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FROM STEIN IDENTITIES TO MODERATE DEVIATIONS

BY LOUIS H. Y. CHEN1, XIAO FANG1 AND QI-MAN SHAO2

National University of Singapore, National University of Singapore and Hong
Kong University of Science and Technology

Stein’s method is applied to obtain a general Cramér-type moderate de-
viation result for dependent random variables whose dependence is defined
in terms of a Stein identity. A corollary for zero-bias coupling is deduced.
The result is also applied to a combinatorial central limit theorem, a gen-
eral system of binary codes, the anti-voter model on a complete graph, and
the Curie–Weiss model. A general moderate deviation result for independent
random variables is also proved.

1. Introduction. Moderate deviations date back to Cramér (1938) who ob-
tained expansions for tail probabilities for sums of independent random variables
about the normal distribution. For independent and identically distributed random
variables X1, . . . ,Xn with EXi = 0 and Var(Xi) = 1 such that Eet0|X1| ≤ c < ∞
for some t0 > 0, it follows from Petrov [(1975), Chapter 8, equation (2.41)] that

P(Wn > x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n(1.1)

for 0 ≤ x ≤ a0n
1/6, where Wn = (X1 + · · · + Xn)/

√
n and � is the standard nor-

mal distribution function, a0 > 0 depends on c and t0 and O(1) is bounded by a
constant depending on c and t0. The range 0 ≤ x ≤ a0n

1/6 and the order of the
error term O(1)(1 + x3)/

√
n are optimal.

The proof of (1.1) depends on the conjugate method and a Berry–Esseen
bound, while the classical proof of Berry–Esseen bound for independent random
variables uses the Fourier transform. However, for dependent random variables,
Stein’s method performs much better than the method of Fourier transform. Stein’s
method was introduced by Charles Stein in 1972 and further developed by him
in 1986. Extensive applications of Stein’s method to obtain Berry–Esseen-type
bounds for dependent random variables can be found in, for example, Diaconis
(1977), Baldi, Rinott and Stein (1989), Barbour (1990), Dembo and Rinott (1996),
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Goldstein and Reinert (1997), Chen and Shao (2004), Chatterjee (2008) and
Nourdin and Peccati (2009). Recent applications to concentration of measures and
large deviations can be found in, for example, Chatterjee (2007) and Chatterjee
and Dey (2010). Expositions of Stein’s method and its applications in normal and
other distributional approximations can be found in Diaconis and Holmes (2004)
and Barbour and Chen (2005).

In this paper we apply Stein’s method to obtain a Cramér-type moderate devia-
tion result for dependent random variables whose dependence is defined in terms
of an identity, called Stein identity, which plays a central role in Stein’s method.
A corollary for zero-bias coupling is deduced. The result is then applied to a com-
binatorial central limit theorem, the anti-voter model, a general system of binary
codes and the Curie–Weiss model. The bounds obtained in these examples are as
in (1.1) and therefore may be optimal (see Remark 4.1). It is noted that Raič (2007)
also used Stein’s method to obtain moderate deviation results for dependent ran-
dom variables. However, the dependence structure he considered is related to local
dependence and is of a different nature from what we assume through the Stein
identity.

This paper is organized as follows. Section 2 is devoted to a description of
Stein’s method and to the construction of Stein identities using zero-bias coupling
and exchangeable pairs. Section 3 presents a general Cramér-type moderate devi-
ation result and a corollary for zero-bias coupling. The result is applied to the four
examples mentioned above in Section 4. Although the general Cramér-type mod-
erate deviation result cannot be applied directly to unbounded independent random
variables, the proof of the general result can be adapted to prove (1.1) under less
stringent conditions, thereby extending a result of Linnik (1961). These are also
presented in Section 4. The rest of the paper is devoted to proofs.

2. Stein’s method and Stein’s identity. Let W be the random variable of
interest and Z be another random variable. In approximating L(W) by L(Z) using
Stein’s method, the difference between Eh(W) and Eh(Z) for a class of functions
h is expressed as

Eh(W) − Eh(Z) = E
{
Lfh(W)

}
,(2.1)

where L is a linear operator and fh a bounded solution of the equation Lf = h −
Eh(Z). It is known that for N(0,1), Lf (w) = f ′(w) − wf (w) [see Stein (1972)]
and for Poisson(λ), Lf (w) = λf (w+1)−wf (w); see Chen (1975). However, L is
not unique. For example, for normal approximation L can also be the generator of
the Ornstein–Uhlenbeck process, and for Poisson approximation L, the generator
of an immigration-death process. The solution fh will then be expressed in terms
of a Markov process. This generator approach to Stein’s method is due to Barbour
(1988, 1990).

By (2.1), bounding Eh(W)−Eh(Z) is equivalent to bounding E{Lfh(W)}. To
bound the latter one finds another operator L̃ such that E{L̃f (W)} = 0, for a class
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of functions f including fh, and write L̃ = L − R for a suitable operator R. The
error term E{Lfh(W)} is then expressed as E{Rfh(W)}. The equation

E
{
L̃f (W)

} = 0(2.2)

for a class of functions f including fh, is called a Stein identity for L(W). For
normal approximation, there are four methods for constructing a Stein identity: the
direct method [Stein (1972)], zero-bias coupling [Goldstein and Reinert (1997) and
Goldstein (2005)], exchangeable pairs [Stein (1986)] and Stein coupling [Chen and
Röllin (2010)]. We discuss below the construction of Stein identities using zero-
bias coupling and exchangeable pairs. As proved in Goldstein and Reinert (1997),
for W with EW = 0 and Var(W) = 1, there always exists W ∗ such that

E
(
Wf (W)

) = Ef ′(W ∗)
(2.3)

for all bounded absolutely continuous f with bounded derivative f ′. The distribu-
tion of W ∗ is called W -zero-biased. If W and W ∗ are defined on the same proba-
bility space (zero-bias coupling), we may write � = W ∗ − W . Then by (2.3), we
obtain the Stein identity

E
(
Wf (W)

) = Ef ′(W + �) = E

∫ ∞
−∞

f ′(W + t) dμ(t |W),(2.4)

where μ(·|W) is the conditional distribution of � given W . Here L̃(w) =∫ ∞
−∞ f ′(w + t) dμ(t |W = w) − wf (w).

The method of exchangeable pairs [Stein (1986)] consists of constructing W ′
such that (W,W ′) is exchangeable. Then for any anti-symmetric function F(·, ·),
that is, F(w,w′) = −F(w′,w),

EF
(
W,W ′) = 0,

if the expectation exists. Suppose that there exist a constant λ (0 < λ < 1) and a
random variable R such that

E
(
W − W ′|W ) = λ

(
W − E(R|W)

)
.(2.5)

Then for all f ,

E
{(

W − W ′)(f (W) + f
(
W ′))} = 0,

provided the expectation exists. This gives the Stein identity

E
(
Wf (W)

) = − 1

2λ
E

{(
W − W ′)(f (

W ′) − f (W)
)} + E

(
Rf (W)

)
(2.6)

= E

∫ ∞
−∞

f ′(W + t)K̂(t) dt + E
(
Rf (W)

)
for all absolutely continuous functions f for which expectations exist, where
K̂(t) = 1

2λ
�(I (0 ≤ t ≤ �) − I (� ≤ t < 0)) and � = W ′ − W . In this case,

L̃(w) = ∫ ∞
−∞ f ′(w + t)E(K̂(t)|W = w)dt + E(R|W = w)f (w) − wf (w).
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Both Stein identities (2.4) and (2.6) are special cases of

E
(
Wf (W)

) = E

∫ ∞
−∞

f ′(W + t) dμ̂(t) + E
(
Rf (W)

)
,(2.7)

where μ̂ is a random measure. We will prove a moderate deviation result by as-
suming that W satisfies the Stein identity (2.7).

