if this number is infinite.

The rooted tree T is the weak local limit in the sense of Benjamini and
Schramm [2] of the sequence of graphs in our preferential attachment model. An
interesting result about weak local limits for a different variant of the preferen-
tial attachment network with a linear attachment function, including the LCD-
model, was recently obtained by Berger et al. [3]. In the present paper we shall not
make the abstract notion of weak local limit explicit in our context. Instead, we
go much further and give some fine results based on our neighborhood approxima-
tion, which cannot be obtained from weak limit theorems alone. The following two
theorems show that the INT determines the connectivity structure of the networks
in a strong sense.

THEOREM 1.8 (Size of the giant component). Let f be an attachment rule,
and denote by p(f ) the survival probability of the INT. We denote by C(1)

N and C(2)
N
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FIG. 3. Simulation of the proportion of vertices in the giant component in the linear case. The curve
forming the lower envelope is determined explicitly in Proposition 1.3. The plot is based on 15,000
Monte Carlo simulations of the branching process for 80 times 80 gridpoints in the (β, γ )-plane.

the largest and second largest connected component of GN . Then

#C(1)
N

N
→ p(f ) and

#C(2)
N

N
→ 0 in probability.

In particular, there exists a giant component if and only if p(f ) > 0.

The results of a Monte Carlo simulation for the computation of p(f ) for lin-
ear f can be found in Figure 3. The final theorem shows the cluster size distri-
bution in the case that no giant component exists. In this case typical connected
components, or clusters, are of finite size.

THEOREM 1.9 (Empirical distribution of component sizes). Let f be an at-
tachment rule, and denote by CN(v) the connected component containing the ver-
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tex v ∈ GN . Then, for every k ∈ N,

1

N

N∑
v=1

1{#CN(v) = k} −→ P(#T = k) in probability.

1.4. Examples.

1.4.1. Explicit criteria for general attachment rules. The necessary and suffi-
cient criterion for the existence of a giant component given in terms of the spectral
radius of a compact operator on an infinite-dimensional space appears unwieldy.
However, a small modification gives upper and lower bounds, which allow very
explicit necessary or sufficient criteria that are close in many cases; see Figure 4.

PROPOSITION 1.10. Suppose f is an arbitrary attachment rule, and let

a[f ] :=
∞∑

k=0

k∏
j=0

f (j)

1/2 + f (j)

and

c[f ] :=
∞∑

k=0

k∏
j=0

f (j + 1)

1/2 + f (j + 1)
≥ a[f ].

(i) If a[f ] > 1
2 , then there exists a giant component.

FIG. 4. For the attachment function f (k) = γ
√

k + β the figure shows the curves a[f ] = 1
2 and

a[f ]+√
a[f ]c[f ] = 1, which form lower and upper bound for the boundary between the two phases,

nonexistence and existence of the giant component, in the (β, γ )-plane.



PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 339

(ii) If 1
2(a[f ] + √

a[f ]c[f ]) ≤ 1
2 , then there exists no giant component.

REMARK 1.11.

• The term 1
2(a[f ] + √

a[f ]c[f ]) differs from a[f ] by no more than a factor of

1

2

(
1 +

√
1/2 + f (0)

f (0)

)
.

• a[f ] converges if and only if γ < 1
2 . Hence a giant component exists if γ ≥

1
2 , as announced in Example 1.2. Otherwise there exists ε > 0 depending on
f (1), f (2), . . . such that no giant component exists if f (0) < ε.

PROOF OF PROPOSITION 1.10. (i) For a lower bound on the spectral radius
we recall that Mτ ≥ M�, and therefore we may replace Mτ in the definition of Aα

by M�. Then Aαg(τ) no longer depends on the value of τ ∈ [0,∞] but only on the
fact whether τ = � or otherwise. Hence the operator collapses to become a 2 × 2
matrix of the form

A =
(

a(α) a(1 − α)

a(α) a(1 − α)

)
with

a(α) =
∫ ∞

0
e−αt

Ef (Zt) dt.

Recalling that (Zt : t ≥ 0) is a pure birth process with jump rate in state k given
by f (k), we can simplify this expression, using Tk as the entry time into state k,
as follows: ∫ ∞

0
e−αt

Ef (Zt) dt = E

∞∑
k=0

f (k)

∫ Tk+1

Tk

e−αt dt

=
∞∑

k=0

f (k)
1

α
[Ee−αTk − Ee−αTk+1].

Recalling that Tk is the sum of independent exponential random variables with
parameter f (j), j = 0, . . . , k − 1, we obtain

Ee−αTk =
k−1∏
j=0

f (j)

f (j) + α

and hence

a(α) =
∞∑

k=0

k∏
j=0

f (j)

f (j) + α
.
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Now note that ρ(A) = a(α) + a(1 − α) and since a is convex this is minimal
for α = 1

2 , whence ρ(A) ≥ 2a(1
2 ) = 2a[f ]. This shows that the given criterion is

sufficient for the existence of a giant component.
(ii) For an upper bound on the spectral radius, we use Lemma 2.5 to see that

Mτ ≤ M0, and therefore we may replace Mτ in the definition of Aα by M0, again
reducing the operator Aα to a 2 × 2 matrix which now has the form

A =
(

a(α) a(1 − α)

c(α) a(1 − α)

)
with a(α) as before and

c(α) =
∫ ∞

0
e−αt

E
1[f (Zt)]dt,

where E
1 is the expectation with respect to the Markov process (Zt : t ≥ 0) started

with Z0 = 1. As before we obtain

c(α) = E
1
[ ∞∑
k=1

f (k)

∫ Tk+1

Tk

e−αt dt

]
=

∞∑
k=1

f (k)
1

α

[
E

1[e−αTk ] − E
1[e−αTk+1]]

=
∞∑

k=1

f (k)
1

α

[
k∏

j=2

f (j − 1)

f (j − 1) + α
−

k+1∏
j=2

f (j − 1)

f (j − 1) + α

]

=
∞∑

k=0

k∏
j=0

f (j + 1)

f (j + 1) + α
.

Choosing α = 1
2 , we get ρ(A) = a[f ]+√

a[f ]c[f ], which finishes the proof. �

1.4.2. The case of linear attachment rules. We show how in the linear case
f (k) = γ k + β the operators (Aα :α ∈ I) can be analyzed explicitly and allow to
infer Proposition 1.3 from Theorem 1.1. We write P

k and E
k for probability and

expectation with respect to the Markov process (Zt : t ≥ 0) started with Z0 = k.

LEMMA 1.12. For f (k) = γ k + β we have, for all k ≥ 0,

E
k[f (Zt)] = f (k)eγ t , E

k[f (Zt)
2] = (

f (k)2 + f (k)γ
)
e2γ t − f (k)γ eγ t

and therefore

dM(t) = βe(γ−1)t dt, dM�(t) = βeγ t dt, dMτ (t) = (β + γ )eγ t dt

for τ ∈ [0,∞].
PROOF. Recall the definition of the generator L of (Zt : t ≥ 0). The process

(Xt : t ≥ 0) given by

Xt = f (Zt) −
∫ t

0
Lf (Zs) ds = f (Zt) − γ

∫ t

0
f (Zs) ds
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is a local martingale. Let (τn)n∈N be a localizing sequence of stopping times, and
note that

E
k[f (Zt)] = lim

n→∞E
kf (Zt∧τn) = f (k) + γ lim

n→∞ E
k
∫ t∧τn

0
f (Zs) ds

= f (k) + γ

∫ t

0
E

k[f (Zs)]ds.

We obtain the unique solution E
k[f (Zt)] = f (k)eγ t . The analogous approach with

f replaced by f 2 gives

E
k[f 2(Zt )] = γ 2

∫ t

0
E

kf (Zs) ds + 2γ

∫ t

0
E

k[f 2(Zs)]ds + f (k)2

= f (k)γ (eγ t − 1) + 2γ

∫ t

0
E

k[f 2(Zs)]ds + f (k)2,

and we obtain the unique solution

E[f 2(Zt )] = (
f (k)2 + f (k)γ

)
e2γ t − f (k)γ eγ t .

The results for M and M� follow directly from these formulas. To characterize Mτ

for τ ∈ [0,∞), we observe that, for t ≥ τ ,

E[f (Zt)|�Zτ = 1] =
∞∑

k=0

P(Zτ = k)
f (k)

Ef (Zτ )
E

k+1[f (Zt−τ )]

= eγ (t−2τ)

β

∞∑
k=0

P(Zτ = k)f (k)f (k + 1)

= eγ (t−2τ)

β

(
Ef 2(Zτ ) + γ Ef (Zτ )

)

= eγ (t−2τ)

β
(β2 + βγ )e2γ τ = (γ + β)eγ t

and, for t < τ ,

E[f (Zt)|�Zτ = 1] =
∞∑

k=0

P(Zt = k)f (k)
E

k[f (Zτ−t )]
Ef (Zτ )

=
∞∑

k=0

P(Zt = k)f (k)
f (k)

f (0)
e−γ t = e−γ t

β
E[f 2(Zt )]

= (γ + β)eγ t − γ.

From this we obtain

Mτ (t) = E
[
Z

[τ ]
t

]− 1[τ,∞)(t) =
(

β

γ
+ 1

)
eγ t − 1 − β

γ
,
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and, by differentiating, this implies dMτ (t) = (β + γ )eγ t dt . �

PROOF OF PROPOSITION 1.3. As Mτ depends only on whether τ = � or not,
the state space S can be collapsed into a space with just two points. The operator
Aα becomes a 2 × 2-matrix which, as we see from the formulas below, has finite
entries if and only if γ < α < 1 − γ . This implies that there exists a giant com-
ponent if γ ≥ 1

2 , as in this case the operator Aα is never well defined. Otherwise,
denoting the collapsed state of [0,∞) by the symbol r, the matrix equals

Aq,r
α = β

∫ ∞
0

e(γ+α−1)t dt = β

1 − γ − α
for q ∈ {r, �},

A�,�
α = β

∫ ∞
0

e(γ−α)t dt = β

α − γ
,

Ar,�
α = (β + γ )

∫ ∞
0

e(γ−α)t dt = β + γ

α − γ
.

Then ρ(Aα) is the (unique) positive solution of the quadratic equation

x2(1 − γ − α)(α − γ ) − x(β − 2βγ ) − βγ = 0.

This function is minimal when the factor in front of x2 is maximal, that is, when
α = 1

2 . We note that

ρ(A1/2) =
√

β2 + βγ + β

1/2 − γ
,

which indeed exceeds one if and only if

β >
(1/2 − γ )2

1 − γ
. �

1.5. Overview. The remainder of this paper is devoted to the proofs of the
main results. In Section 2 we discuss the process describing the indegree evolution
of a fixed vertex in the network and compare it to the process (Zt : t ≥ 0). The re-
sults of this section will be frequently referred to throughout the main parts of the
proof. Section 3 is devoted to the study of the idealized branching random walk
and explores its relation to the properties of the family of operators (Aα :α ∈ I).
The main result of this section is Lemma 3.3 which shows how survival of the
killed IBRW can be characterized in terms of these operators. Two important tools
in the proof of Theorem 1.1 are provided in Section 4, namely the sprinkling ar-
gument that enables us to make statements about the giant component from local
information (see Proposition 4.1) and Lemma 4.2 which ensures by means of a
soft argument that the oldest vertices are always in large connected components.

The core of the proof of all our theorems is provided in Sections 5 and 6. In
Section 5 we introduce the exploration process, which systematically explores the
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neighborhood of a given vertex in the network. We couple this process with an
analogous exploration on a random labeled tree and show that with probability
converging to one both find the same local structure; see Lemma 5.2. This random
labeled tree, introduced in Section 5.1, is still dependent on the network size N ,
but significantly easier to study than the exploration process itself. Section 6 uses
further coupling arguments to relate the random labeled tree of Section 5.1 for
large N with the idealized branching random walk. The main result of these core
sections is summarized in Proposition 6.1.

In Section 7 we use a coupling technique similar to that in Section 5 to produce
a variance estimate for the number of vertices in components of a given size; see
Proposition 7.1. Using the machinery provided in Sections 4 to 7 the proof of
Theorem 1.8 is completed in Section 8 and the proof of Theorem 1.9 is completed
in Section 9. Recall that Theorem 1.8 provides a criterion for the existence of a
giant component given in terms of the survival probability of the killed idealized
branching random walk. In Theorem 1.1 this criterion is formulated in terms of the
family of operators (Aα :α ∈ I), and the proof of this result therefore follows by
combining Theorem 1.8 with Lemma 3.3.

The proof of the percolation result, Theorem 1.6, requires only minor modifi-
cations of the arguments leading to Theorem 1.1 and is sketched in Section 10. In
a short Appendix we have collected some auxiliary coupling lemmas of general
nature, which are used in Section 6. Throughout the paper we use the convention
that the value of positive, finite constants c,C can change from line to line, but
more important constants carry an index corresponding to the lemma or formula
line in which they were introduced.

2. Properties of the degree evolution process. For m ≤ n, we denote by
Z[m,n] the indegree of vertex m at time n. Then, for each m ∈ N, the degree evo-
lution process (Z[m,n] :n ≥ m) is a time inhomogeneous Markov process with
transition probabilities in the time-step n → n + 1 given by

p
(n)
k,k+1 = f (k)

n
∧ 1 and p

(n)
k,k = 1 − p

(n)
k,k+1 for integers k ≥ 0.