3. A Cramér-type moderate deviation theorem. Let W be a random vari-
able of interest. Assume that there exist a deterministic positive constant δ, a ran-
dom positive measure μ̂ with support [−δ, δ] and a random variable R such that

E
(
Wf (W)

) = E

∫
|t |≤δ

f ′(W + t) dμ̂(t) + E
(
Rf (W)

)
(3.1)

for all absolutely continuous function f for which the expectation of either side
exists. Let

D =
∫
|t |≤δ

dμ̂(t).(3.2)

THEOREM 3.1. Suppose that there exist constants δ1, δ2 and θ ≥ 1 such that∣∣E(D|W) − 1
∣∣ ≤ δ1

(
1 + |W |),(3.3) ∣∣E(R|W)

∣∣ ≤ δ2
(
1 + |W |) or

(3.4) ∣∣E(R|W)
∣∣ ≤ δ2

(
1 + W 2)

and δ2|W | ≤ α < 1

and

E(D|W) ≤ θ.(3.5)

Then

P(W > x)

1 − �(x)
= 1 + Oα(1)θ3(

1 + x3)
(δ + δ1 + δ2)(3.6)

for 0 ≤ x ≤ θ−1 min(δ−1/3, δ
−1/3
1 , δ

−1/3
2 ), where Oα(1) denotes a quantity whose

absolute value is bounded by a universal constant which depends on α only under
the second alternative of (3.4).

REMARK 3.1. Theorem 3.1 is intended for bounded random variables but
with very general dependence assumptions. For this reason, the support of the ran-
dom measure μ̂ is assumed to be within [−δ, δ] where δ is typically of the order
of 1/

√
n due to standardization. In order for the normal approximation to work,

E(D|W) should be close to 1 and E(R|W) small. This is reflected in δ1 and δ2
which are assumed to be small.
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For zero-bias coupling, D = 1 and R = 0, so conditions (3.3), (3.4) and (3.5)
are satisfied with δ1 = δ2 = 0 and θ = 1. Therefore, we have:

COROLLARY 3.1. Let W and W ∗ be defined on the same probability space
satisfying (2.3). Assume that EW = 0, EW 2 = 1 and |W − W ∗| ≤ δ for some
constant δ. Then

P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

δ

for 0 ≤ x ≤ δ−1/3.

REMARK 3.2. For an exchangeable pair (W,W ′) satisfying (2.5) and |�| ≤ δ,
(3.1) is satisfied with D = �2/(2λ).

REMARK 3.3. Although one cannot apply Theorem 3.1 directly to unbounded
random variables, one can adapt the proof of Theorem 3.1 to give a proof of (1.1)
for independent random variables assuming the existence of the moment generat-
ing functions of |Xi |1/2 thereby extending a result of Linnik (1961). This result
is given in Proposition 4.6. The proof also suggests the possibility of extending
Theorem 3.1 to the case where the support of μ̂ may not be bounded.

4. Applications. In this section we apply Theorem 3.1 to four cases of de-
pendent random variables, namely, a combinatorial central limit theorem, the anti-
voter model on a complete graph, a general system of binary codes, and the Curie–
Weiss model. The proofs of the results for the third and the fourth example will
be given in the last section. At the end of this section, we will present a moderate
deviation result for sums of independent random variables and the proof will also
be given in the last section.

4.1. Combinatorial central limit theorem. Let {aij }ni,j=1 be an array of real
numbers satisfying

∑n
j=1 aij = 0 for all i and

∑n
i=1 aij = 0 for all j . Set c0 =

maxi,j |aij | and W = ∑n
i=1 aiπ(i)/σ , where π is a uniform random permutation

of {1,2, . . . , n} and σ 2 = E(
∑n

i=1 aiπ(i))
2. In Goldstein (2005) W is coupled with

the zero-biased W ∗ in such a way that |�| = |W ∗ − W | ≤ 8c0/σ . Therefore, by
Corollary 3.1 with δ = 8c0/σ , we have

P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

c0/σ(4.1)

for 0 ≤ x ≤ (σ/c0)
1/3.
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4.2. Anti-voter model on a complete graph. Consider the anti-voter model on
a complete graph with n vertices, 1, . . . , n and (n − 1)n/2 edges. Let Xi be a
random variable taking value 1 or −1 at the vertex i, i = 1, . . . , n.

Let X = (X1, . . . ,Xn), where Xi takes values 1 or −1. The anti-voter model in
discrete time is described as the following Markov chain: in each step, uniformly
pick a vertex I and an edge connecting it to J , and then change XI to −XJ . Let
U = ∑n

i=1 Xi and W = U/σ , where σ 2 = Var(U). Let W ′ = (U − XI − XJ )/σ ,
where I is uniformly distributed on {1,2, . . . , n} independent of other random vari-
ables. Consider the case where the distribution of X is the stationary distribution.
Then as shown in Rinott and Rotar (1997), (W,W ′) is an exchangeable pair and

E
(
W − W ′|W ) = 2

n
W.(4.2)

According to (2.6), (3.1) is satisfied with δ = 2/σ and R = 0. To check conditions
(3.3) and (3.5), let T denote the number of 1’s among X1, . . . ,Xn, a be the number
of edges connecting two 1’s, b be the number of edges connecting two −1’s and
c be the number of edges connecting 1 and −1. Since it is a complete graph,
a = T (T −1)

2 , b = (n−T )(n−T −1)
2 . Therefore [see, e.g., Rinott and Rotar (1997)]

E
[(

W − W ′)2|X] = 1

σ 2 E
[(

U ′ − U
)2|X] = 4

σ 2

2a + 2b

n(n − 1)
(4.3)

= 1

σ 2

2U2 + 2n2 − 4n

n(n − 1)
= 2σ 2W 2 + 2n2 − 4n

σ 2n(n − 1)
,

E(D|W) − 1 = n

4
E

((
W ′ − W

)2|W ) − 1
(4.4)

= W 2

2(n − 1)
− 2σ 2(n − 1) − (n2 − 2n)

2σ 2(n − 1)
.

Noting that E(E(D|W) − 1) = 0 and EW 2 = 1, we have σ 2 = n2−2n
2n−3 . Hence

E(D|W) − 1 = W 2

2(n − 1)
− 1

2(n − 1)
,(4.5)

which means that (3.3) is satisfied with δ1 = O(n−1/2). Thus, we have the follow-
ing moderate deviation result.

PROPOSITION 4.1. We have

P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n

for 0 ≤ x ≤ n1/6.
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4.3. A general system of binary codes. In Chen, Hwang and Zacharovas
(2011), a general system of binary codes is defined as follows. Suppose each non-
negative integer x is coded by a binary string consisting of 0’s and 1’s. Let S̃(x)

denote the number of 1’s in the resulting coding string of x, and let

S̃ = (
S̃(0), S̃(1), . . .

)
.(4.6)

For each nonnegative integer n, define S̃n = S̃(X), where X is a random integer
uniformly distributed over the set {0,1, . . . , n}. The general system of binary codes
introduced by Chen, Hwang and Zacharovas (2011) is one in which

S̃2m−1 = S̃m−1 + I in distribution for all m ≥ 1,(4.7)

where I is an independent Bernoulli(1/2) random variable. Chen, Hwang and
Zacharovas (2011) proved the asymptotic normality of S̃n. Here, we apply Theo-
rem 3.1 to obtain the following Cramér moderate deviation result. For n ≥ 1, let
integer k be such that 2k−1 − 1 < n ≤ 2k − 1, and let W̃n = (S̃n − k/2)/

√
k/4.

PROPOSITION 4.2. Under the assumption (4.7), we have

P(W̃n ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3) 1√

k
(4.8)

for 0 ≤ x ≤ k1/6.

As an example of this system of binary codes, we consider the binary expansion
of a random integer X uniformly distributed over {0,1, . . . , n}. For 2k−1 −1 < n ≤
2k − 1, write X as

X =
k∑

i=1

Xi2
k−i ,

and let Sn = X1 + · · · + Xk . Set Wn = (Sn − k/2)/
√

k/4. It is easy to verify that
Sn satisfies (4.7). A Berry–Esseen bound for Wn was first obtained by Diaconis
(1977). Proposition 4.2 provides a Cramér moderate deviation result for Wn. Other
examples of this system of binary codes include the binary reflected Gray code and
a coding system using translation and complementation. Detailed descriptions of
these codes are given in Chen, Hwang and Zacharovas (2011).

4.4. Curie–Weiss model. Consider the Curie–Weiss model for n spins 
 =
(σ1, σ2, . . . , σn) ∈ {−1,1}n. The joint distribution of 
 is given by

Z−1
β,h exp

(
β

n

∑
1≤i<j≤n

σiσj + βh

n∑
i=1

σi

)
,

where Zβ,h is the normalizing constant, and β > 0, h ∈ R are called the inverse
of temperature and the external field, respectively. We are interested in the total
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magnetization S = ∑n
i=1 σi . We divide the region β > 0, h ∈ R into three parts,

and for each part, we list the concentration property and the limiting distribution
of S under proper standardization. Consider the solution(s) to the equation

m = tanh
(
β(m + h)

)
.(4.9)

Case 1. 0 < β < 1, h ∈ R or β ≥ 1, h 	= 0. There is a unique solution m0 to
(4.9) such that m0h ≥ 0. In this case, S/n is concentrated around m0 and has a
Gaussian limit under proper standardization.

Case 2. β > 1, h = 0. There are two nonzero solutions to (4.9), m1 < 0 < m2,
where m1 = −m2. Given condition on S < 0 (S > 0, resp.), S/n is concentrated
around m1 (m2, resp.) and has a Gaussian limit under proper standardization.

Case 3. β = 1, h = 0. S/n is concentrated around 0, but the limit distribution
is not Gaussian.

We refer to Ellis (1985) for the concentration of measure results, Ellis and New-
man (1978a, 1978b) for the results on limiting distributions. See also Chatterjee
and Shao (2011) for a Berry–Esseen-type bound when the limiting distribution is
not Gaussian. Here we focus on the Gaussian case and prove the following two
Cramér moderate deviation results for cases 1 and 2.

PROPOSITION 4.3. In case 1, define

W = S − nm0

σ
,(4.10)

where

σ 2 = n(1 − m2
0)

1 − (1 − m2
0)β

.(4.11)

Then we have
P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n(4.12)

for 0 ≤ x ≤ n1/6.

PROPOSITION 4.4. In case 2, define

W1 = S − nm1

σ1
, W2 = S − nm2

σ2
,(4.13)

where

σ 2
1 = n(1 − m2

1)

1 − (1 − m2
1)β

, σ 2
2 = n(1 − m2

2)

1 − (1 − m2
2)β

.(4.14)

Then we have
P(W1 ≥ x|S < 0)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n(4.15)
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and

P(W2 ≥ x|S > 0)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n(4.16)

for 0 ≤ x ≤ n1/6.

4.5. Independent random variables. Moderate deviation for independent ran-
dom variables has been extensively studied in literature [see, e.g., Petrov (1975),
Chapter 8] based on the conjugated method. Here, we will adapt the proof of The-
orem 3.1 to prove the following moderate deviation result, which is a variant of
those in the literature [see again Petrov (1975), Chapter 8].

PROPOSITION 4.5. Let ξi,1 ≤ i ≤ n be independent random variables with
Eξi = 0 and Eetn|ξi | < ∞ for some tn and for each 1 ≤ i ≤ n. Assume that

n∑
i=1

Eξ2
i = 1.(4.17)

Then

P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

γ e4x3γ(4.18)

for 0 ≤ x ≤ tn, where γ = ∑n
i=1 E|ξi |3ex|ξi |.

We deduce (1.1) under less stringent conditions from Proposition 4.5 and extend
a result of Linnik (1961) to independent but not necessarily identically distributed
random variables.

PROPOSITION 4.6. Let Xi,1 ≤ i ≤ n be a sequence of independent random
variables with EXi = 0. Put Sn = ∑n

i=1 Xi and B2
n = ∑n

i=1 EX2
i . Assume that

there exists positive constants c1, c2 and t0 such that

B2
n ≥ c2

1n, Eet0
√|Xi | ≤ c2 for 1 ≤ i ≤ n.(4.19)

Then

P(Sn/Bn ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n(4.20)

for 0 ≤ x ≤ (c1t
2
0 )1/3n1/6, where O(1) is bounded by a constant depending on c2

and c1t
2
0 . In particular, we have

P(Sn/Bn ≥ x)

1 − �(x)
→ 1(4.21)

uniformly in 0 ≤ x ≤ o(n1/6).



MODERATE DEVIATIONS 271

PROOF. The main idea is first truncating Xi and then applying Proposition 4.5
to the truncated sequence. Let

τn = (
c2

1t0n
)1/32−2/3, X̄i = Xi1

(|Xi | ≤ τ 2
n

)
, S̄n =

n∑
i=1

X̄i .

Observe that ∣∣P(Sn/Bn ≥ x) − P(S̄n/Bn ≥ x)
∣∣

≤
n∑

i=1

P
(|Xi | ≥ τ 2

n

)

≤
n∑

i=1

e−t0τnEet0
√|Xi | ≤ c2ne−t0τn

= O(1)
(
1 − �(x)

)(
1 + x3)

/
√

n

for 0 ≤ x ≤ (c1t
2
0 )1/3n1/6; here we used the fact that

t0τn = (
c1t

2
0
)2/3

n1/32−2/3.

Now let ξi = (X̄i − EX̄i)/B̄n, where B̄2
n = ∑n

i=1 Var(X̄i). It is easy to see that

n∑
i=1

|EX̄i | ≤
n∑

i=1

E|Xi |1(|Xi | ≥ τ 2
n

)

≤
n∑

i=1

sup
s≥τn

(
s2e−t0s

)
Eet0

√|Xi |(4.22)

≤ c2nc1
(
c1t

2
0
)−1 sup

s≥t0τn

(
s2e−s) = c1o

(
n−2)

and similarly, B̄n = Bn(1 + o(n−2)). Thus, for 0 ≤ x ≤ (c1t
2
0 )1/3n1/6

x|ξi | ≤ 21/3x

c1n1/2 |Xi |1(|Xi | ≤ τ 2
n

) + o(1) ≤ 21/3xτn

c1n1/2

√|Xi | + o(1)

≤ t0

21/3

√|Xi | + o(1)

and hence γ = O(n−1/2). Applying Proposition 4.5 to {ξi,1 ≤ i ≤ n} gives (4.20).
�

REMARK 4.1. As stated previously for (1.1) in the Introduction, the range
0 ≤ x ≤ (c1t

2
0 )1/3n1/6 and the order of the error term O(1)(1 + x3)/

√
n in Propo-

sition 4.6 are optimal. By comparing with (1.1) the results in the four examples
discussed above may be optimal.
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5. Preliminary lemmas. To prove Theorem 3.1, we first need to develop two
preliminary lemmas. Our first lemma gives a bound for the moment generating
function of W .

LEMMA 5.1. Let W be a random variable with E|W | ≤ C. Assume that there
exist δ > 0, δ1 ≥ 0,0 ≤ δ2 ≤ 1/4 and θ ≥ 1 such that (3.1) and (3.3)–(3.5) are
satisfied. Then for all 0 < t ≤ 1/(2δ) satisfying

tδ1 + Cαtθδ2 ≤ 1/2,(5.1)

where

Cα =
⎧⎨
⎩

12, under the first alternative of (3.4),
2(3 + α)

1 − α
, under the second alternative of (3.4),

(5.2)

we have

EetW ≤ exp
(
t2/2 + c0(t)

)
,(5.3)

where

c0(t) = c1(C,Cα)θ
{
δ2t + δ1t

2 + (δ + δ1 + δ2)t
3}

,(5.4)

where c1(C,Cα) is a constant depending only on C and Cα .

PROOF. Fix a > 0, t ∈ (0,1/(2δ)] and s ∈ (0, t], and let f (w) = es(w∧a). Let-
ting h(s) = Ees(W∧a), firstly we prove that h′(s) can be bounded by sh(s) and
EW 2f (W). By (3.1),

h′(s) = E(W ∧ a)es(W∧a) ≤ E
(
Wf (W)

)
= E

∫
f ′(W + t) dμ̂(t) + E

(
Rf (W)

)

= sE

∫
es(W+t)I (W + t ≤ a)dμ̂(t) + E

(
es(W∧a)E(R|W)

)

≤ sE

∫
es[(W+t)∧a] dμ̂(t) + E

(
es(W∧a)E(R|W)

)

≤ sE

∫
es(W∧a+δ) dμ̂(t) + E

(
es(W∧a)E(R|W)

)

= sE

∫
es(W∧a) dμ̂(t) + sE

∫
es(W∧a)(esδ − 1

)
dμ̂(t)

+ E
(
es(W∧a)E(R|W)

)
≤ sEes(W∧a)D + sEes(W∧a)

∣∣esδ − 1
∣∣D + 2δ2E

((
1 + W 2)

es(W∧a)),
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where we have applied (3.2) and (3.4) to obtain the last inequality. Now, applying
the simple inequality ∣∣ex − 1

∣∣ ≤ 2|x| for |x| ≤ 1,

and then (3.3), we find that

E
(
Wf (W)

) ≤ sEes(W∧a)D + sEes(W∧a)2sδD + 2δ2E
((

1 + W 2)
es(W∧a))

≤ sEes(W∧a)E(D|W) + 2s2θδEes(W∧a) + 2δ2E
((

1 + W 2)
es(W∧a))

= sEes(W∧a) + sEes(W∧a)[E(D|W) − 1
]

+ 2s2θδEes(W∧a) + 2δ2E
((

1 + W 2)
es(W∧a))

≤ sEes(W∧a) + sδ1Ees(W∧a)(1 + |W |) + 2s2θδEes(W∧a)

+ 2δ2E
((

1 + W 2)
es(W∧a)).