Moreover, the evolutions (Z[m, ·] :m ∈ N) are independent. We suppose that under
P

k the evolution (Z[m,n] :n ≥ m) starts in Z[m,m] = k. We write

Pm,ng(k) = E
k[g(Z[m,n])] for any g : {0,1, . . .} → (0,∞).

We provide several preliminary results for the process (Z[m,n] :n ≥ m) and
its continuous-time analog (Zt : t ≥ 0) in this section. These form the basis for
the computations in the network. We start by analysing the pure birth process
(Zt : t ≥ 0) and its associated semigroup (Pt : t ≥ 0) in Section 2.1, and then give
the analogous results for the processes (Z[m,n] :n ≥ m) in Section 2.2. We then
compare the processes in Section 2.3.
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2.1. Properties of the pure birth process (Zt : t ≥ 0). We start with a simple
upper bound.

LEMMA 2.1. Suppose that f is an attachment rule. Then, for all s, t ≥ 0 and
integers k ≥ 0,

E
k[f (Zt)] ≤ f (k)eγ +t and Pt+sf (k) ≤ eγ +tPsf (k).

PROOF. Note that (Zt : t ≥ 0) is stochastically increasing in f . We can there-
fore obtain the result for fixed k ≥ 0 by using that f (n) ≤ f (k) + γ +(n − k) for
n ≥ k, and comparing with the linear model described in Lemma 1.12. �

We now look at the conditioned process (Z
[τ ]
t : t ≥ 0). The next two lemmas

allow a comparison of the processes (Z
[τ ]
t : t ≥ 0) for different values of τ .

LEMMA 2.2. For an attachment rule f , an integer k ≥ 0 and t ≥ 0, one has

Ptf (k + 1)

Ptf (k)
≤ f (k + 1)

f (k)

for all t ≥ 0. Moreover, if f is linear, then equality holds in the display above.

PROOF. In the following, we work under the measure P = P
k+1, and we sup-

pose that (Uj : j ≥ 0) is a sequence of independent random variables, uniformly
distributed in [0,1], that are independent of (Zt : t ≥ 0). We denote by T1, T2, . . .

the random jump times of (Zt : t ≥ 0) in increasing order, set T0 = 0, and consider
the process (Yt : t ≥ 0) starting in k that is constant on each interval [Tj , Tj+1) and
satisfies

YTj+1 = YTj
+ 1{Uj ≤ f (YTj

)/f (ZTj
)}.(3)

It is straightforward to verify that (Yt : t ≥ 0) has the same distribution as (Zt : t ≥
0) under P

k . By the concavity of f we conclude that

f (YTj
)

f (ZTj
)

≥ f (k) + (YTj
− k)(f (ZTj

) − f (k))/(ZTj
− k)

f (k) + (ZTj
− k)(f (ZTj

) − f (k))/(ZTj
− k)

and
f (ZTj

)−f (k)

ZTj
−k

≤ �f (k), so that

f (YTj
)

f (ZTj
)

≥ YTj
+ f (k)/�f (k) − k

ZTj
+ f (k)/�f (k) − k

.(4)

Next, we couple the processes (YTj
: j ≥ 0) and (ZTj

: j ≥ 0) with a Pólya urn
model. Initially the urn contains balls of two colors, blue balls of weight B0 =
ξ := f (k)/�f (k), and red balls of weight one. In each step a ball is picked with
probability proportional to its weight and a ball of the same color is inserted to the
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urn which increases its weight by one. Recalling that the total weight after j draws
is j + ξ + 1, it is straightforward to see that we can choose the weight of the blue
balls after j steps as

Bj+1 = Bj + 1
{
Uj ≤ Bj

j + ξ + 1

}
.

Now (3) and (4) imply that whenever we pick a blue ball in the j th step, the evo-
lution (Yt : t ≥ 0) increases by one at time Tj . Note that (Zt : t ≥ 0) is independent
of (Uj : j ≥ 0) so that

E[Yt |Zt = n + k + 1] − k ≥ E[Bn − B0] = ξ

1 + ξ
(n + ξ + 1) − ξ

= ξn

1 + ξ
= f (k)

f (k + 1)
n

and, by the concavity of f ,

E[f (Yt )|Zt = n + k + 1]
≥ f (k) + f (n + k + 1) − f (k + 1)

n
(E[Yt |Zt = n + k + 1] − k)(5)

≥ f (k) + (
f (n + k + 1) − f (k + 1)

) f (k)

f (k + 1)
= f (k)

f (n + k + 1)

f (k + 1)
,

so that
Ptf (k + 1)

Ptf (k)
= E[f (Zt)]

E[f (Yt )] ≤ f (k + 1)

f (k)
.

If f is linear, all inequalities above become equalities. �

Next, we show that the semigroup (Pt ) preserves concavity.

LEMMA 2.3. For every concave and monotonically increasing g and every
t ≥ 0, the function Ptg is concave and monotonically increasing.

PROOF. We use an urn coupling argument similar to the one of the proof of
Lemma 2.2. Fix k ≥ 0 and let (Y

(2)
t : t ≥ 0) be the pure birth process (Zt : t ≥ 0)

started in Z0 = k + 2. Denote T0 = 0 and let (Tj : j = 1,2, . . .) be the breakpoints
of the process in increasing order. Suppose (Uj : j ≥ 0) is a sequence of indepen-
dent random variables that are uniformly distributed on [0,1]. For i ∈ {0,1}, we
now denote by (Y

(i)
t : t ≥ 0) the step functions starting in k + i which have jumps

of size one precisely at those times Tj+1, j ≥ 0, where

Uj ≤
f (Y

(i)
Tj

)

f (Y
(2)
Tj

)
.
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By concavity of f we get

P
(
�Y

(1)
Tj+1

= 1|�Y
(0)
Tj+1

= 0
)=

f (Y
(1)
Tj

) − f (Y
(0)
Tj

)

f (Y
(2)
Tj

) − f (Y
(0)
Tj

)
≥

Y
(1)
Tj

− Y
(0)
Tj

Y
(2)
Tj

− Y
(0)
Tj

.(6)

Let (T̄j : j = 1,2, . . .) denote the elements of the possibly finite set {Tj : j ≥ 1,

�Y
(0)
Tj

= 0} in increasing order. We consider a Pólya urn model starting with one
blue and one red ball. We denote by Bn the number of blue balls after n steps. By
(6) we can couple the urn model with our indegree evolutions such that

�Bj ≤ �Y
(1)

T̄j
,

and such that the sequence (Bj )j∈N is independent of (Y
(2)
t : t ≥ 0) and (Y

(0)
t : t ≥

0). Let ḡ be the linear function on [l, l+2+m] with ḡ(l) = g(l) and ḡ(l+2+m) =
g(l + 2 + m). Then

E
[
g
(
Y

(1)
t

)|Y (0)
t = l, Y

(2)
t = l + 2 + m

]
≥ ḡ

(
E
[
Y

(1)
t |Y (0)

t = l, Y
(2)
t = l + 2 + m

])≥ ḡ(l − 1 + EB2+m)

= ḡ

(
l + 1 + m

2

)
= 1

2
[g(l) + g(l + 2 + m)].

Therefore,

Ptg(k+1) = E
[
g
(
Y

(1)
t

)]≥ 1
2

[
E
[
g
(
Y

(0)
t

)]+E
[
g
(
Y

(2)
t

)]]= 1
2 [Ptg(k)+Ptg(k+2)],

which implies the concavity of Ptg. �

The fact that the semigroup preserves concavity allows us to generalize Lem-
ma 2.2.

LEMMA 2.4. For an attachment rule f and integers k ≥ 0 and s, t ≥ 0, one
has

Pt+sf (k + 1)

Pt+sf (k)
≤ Psf (k + 1)

Psf (k)
.

PROOF. The statement follows by a slight modification of Lemma 2.2. We use
Z and Y as in the proof of the latter lemma and observe that by Lemma 2.3 the
function

g(k) := Psf (k)
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is concave and increasing. Similarly as in (5) we get

E[g(Yt )|Zt = n + k + 1]
≥ g(k) + g(n + k + 1) − g(k + 1)

n
(E[Yt |Zt = n + k + 1] − k)

≥ g(k) + (
g(n + k + 1) − g(k + 1)

) f (k)

f (k + 1)

≥ g(k) + (
g(n + k + 1) − g(k + 1)

) g(k)

g(k + 1)
= g(n + k + 1)

g(k)

g(k + 1)
.

The rest of the proof is in line with the proof of Lemma 2.2. �

LEMMA 2.5 (Stochastic domination). One can couple the process (Z
[τ ]
t : t ≥

0) with start in Z
[τ ]
0 = k and the process (Zt : t ≥ 0) with start in Z0 = k + 1 in

such a way that {
t > 0 :�Z

[τ ]
t = 1

}⊂ {t > 0 :�Zt = 1} ∪ {τ }.
In particular, this implies that Z

[τ ]
t +1{t < τ } ≤ Zt for all t ≥ 0. In the linear case

we have equality in both formulas.

PROOF. Suppose (Y
(2)
t : t ≥ 0) has the distribution of (Zt : t ≥ 0) with start

in Z0 = k + 1, let T0 = 0 and (Tj : j = 1,2, . . .) the times of discontinuities of

(Y
(2)
t : t ≥ 0) in increasing order. Denote by (Uj : j ≥ 0) a sequence of independent

random variables that are uniformly distributed on [0,1]. Now define (Y
(1)
t : t ≥ 0)

as the step function starting in k which increases by one: (i) at time Tj+1 < τ if

Uj ≤
f (Y

(1)
Tj

)

f (Y
(2)
Tj

)

Pτ−Tj+1f (Y
(1)
Tj

+ 1)

Pτ−Tj+1f (Y
(1)
Tj

)
,(7)

(ii) at time τ and (iii) at time Tj+1 > τ if

Uj ≤
f (Y

(1)
Tj∨τ )

f (Y
(2)
Tj

)
.(8)

Clearly, we have Y
(1)
t +1 ≤ Y

(2)
t for all t ∈ [0, τ ) and Y

(1)
t ≤ Y

(2)
t for general t ≥ 0.

Moreover, by Lemma 2.2, the right-hand sides of inequalities (7) and (8) are not
greater than one, and it is straightforward to verify that (Y

(1)
t : t ≥ 0) has the same

law as the process (Z
[τ ]
t : t ≥ 0) with start in Z

[τ ]
0 = k. �

REMARK 2.6. In analogy to above, one can use Lemma 2.4 to prove that two
evolutions Z[σ ] and Z[τ ] started in k with 0 < σ ≤ τ can be coupled such that{

t ≥ 0 :�Z[τ ] = 1
} \ {τ } ⊂ {

t ≥ 0 :�Z[σ ] = 1
} \ {σ }.
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2.2. Properties of the degree evolutions (Z[m,n] :n ≥ m). For the processes
(Z[m,n] :n ≥ m) we get an analogous version of Lemma 2.1.

LEMMA 2.7. For any attachment rule f , and all integers k ≥ 0 and 0 < m ≤
n,

E
k[f (Z[m,n])] ≤ f (k)

(
n

m

)γ +
.

PROOF. Note that (Yn :n ≥ m) with Yn := f (Z[m,n])∏n−1
i=m(1 + γ +

i
)−1 is a

supermartingale. Hence

E
k[f (Z[m,n])] ≤ f (k)

n−1∏
i=m

(
1 + γ +

i

)
≤ f (k)

(
n

m

)γ +
.

�

We also get the following analog of Lemma 2.2.

LEMMA 2.8. For an attachment rule f and integers k ≥ 0 and 0 < m ≤ n one
has

Pm,nf (k + 1)

Pm,nf (k)
≤ f (k + 1)

f (k)
.

If f is linear and f (k + 1 + l) ≤ m+ l for all l ∈ {0, . . . , n−m− 1}, then equality
holds.

PROOF. The statement follows by a slight modification of the proof of Lem-
ma 2.2. �

We now provide two lemmas on stochastic domination of the degree evolutions.

LEMMA 2.9 (Stochastic domination I). For any integers 0 < m ≤ n1 < · · · <

nj the process (Z[m,n] :n ≥ m) conditioned on the event �Z[m,ni] = 0 for all
i ∈ {1, . . . , j} is stochastically dominated by the unconditional process.

PROOF. First suppose that m < n1. For any k ≥ 0, we have

P
k(�Z[m,m] = 1|�Z[m,ni] = 0 ∀i ∈ {1, . . . , j})

= f (k)

m

P
k+1(�Z[m + 1, ni] = 0 ∀i)

Pk(�Z[m,ni] = 0 ∀i)
.

The denominator on the right is equal to

f (k)

m
P

k+1(�Z[m + 1, ni] = 0 ∀i) +
(

1 − f (k)

m

)
P

k(�Z[m + 1, ni] = 0 ∀i)

≥ P
k+1(�Z[m + 1, ni] = 0 ∀i),
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and hence we get

P
k(�Z[m,m] = 1|�Z[m,ni] = 0 ∀i ∈ {1, . . . , j})

(9)

≤ f (k)

m
= P

k(�Z[m,m] = 1),

which is certainly also true if m = n1. The result follows by induction. �

The next lemma is the analog of Lemma 2.5.

LEMMA 2.10 (Stochastic domination II). For integers 0 ≤ k < m < n there
exists a coupling of the process (Z[m, l] : l ≥ m) started in Z[m,m] = k and
conditioned on �Z[m,n] = 1 and the unconditional process (Z[m, l] : l ≥ m)

started in Z[m,m] = k + 1 such that for the coupled random evolutions, say
(Y (1)[l] : l ≥ m) and (Y (2)[l] : l ≥ m), one has

�Y (1)[l] ≤ �Y (2)[l] + 1{l = n},
and therefore in particular Y (1)[l] ≤ Y (2)[l] for all l ≥ m.