Note that

E|W |es(W∧a) = EWes(W∧a) + 2EW−es(W∧a)

(5.5)
≤ E

(
Wf (W)

) + 2E|W | ≤ 2C + E
(
Wf (W)

)
.

Collecting terms, we obtain

h′(s) ≤ E
(
Wf (W)

)
≤ {(

s(1 + δ1 + 2tθδ) + 2δ2
)
h(s) + 2δ2EW 2f (W) + 2Csδ1

}
(5.6)

/(1 − sδ1).

Secondly, we show that EW 2f (W) can be bounded by a function of h(s) and
h′(s). Letting g(w) = wes(w∧a), and then arguing as for (5.6),

EW 2f (W) = EWg(W)

= E

∫ (
es[(W+t)∧a] + s(W + t)es[(W+t)∧a]I (W + t ≤ a)

)
dμ̂(t)

+ E
(
RWf (W)

)
≤ E

∫ (
es(W∧a)esδ + s

[
(W + t) ∧ a

]
es(W∧a)esδ)dμ̂(t)

(5.7)
+ E

(
RWf (W)

)
= esδE

(
f (W) + sf (W)

(
(W ∧ a) + δ

))
D + E

(
RWf (W)

)
≤ θe0.5(1 + 0.5)Ef (W) + sθesδE(W ∧ a)f (W) + E

(
RWf (W)

)
≤ 1.5e0.5θh(s) + 2sθh′(s) + E

(
RWf (W)

)
.
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Note that under the first alternative of (3.4),
∣∣E(

RWf (W)
)∣∣ ≤ δ2Ef (W) + 2δ2EW 2f (W),(5.8)

and under the second alternative of (3.4),
∣∣E(

RWf (W)
)∣∣ ≤ αEf (W) + αEW 2f (W).(5.9)

Thus, recalling δ2 ≤ 1/4 and α < 1, we have

EW 2f (W) ≤ Cα

2

(
θh(s) + sθh′(s)

)
,(5.10)

where Cα is defined in (5.2).
We are now ready to prove (5.3). Substituting (5.10) into (5.6) yields

(1 − sδ1)h
′(s) ≤ (

s(1 + δ1 + 2tθδ) + 2δ2
)
h(s)

+ δ2Cα

(
θh(s) + sθh′(s)

) + 2Csδ1

= (
s(1 + δ1 + 2tθδ) + 2δ2(1 + Cαθ)

)
h(s)

(5.11)
+ Cαsθδ2h

′(s) + 2Csδ1

≤ (
s(1 + δ1 + 2tθδ) + 2δ2(1 + Cαθ)

)
h(s)

+ Cαtθδ2h
′(s) + 2Csδ1.

Solving for h′(s), we obtain

h′(s) ≤ (
sc1(t) + c2(t)

)
h(s) + 2Csδ1

1 − c3(t)
,(5.12)

where

c1(t) = 1 + δ1 + 2tθδ

1 − c3(t)
,

c2(t) = 2δ2(1 + Cαθ)

1 − c3(t)
,

c3(t) = tδ1 + Cαtθδ2.

Now taking t to satisfy (5.1) yields c3(t) ≤ 1/2, so in particular, ci(t) is nonnega-
tive for i = 1,2 and 1/(1 − c3(t)) ≤ 1 + 2c3(t).

Solving (5.12), we have

h(s) ≤ exp
(

t2

2
c1(t) + tc2(t) + 2Cδ1t

2
)
.(5.13)
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Note that c3(t) ≤ 1/2, δ2 ≤ 1/4 and θ ≥ 1. Elementary calculations now give

t2

2

(
c1(t) − 1

) + tc2(t) + 2Cδ1t
2

= t2

2

δ1 + 2tθδ + c3(t)

1 − c3(t)
+ 2tδ2(1 + Cαθ)

1 − c3(t)
+ 2Cδ1t

2

≤ t2(δ1 + 2tθδ + tδ1 + Cαtθδ2) + 4tδ2(1 + Cα) + 2Cδ1t
2

≤ c0(t),

and hence

t2c1(t)/2 + tc2(t) + 2Cδ1t
2 ≤ t2/2 + c0(t),

thus proving (5.3) by letting a → ∞. �

LEMMA 5.2. Suppose that for some nonnegative δ, δ1 and δ2, satisfying
max(δ, δ1, δ2) ≤ 1 and θ ≥ 1, (5.3) is satisfied, with c0(t) as in (5.4), for all

t ∈ [
0, θ−1 min

(
δ−1/3, δ

−1/3
1 , δ

−1/3
2

)]
.(5.14)

Then for integers k ≥ 1,∫ t

0
ukeu2/2P(W ≥ u)du ≤ c2(C,Cα)tk,(5.15)

where c2(C,Cα) is a constant depending only on C and Cα defined in Lemma 5.1.

PROOF. For t satisfying (5.14), it is easy to see that c0(t) ≤ 5c1(C,Cα), where
c1(C,Cα) is as in Lemma 5.1, and (5.1) is satisfied. Write∫ t

0
ukeu2/2P(W ≥ u)du

=
∫ [t]

0
ukeu2/2P(W ≥ u)du +

∫ t

[t]
ukeu2/2P(W ≥ u)du,

where [t] denotes the integer part of t . For the first integral, noting that
supj−1≤u≤j eu2/2−ju = e(j−1)2/2−j (j−1), we have∫ [t]

0
ukeu2/2P(W ≥ u)du

≤
[t]∑

j=1

jk
∫ j

j−1
eu2/2−juejuP (W ≥ u)du

≤
[t]∑

j=1

jke(j−1)2/2−j (j−1)
∫ j

j−1
ejuP (W ≥ u)du(5.16)
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≤ 2
[t]∑

j=1

jke−j2/2
∫ ∞
−∞

ejuP (W ≥ u)du

= 2
[t]∑

j=1

jke−j2/2(1/j)EejW

≤ 2
[t]∑

j=1

jk−1 exp
(−j2/2 + j2/2 + c0(j)

)

≤ 2ec0(t)
[t]∑

j=1

jk−1

≤ c2(C,Cα)tk.

Similarly, we have

∫ t

[t]
ukeu2/2P(W ≥ u)du

≤ tk
∫ t

[t]
eu2/2−tuetuP (W ≥ u)du

≤ tke[t]2/2−t[t]
∫ t

[t]
etuP (W ≥ u)du

≤ 2tke−t2/2
∫ ∞
−∞

etuP (W ≥ u)du

≤ c2(C,Cα)tk.

This completes the proof. �

6. Proofs of results. In this section, let Oα(1) denote universal constants
which depend on α only under the second alternative of (3.4).

6.1. Proof of Theorem 3.1. If θ−1 min(δ−1/3, δ
−1/3
1 , δ

−1/3
2 ) ≤ Oα(1), then

1/(1 − �(x)) ≤ 1/(1 − �(Oα(1))) for 0 ≤ x ≤ Oα(1). Moreover, θ3(δ + δ1 +
δ2) ≥ Oα(1). Therefore, (3.6) is trivial. Hence, we can assume

θ−1 min
(
δ−1/3, δ

−1/3
1 , δ

−1/3
2

) ≥ Oα(1)(6.1)

so that δ ≤ 1, δ2 ≤ 1/4, δ1 + 2δ2 < 1, and moreover, δ1 + δ2 + α < 1 under the
second alternative of (3.4). Our proof is based on Stein’s method. Let f = fx be
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the solution to the Stein equation

wf (w) − f ′(w) = I (w ≥ x) − (
1 − �(x)

)
.(6.2)

It is known that

f (w) =
{√

2πew2/2(
1 − �(w)

)
�(x), w ≥ x,√

2πew2/2(
1 − �(x)

)
�(w), w < x,

≤ 4

1 + w
1(w ≥ x) + 3

(
1 − �(x)

)
ew2/21(0 < w < x)(6.3)

+ 4
(
1 − �(x)

) 1

1 + |w|1(w ≤ 0)

by using the following well-known inequality:

(
1 − �(w)

)
ew2/2 ≤ min

(
1

2
,

1

w
√

2π

)
, w > 0.

It is also known that wf (w) is an increasing function; see Chen and Shao (2005),
Lemma 2.2. By (3.1) we have

E
(
Wf (W)

) − E
(
Rf (W)

) = E

∫
f ′(W + t) dμ̂(t),(6.4)

and monotonicity of wf (w) and equation (6.2) imply that

f ′(W + t) ≤ (W + δ)f (W + δ) + 1 − �(x) − 1(W ≥ x + δ).(6.5)

Recall that
∫

dμ̂(t) = D. Thus using nonnegativity of μ̂ and combining (6.4) and
(6.5), we have

E
(
Wf (W)

) − E
(
Rf (W)

)
≤ E

∫ (
(W + δ)f (W + δ) − Wf (W)

)
dμ̂(t) + EWf (W)D(6.6)

+ E

∫ {
1 − �(x) − 1(W > x + δ)

}
dμ̂(t).

Now, by (3.2), the expression above can be written

E
(
(W + δ)f (W + δ) − Wf (W)

)
D

+ EWf (W)D + E
{
1 − �(x) − 1(W > x + δ)

}
D

= 1 − �(x) − P(W > x + δ)(6.7)

+ E
(
(W + δ)f (W + δ) − Wf (W)

)
D + EWf (W)D

+ E
{
1 − �(x) − 1(W > x + δ)

}
(D − 1).
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Therefore, we have

P(W > x + δ) − (
1 − �(x)

)
≤ E

(
(W + δ)f (W + δ) − Wf (W)

)
D + EWf (W)(D − 1)

+ E
{
1 − �(x) − 1(W > x + δ)

}
(D − 1) + ERf (W)(6.8)

≤ θE
(
(W + δ)f (W + δ) − Wf (W)

) + δ1E
(|W |(1 + |W |)f (W)

)
+ δ1E

∣∣1 − �(x) − 1(W > x + δ)
∣∣(1 + |W |) + δ2E

(
2 + W 2)

f (W),

where we have again applied the monotonicity of wf (w) as well as (3.5), (3.3)
and (3.4). Hence we have that

P(W > x + δ) − (
1 − �(x)

) ≤ θI1 + δ1I2 + δ1I3 + δ2I4,(6.9)

where

I1 = E
(
(W + δ)f (W + δ) − Wf (W)

)
,

I2 = E
(|W |(1 + |W |)f (W)

)
,

I3 = E
∣∣1 − �(x) − 1(W > x + δ)

∣∣(1 + |W |)
and

I4 = E
(
2 + W 2)

f (W).

By (6.3) we have

Ef (W) ≤ 4P(W > x) + 4
(
1 − �(x)

)
(6.10)

+ 3
(
1 − �(x)

)
EeW 2/21(0 < W ≤ x).

Note that by (3.1) with f (w) = w,

EW 2 = E

∫
dμ̂(t) + E(RW)

= ED + E(RW).

Therefore, under the first alternative of (3.4), EW 2 ≤ (1 + 2δ1 + δ2) + (δ1 +
2δ2)EW 2, and under the second alternative of (3.4), EW 2 ≤ (1+2δ1 +δ2)+ (δ1 +
δ2 + α)EW 2. This shows EW 2 ≤ Oα(1). Hence the hypotheses of Lemma 5.1 is
satisfied with C = Oα(1), and therefore also the conclusion of Lemma 5.2. In par-
ticular,

EeW 2/21(0 < W ≤ x) ≤ P(0 < W ≤ x) +
∫ x

0
yey2/2P(W > y)dy

(6.11)
≤ Oα(1)(1 + x).
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Similarly, by (6.3) again,

EW 2f (W) ≤ 4E|W |1(W > x) + 4
(
1 − �(x)

)
E|W |

+ 3
(
1 − �(x)

)
EW 2eW 2/21(0 < W ≤ x)

and by Lemma 5.2,

EW 2eW 2/21(0 < W ≤ x) ≤
∫ x

0

(
y3 + 2y

)
ey2/2P(W > y)dy

(6.12)
≤ Oα(1)

(
1 + x3)

.

As to

E|W |1(W > x) ≤ P(W > x) + EW 2I (W > x),

it follows from Lemma 5.1 that

P(W > x) ≤ e−x2
EexW = Oα(1)e−x2/2(6.13)

and ∫ ∞
x

tP (W ≥ t) dt ≤ EexW
∫ ∞
x

te−xt dt

= EexWx−2(
1 + x2)

e−x2

(6.14)
≤ Oα(1)e−x2/2x−2(

1 + x2)
≤ Oα(1)e−x2/2

for x ≥ 1. Thus we have for x > 1,

EW 21(W > x) = x2P(W > x) +
∫ ∞
x

2yP (W > y)dy

(6.15)
≤ Oα(1)

(
1 + x2)

e−x2/2 ≤ Oα(1)
(
1 + x3)(

1 − �(x)
)
.

Clearly, (6.15) remains valid for 0 ≤ x ≤ 1 by the fact that EW 21(W > x) ≤
EW 2 ≤ 2. Combining (6.11)–(6.15), we have

I2 ≤ Oα(1)
(
1 + x3)(

1 − �(x)
)
.(6.16)

Similarly,

I4 ≤ Oα(1)
(
1 + x3)(

1 − �(x)
)

(6.17)

and

I3 ≤ (
1 − �(x)

)
E

(
2 + W 2) + E

(
2 + W 2)

1(W ≥ δ + x)
(6.18)

≤ Oα(1)
(
1 + x3)(

1 − �(x)
)
.
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Let g(w) = (wf (w))′. Then I1 = ∫ δ
0 Eg(W + t) dt . It is easy to see that [e.g., Chen

and Shao (2001)]

g(w) =
{(√

2π
(
1 + w2)

ew2/2(
1 − �(w)

) − w
)
�(x), w ≥ x,(√

2π
(
1 + w2)

ew2/2�(w) + w
)(

1 − �(x)
)
, w < x,

(6.19)

and

0 ≤ √
2π

(
1 + w2)

ew2/2(
1 − �(w)

) − w ≤ 2

1 + w3 ,(6.20)

and we have for 0 ≤ t ≤ δ,

Eg(W + t)

= Eg(W + t)1{W + t ≥ x} + Eg(W + t)1{W + t ≤ 0}
+ Eg(W + t)1{0 < W + t < x}

≤ 2

1 + x3 P(W + t ≥ x) + 2
(
1 − �(x)

)
P(W + t ≤ 0)(6.21)

+ √
2π

(
1 − �(x)

)
× E

{(
1 + (W + t)2 + (W + t)

)
e(W+t)2/21{0 < W + t < x}}

= Oα(1)
(
1 + x3)(

1 − �(x)
)

and hence

I1 = Oα(1)δ
(
1 + x3)(

1 − �(x)
)
.(6.22)

Putting (6.9), (6.16), (6.17), (6.18) and (6.22) together gives

P(W ≥ x + δ) − (
1 − �(x)

) ≤ Oα(1)
(
1 − �(x)

)
θ
(
1 + x3)

(δ + δ1 + δ2),

and therefore

P(W ≥ x) − (
1 − �(x)

) ≤ Oα(1)
(
1 − �(x)

)
θ
(
1 + x3)

(δ + δ1 + δ2).(6.23)

As to the lower bound, similarly to (6.5) and (6.8), we have

f ′(W + t) ≥ (W − δ)f (W − δ) + 1 − �(x) − 1(W ≥ x − δ)

and

P(W > x − δ) − (
1 − �(x)

)
≥ θE

(
(W − δ)f (W − δ) − Wf (W)

) − δ1E
(|W |(1 + |W |)f (W)

)
− δ1E

∣∣1 − �(x) − 1(W > x − δ)
∣∣(1 + |W |) − δ2E

(
2 + W 2)

f (W).