PROOF. Note that

P
k(�Z[m,m] = 1|�Z[m,n] = 1) = P

k(�Z[m,m] = 1,�Z[m,n] = 1)

Pk(�Z[m,n] = 1)

= (f (k)/m)Ek+1[f (Z[m + 1, n])](1/n)

Ek[f (Z[m,n])](1/n)

= f (k)

m

Pm+1,nf (k + 1)

Pm,nf (k)
.

By Lemma 2.8, we get

P
k(�Z[m,m] = 1|�Z[m,n] = 1) ≤ f (k)

m

Pm+1,nf (k + 1)

Pm+1,nf (k)
≤ f (k + 1)

m
.

Now the coupling of the processes can be established as in Lemma 2.5. �

LEMMA 2.11. For all m ≤ n ≤ n′ one has

P(�Z[m,n] = 1) ≥ P(�Z[m,n′] = 1).

PROOF. It suffices to prove the statement for n′ = n + 1 and n ≥ m arbitrary.
The statement follows immediately from

P(�Z[m,n] = 1) = 1

n
E[f (Z[m,n])] = 1

n

∞∑
k=0

P(Z[m,n] = k)f (k)
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and

P(�Z[m,n + 1] = 1)

= 1

n + 1

∞∑
k=0

P(Z[m,n] = k)

[
f (k)

n
f (k + 1) +

(
1 − f (k)

n

)
f (k)

]

= 1

n

∞∑
k=0

n + �f (k)

n + 1
f (k)P(Z[m,n] = k).

�

We finally look at degree evolutions (Z[m,n] :n ≥ m) conditioned on both the
existence and nonexistence of some edges. In this case we cannot prove stochastic
domination, and comparison requires a constant factor.

LEMMA 2.12. Suppose that (cN)N∈N, (nN)N∈N are sequences of integers

such that limN→∞ nN = ∞ and c2
Nn

γ +−1
N is bounded from above. Then there ex-

ists a constant C2.12 > 0, such that for all I0, I1 disjoint subsets of {nN, . . . ,N}
with #I0 ≤ cN and #I1 ≤ 1 and, for any m ∈ {1, . . . ,N} with n ≥ m, we have

P(�Z[m,n − 1] = 1|�Z[m, i] = 1 ∀i ∈ I1,�Z[m, i] = 0 ∀i ∈ I0)

≤ C2.12P(�Z[m,n − 1] = 1|�Z[m, i] = 1 ∀i ∈ I1).

PROOF. We have

P(�Z[m,n − 1] = 1|�Z[m, i] = 1 ∀i ∈ I1,�Z[m, i] = 0 ∀i ∈ I0)

≤ P(�Z[m,n − 1] = 1|�Z[m, i] = 1 ∀i ∈ I1)

P(�Z[m, i] = 0 ∀i ∈ I0|�Z[m, i] = 1 ∀i ∈ I1)
,

and it remains to bound the denominator from below by a positive constant.
Using Lemma 2.10 and denoting k = #I1 we obtain that

P(�Z[m, i] = 0 ∀i ∈ I0|�Z[m, i] = 1 ∀i ∈ I1)

≥ P
1(�Z[m, i] = 0 ∀i ∈ I0) ≥ ∏

j∈I0

P
1(�Z[m,j ] = 0)

= ∏
j∈I0

{
1 − E

1[f (Z[m,j ])]
j

}
.

By Lemma 2.7 the expectation is bounded from above by f (k)jγ +
and moreover

f (k) ≤ k + 1 ≤ 2cN for N large enough. Hence we get,

∏
j∈I0

{
1 − E

1[f (Z[m,j ])]
j

}
≥ ∏

j∈I0

{1 − 2cNjγ +−1} ≥ (1 − 2cNnN
γ +−1)cN

using that #I0 ≤ cN . As c2
NnN

γ +−1 is bounded from above, the expression on the
right is bounded from zero. This implies the statement. �
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2.3. Comparing the degree evolution and the pure birth process. The aim of
this section is to show that the processes (Z[m,n] :n ≥ m) and (Zt : t ≥ 0) are
intimately related. To this end, we set

tn :=
n−1∑
k=1

1

k
and �tn := tn+1 − tn = 1

n
.(10)

LEMMA 2.13. For fixed n ∈ N, one can couple the random variables Z�tn

and Z[n,n + 1] under P
k such that, almost surely,

P(Z�tn �= Z[n,n + 1]) ≤ (
f (k + 1)�tn

)2 and (k + 1) ∧ Z�tn ≤ Z[n,n + 1].
PROOF. Note that

P
k(Z�tn = k + 1) = f (k)�tne

−f (k)�tn
1

�tn

∫ �tn

0
e−�f (k)u du

≥ f (k)�tne
−f (k+1)�tn.

The same lower bound is valid for the probability P
k(Z[n,n + 1] = k + 1). More-

over,

P
k(Z�tn = k) = e−f (k)�tn ≥ (

1 − f (k)�tn
)∨ 0 = P

k(Z[n,n + 1] = k).

Hence, we can couple Z�tn and Z[n,n + 1] under P
k such that that they differ

with probability less than

1 − [
f (k)�tne

−f (k+1)�tn + 1 − f (k)�tn
]

(11)
= f (k)�tn

(
1 − e−f (k+1)�tn

)≤ (
f (k + 1)�tn

)2
,

and moreover we have (k + 1) ∧ Z�tn ≤ Z[n,n + 1]. �

PROPOSITION 2.14. There exist constants n0 ∈ N and C2.14 > 0 such that for
all integers n0 ≤ m ≤ n and 0 ≤ k < m,

|Pm,nf (k) − Ptn−tmf (k)| ≤ C2.14
f (k)

m
Pm,nf (k).

The proof of the proposition uses several preliminary results on the semigroups
(Pt : t ≥ 0) and (Pm,n :n ≥ m), which we derive first. For a stochastic domina-
tion argument we introduce a further time inhomogeneous Markov process. For
integers n, k ≥ 0, we suppose that

P̃
k(Z[n,n + 1] = k + 1) = 1 − P̃

k(Z[n,n + 1] = k)

=
(

f (k)

n
+ 1

2
f (k)�f (0)e�f (0) 1

n2

)
∧ 1.

The corresponding semigroup is denoted by (P̃m,n)m≤n.
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LEMMA 2.15. Assume that there exists n0 ∈ N such that, for all integers
n ≥ n0,

f (n)

n
+ 1

2
f (n)�f (0)e�f (0) 1

n2 ≤ 1.(12)

Then, for all integers n ≥ n0 and 0 ≤ k ≤ n, and an increasing concave
g : {0,1,2, . . .} → R,

P�tng(k) ≤ P̃n,n+1g(k).

PROOF. Consider f̄ (l) = f (k)+�f (k)(l − k). Note that by comparison with
the linear model

f (k) + �f (k)(Ek[Zt ] − k) = E
k[f̄ (Zt )] ≤ f (k)e�f (k)t .

Hence, for t ∈ [0,1], using that ex ≤ 1 + x + 1
2x2ex for x ≥ 0,

E
k[Zt ] − k ≤ f (k)

�f (k)

(
e�f (k)t − 1

)≤ f (k)t + 1

2
f (k)�f (k)e�f (k)t t2.

Therefore, E
k[Z�tn] ≤ Ẽ

k[Z[n,n + 1]] for all n ≥ n0. As g is increasing and con-
cave, and Z has only increments of size one, we get

E
k[g(Z�tn)] ≤ g(k) + (

g(k + 1) − g(k)
)
E

k[Z�tn − k]
≤ g(k) + (

g(k + 1) − g(k)
)
Ẽ

k[Z[n,n + 1] − k
]

= Ẽ
k[g(Z[n,n + 1])]

as required to complete the proof. �

LEMMA 2.16. There exists a constant C2.16 > 0, depending on f , such that
for all integers 0 ≤ k ≤ m and 0 < m ≤ n, we have

P̃m,nf (k) ≤ C2.16Pm,nf (k).

PROOF. For n,m ∈ N with n ≥ m let cm,n := ∏n−1
l=m(1 + κ

l2
) where κ :=

1
2(�f (0))2e�f (0). We prove by induction (over n − m) that for all 0 < m ≤ n

and 0 ≤ k ≤ m,

P̃m,nf (k) ≤ cm,nPm,nf (k).

Certainly the statement is true if n = m. Moreover, we have

P̃m,n+1f (k) = Pm,m+1P̃m+1,n+1f (k) + (P̃m,m+1 − Pm,m+1)P̃m+1,n+1f (k),

and applying the induction hypothesis we get

P̃m,n+1f (k) ≤ cm+1,n+1Pm,n+1f (k) + (P̃m,m+1 − Pm,m+1)P̃m+1,n+1f (k).
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Moreover, for a function g : {0,1,2, . . .} → R, we have

(P̃m,m+1 − Pm,m+1)g(k) ≤ 1

2
f (k)�f (0)e�f (0) 1

m2 �g(k).(13)

Note that the transition probabilities of the new inhomogeneous Markov process
have a particular product structure: for all integers a ≥ 1 and b ≥ 0, one has

P̃
b(Z[a, a + 1] = b + 1) = (

ψa · f (b)
)∧ 1 for ψa := 1

a
+ 1

2
�f (0)e�f (0) 1

a2 .

This structure allows one to literally translate the proof of Lemma 2.8 and to obtain

P̃a1,a2f (b2)

P̃a1,a2f (b1)
≤ f (b2)

f (b1)

for integers a1, a2 ≥ 1 and b1, b2 ≥ 0 with a1 ≤ a2 and b1 ≤ b2. Consequently,
using (13) and the induction hypothesis,

(P̃m,m+1 − Pm,m+1)P̃m+1,n+1f (k)

≤ 1

2
f (k)�f (0)e�f (0) 1

m2

�f (k)

f (k)
P̃m+1,n+1f (k)(14)

≤ κ

m2 P̃m+1,n+1f (k) ≤ κ

m2 cm+1,n+1Pm+1,n+1f (k).

Altogether, we get

P̃m,n+1f (k) ≤
(

1 + κ

m2

)
cm+1,n+1Pm,n+1f (k) = cm,n+1Pm,n+1f (k),

and the statement follows since all constants are uniformly bounded by
∏∞

l=1(1 +
κ
l2

) < ∞. �

PROOF OF PROPOSITION 2.14. We choose n0 as in Lemma 2.15, and let
k,m,n be integers with n0 ≤ m ≤ n and 0 ≤ k ≤ m. We represent E

k[f (Z[m,
n])] − E

k[f (Ztn−tm)] as the telescoping sum

Pm,nf (k) − Ptn−tmf (k) =
n−1∑
l=m

Pm,l(Pl,l+1 − Ptl+1−tl )Ptn−tl+1f (k)︸ ︷︷ ︸
=:�l

.(15)

In the following, we fix l ∈ {m, . . . , n−1} and analyze the summand �l . First note
that by Lemma 2.2, one has for arbitrary integers 0 ≤ a ≤ b,

ϕ(a, b) := E
b[f (Ztn−tl+1)] − E

a[f (Ztn−tl+1)]
(16)

≤ f (b) − f (a)

f (a)
E

a[f (Ztn−tl+1)].
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In the first part of the proof, we provide an upper bound for

ψ(a) := |(Pl,l+1 − Ptl+1−tl )Ptn−tl+1f (a)| for 0 ≤ a < l.

We couple Z�tl and Z[l, l +1] under P
a as in Lemma 2.13 and denote by ϒ(1) and

ϒ(2) the respective random variables. There are two possibilities for the coupling
to fail: either ϒ(1) ≥ a + 2 and ϒ(2) = a + 1, or ϒ(1) = a and ϒ(2) = a + 1.
Consequently,

ψ(a) ≤ P
(
ϒ(1) = a,ϒ(2) = a + 1

)
ϕ(a, a + 1)

(17)
+ E

[
1{ϒ(1)≥a+1}ϕ

(
a + 1,ϒ(1))].

Since, by Taylor’s formula,

P
(
ϒ(1) = a,ϒ(2) = a + 1

)= e−f (a)�tl − (
1 − f (a)�tl

)≤ 1
2(f (a)�tl)

2,

we get for the first term of (17), using (16),

P
(
ϒ(1) = a,ϒ(2) = a + 1

)
ϕ(a, a + 1)

≤ 1

2
(f (a)�tl)

2 �f (a)

f (a)
E

a[f (Ztn−tl+1)](18)

≤ f (a)(�tl)
2
E

a[f (Ztn−tl+1)].
Now consider the second term in (17). We have

E
[
1{ϒ(1)≥a+1}ϕ

(
a + 1,ϒ(1))]≤ P

(
ϒ(2) = a + 1

)︸ ︷︷ ︸
≤f (a)�tl

E
a+1[ϕ(a + 1,Z�tl )].(19)

By Lemma 2.1 we have E
a+1[f (Z�tl )] ≤ f (a + 1)e�f (a+1)�tl , so that we con-

clude with (16) that

E
a+1[ϕ(a + 1,Z�tl )] ≤ (

e�f (a+1)�tl − 1
)
E

a+1[f (Ztn−tl+1)]
≤ 2�tlE

a+1[f (Ztn−tl+1)],
where we used in the last step that �f (a + 1) < 1 and that ex ≤ 1 + 2x for x ∈
[0,1]. We combine this with the estimates (17), (18) and (19), and get

ψ(a) ≤ 3f (a)(�tl)
2
E

a+1[f (Ztn−tl+1)].
In the next step, we deduce an estimate for |�l| defined in (15). One has

|�l| ≤ Pm,lψ(k) ≤ 3�tlE
k[�tlf (Z[m, l])EZ[m,l]+1[f (Ztn−tl+1)]

]
= 3�tlE

k[1{�Z[m,l]=1}EZ[m,l+1][f (Ztn−tl+1)]
]
.

By Lemma 2.10 we get

|�l| ≤ 3�tlP
k(�Z[m, l] = 1)Ek+1[

E
Z[m,l+1][f (Ztn−tl+1)]

]
= 3(�tl)

2
E

k[f (Z[m, l])]Ek+1[
E

Z[m,l+1][f (Ztn−tl+1)]
]

(20)

= 3(�tl)
2Pm,lf (k)Pm,l+1Ptn−tl+1f (k + 1).
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We write Ptn−tl+1f (k + 1) = Ptl+2−tl+1Ptn−tl+2f (k + 1) and note that, by Lem-
ma 2.3, Ptn−tl+2f is concave. Therefore, we get with Lemma 2.15 that
Ptn−tl+1f (k + 1) ≤ P̃l+1,l+2Ptn−tl+2f (k + 1). Successive applications of this esti-
mate and Lemma 2.16 yield

Pm,l+1Ptn−tl+1f (k + 1) ≤ P̃m,nf (k + 1) ≤ C2.16Pm,nf (k + 1).(21)

Recall from Lemma 2.7 that Pm,lf (k) ≤ ( l
m

)γ
+
f (k). Combining with (15), (20)

and (21) yields

|Pm,nf (k) − Ptn−tmf (k)|

≤ 3C2.16f (k)Pm,nf (k + 1)m−γ + n−1∑
l=m

l−2+γ +
(22)

≤ C2.14
f (k)

m
Pm,nf (k),

for a suitably defined constant C2.14 depending only on f , as required. �

3. Properties of the family (Aα : 0 < α < 1) of operators. The objective of
this section is to study the operators Aα and relate them to the tree INT. We start
with two lemmas on the functional analytic nature of the family (Aα :α ∈ I).

LEMMA 3.1. (a) For any 0 < α < 1 the following are equivalent:

(i) Aα1(0) < ∞;
(ii) Aαg ∈ C(S) for all g ∈ C(S).

The set of α where these conditions hold is denoted by I .
(b) For any α ∈ I the operator Aα is strongly positive.
(c) For any α ∈ I the operator Aα is compact.

PROOF. Recalling the Arzelà–Ascoli theorem, the only nontrivial claim is
that, if Aα1(0) < ∞, then the family (Aαg :‖g‖∞ < 1) is equicontinuous. To this
end recall that, for τ ≤ σ ≤ ∞, by Remark 2.6, we have Mτ ≥ Mσ and hence

|Aαg(τ) − Aαg(σ)| ≤
∫ ∞

0
e−αtd(Mτ − Mσ )(t).

Equicontinuity at ∞ follows from this by recalling the definition M∞ =
limτ↑∞ Mτ . Elsewhere, for σ < ∞, we use the straightforward coupling of the
processes (Z

[τ ]
t : t ≥ 0) and (Z

[σ ]
t : t ≥ 0) with the property that if Z

[σ ]
σ−τ = 0 then

Z
[τ ]
t = Z

[σ ]
t+σ−τ .
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Hence we get∫ ∞
0

e−αt d(Mτ − Mσ )(t) ≤ (
1 − e−α(σ−τ)) ∫ ∞

0
e−αt dMτ (t)

(23)

+ E

[∫ ∞
0

e−αtdZ
[τ ]
t 1

{
Z

[σ ]
σ−τ > 0

}]
.

Note that
∫∞

0 e−αt dMτ (t) ≤ E[∫∞
0 e−αtdZ[τ ](t)] ≤ Aα1(0) < ∞, and that

P(Z
[σ ]
σ−τ > 0) ≤ P

1(Zσ−τ > 1) ↓ 0 as σ ↓ τ . Hence, both terms on the right-hand
side of (23) can be made small by making σ − τ small, proving the claim. �

LEMMA 3.2. The function α �→ logρ(Aα) is convex on I .

PROOF. By Theorem 2.5 of [12] the function α �→ logρ(Aα) is convex, if for
each positive g ∈ C(S), ε > 0 and triplet α1 ≤ α0 ≤ α2 in I , there are finitely many
positive gj ∈ C(S) and functions φj : I → R, j ∈ {1, . . . ,m}, with logφj convex,
such that ∥∥∥∥∥Aαk

g −
m∑

j=1

φj (αk)gj

∥∥∥∥∥≤ ε for all k ∈ {0,1,2}.

This criterion is easily checked using the explicit form of Aα , 0 < α < 1. �

With the help of the following lemma, Theorem 1.1 follows from Theorem 1.8.
The result is a variant of a standard result in the theory of branching random walks
adapted to our purpose; see, for example, Hardy and Harris [10] for a good account
of the general theory.

LEMMA 3.3. The INT dies out almost surely if and only if there exists 0 <

α < 1 such that Aα is a compact linear operator with spectral radius ρ(Aα) ≤ 1.

PROOF. Suppose that such an α exists. By the Krein–Rutman theorem (see,
e.g., Theorem 1.3 in Section 3.2 of [15]) there exists a eigenvector v : S → [0,∞)

corresponding to the eigenvalue ρ(Aα). Our operator Aα is strongly positive, that
is, for every g ≥ 0 which is positive somewhere, we have

min
τ∈S

Aαg(τ) > 0,

so that v is also bounded away from zero. Let Y
(n)
τ (dt dx) be the empirical measure

of types and positions of all the offspring in the nth generation of an IBRW started
by a single particle of type τ positioned at the origin. With every generation of
particles in the IBRW we associate a score

Xn :=
∫

Y (n)
τ (dt dx)e−αx v(t)

v(τ )
.



PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 357

The assumption ρ(Aα) ≤ 1 implies that (Xn :n ∈ N) is a supermartingale and thus
almost surely convergent. Now fix some N > 1, an integer n ≥ 2 and the state at
generation n − 1. Suppose there is a particle with location x < N in the (n − 1)st
generation. Then there is a positive probability (depending on N but not on n) that
Xn − Xn−1 > 1 and, as (Xn :n ∈ N) converges, this can only happen for finitely
many n. Hence the location of the leftmost particle in the IBRW diverges to +∞
almost surely. This implies that the INT dies out almost surely.

Conversely, we assume that I is nonempty and fix α ∈ I . The Krein–Rutman
theorem gives the existence of an eigenvector of the dual operator, which is a
positive, finite measure ν on the type space S such that

∫
v(t)ν(dt) = 1 and, for

all continuous, bounded f : S → R,∫
Aαf (t)ν(dt) = ρ(Aα)

∫
f (t)ν(dt).

Because Aα is a strongly positive operator, the Krein–Rutman theorem implies
that there exists λ0 < ρ(Aα) such that |λ| ≤ λ0 for all λ ∈ σ(Aα) \ {ρ(Aα)}, where
σ(Aα) denotes the spectrum of the operator. Hence ρ(Aα) is separated from the
rest of the spectrum and by Theorem IV.3.16 in [11] this holds for all parameters
in a small neighborhood of α. Hence, arguing as in Note 3 on Chapter II in [11],
pages 568 and 569, the mapping α �→ ρ(Aα) is differentiable and its derivative
equals

ρ ′(Aα) := d

dα

∫
Aαv(t)ν(dt) =

∫
∂

∂α
Aαv(t)ν(dt),(24)

where the second equality can be inferred from the minimax characterisation of
eigenvalues; see, for example, Theorem 1 in [16]. Given τ ∈ S we define a martin-
gale by

W(n)
τ = ρ(Aα)−n

∫ ∫
v(t)

v(τ )
e−αxY (n)

τ (dt dx)

and argue as in Theorem 1 of [14] that it converges almost surely to a strictly
positive limit Wτ if

logρ(Aα) − αρ′(Aα)

ρ(Aα)
> 0 and sup

τ∈S
E
[
W(1)

τ logW(1)
τ

]
< ∞.(25)

Let us assume for the moment that the second condition holds true for all α ∈ I .
Then, if α is such that the limit Wτ exists and is positive, it also exists for the
offspring of any particle of type τ in position x, and we denote it by Wτ(x). By
decomposing the population in the mth generation according to their ancestor in
the nth generation, and then letting m → ∞, we get

Wτ = ρ(Aα)−n
∫

v(t)

v(τ )
e−αxWt(x)Y (n)

τ (dt dx).
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Denoting by Pτ the law of the IBRW started with a particle at the origin of type τ ,
we now look at the IBRW under the changed measure

dQ =
∫

ν(dτ)v(τ )Wτ dPτ .

Given a sample IBRW we build a measure μ on the set of all infinite sequences

((x0, t0), (x1, t1), . . .),

where xj is the location and tj the type of a particle in the j th generation, which
is a child of a particle in position xj−1 of type tj−1, for all j ≥ 1. This measure is
determined by the requirement that, for any permissible sequence

μ{((y0, s0), (y1, s1), . . .) :y0 = x0, s0 = t0, . . . , yn = xn, sn = tn}
= ρ(Aα)−n v(tn)

v(t0)
exp{−α(xn − x0)}Wtn(xn)

Wt0(x0)
.

Looking unconditionally at the random sequence of particle types thus gener-
ated, we note that it is a stationary Markov chain on S with invariant distribution
v(t)ν(dt) and transition kernel given by

Pt0(�) = ρ(Aα)−1 v(�)

v(t0)

∫ ∞
0

e−αt dMt0(t),

Pt0(dt) = ρ(Aα)−1 v(t)

v(t0)
eαt dM(t) for t ≥ 0.

Using first Birkhoff’s ergodic theorem and then (24) we see that, Q-almost surely,
μ-almost every path has speed

lim
n→∞

xn

n
= 1

ρ(Aα)

∫
E

[∫
Y

(1)
t0

(dt dx)xe−αx v(t)

v(t0)

]
v(t0)ν(dt0)

= − 1

ρ(Aα)

∫
∂

∂α

Aαv(t0)

v(t0)
v(t0)ν(dt0)

= −ρ ′(Aα)

ρ(Aα)
= − d

dα
logρ(Aα).

Suppose that α0 ∈ I is such that

ρ(Aα0) = min
α∈I

ρ(Aα) > 1.

From Lemma 3.2 we can infer that there exists α > α0 such that the first condition
in (25) holds and

− d

dα
logρ(Aα) < 0.

This implies that, Q-almost surely, there exists an ancestral line of particles di-
verging to −∞. For the IBRW started with a particle at the origin of type �, we
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therefore have a positive probability that an ancestral line goes to −∞. This im-
plies that the INT has a positive probability of survival.

To ensure that the second condition in (25) holds, we can use a cut-off procedure
and replace the offspring distribution Y (1)(dt dx) by one that takes only the first N

children to the right and left into account. It is easy to see that, for fixed 0 < α < 1
and sufficiently large N , we can ensure that the modified operator A

(N)
α is close to

the original one in the operator norm, and as large as we wish if the original oper-
ator is ill defined. Hence the continuity of the spectral radius in the operator norm
ensures that limN→∞ ρ(A

(N)
α ) = ρ(Aα), with the spectral radius of an ill-defined

operator being infinity. Using Lemma 3.2 and the fact that a sequence of convex
functions, which converges pointwise, converges uniformly on every closed set, we
can choose N so that for all 0 < α < 1 the modified operators satisfy ρ(A

(N)
α ) > 1,

while the cut-off ensures that the second criterion in (25) automatically holds. The
argument above can now be applied and yields the existence of an ancestral line
of particles diverging to −∞, which then automatically also exists in the original
IBRW. �

Our proofs, in particular the crucial sprinkling technique, rely on the following
continuity property of the survival probability p(f ) of the INT for the attachment
rule f .

LEMMA 3.4. One has

lim
ε↓0

p(f − ε) = p(f ).

PROOF. We only need to consider the case where p(f ) > 0, as otherwise both
sides of the equation are zero. We denote by ρ(α,f ) the spectral radius of the
operator Aα formed with respect to the attachment function f , setting it equal to
infinity if the operator is ill defined. The assumption p(f ) > 0 implies, by Lem-
ma 3.3, that for all 0 < α < 1 we have ρ(α,f ) > 1. As the operator norm ‖Aα‖
for the operator formed with respect to the attachment function f − ε depends
continuously on ε ≥ 0, we can use the continuous dependence of the spectral radius
on the operator norm to obtain, for fixed α,

lim
ε↓0

ρ(α,f − ε) = ρ(α,f ).

As a sequence of convex functions, which converges pointwise, converges uni-
formly on every closed set, we find ε > 0 such that ρ(α,f − ε) > 1 for all
0 < α < 1. Thus, using again Lemma 3.3, we have p(f − ε) > 0.

Now we look at the IBRW started with one particle of type � in position t ,
constructed using the attachment rule f − ε, such that any particle with position
> 0 is killed along with its offspring. We denote by E(ε, t) the event this process
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survives forever, and by V (ε, t, κ) the event that a particle reaches a site < κ . Then
we have

lim
κ→−∞ inf

t≤κ
P(E(ε, t)) = 1.

For fixed κ < 0 and 0 ≤ ε ≤ ε0 we have

P(E(ε, t)) ≥ P(V (ε, t, κ))P(E(ε0, κ))
ε↓0−→ P(V (0, t, κ))P(E(ε0, κ)).