Now follwoing the same proof of (6.23) leads to

P(W ≥ x) − (
1 − �(x)

) ≥ −Oα(1)
(
1 − �(x)

)
θ
(
1 + x3)

(δ + δ1 + δ2).

This completes the proof of Theorem 3.1.
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6.2. Proof of Proposition 4.2. For n ≥ 2, X ∼ U{0,1, . . . , n}, let S̃n = S̃(X)

be the number of 1’s in the binary string of X generated in any system of binary
codes satisfying (4.7). Without loss of generality, assume that

S̃(0) = 0.(6.24)

Condition (4.7) allows S̃(X) to be represented in terms of the labels of the
nodes in a binary tree described as follows. Let T̃ be an infinite binary tree. For
k ≥ 0, the nodes of T̃ in the kth generation are denoted by (from left to right)
(Vk,0, . . . , Vk,2k−1). Each node is labeled by 0 or 1. Assume T̃ satisfies:

(C1) the root is labeled by 0;
(C2) the labels of two siblings are different;
(C3) infinite binary subtrees of T̃ with roots {Vk,0 :k ≥ 0} are the same as T̃ .

For 2k−1 − 1 < n ≤ 2k − 1, represent 0, . . . , n by the nodes Vk,0, . . . , Vk,n, re-
spectively. Then S̃(X) is the sum of 1’s in the shortest path from Vk,X to the root
of the tree. Condition (C3) implies that S̃(X) does not depend on k so that the
representation is well defined.

We consider two extreme cases. Define a binary tree T by always assigning 0
to the left sibling and 1 to the right sibling. Then the number of 1’s in the binary
string of X is that in the binary expansion of X. Denote it by Sn(= S(X)). Next,
define a binary tree T̄ by assigning Vk,0 = 0, Vk,1 = 1 for all k and assigning 1 to
the left sibling and 0 to the right sibling for all other nodes. Let the number of 1’s
in the binary string of X on T̄ be S̄n(= S̄(X)). Both T and T̄ are infinity binary
trees satisfying C1, C2 and C3, and both Sn and S̄n satisfy (4.7). It is easy to see
that for all integers n ≥ 0,

Sn ≤st S̃n ≤st S̄n,(6.25)

where ≤st denotes stochastic ordering. Therefore, it suffices to prove Cramér

moderate deviation results for Wn and W̄n where Wn = (Sn − k
2)/

√
k
4 and W̄n =

(S̄n − k
2)/

√
k
4 . We suppress the subscript n in the following and follow Diaconis

(1977) in constructing the exchangeable pair (W,W ′). Let I be a random variable
uniformly distributed over the set {1,2, . . . , k} and independent of X, and let the
random variable X′ be defined by

X′ =
k∑

i=1

X′
i2

k−i ,

where

X′
i =

⎧⎨
⎩

Xi, if i 	= I ,
1, if i = I,XI = 0 and X + 2k−I ≤ n,
0, else.

(6.26)
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Let S′ = S − XI + X′
I , W ′ = (S′ − k/2)/

√
k/4. As proved in Diaconis (1977),

(W,W ′) is an exchangeable pair and

E
(
W − W ′|W ) = λ

(
W −

(
−E(Q|W)√

k

))
,(6.27)

1

2λ
E

((
W − W ′)2|W ) − 1 = −E(Q|W)

k
,(6.28)

where λ = 2/k and Q = ∑k
i=1 I (Xi = 0,X + 2k−i > n). From Lemma 6.1 and

Theorem 3.1 [with δ = O(k−1/2), δ1 = O(k−1), δ2 = O(k−1/2)],

P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3) 1√

k

for 0 ≤ x ≤ k1/6. Repeat the above argument for −W , and we have

P(W ≤ −x)

1 − �(x)
= 1 + O(1)

(
1 + x3) 1√

k

for 0 ≤ x ≤ k1/6.
Next, we notice that S and S̄ can be written as, with X ∼ U{0,1, . . . , n},

S = I
(
0 ≤ X ≤ 2k−1 − 1

)
S + I

(
2k−1 ≤ X ≤ n

)
S

and

S̄ = I
(
0 ≤ X ≤ 2k−1 − 1

)
S̄ + I

(
2k−1 ≤ X ≤ n

)
S̄.

Therefore,

−W − 1√
k/4

=
(
−1

2
+ I

(
0 ≤ X ≤ 2k−1 − 1

)(k − 1

2
− S

)

+ I
(
2k−1 ≤ X ≤ n

)(k − 1

2
− S

))/√
k/4

and

W̄ =
(
−1

2
+ I

(
0 ≤ X ≤ 2k−1 − 1

)(
S̄ − k − 1

2

)

+ I
(
2k−1 ≤ X ≤ n

)(
S̄ − k − 1

2

))/√
k/4.

Conditioning on 0 ≤ X ≤ 2k−1 − 1, both the distributions of S(X) and S̄(X) are
Binomial(k − 1,1/2), which yields

L
(

k − 1

2
− S

∣∣∣0 ≤ X ≤ 2k−1 − 1
)

= L
(
S̄ − k − 1

2

∣∣∣0 ≤ X ≤ 2k−1 − 1
)
.
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On the other hand, when 2k−1 ≤ X ≤ n, S̄(X) = k − 1 − S(X). Therefore, W̄ has

the same distribution as −W − 1/
√

k
4 , which implies Cramér moderate deviation

results also holds for W̄ . Thus finishes the proof of Proposition 4.2.

LEMMA 6.1. We have E(Q|S) = O(1)(1 + |W |).

PROOF. Write

n = ∑
i≥1

2k−pi

with 1 = p1 < p2 < · · · ≤ pk1 the positions of the ones in the binary expansion
of n, where k1 ≤ k. Recall that X is uniformly distributed over {0,1, . . . , n}, and
that

X =
k∑

i=1

Xi2
k−i

with exactly S of the indicator variables X1, . . . ,Xk equal to 1.
We say that X falls in category i, i = 1, . . . , k1, when

Xp1 = 1, Xp2 = 1, . . . ,Xpi−1 = 1 and Xpi
= 0.(6.29)

We say that X falls in category k1 + 1 if X = n. This special category is
nonempty only when S = k1, and in this case, Q = k − k1, which gives the last
term in (6.30).

Note that if X is in category i for i ≤ k1, then, since X can be no greater than n,
the digits of X and n match up to the pi th, except for the digit in place pi , where
n has a one, and X a zero. Further, up to this digit, n has pi − i zeros, and so
X has ai = pi − i + 1 zeros. Changing any of these ai zeros, except the zero in
position pi to ones, results in a number n or greater, while changing any other
zeros, since digit pi of n is one and of X zero, does not. Hence Q is at most ai

when X falls in category i. Since X has S ones in its expansion, i − 1 of which are
accounted for by (6.29), the remaining S − (i − 1) are uniformly distributed over
the k −pi = k − (i − 1)− ai remaining digits {Xpi+1, . . . ,Xk}. Thus, we have the
inequality

E(Q|S) ≤ 1

A

∑
i≥1

(
k − (i − 1) − ai

S − (i − 1)

)
ai + I (S = k1)

A
(k − k1),(6.30)

where

A = ∑
i≥1

(
k − (i − 1) − ai

S − (i − 1)

)
+ I (S = k1)

and 1 = a1 ≤ a2 ≤ a3 ≤ · · · .
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Note that if k1 = k, the last term of (6.30) equals 0. When k1 < k, we have

I (S = k1)

A
(k − k1) ≤

(
k − 1
k1

)−1
(k − k1) ≤ 1,(6.31)

so we omit this term in the following argument.
We consider two cases.
Case 1: S ≥ k/2. As ai ≥ 1 for all i, there are at most k +1 nonzero terms in the

sum (6.30). Divide the summands into two groups, those for which ai ≤ 2 log2 k

and those with ai > 2 log2 k. The first group can sum to no more than 2 log2 k

because the sum is like weighted average of ai .
For the second group, note that(

k − (i − 1) − ai

S − (i − 1)

)/
A

≤
(

k − (i − 1) − ai

S − (i − 1)

)/(
k − 1

S

)
(6.32)

=
ai−1∏
j=1

(
k − S − j

k − j

) i−2∏
j=0

(
S − j

k − (ai − 1) − 1 − j

)

≤ 1

2ai−1 ≤ 1

k2 ,

where the second inequality follows from S ≥ k/2, and the last inequality from
ai > 2 log2 k. Therefore, the sum of the second group of terms is bounded by 1.