Note that the first probability on the right is greater or equal to p(f ) and that the
second probability tends to one, as κ tends to −∞. �

4. The giant component. This section provides two crucial tools: a tool to
obtain global results from our local approximations of neighborhoods given by
the “sprinkling” argument in Proposition 4.1, and an a priori lower bound on the
size of the connected components of the oldest vertices in the system given in
Lemma 4.2. We follow the convention that a sequence of events depending on the
index N holds with high probability if the probability of these events goes to one
as N ↑ ∞.

PROPOSITION 4.1 (Sprinkling argument). Let ε ∈ (0, f (0)), κ > 0, and
f̄ (k) = f (k) − ε for integers k ≥ 0. Suppose that (cN)N∈N is a sequence of in-
tegers with

lim
N↑∞

[
1

2
κεcN − logN

]
= ∞ and lim

N→∞
c2
N

N
= 0,

and that, for the preferential attachment graphs (ḠN)N∈N with attachment rule f̄ ,
we have

N∑
v=1

1{|C̄N(v)| ≥ 2cN } ≥ κN with high probability,

where C̄N(v) denotes the connected component of the vertex v in ḠN . Then there
exists a coupling of the graph sequences (GN)N∈N with (ḠN)N∈N such that ḠN ≤
GN and all connected components of ḠN with at least 2cN vertices belong to one
connected component in GN with at least κN vertices, with high probability.

PROOF. Note that we can couple ḠN and an independent Erdős–Rényi graph
G ER

N with edge probability ε/N with GN such that

ḠN ≤ ḠN ∨ G ER
N ≤ GN.(26)

Here, ḠN ∨ G ER
N denotes the graph in which all edges are open that are open in

at least one of the two graphs, and G′ ≤ G′′ means that all edges that are open
in G′ are also open in G′′. We denote by V ′

N the vertices in ḠN that belong to
components of size at least 2cN and write V ′

N as the disjoint union C1 ∪ · · · ∪ CM ,
where C1, . . . ,CM are sets of vertices such that:
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• |Cj | ∈ [cN,2cN ] and
• Cj belongs to one component in ḠN , for each j = 1, . . . ,M .

Recall (26), and note that given ḠN and the sets C1, . . . ,CM , the Erdős–Rényi
graph G ER

N connects two distinct sets Ci and Cj with probability at least

pN := 1 −
(

1 − ε

N

)c2
N ≥ 1 − e−(ε/N)c2

N ∼ ε

N
c2
N.

By identifying the individual sets as one vertex and interpreting the G ER
N -

connections as edges, we obtain a new random graph. Certainly, this dominates
an Erdős–Rényi graph with M vertices and success probability pN , which has
edge intensity MpN . By assumption, 1

2
κN
cN

≤ M ≤ N with high probability. Hence
M → ∞ and MpN − logM → ∞ in probability as N ↑ ∞. By [18], Theorem 5.6,
the new Erdős–Rényi graph is connected with high probability. Hence, all vertices
of V ′

N belong to one connected component in GN , with high probability. �

We need an “a priori” argument asserting that the connected components of the
old vertices are large with high probability. This will, in particular, ensure that the
connected component of any vertex connected to an old vertex is large.

LEMMA 4.2 (A priori estimate). Let (cN)N∈N and (nN)N∈N be sequences of
positive integers such that

lim
N→∞

cN

logN log logN
= 0 and lim

N→∞
lognN

logN
= 0.

Denote by CN(v) ⊂ GN the connected component containing v ∈ {1, . . . ,N}. Then

P
(
#CN(v) < cN for any v ∈ {1, . . . , nN })−→ 0.

PROOF. We only need to show this for the case when f is constant, say equal
to β > 0, as all other cases stochastically dominate this one. Note that in this case
all edge probabilities are independent. We first fix a vertex v ∈ {1, . . . , nN } and
denote by X1 = X1(v) the number of its direct neighbours in (nN,N/ logN ]. We
obtain, for any λ > 0,

Ee−λX1 =
�N/ logN�−1∏

j=nN

(
β

j
e−λ +

(
1 − β

j

))
,

and hence, for sufficiently large N ,

log Ee−λX1 ≤ −β(1 − e−λ)

�N/ logN�−1∑
j=nN

1

j
≤ −3

4
β(1 − e−λ) logN.
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By the exponential Chebyshev inequality we thus get for sufficiently large N ,

P

(
X1 <

β

2
logN

)
≤ Nλβ/2−(3β/4)(1−e−λ) ≤ N−β/32(27)

choosing λ = 1
2 and using that 1 − e−x ≥ x − 1

2x2 for x ≥ 0 in the last step. Now
let X2 = X2(v) be the number of direct neighbors in (N/ logN,N] of any of the
X1(v) vertices who are direct neighbors of v in (nN,N/ logN ]. Since by assump-
tion f (k) = β for all k, we obtain, for any λ > 0,

E[e−λX2 |X1] =
N−1∏

j=�N/ logN�

(
1 + (e−λ − 1)

(
1 −

(
1 − β

j

)X1))

and hence, for sufficiently large N , on the event {X1 ≥ β
2 logN},

log E[e−λX2 |X1] ≤ −(1 − e−λ)
3β

4
X1

N−1∑
j=�N/ logN�

1

j

≤ −(1 − e−λ)
β2

4
logN log logN.

By (27) and the exponential Chebyshev inequality (with λ = 1) we thus get for
sufficiently large N ,

P
(
X2(v) < cN

)≤ P

(
X1 <

β

2
logN

)
+ P

(
X2(v) < cN

∣∣∣X1 ≥ β

2
logN

)

≤ N−β/32 + N−(β2/8) log logN+cN/ logN.

Let λ = 1
2 . By our assumptions on (cN)N∈N and (nN)N∈N the sum of the right-

hand sides over all v ∈ {1, . . . , nN } goes to zero, ensuring that #CN(v) ≥ X2(v) ≥
cN for all v ∈ {1, . . . , nN } with high probability. �

5. The exploration process. Our aim is to “couple” certain aspects of the
network to an easier object, namely a random tree. To each of these objects we
associate a dynamic process called the exploration process. In general, an explo-
ration process of a graph successively collects information about the connected
component of a fixed vertex by following edges emanating from already discov-
ered vertices in a well-defined order, so that at each instance the explored part of
the graph is a connected subgraph of the cluster. We show that the exploration
processes of the network and the labeled tree can be defined on the same proba-
bility space in such a way that up to a stopping time, which is typically large, the
explored part of the network and the tree coincide.
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5.1. A random labeled tree. We now describe a tree T(w) which informally
describes the neighborhood of a vertex w ∈ GN . Any vertex in the tree is labeled by
two parameters: its location, an element of {1, . . . ,N}, and its type, an element of
{�}∪ {1, . . . ,N}. The root is given as a vertex with location w and type �. A vertex
v with location i and type � produces independently descendants in the locations
1, . . . , i − 1 (i.e., to its left) of type i with probability

P(v has a descendant in j of type i) = P(�Z[j, i − 1] = 1).

Moreover, independently it produces descendants to its right, which are all of
type �, in such a way that the cumulative sum of these descendants is distributed
according to the law of (Z[i, j ] : i + 1 ≤ j ≤ n). A vertex v of type k produces
descendants to the left in the same way as a vertex of type �, and independently it
produces descendants to the right, which are all of type �, in such a way that the
cumulative sum of these descendants is distributed as (Z[i, j ]−1[k,∞)(j) : i +1 ≤
j ≤ n) conditioned on �Z[i, k − 1] = 1.

Observe that, given the tree and the locations of the vertices, we may reconstruct
the types of the vertices in a deterministic way: any vertex whose parent is located
to its left has the type �, otherwise the type of the vertex is the location of the
parent.

The link between this labeled tree and our network is given in the following
proposition, which will be proved in Section 5.3.

PROPOSITION 5.1. Suppose that (cN)N∈N is a sequence of integers with

lim
N→∞

cN

logN log logN
= 0.

Then one can couple the pair (V , GN) consisting of the network and a uniformly
chosen vertex V with T(V ) such that with high probability

#CN(V ) ∧ cN = #T(V ) ∧ cN .

5.2. Exploration of the network. We now specify how we explore a graph like
our network or the tree described above, that is, we specify the way we collect
information about the connected component, or cluster, of a particular vertex v. In
the first step, we explore all immediate neighbors of v in the graph. To explain a
general exploration step we classify the vertices in three categories:

• veiled vertices: vertices for which we have not yet found connections to the
cluster of v;

• active vertices: vertices for which we already know that they belong to the clus-
ter, but for which we have not yet explored all its immediate neighbors;

• dead vertices: vertices which belong to the cluster and for which all immediate
neighbors have been explored.
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After the first exploration step the vertex v is marked as dead, its immediate
neighbors as active and all the remaining vertices as veiled. In a general exploration
step, we choose the leftmost active vertex, set its state to dead, and explore its
immediate neighbors. The newly found veiled vertices are marked as active, and
we proceed with another exploration step until there are no active vertices left.

In the following, we couple the exploration processes of the network and the
random labeled tree started with a particle at position v and type � up to a stopping
time T . Before we introduce the coupling explicitly, let us quote adverse events
which stop the coupling. Whenever the exploration process of the network revisits
an active vertex we have found a cycle in the network. We call this event (E1) and
stop the exploration so that, before time T , the explored part of the neighborhood
of v is a tree with each node having a unique location. Additionally, we stop once
the explored part of the network differs from the explored part of the random la-
beled tree, calling this event (E2), we shall see in Section 5.3 how this can happen.
In cases (E1) and (E2) we say that the coupling fails.

Further reasons to stop the exploration are, for parameters nN, cN ∈ N with
1 ≤ nN, cN ≤ N :

(A) the number of dead and active vertices exceeds cN ;
(B) one vertex in {1, . . . , nN } is activated;
(C) there are no more active vertices left.

If we stop the exploration without (E1) and (E2) being the case, we say that the
coupling succeeds. Once the exploration has stopped, the veiled parts of the ran-
dom tree and the network may be generated independently of each other with the
appropriate probabilities. Hence, if we succeed in coupling the explorations, we
have coupled the random labeled tree and the network.

5.3. Coupling the explorations. To distinguish both exploration processes, we
use the term descendant for a child in the labeled random tree and the term imme-
diate neighbor in the context of the neighborhood exploration in the network. In
the initial step, we explore all immediate neighbors of v and all the descendants of
the root. Both explorations are identically distributed and they therefore can be per-
fectly coupled. Suppose now that we have performed k steps and that we have not
yet stopped the exploration. In particular, this means that both explored subgraphs
coincide and that any unveiled (i.e., active or dead) element of the labeled random
tree can be uniquely referred to by its location. We now explore the descendants
and immediate neighbors of the leftmost active vertex, say n.

First, we explore the descendants to the left (veiled and dead) and immediately
check whether they themselves have right descendants in the set of dead vertices.
If we discover no dead descendants, the set of newly found left descendants is
identically distributed to the immediate left neighbors in the network. Thus we can
couple both explorations such that they agree in this case. Otherwise we stop the
exploration due to (E2).



PREFERENTIAL ATTACHMENT: THE GIANT COMPONENT 365

Second, we explore the descendants to the right. If the vertex n is not of type �,
then we know already that n has no right descendants that were marked as dead as
n itself was discovered. Since we always explore the leftmost active vertex there
are no new dead vertices to the right of n. Therefore, the explorations to the right
in the network and the random labeled tree are identically distributed and we stop
if we find right neighbors in the set of active vertices due to (E1). If the vertex n

is of type �, then we have not gained any information about its right descendants
yet. If we find no right descendants in the set of dead vertices, it is identically
distributed to the immediate right neighbors of n in the network. We stop if right
descendants are discovered that were marked as dead, corresponding to (E2), or if
right descendants are discovered in the set of active vertices, corresponding to (E1).

LEMMA 5.2. Suppose that (cN)N∈N, (nN)N∈N are sequences of integers such
that

lim
N→∞

c2
N

n
1−γ +
N

= 0.

Then the coupling of the exploration processes satisfies

lim
N→∞ sup

v∈{nN+1,...,N}
P
(
coupling with initial vertex v ends in (E1) or (E2)

)= 0,

that is, the coupling succeeds with high probability.

PROOF. We analyze one exploration step in detail. Let a and d denote the ac-
tive and dead vertices of a feasible configuration at the beginning of an exploration
step, that is, a,d denote two disjoint subsets of {nN +1, . . . ,N} with #(a∪d) < cN

and a �= ∅.
The exploration of the minimal vertex n in the set a may only fail for one of the

following reasons:

(Ia) the vertex n has left descendants in d,
(Ib) the vertex n has left descendants which themselves have right descendants

in d or
(II) the vertex n has right descendants in a ∪ d.

Indeed, if (Ia) and (Ib) do not occur, then the exploration to the left ends neither in
state (E1) nor (E2), and if (II) does not happen, the exploration to the right does
not fail.

Conditionally on the configuration (a,d), the probability for the event (Ia)
equals

P(∃a ∈ d such that �Z[a,n − 1] = 1) ≤ ∑
a∈d
a<n

P(�Z[a,n − 1] = 1),
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whereas the probability for (Ib) is by Lemma 2.10 equal to

P(∃a ∈ dc and b ∈ d such that �Z[a,n − 1] = �Z[a, b − 1] = 1)

≤ ∑
a∈dc

a<n

∑
b∈d
b>a

P(�Z[a,n − 1] = �Z[a, b − 1] = 1)

≤ ∑
a∈dc

a<n

∑
b∈d
b>a

P(�Z[a,n − 1] = 1)P1(�Z[a, b − 1] = 1).

If the vertex n is of type τ �= �, then the conditional probability of (II) is

P(∃a ∈ a such that �Z[n,a − 1] = 1|�Z[n, τ − 1] = 1,�Z[n,b − 1] = 0

∀b ∈ d \ {τ })
≤ C2.12

∑
a∈a∪d
a>n

P
1(�Z[n,a − 1] = 1)

using first Lemma 2.12 and then Lemma 2.10.
If the vertex n is of type �, the conditional probability of (II) is

P(∃a ∈ a ∪ d such that �Z[n,a − 1] = 1) ≤ ∑
a∈a∪d
a>n

P(�Z[n,a − 1] = 1).

Since, by Lemma 2.11, for any a > n,

P
1(�Z[n,a − 1] = 1) ≤ P

1(�Z[nN + 1, nN + 1] = 1),

we conclude that the probabilities of the events (Ia) and (II) are bounded by

(2 + C2.12)cNP
1(�Z[nN + 1, nN + 1] = 1),

independently of the type τ . Moreover, the probability of (Ib) is bounded by

cNP
1(�Z[1, nN ] = 1)

n−1∑
a=1

P(�Z[a,n − 1] = 1).

The sum is the expected outdegree of vertex n, which, by Lemma 2.7, is uniformly
bounded, and, hence, one of the events (Ia), (Ib) or (II) occurs in one step with
probability less than a constant multiple of cNP

1(�Z[1, nN ] = 1). As there are
at most cN exploration steps until we end in one of the states (A), (B) or (C), the
coupling fails due to (E1) or (E2) with a probability bounded from above by a
constant multiple of

c2
NP

1(�Z[1, nN ] = 1) ≤ f (1)
c2
N

nN
1−γ + → 0,

in other words, the coupling succeeds with high probability. �
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PROOF OF PROPOSITION 5.1. Apply the coupling of Lemma 5.2 with
(nN)N∈N satisfying

lim
N→∞

lognN

logN
= 0 and lim

N→∞
(logN log logN)2

n
1−γ +
N

= 0.

Then, by Lemma 4.2, we get that with high probability

coupling ends in (B) 	⇒ #CN(V ) ≥ cN .(28)

As in the proof of Lemma 4.2 one gets

lim
N→∞ max

v=1,...,nN

P
(
#T(v) < cN

)= 0

so that implication (28) is also valid for #CN(V ) replaced by #T(V ). Since the
coupling succeeds we have, with high probability,

coupling ends in (A) or (B) ⇐⇒ #CN(V ) ∧ #T(V ) ≥ cN,

and the statement follows immediately. �

6. The idealized exploration process. We now have the means to explain
heuristically the approximation of the local neighborhood of a randomly chosen
vertex V ∈ GN by the idealized random tree T featuring in our main theorems.
Vertices in the network GN are mapped onto particles on the negative halfline in
such a way that the vertex with index n ∈ {1, . . . ,N} is mapped onto position
tn − tN ; recall (10). Note that the youngest vertex is placed at the origin, and older
vertices are placed to the left with decreasing intensity. In particular the position
of the particle corresponding to a vertex with fixed index will move to the left as
N is increasing.

Looking at a fixed observation window [a, b] on the negative halfline, as
N ↑ ∞, we see that the number of particles in the window is increasing. At the
same time the age of the vertex corresponding to a particle closest to a fixed po-
sition in the window is increasing, which means that the probability of edges be-
tween two such vertices is decreasing. As we shall see below, the combination of
these two effects leads to convergence of the distribution of offspring locations
on the halfline. In particular, thanks to the independence of edges with a common
right endpoint, offspring to the left converge to a Poisson process by the law of
small numbers, while offspring to the right converge to the point processes corre-
sponding to the pure birth process (Zt : t ≥ 0) if there is no dependence on previous
generations.

The considerations of Section 5 suggest that the only form of dependence of
the offspring distribution of a vertex on previous generations, is via the relative
position of its father. This information is encoded in the type of a particle, where
type � indicates that its father is to the left of the particle, and a numerical type
τ indicates that the father is positioned τ units to its right. It should be noted that
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the relative positions of offspring particles only depend on the absolute position of
the reproducing particle via the removal of particles whose position is not in the
left halfline, and which therefore do not correspond to vertices in the network GN .
This fact produces the random walk structure, which is crucial for the analysis of
the underlying tree. Our main aim now is to prove the following result.

PROPOSITION 6.1. Suppose that (cN)N∈N is a sequence of integers with

lim
N→∞

cN

logN log logN
= 0.

Then each pair (V , GN) can be coupled with T such that with high probability

#CN(V ) ∧ cN = #T ∧ cN .

We have seen so far that the neighborhood of a vertex v in a large network is
similar to the random tree T(v) constructed in Section 5.1. To establish the rela-
tionship between T(V ), for an initial vertex V chosen uniformly from {1, . . . ,N},
and the idealized neighborhood tree T we apply the projection

πN : (−∞,0] → {1, . . . ,N},
which maps t ≤ 0 onto the smallest m ∈ {1, . . . ,N} with t ≤ −tN + tm, to each
element of the INT T. We obtain a branching process with location parameters in
{1, . . . ,N}, which we call πN -projected INT. We need to show, using a suitable
coupling, that when the INT is started with a vertex −X, where X is standard
exponentially distributed, then this projection is close to the random tree T(V ).
Again we apply the concept of an exploration process.

To this end we show that, for every v ≤ 0, the πN -projected descendants of v

have a similar distribution as the descendants of a vertex in location πN(v) in the
labeled tree of Section 5.1. We provide couplings of both distributions and control
the probability of them to fail.

Coupling the evolution to the right for �-type vertices. We fix v ≤ 0 and
N ∈ N, and suppose that m := πN(v) ≥ 2. For an �-type vertex in v the cumu-
lative sum of πN -projected right descendants is distributed as (Ztn−tN−v)m≤n≤N .
This distribution has to be compared with the distribution of (Z[m,n])m≤n≤N ,
which is the cumulative sum of right descendants of m in T(v).

LEMMA 6.2. Fix T ,N ∈ N and v ≤ 0 with πN(v) = m ∈ {2,3, . . . ,N}. We
can couple the processes (Ztn−tN−v :n ≥ m) and (Z[m,n] :n ≥ m) such that for
the coupled processes (Y (1)[n] :n ≥ m) and (Y (2)[n] :n ≥ m) we have

P
(

Y (1)[n] �= Y (2)[n] for some n ≤ τ
)≤ (

f (0) + f (T )2) 1

m − 1
,

where τ is the first time when one of the processes reaches or exceeds T .
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PROOF. We define the process Y = ((Y (1)[n], Y (2)[n]) :n ≥ m) to be the
Markov process with starting distribution L(Ztm−tN−v)⊗ δ0 and transition kernels
p(n) such that the first and second marginal are the respective transition probabili-
ties of (Ztn−tN−v :n ≥ m) and (Z[m,n] :n ≥ m) and, for any integer a ≥ 0, the law
p(n)((a, a), ·) is the coupling of the laws of Z�tn and Z[n,n + 1] under P

a pro-
vided in Lemma 2.13. Then the processes (Y (1)[n] :n ≥ m) and (Y (2)[n] :n ≥ m)

are distributed as stated in the lemma. Moreover, letting σ denote the first time
when they disagree, we get

P(σ ≤ τ) =
∞∑

n=m

P(τ ≥ n,σ = n)

≤ P(σ = m) +
∞∑

n=m

P(σ = n + 1|τ > n,σ > n)

and, by Lemma 2.13,

P(σ = n + 1|τ > n,σ > n) ≤
(
f (T )

1

n

)2

for n ∈ {m,m + 1, . . .}.

Moreover, P(σ = m) = P(Y (1)[m] > 0) = 1 − e−(tm−tN−v)f (0) ≤ f (0)
m−1 . Conse-

quently,

P(σ ≤ τ) ≤ f (0)

m − 1
+ f (T )2

∞∑
n=m

1

n2 ≤ (
f (0) + f (T )2) 1

m − 1
. �

Coupling the evolution to the left. Recall that a vertex v ≤ 0 produces a Pois-
sonian number of πN -projected descendants at the location m ≤ πN(v) with pa-
rameter

λ :=
∫ (−tN+tm)∧v

−tN+tm−1

e−(v−u)
E[f (Zv−u)]du.(29)

Here we adopt the convention that t0 = −∞. A vertex in location n := πN(v)

in T[v] produces a Bernoulli distributed number of descendants in m with suc-
cess probability P(�Z[m,n − 1] = 1) for m < n and success probability zero for
m = n. The following lemma provides a coupling of both distributions.

LEMMA 6.3. There exists a constant C6.3 > 0 such that the following holds:
Let m,N ∈ N and v ≤ 0 with m ≤ n := πN(v) and define λ as in (29). If m < n,
one can couple a Poiss(λ) distributed random variable with �Z[m,n − 1], such
that the coupled random variables ϒ(1) and ϒ(2) satisfy

P
(
ϒ(1) �= ϒ(2))≤ C6.3

1

m1+γ +
1

n1−γ + .
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If m = n, a Poiss(λ) distributed random variable ϒ(1) satisfies

P
(
ϒ(1) �= 0

)≤ C6.3
1

n
.

PROOF. It suffices to prove the second statement for m = n ≥ 2. Note that
u �→ e−u

E[f (Zu)] is decreasing so that

λ ≤
∫ v

−tN+tn−1

e−(v−u)
E[f (Zv−u)]du ≤ f (0)

1

n − 1
,

which leads directly to the second statement of the lemma. Next, consider the case
where 2 ≤ m < n. Note that for u ∈ (−tN + tm−1,−tN + tm], one has v − u ∈
(tn−1 − tm, tn − tm−1) which, using again that u �→ e−u

E[f (Zu)] is decreasing,
implies that

1

m − 1
e−(tn−tm−1)E[f (Ztn−tm−1)] ≤ λ ≤ 1

m − 1
e−(tn−1−tm)

E[f (Ztn−1−tm)].

Next, note that by definition of tn we have log n
m

≤ tn − tm ≤ log n−1
m−1 so that(

1 − 1

m − 1

)
1

n − 1
E[f (Ztn−1−tm)]

(30)

≤ λ ≤
(

1 + 1

m − 1

)
1

n − 1
E[f (Ztn−1−tm)].

On the other hand, �Z[m,n − 1] is a Bernoulli random variable with success
probability

p := 1

n − 1
E
[
f (Z[m,n − 1])].

By Lemma A.1 it suffices to control λ2 and |λ − p|. By Proposition 2.14 and (30),

|λ − p| ≤ C
1

m − 1

1

n − 1

(
E[f (Ztn−1−tm)] + E

[
f (Z[m,n − 1])])(31)

and

λ2 ≤ 4
(

1

n − 1

)2

E[f (Ztn−1−tm)]2.(32)

Since tn−1 − tm ≤ log n−2
m−1 , we get with Lemmas 2.1 and 2.7 that

E[f (Ztn−1−tm)] + E
[
f (Z[m,n − 1])]≤ C

(
n

m

)γ +
.

Recalling that n > m ≥ 2, it is now straightforward to deduce the statement from
equations (31) and (32). It remains to consider the case where 1 = m < n. Here,
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we apply Lemma 2.1 and tn−1 ≥ log(n − 1) to deduce that

λ ≤
∫ −tN+t1

−∞
e−(v−u)

E[f (Zv−u)]du

≤ C

∫ ∞
tn−1

e−(1−γ +)u du ≤ C

1 − γ + (n − 1)γ
+−1,

while, by Lemma 2.7, P(�Z[1, n−1] = 1) ≤ f (0)(n−1)γ
+−1, so that a Poiss(λ)

distributed random variable can be coupled with �Z[1, n−1] so that they disagree
with probability less than a constant multiple of nγ +−1. �

REMARK 6.4. Lemma 6.3 provides a coupling for the mechanisms with
which both trees produce left descendants. Since the number of descendants in
individual locations form an independent sequence of random variables, we can
apply the coupling of the lemma sequentially for each location and obtain a cou-
pling of the πN -projected left descendants of a vertex v and the left descendants
of n := πN(v) in T[v]. Indeed, under the assumptions of Lemma 6.3, one finds a
coupling of both processes such that

P(left descendants disagree) ≤ C6.3
1

n
+ C6.3

1

n1−γ +

n−1∑
m=1

1

m1+γ + ≤ C6.4
1

n1−γ + ,

where C6.4 is a suitable positive constant.

Coupling the evolution to the right for particles of type τ �= �. We fix v ≤ 0
and N ∈ N, and suppose that m := πN(v) ≥ 2. Also fix a type τ < −v with l :=
πN(v+τ) > m. The cumulative sum of πN -projected right descendants of a vertex
v of type τ (including its predecessor) is distributed according to (Z−tN+tn−v :m ≤
n ≤ N) conditioned on �Zτ = 1. The cumulative sum of right descendants in T[v]
of a vertex in m of type l (including the predecessor) is distributed according to the
law of (Z[m,n] :m ≤ n ≤ N) conditioned on �Z[m, l − 1] = 1. Both processes
are Markov processes and we provide a coupling of their transition probabilities.