Case 2: S < k/2. Divide the sum on the right-hand side into two groups accord-
ing to whether i ≤ 2 log2 k or i > 2 log2 k. Clearly,

(
k − (i − 1) − ai

S − (i − 1)

)/
A

≤
i−2∏
j=0

(
S − j

k − 1 − j

) ai−1∏
j=1

(
k − S − j

k − (i − 1) − j

)

≤ 1/2i−1

using the assumption S < k/2 and the fact that S ≥ i − 1. The above inequality is
true for all i, so the summation for the part where i > 2 log2 k is bounded by 1.

Next we consider i ≤ 2 log2 k. When S ≥ k(
logai

ai−1 ) + 2 log2 k, we have

ai(
k−S−1

k−(i−1)−1)ai−1 ≤ 1. Solving S from the inequality ai(
k−S−1

k−(i−1)−1)ai−1 ≤ 1,

we see that it is equivalent to the inequality S ≥ (1 − e−(logai)/(ai−1))k − 1 +
e−(logai)/(ai−1)i, which is a result of the above assumption on S when i < 2 log2 k.
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Now we have

ai

(
k − (i − 1) − ai

S − (i − 1)

)/
A

≤ ai

(
k − (i − 1) − ai

S − (i − 1)

)/(
k − 1

S

)
(6.33)

= ai

i−2∏
j=0

(
S − j

k − 1 − j

) ai−1∏
j=1

(
k − S − j

k − (i − 1) − j

)

≤ ai

1

2i−1

(
k − S − 1

k − (i − 1) − 1

)ai−1

≤ 1

2i−1

using the fact that ai(
k−S−1

k−(i−1)−1)ai−1 ≤ 1.

On the other hand, if S < k(
logai

ai−1 ) + 2 log2 k, then aiS/(k − 1) = O(1) log2 k,
which implies

ai

(
k − (i − 1) − ai

S − (i − 1)

)/
A

≤ aiS

k − 1

i−2∏
j=1

(
S − j

k − 1 − j

) ai−1∏
j=1

(
k − S − j

k − (i − 1) − j

)

= O(1) log2 k/2i−2.

This proves that the right-hand side of (6.30) is bounded by O(1) log2 k.
To complete the proof of the lemma, that is, to prove E(Q|W) ≤ C(1 + |W |),

we only need to show that E(Q|S) ≤ C for some universal constant C when |W | ≤
log2 k, that is, when k/2 − √

k/4 log2 k ≤ S ≤ k/2 + √
k/4 log2 k. Following the

argument in case 2 above, we only need to consider the summands where i ≤
2 log2 k because the other part where i > 2 log2 k is bounded by 1 as proved in
case 2.

When ai, k are bigger than some universal constant, k/2 − √
k/4 log2 k ≥

logai

ai−1 × k + 2 log2 k, which implies ( k−S−1
k−(i−1)−1)ai−1 × ai ≤ 1 and

(k−(i−1)−ai

S−(i−1)

) ×
ai/A ≤ 1/2i−1. Since both parts for i ≤ 2 log2 k and i > 2 log2 k are bounded by
some constant, E(Q|S) ≤ C when |W | ≤ log2 k, and hence the lemma is proved.

�

6.3. Proof of Propositions 4.3 and 4.4. Let W̃ have the conditional distribu-
tion of W (W1, W2, resp.) given |W | ≤ c1

√
n (|W1|, |W2| ≤ c1

√
n, resp.) where c1

is to be determined. If we can prove that

P(W̃ ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3)

/
√

n(6.34)
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for 0 ≤ x ≤ n1/6, then from the fact that [Ellis (1985)]

P
(|W | > K

√
n
) ≤ e−nC(K)(6.35)

and

P
(|W1| > K

√
n|S < 0

) ≤ e−nC(K), P
(|W2| > K

√
n|S > 0

) ≤ e−nC(K)

for any positive number K where C(K) is a positive constant depending only
on K , we have, with δ2 = O(1/

√
n),

P(W ≥ x)

1 − �(x)
≤ P(W̃ ≥ x) + P(δ2|W | > 1/2)

1 − �(x)

= 1 + O(1)
(
1 + x3)

/
√

n

for 0 ≤ x ≤ n1/6. Similarly, (4.15) and (4.16) are also true. Therefore, we prove
Cramér moderate deviation for W̃ (still denoted by W in the following) defined
below. Assume the state space of the spins is 
 = (σ1, σ2, . . . , σn) ∈ {−1,1}n such
that

∑n
i=1 σi/n ∈ [a, b] where [a, b] is any interval within which there is only one

solution m to (4.9). Let S = ∑n
i=1 σi , W = S−nm

σ
and σ 2 = n 1−m2

1−(1−m2)β
. Note that

in cases 1 and 2, 1 − (1 − m2)β > 0, thus σ 2 is well defined. Moreover, [a, b] is
chosen such that |W | ≤ c1

√
n. The joint distribution of the spins is

Z−1
β,h exp

(
β

∑
1≤i<j≤n σiσj

n
+ βh

n∑
i=1

σi

)
.

Let I be a random variable uniformly distributed over {1, . . . , n} independent
of {σi,1 ≤ i ≤ n}. Let σ ′

i be a random sample from the conditional distribution of
σi given {σj , j 	= i,1 ≤ j ≤ n}. Define W ′ = W − (σI − σ ′

I )/σ . Then (W,W ′) is
an exchangeable pair. Let

A(w) = exp(−β(m + h) − βσw/n + β/n)

exp(−β(m + h) − βσw/n + β/n) + exp(β(m + h) + βσw/n − β/n)

and

B(w) = exp(β(m + h) + βσw/n + β/n)

exp(β(m + h) + βσw/n + β/n) + exp(−β(m + h) − βσw/n − β/n)
.

It is easy to see that

e−β(m+h)−βσw/n

e−β(m+h)−βσw/n + eβ(m+h)+βσw/n

≤ A(w) = exp(−β(m + h) − βσw/n)

exp(−β(m + h) − βσw/n) + exp(β(m + h) + βσw/n − 2β/n)

≤ e−β(m+h)−βσw/n

e−β(m+h)−βσw/n + eβ(m+h)+βσw/n
e2β/n
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and

eβ(m+h)+βσw/n

eβ(m+h)+βσw/n + e−β(m+h)−βσw/n

≤ B(w) = exp(β(m + h) + βσw/n)

exp(β(m + h) + βσw/n) + exp(−β(m + h) − βσw/n − 2β/n)

≤ eβ(m+h)+βσw/n

eβ(m+h)+βσw/n + e−β(m+h)−βσw/n
e2β/n.

Therefore

A(W) + B(W) = 1 + O(1)
1

n

and

A(W) − B(W) = − tanh
(
β(m + h) + βσW/n

) + O(1)
1

n
.

Note that

E
(
W − W ′|
)

= 1

σ
E(σI − σI |
)

= 2

σ
E

(
I
(
σI = 1, σ ′

I = −1
) − I

(
σI = −1, σ ′

I = 1
)|
)

= 2

σ

σW + nm + n

2n
A(W)I (S − 2 ≥ an)

− 2

σ

n − σW − nm

2n
B(W)I (S + 2 ≤ bn)

= (
A(W) + B(W)

)(W

n
+ m

σ

)
+ 1

σ

(
A(W) − B(W)

)

− σW + nm + n

σn
A(W)I (S − 2 < an)

+ n − σW − nm

σn
B(W)I (S + 2 > bn)

=
(

W

n
+ m

σ

)(
1 + O

(
1

n

))
− 1

σ

(
tanh

(
β(m + h) + βσW

n

)
+ O

(
1

n

))

− S + n

σn
A(W)I (S − 2 < an) + n − S

σn
B(W)I (S + 2 > bn)

= λ(W − R),
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where

λ = 1 − (1 − m2)β

n
> 0

and

R = 1

λ

tanh′′(β(m + h) + ξ)β2σ

2n2 W 2 + 1

λ

S + n

σn
A(W)I (S − 2 < an)

− 1

λ

n − S

σn
B(W)I (S + 2 > bn) + O(1)

(
W

n
+ 1

σ

)
,

where ξ is between 0 and βσW/n. Similarly,

E
((

W − W ′)2|
)
= 4

σ 2 E
(
I
(
σI = 1, σ ′

I = −1
) + I

(
σI = −1, σ ′

I = 1
)|
)

= 2(1 − m2)

σ 2 + O(1)
W

nσ
+ O

(
1

nσ 2

)
+ O

(
I (S − 2 < an or S + 2 > bn)

σ 2

)
.

Therefore, recall that σ 2 = n 1−m2

1−(1−m2)β
,

∣∣E(D|W) − 1
∣∣ ≤ O

(
1√
n

)(
1 + |W |).

For R, with δ2 = O(1/
√

n),∣∣E(R|W)
∣∣ ≤ δ2

(
1 + W 2)

,

and if c1 is chosen such that δ2|W | ≤ 1/2, the second alternative of (3.4) is satisfied
with α = 1/2. Thus from Theorem 3.1, we have the following moderate deviation
result for W :

P(W ≥ x)

1 − �(x)
= 1 + O(1)

(
1 + x3) 1√

n

for 0 ≤ x ≤ n1/6. This completes the proof of (4.12) and (4.15).

6.4. Proof of Proposition 4.5. Since (1 − �(x)) ≥ 1
2(1+x)

e−x2/2 for x ≥ 0,
(4.18) becomes trivial if xγ ≥ 1/8. Thus we can assume

xγ ≤ 1/8.(6.36)

Let f = fx be the Stein solution to equation (6.2). Let W(i) = W − ξi and Ki(t) =
Eξi(I {0 ≤ t ≤ ξi} − I {ξi ≤ t ≤ 0}). It is known that [see, e.g., (2.18) in Chen and
Shao (2005)]

EWf (W) =
n∑

i=1

E

∫ ∞
−∞

f ′(W(i) + t
)
Ki(t) dt.
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Since
∫ ∞
−∞ Ki(t) dt = Eξ2

i , we have

P(W ≥ x) − (
1 − �(x)

)
= EWf (W) − Ef ′(W)

=
n∑

i=1

E

∫ ∞
−∞

(
f ′(W(i) + t

) − f ′(W)
)
Ki(t) dt

(6.37)

=
n∑

i=1

E

∫ ∞
−∞

((
W(i) + t

)
f

(
W(i) + t

) − Wf (W)
)
Ki(t) dt

+
n∑

i=1

E

∫ ∞
−∞

(
I
{
W(i) + t ≥ x

} − I {W ≥ x})Ki(t) dt

:= R1 + R2.

It suffices to show that

|R1| ≤ C
(
1 + x3)

γ
(
1 − �(x)

)
ex3γ(6.38)

and

|R2| ≤ C
(
1 + x2)

γ
(
1 − �(x)

)
ex3γ .(6.39)

To estimate R1, let g(w) = (wf (w))′. It is easy to see that

R1 =
n∑

i=1

E

∫ ∫ t

ξi

g
(
W(i) + s

)
dsKi(t) dt.(6.40)

By (6.19) and (6.20), following the proof of (6.21), we have

Eg
(
W(i) + s

)
= Eg

(
W(i) + s

)
I
{
W(i) + s ≥ x

} + Eg
(
W(i) + s

)
I
{
W(i) + s ≤ 0

}
+ Eg

(
W(i) + s

)
I
{
0 < W(i) + s < x

}
≤ 2

1 + x3 P
(
W(i) + s ≥ x

) + 2
(
1 − �(x)

)
P

(
W(i) + s ≤ 0

)
+ √

2π
(
1 − �(x)

)
× E

{(
1 + (

W(i) + s
)2)

e(W(i)+s)2/2I
{
0 < W(i) + s < x

}}
(6.41)

≤ 2

1 + x3 P
(
W(i) ≥ x − s

) + 2
(
1 − �(x)

)
P

(
W(i) + s ≤ 0

)

− √
2π

(
1 − �(x)

) ∫ x

0

(
1 + y2)

ey2/2 dP
(
W(i) + s > y

)

≤ 2

1 + x3 P
(
W(i) ≥ x − s

) + 2
(
1 − �(x)

)
P

(
W(i) + s ≤ 0

)
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+ √
2π

(
1 − �(x)

)
P

(
W(i) + s > 0

) + √
2π

(
1 − �(x)

)
J (s)

≤ 2

1 + x3 P
(
W(i) ≥ x − s

) + √
2π

(
1 − �(x)

) + √
2π

(
1 − �(x)

)
J (s),

where

J (s) =
∫ x

0

(
3y + y3)

ey2/2P
(
W(i) + s > y

)
dy.(6.42)

Clearly, for 0 < t ≤ x

Eetξj = 1 + t2Eξ2
j /2 +

∞∑
k=3

(tξj )
k

k!

≤ 1 + t2Eξ2
j /2 + t3

6
E|ξj |3et |ξj |

≤ exp
(
t2Eξ2

j /2 + x3

6
E|ξj |3ex|ξj |

)

and hence

Eet(W(i)+s) ≤ exp
(
t2/2 + x|s| + x3

6
γ

)
for 0 ≤ t ≤ x.(6.43)

By (6.43), following the proof of Lemma 5.2 yields

J (s) ≤ C
(
1 + x3)

ex3γ+x|s|.(6.44)

Noting that (6.43) also implies that

P
(
W(i) ≥ x − s

) ≤ e−x2
Eex(W(i)+s) ≤ exp

(−x2/2 + x|s| + x3γ
)

≤ (1 + x)
(
1 − �(x)

)
exp

(
x|s| + x3γ

)
,

we have

Eg
(
W(i) + s

) ≤ C
(
1 + x3)(

1 − �(x)
)
ex3γ+x|s|

and therefore by (6.40),

|R1| ≤
n∑

i=1

E

∫ ∞
−∞

∣∣∣∣
∫ t

ξi

g
(
W(i) + s

)
ds

∣∣∣∣Ki(t) dt

≤ C
(
1 + x3)(

1 − �(x)
)
ex3γ

n∑
i=1

E

∫ ∞
−∞

(|t |ex|t | + |ξi |ex|ξi |)Ki(t) dt(6.45)

≤ C
(
1 + x3)

γ
(
1 − �(x)

)
ex3γ .

This proves (6.38).
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As to R2, we apply an exponential concentration inequality of Shao (2010) [see
Theorem 2.7 in Shao (2010)]: for a ≥ 0 and b ≥ 0,

P
(
x − a ≤ W(i) ≤ x + b

)
≤ Cexγ+xa−x2(

(γ + b + a)E
∣∣W(i)

∣∣exW(i) + (
Ee2xW(i))1/2 exp

(−γ −2/32
))

≤ Cexγ+xa−x2(
(γ + b + a)

(
EW(i)exW(i) + 1

)
+ (

Ee2xW(i))1/2 exp
(−γ −2/32

))
≤ Cexγ+xa−x2(

(γ + b + a)(1 + x)ex2/2+x3γ + ex2+x3γ exp
(−γ −2/32

))
≤ Cex3γ+xa−x2/2(

(γ + b + a)(1 + x) + exp
(
x2/2 − γ −2/32

))
≤ C

(
1 − �(x)

)
ex3γ+xa(

(γ + b + a)
(
1 + x2) + exp

(
x2 − γ −2/32

))
.

Here we use the fact that EW(i)exW(i) ≤ xex2/2+x3γ , by following the proof of
(6.43). Therefore

R2 ≤
n∑

i=1

E

∫ ∞
−∞

P
(
x − ξi ≤ W(i) ≤ x − t |ξi

)
Ki(t) dt

≤ C
(
1 − �(x)

)
ex3γ

n∑
i=1

∫ ∞
−∞

{(
1 + x2)

E
(
γ + |t | + |ξi |)ex|ξi |

+ exp
(
x2 − γ −2/32

)}
Ki(t) dt

≤ C
(
1 − �(x)

)
ex3γ ((

1 + x2)
γ + exp

(
x2 − γ −2/32

))
≤ Cγ

(
1 + x2)(

1 − �(x)
)
ex3γ

by (6.36). Similarly, the above bound holds for −R2. This proves (6.39).
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