LEMMA 6.5. There exists a constant C6.5 > 0 such that the following holds:
Let k ≥ 0, m,n ≥ 1 be integers with k+1 < m < n, and let τ ∈ (tn − tm, tn+1 − tm].
Then the random variables Z�tm under P

k(· |�Zτ = 1) and Z[m,m + 1] under
P

k(· |�Z[m,n] = 1) can be coupled such that the resulting random variables ϒ(1)

and ϒ(2) satisfy

P
(
ϒ(1) �= ϒ(2))≤ C6.5

(
f (k)

m

)2
.



372 S. DEREICH AND P. MÖRTERS

PROOF. We couple ϒ(1) and ϒ(2) by plugging a uniform random variable
on (0,1) in the generalised inverses of the respective distribution functions and
conclude that

P
(
ϒ(1) �= ϒ(2))= ∣∣P(ϒ(1) = k

)− P
(
ϒ(2) = k

)∣∣+ P
(
ϒ(1) ≥ k + 2

)
.

The second error term is of the required order since, by Lemma 2.5,

P
(
ϒ(1) ≥ k + 2

)≤ P
k+1(Z1/m ≥ k + 3) ≤

(
f (k + 2)

m

)2

.

It remains to analyze the first error term. We have

P
(
ϒ(2) = k

)= 1 − f (k)�tm
Pm+1,nf (k + 1)

Pm,nf (k)

and, representing (Z
[τ ]
t : t ≥ 0) by its compensator,

P
(
ϒ(1) = k

)= exp
{
−f (k)

∫ �tm

0

Pτ−uf (k + 1)

Pτ−uf (k)
du

}
.

We need to compare

Pm+1,nf (k + 1)

Pm,nf (k)
and

Puf (k + 1)

Puf (k)
for u ∈ [tn − tm+1, tn+1 − tm].

By Lemma 2.1 and Proposition 2.14, one has, for a ∈ {k, k + 1} and sufficiently
large m,

Puf (a) ≤ Ptn+1−tmf (a) ≤ eγ +(1/m+1/n)Ptn−tm+1f (a)

≤ eγ +(1/m+1/n)

(
1 + C2.14

f (a)

m

)
Pm+1,nf (a)

≤ eγ +(1/m+1/n)+C2.14(f (a)/m)Pm+1,nf (a).

Conversely,

Puf (a) ≥ Ptn−tm+1f (a) ≥ e−γ +/mPtn−tmf (a)

≥ e−γ +/m

(
1 − C2.14

f (a)

m

)
Pm,nf (a).

We only need to consider large m and we may assume that C2.14
f (k+1)

m
≤ 1

2 , as
otherwise we may choose C6.5 large to ensure that the right-hand side in the display
of the lemma exceeds one. Then

Puf (a) ≥ e−γ +/m−2C2.14(f (a)/m)Pm,nf (a)
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since e−2y ≤ 1 − y for y ∈ [0,1/2]. Consequently,

e−γ +(2/m+1/n)−3C2.14(f (k+1)/m) Pm+1,nf (k + 1)

Pm,nf (k)

≤ Puf (k + 1)

Puf (k)
≤ eγ +(2/m+1/n)+3C2.14(f (k+1)/m) Pm+1,nf (k + 1)

Pm,nf (k)
.

Recall that, by Lemma 2.8, Pm+1,nf (k+1)

Pm,nf (k)
is uniformly bounded over all k so that

we arrive at

Pm+1,nf (k + 1)

Pm,nf (k)
− C

f (k)

m
≤ Puf (k + 1)

Puf (k)
≤ Pm+1,nf (k + 1)

Pm,nf (k)
+ C

f (k)

m

for an appropriate constant C > 0. Therefore,

P
(
ϒ(1) = k

)− P
(
ϒ(2) = k

)
≤ 1 ∧ exp

{
−f (k)�tm

(
Pm+1,nf (k + 1)

Pm,nf (k)
− C

f (k)

m

)}

−
(

1 − f (k)�tm
Pm+1,nf (k + 1)

Pm,nf (k)

)

≤ C

(
f (k)

m

)2

+ 1

2

(
f (k)�tm

(
Pm+1,nf (k + 1)

Pm,nf (k)
− C

f (k)

m

))2

≤ C6.5

(
f (k)

m

)2

.

Similarly, one finds that

P
(
ϒ(2) = k

)− P
(
ϒ(1) = k

)≤ C6.5

(
f (k)

m

)2

and putting everything together yields the assertion. �

From Lemma 6.5 we get the following analog of Lemma 6.2.

LEMMA 6.6. Fix a level T ∈ N. For any v ≤ 0 and τ ≤ −v with πN(v) = m ∈
{2,3, . . . ,N} and m < l := πN(v+τ) we can couple the processes (Ztn−tN−v :n ≥
m) conditioned on �Zτ = 1 and (Z[m,n] :n ≥ m) conditioned on �Z[m, l−1] =
1 such that the coupled processes (Y (1)[n] :n ≥ m) and (Y (2)[n] :n ≥ m) satisfy

P
(

Y (1)[n] �= Y (2)[n] for some n ≤ σ
)≤ C6.6

(
f (T )2 + 1

) 1

m
,

where σ is the first time when one of the processes reaches or exceeds level T .
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PROOF. We define the process Y = ((Y (1)[n], Y (2)[n]) :n ≥ m) to be the
Markov process with starting distribution L(Ztm−tN−v|�Zτ = 1) ⊗ δ0 and tran-
sition kernels p(n) such that the first and second marginals are the conditioned
transition probabilities of (Ztn−tN−v :n ≥ m) and (Z[m,n] :n ≥ m) as stated in the
lemma. In the case where n < l −1, we demand that, for any integer a ≥ 0, the law
p(n)((a, a), ·) is the coupling of the laws of Z�tn under P

a(· |�Zτ−(tn−tN−v) = 1)

and Z[n,n+1] under P
a(· |�Z[n, l−1] = 1) provided in Lemma 6.5. Conversely,

we apply the unconditioned coupling of Lemma 6.2 for n ≥ l. Letting � denote the
first time when both evolutions disagree, we get

P(� ≤ σ) =
∞∑

n=m

P(σ ≥ n,� = n)

≤ P(� = m) +
∞∑

n=m

P(� = n + 1|σ > n,� > n)

and, by Lemmas 6.2 and 6.5,

P(� = n + 1|σ > n,� > n) ≤ C6.5

(
f (T )

n

)2

for n ∈ {m,m + 1, . . .} \ {l − 1}.

Moreover, P(� = m) ≤ P
1(Ztm−tN−v > 0) = 1 − e−(tm−v)f (1) ≤ f (1)

m−1 and P(� =
l|� ≥ l, σ ≥ l) ≤ P

T (Z�tl−1 > T ) ≤ f (T ) 1
m

. Consequently,

P(� ≤ σ) ≤ f (1)

m − 1
+ f (T )

m
+ C6.5f (T )2

∞∑
n=m

1

n2 ≤ C6.6
(
f (T )2 + 1

) 1

m
. �

PROOF OF PROPOSITION 6.1. We couple the labeled tree T(V ) and the πN -
projected INT, starting with a coupling of the position of the initial vertex V and
πN(−X), which fails with probability going to zero, by Lemma A.2.

Again we apply the concept of an exploration process. As before we categorise
vertices as veiled, if they have not yet been discovered, active, if they have been
discovered, but if their descendants have not yet been explored, and dead, if they
have been discovered and all their descendants have been explored. In one explo-
ration step the leftmost active vertex is picked and its descendants are explored in
increasing order with respect to the location parameter. We stop immediately once
one of the events (A), (B) or (C) happens. Note that in that case the exploration
of the last vertex might not be completed. Moreover, when coupling two explo-
rations, we also stop in the adverse event (E) that the explored graphs disagree. In
event (B), the parameters (nN)N∈N are chosen such that

lim
N→∞

(logN log logN)α

nN

= 0 and lim
N→∞

lognN

logN
= 0
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for α := (1 − γ +)−1 ∨ 3. Noting that we never need to explore more than cN

vertices, we see from Lemma 6.2, Remark 6.4 and Lemma 6.6 that the probability
of a failure of this coupling is bounded by a constant multiple of

cN

(
1 + f (cN)2) 1

nN

+ cN

1

nN
1−γ + ≤ c3

N

nN

+ cN

nN
1−γ + −→ 0.

Consequently, the coupling succeeds with high probability. As in Lemma 4.2 it is
easy to see that, with high probability, event (B) implies that

#T(V ) ≥ cN and #T ≥ cN .

Hence we have

#T(V ) ∧ cN = #T ∧ cN with high probability,

and the statement follows by combining this with Proposition 5.1. �

7. The variance of the number of vertices in large clusters. In this section
we provide the second moment estimate needed to show that our key empirical
quantity, the number of vertices in connected components of a given size, concen-
trate asymptotically near their mean.

PROPOSITION 7.1. Suppose that (cN)N∈N and (nN)N∈N are sequences of in-

tegers satisfying 1 ≤ cN,nN ≤ N such that c2
Nn

γ +−1
N is bounded from above. Then,

for a constant C7.1 > 0 depending on these sequences and on f , we have

var

(
1

N

N∑
v=1

1{#CN(v) ≥ cN }
)

≤ 2P
(
#CN(V ) < cN and CN(V ) ∩ {1, . . . , nN } �= ∅

)
+ cN

N
+ C7.1

c2
N

n
1−γ +
N

,

where V is independent of GN and uniformly distributed on {1, . . . ,N}.

PROOF. Let v,w be two distinct vertices of GN . We start by exploring the
neighborhood of v similarly as in Section 5. As before we classify the vertices as
veiled, active and dead, and in the beginning only v is active and the remaining
vertices are veiled. In one exploration step we pick the leftmost active vertex and
consecutively (from the left to the right) explore its immediate neighbors in the
set of veiled vertices only. Newly found vertices are activated and the vertex to be
explored is set to dead after the exploration. We immediately stop the exploration
once one of the events:

(A) the number of unveiled vertices in the cluster reaches cN ,
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(B) one vertex in {1, . . . , nN } is activated or
(C) there are no more active vertices left,

happens. Note that when we stop due to (A) or (B) the exploration of the last vertex
might not be finished. In that case we call this vertex semi-active.

We proceed with a second exploration process, namely the exploration of the
cluster of w. This exploration follows the same rules as the first exploration pro-
cess, treating vertices that remained active or semi-active at the end of the first
exploration as veiled. In addition to the stopping in the cases (A), (B), (C) we also
stop the exploration once a vertex is unveiled which was also unveiled in the first
exploration, calling this event (D). We consider the following events:

Ev : the first exploration started with vertex v ends in (A) or (B);
E

v,w
1 : w is unveiled during the first exploration (that of v);

E
v,w
2 : w remains veiled in the first exploration and the second exploration ends

in (A) or (B) but not in (D);
E

v,w
3 : w remains veiled in the first exploration and the second exploration ends

in (D).

We have
N∑

v=1

N∑
w=1

P
(
#CN(v) ≥ cN,#CN(w) ≥ cN

)

≤
N∑

v=1

N∑
w=1

3∑
k=1

P(Ev ∩ E
v,w
k )(33)

=
N∑

v=1

P(Ev)

3∑
k=1

N∑
w=1

P(E
v,w
k |Ev).

As the first exploration immediately stops once one has unveiled cN vertices, we
conclude that, for fixed v,

N∑
w=1

P(E
v,w
1 |Ev) = E

[
N∑

w=1

1E
v,w
1

∣∣∣Ev

]
≤ cN .(34)

To analyze the remaining terms, we fix distinct vertices v and w and note that the
configuration after the first exploration can be formally described by an element k

of

{open, closed, unexplored}EN ,

where EN := {(a, b) ∈ {1, . . . ,N}2 : i < j} denotes the set of possible edges. We
pick a feasible configuration k and denote by Ek the event that the first exploration
ended in this configuration. On the event Ek the status of each vertex (veiled, active,
semi-active or dead) at the end of the first exploration is determined. Suppose k is
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such that w remained veiled in the first exploration, which means that Ek and E
v,w
1

are disjoint events. Next, we note that

P(E
v,w
2 |Ek) ≤ P(Ew).(35)

Indeed, if in the exploration of w we encounter an edge which is open in the con-
figuration k, we have unveiled a vertex which was also unveiled in the exploration
of v, the second exploration ends in (D) and hence E

v,w
2 does not happen. Oth-

erwise, the event Ek influences the exploration of w only in the sense that in the
degree evolution of some vertices some edges may be conditioned to be closed. By
Lemma 2.9 this conditional probability is bounded by the unconditional probabil-
ity, and hence we obtain (35).

Finally, we analyze the probability P(E
v,w
3 |Ek). If the second exploration pro-

cess ends in state (D), we have discovered an edge connecting the exploration
started in w to an active or semi-active vertex a from the first exploration. Recall
that in each exploration we explore the immediate neighborhoods of at most cN

vertices. Let K ∈ EN be a feasible configuration at the beginning of the neighbor-
hood exploration of a vertex n > nN and note that this implies every edge which
is open (resp., closed) in k is also open (resp., closed) in K. Recall that EK denotes
the event that this configuration is seen in the combined exploration processes. We
denote by a and s the set of active and semi-active vertices of the first exploration
induced by k (or, equivalently, by K). Moreover, we denote by d the set of dead
vertices of the combined exploration excluding the father of n, and, for a ∈ a ∪ s,
we let da denote the set of dead vertices of the ongoing exploration excluding the
father of n, plus the vertices that were marked as dead in the first exploration at the
time the vertex a was discovered. We need to distinguish several cases.

First, consider the case a ∈ a with a < n. By definition of the combined ex-
ploration process, we know that a has no jumps in its indegree evolution at times
associated to the vertices da . If a was explored from the right, say with father in b,
we thus get

P(∃ edge between a and n|EK)

= P(�Z[a,n − 1] = 1|�Z[a, b − 1] = 1 and �Z[a, d − 1] = 0(36)

∀d ∈ da).

If a was explored from the left, then

P(∃ edge between a and n|EK)
(37)

= P(�Z[a,n − 1] = 1|�Z[a, d − 1] = 0 ∀d ∈ da).

Second, consider the case a ∈ a with n < a. By definition of the combined explo-
ration process, the indegree evolution of n has no jumps that can be associated to
edges connecting to d.
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Hence, if n was explored from the right, say with father in b, then

P(∃ edge between a and n|EK)

= P(�Z[n,a − 1] = 1|�Z[n,b − 1] = 1 and �Z[n,d − 1] = 0(38)

∀d ∈ d),

and, if n was explored from the left, then

P(∃ edge between a and n|EK)
(39)

= P(�Z[n,a − 1] = 1|�Z[n,d − 1] = 0 ∀d ∈ d).

Third, consider a ∈ s and denote by a′ the last vertex which was unveiled in the
first exploration. If a′ > n, then the existence of an edge between a and n was
already explored in the first exploration, and no edge was found. If a′ < n < a, we
find estimates (38), (39) again. If a < n and the father b of a satisfies b > a′ ∨ a,

P(∃ edge between a and n|EK)

≤ sup
0≤k≤cN−1

P
k(�Z[a ∨ a′, n − 1] = 1|�Z[a ∨ a′, b − 1] = 1(40)

and �Z[a ∨ a′, d − 1] = 0 ∀d ∈ da),

and if a = v or the father b of a ∨ a′ satisfies b < a ∨ a′,
P(∃ edge between a and n|EK)

(41)
≤ sup

0≤k≤cN

P
k(�Z[a ∨ a′, n − 1] = 1|�Z[a ∨ a′, d − 1] = 0 ∀d ∈ da).

Using first Lemma 2.12, then Lemmas 2.10 and 2.11 we see that the terms (36)–
(39) are bounded by

C2.12P
1(�Z[a,n − 1] = 1) ≤ C2.12

P1,nN
f (1)

nN

,

and similarly, the terms (40)–(41) are bounded by

C2.12P
cN (�Z[a,n − 1] = 1) ≤ C2.12

P1,nN
f (cN)

nN

.

Note that there are at most cN vertices a ∈ a ∪ s and at most one of those is
semi-active. For each of these a we have to test the existence of edges no more
than cN times. Hence, using also Lemma 2.7 and the boundedness of f (n)/n, we
find C7.1 > 0 such that

P(E
v,w
3 |Ev) ≤ C2.12c

2
N

P1,nN
f (1)

nN

+ C2.12cN

P1,nN
f (cN)

nN

≤ C7.1
c2
N

n
1−γ +
N

.
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Summarizing our steps, we have

var

(
1

N

N∑
v=1

1{#CN(v) ≥ cN }
)

≤ E

[
1

N2

N∑
v=1

N∑
w=1

1{#CN(v) ≥ cN,#CN(w) ≥ cN }
]

− 1

N2

N∑
v=1

N∑
w=1

P(Ev)P(Ew)

+ 2
1

N

N∑
v=1

P
(
#CN(v) < cN and CN(v) ∩ {1, . . . , nN } �= ∅

)
≤ 2P

(
#CN(V ) < cN and CN(V ) ∩ {1, . . . , nN } �= ∅

)
+ cN

N
+ C7.1

c2
N

n
1−γ +
N

as required to complete the proof. �

8. Proof of Theorem 1.8. We start by proving the lower bound for C(1)
N . Sup-

pose therefore that p(f ) > 0, fix δ > 0 arbitrarily small and use Lemma 3.4
to choose ε > 0 such that the survival probability of f̄ = f − ε is larger than
p(f ) − δ. We denote by (ḠN)N∈N a sequence of random networks with at-
tachment rule f̄ and let C̄N(v) the connected component of v in ḠN . Suppose
a vertex V is chosen uniformly at random from {1, . . . ,N}. We choose cN :=
�logN

√
log logN� and observe that, by Proposition 6.1,

E

[
1

N

N∑
v=1

1{#C̄N(v) ≥ cN }
]

(42)
= P{#C̄N(V ) ≥ cN } −→ P{#T = ∞} ≥ p(f ) − δ

as N tends to infinity. By Proposition 7.1 with nN := �(logN)4/(1−γ +)�, we have

var

(
1

N

N∑
v=1

1{#C̄N(v) ≥ cN }
)

≤ 2P
(
#C̄N(V ) < cN and C̄N(V ) ∩ {1, . . . , nN } �= ∅

)
+ cN

N
+ C7.1

c2
N

n
1−γ +
N

.
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The first summand goes to zero by Lemma 4.2, and so do the remaining terms by
the choice of our parameters. Hence

lim inf
N→∞

1

N

N∑
v=1

1{#C̄N(v) ≥ cN } ≥ p(f ) − δ in probability,

and Proposition 4.1 implies that, with high probability, there exists a connected
component comprising at least a proportion p(f ) of all vertices, proving the lower
bound.

To see the upper bound we work with the original attachment function f . In
analogy to (42) we obtain

lim
N→∞ E

[
1

N

N∑
v=1

1{#CN(v) ≥ cN }
]

= p(f ).

As in the lower bound, the variance goes to zero, and hence we have

lim
N→∞

1

N

N∑
v=1

1{#CN(v) ≥ cN } = p(f ) in probability.

From this we infer that, in probability,

lim sup
N→∞

#C(1)
N

N
≤ lim sup

N→∞
cN

N
∨
(

1

N

N∑
v=1

1{#CN(v) ≥ cN }
)

≤ p(f )

proving the upper bound.
Finally, to prove the result on the size of the second largest connected compo-

nent, note that we have seen in particular that

lim
N→∞

1

N

N∑
v=1

1{#CN(v) ≥ cN } = p(f ) in probability,

so that, with high probability, the proportion of vertices in clusters of size greater
or equal cN is asymptotically equal to the proportion of vertices in the giant com-
ponent. This implies that the proportion of vertices, which are not in the giant
component but in components of size at least cN goes to zero in probability, which
is a stronger result than the stated claim.

9. Proof of Theorem 1.9. We fix k ∈ N and choose cN := k + 1. By Proposi-
tion 6.1, we have

lim
N→∞

1

N
E

[
N∑

v=1

1{#CN(v) ≤ k}
]

= lim
N→∞ P

(
#CN(V ) ≤ k

)= P(#T ≤ k),

and Proposition 7.1 yields

var
(

1

N
1{#CN(v) ≤ k}

)
= var

(
1

N
1{#CN(v) ≥ cN }

)
→ 0.

This implies the statement, as k is arbitrary.
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10. Proof of Theorem 1.6. The equivalence of the divergence of the sequence
in Theorem 1.6, and the criterion I = ∅ stated in (i) of Remark 1.7 follows from
the bounds on the spectral radius of the operators Aα given in the proof of Propo-
sition 1.10. Moreover, it is easy to see from the arguments of Section 3 that the
survival of the INT under percolation with retention parameter p is equivalent to
the existence of 0 < α < 1 such that

ρ(pAα) = pρ(Aα) ≤ 1.

Hence, to complete the proof of Theorem 1.6 and Remark 1.7, it suffices to show
that, for a fixed retention parameter 0 < p < 1, the existence of a giant component
for the percolated network is equivalent to the survival of the INT under percola-
tion with retention parameter p. We now give a sketch of this by showing how the
corresponding arguments in the proof of Theorem 1.8 have to be modified.

As in the proof of Theorem 1.8 the main part of the argument consists of cou-
plings of the exploration process of the neighborhood of a vertex in the network
to increasingly simple objects. To begin with we have to couple the exploration
of vertices in the percolated network and the percolated labeled tree, using argu-
ments as in Section 5. We only modify the exploration processes a little: whenever
we find a new vertex, instead of automatically declaring it active, we declare it ac-
tive with probability p and passive otherwise. We do this independently for each
newly found vertex. We still explore at every step the leftmost active vertex, but we
change the stopping criterion (E1): we now stop the process when we rediscover an
active or passive vertex. We also stop the process when we have discovered more
than 21−p

p
cN passive vertices, calling this event (E3). All other stopping criteria

are retained literally.
By a simple application of the strong law of large numbers we see that the

probability of stopping in the event (E3) converges to zero. The proof of Lem-
ma 5.2 carries over to our case, as it only uses that the number of dead, active and
passive vertices is bounded by a constant multiple of cN . Hence the coupling of
explorations is successful with high probability.

Similarly, the coupling of the exploration processes for the random labeled tree
and the idealized neighborhood tree constructed in Section 6 can be performed so
that under the assumption on the parameters given in Proposition 6.1, we have

#C∗
N(V ) ∧ cN = #T∗ ∧ cN with high probability,

where C∗
N(v) denotes the connected component in the percolated network, which

contains the vertex v, and T∗ is the percolated INT.
In order to analyze the variance of the number of vertices in large clusters of the

percolated network, we modify the exploration processes described in the proof of
Proposition 7.1 a little: in the first exploration we activate newly unveiled vertices
with probability p and declare them passive otherwise. We always explore the
neighborhood of the leftmost active vertex and investigate its links to the set of
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veiled or passive vertices from left to right, possibly activating a passive vertex
when it is revisited. We stop the exploration in the events (A), (B) and (C) as before
and, additionally, if the number of passive vertices exceeds 21−p

p
cN , calling this

event (A′). As before, the probability of stopping in (A′) goes to zero by the strong
law of large numbers.

The exploration of the second cluster follows the same rules as that of the first,
treating vertices that were left active, semi-active or passive in the first exploration
as veiled. In addition to the stopping events (A), (A′), (B) and (C) we also stop
in the event (D) when a vertex is unveiled which was also unveiled in the first
exploration. This vertex may have been active, semi-active or passive at the end of
the first exploration. We then introduce the event Ev that the first exploration ends
in events (A), (A′) or (B), events E

v,w
1 and E

v,w
3 as before, and event E

v,w
2 that

w remained veiled in the first exploration and the second exploration ends in (A),
(A′) or (B). We can write

N∑
v=1

N∑
w=1

P
(
#C′

N(v) ≥ cN,#C′
N(w) ≥ cN

)≤ N∑
v=1

P(Ev)

3∑
k=1

N∑
w=1

P(E
v,w
k |Ev),

where C′
N(v) denotes the connected component of v in the percolated network.

The summand corresponding to k = 1 can be estimated as before. For the other
summands we describe the configuration after the first exploration as an element k

of

{open, closed, removed, unexplored}EN ,

where edges corresponding to the creation of passive vertices are considered as
“removed.” We again obtain that P(E

v,w
2 |Ek) ≤ P(Ew) using the fact that if in

the second exploration we ever encounter an edge which is open or removed in
the configuration k, the second exploration ends in (D), and E

v,w
2 does not occur.

Finally, the estimate of P(E
v,w
3 |Ek) carries over to our situation as it relies only on

the fact that the number of unveiled vertices in the first exploration is bounded by
a constant multiple of cN . We thus obtain a result analogous to Proposition 7.1.

Using straightforward analogues of the results in Section 4 we can now show
that the existence of a giant component for the percolated network is equivalent
to the survival of the INT under percolation with retention parameter p using the
argument of Section 8. This completes the proof of Theorem 1.6.

APPENDIX

In this Appendix we provide two auxiliary coupling lemmas.

LEMMA A.1. Let λ ≥ 0 and p ∈ [0,1], X(1) Poisson distributed with param-
eter λ, and X(2) Bernoulli distributed with parameter p. Then there exists a cou-
pling of these two random variables such that

P
(
X(1) �= X(2))≤ λ2 + |λ − p|.
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PROOF. We only need to consider the case where λ ∈ [0,1]. Then X(1) can be
coupled to a Bernoulli distributed random variable X with parameter λ, such that
P(X(1) �= X) = λ − λe−λ ≤ λ2. Moreover, X and X(2) can be coupled such that
P(X �= X(2)) = |p − λ|. The two facts together imply the statement. �

LEMMA A.2. Let Y be standard exponentially distributed and X uniformly
distributed on {1, . . . ,N}. Then X and Y can be coupled in such a way that

P
(
X �= πN(−Y)

)≤ CA.2
logN

N

for the function πN defined at the beginning of Section 6.

PROOF. For 2 ≤ k ≤ N , we have

P
(
πN(−Y) = k

)= P

(
N−1∑
j=k

1

j
≤ Y <

N−1∑
j=k−1

1

j

)

= exp

{
−

N−1∑
j=k

1

j

}
− exp

{
−

N−1∑
j=k−1

1

j

}
.

Since
∑N−1

j=k−1
1
j

≥ log N
k−1 and ex ≤ 1 + x + x2 for x ∈ [1,2], we get

P
(
πN(−Y) = k

)= exp

{
−

N−1∑
j=k−1

1

j

}(
e1/(k−1) − 1

)

≤ k − 1

N

(
1

k − 1
+ 1

(k − 1)2

)
≤ 1

N
+ 2

Nk
.

Similarly, one obtains that P(πN(−Y) = k) ≥ 1
N

− 2
Nk

. Hence we can couple the
random variables so that, for a suitable constant CA.2 > 0,

P
(
X �= πN(−Y)

)≤
N∑

k=2

∣∣∣∣P(πN(−Y) = k
)− 1

N

∣∣∣∣≤ CA.2
logN

N
.

�
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