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BACKWARD STOCHASTIC DIFFERENTIAL EQUATIONS WITH
ROUGH DRIVERS

BY JOSCHA DIEHL AND PETER FRIZ

Technical University Berlin and Weierstrass Institute for Applied
Analysis and Stochastics

Backward stochastic differential equations (BSDEs) in the sense of
Pardoux–Peng [Lecture Notes in Control and Inform. Sci. 176 (1992) 200–
217] provide a non-Markovian extension to certain classes of nonlinear par-
tial differential equations; the nonlinearity is expressed in the so-called driver
of the BSDE. Our aim is to deal with drivers which have very little regularity
in time. To this end, we establish continuity of BSDE solutions with respect
to rough path metrics in the sense of Lyons [Rev. Mat. Iberoam. 14 (1998)
215–310] and so obtain a notion of “BSDE with rough driver.” Existence,
uniqueness and a version of Lyons’ limit theorem in this context are estab-
lished. Our main tool, aside from rough path analysis, is the stability theory
for quadratic BSDEs due to Kobylanski [Ann. Probab. 28 (2000) 558–602].

1. Introduction. We recall that backward stochastic differential equations
(BSDEs) are stochastic equations of the type

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr −

∫ T

t
Zr dWr.(1)

Here, W is an m-dimensional Brownian motion on some filtered probability space
(�, F , (Ft )0≤t≤T ,P). The terminal data ξ is assumed to be FT -measurable, the
driver f :� × [0, T ] × R × R

m → R is a predictable random field; a solution
to this equation is a (1 + m)-dimensional adapted solution process of the form
(Yt ,Zt )0≤t≤T ; subject to some integrability properties depending on the frame-
work imposed by the type of assumptions on f . Equation (1) can also be written
in differential form:

−dYt = f (t, Yt ,Zt ) dt − Zt dWt .

The aim of this paper, partially motivated from the recent progress on partial dif-
ferential equations driven by rough path [4, 5, 8, 14, 23], is to consider

−dYt = f (t, Yt ,Zt ) dt + H(Yt) dζt − Zt dWt,
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where ζ is (at first) a smooth d-dimensional driving signal—accordingly H =
(H1, . . . ,Hd)—followed by a discussion in which we establish rough path stability
of the solution process (Y,Z) as a function of ζ . Note that we do not establish any
sort of rough path stability in W . Indeed when f ≡ 0 in (1), BSDE theory reduces
to martingale representation, an intrinsically stochastic result which does not seem
amenable to a rough pathwise approach.3 We are able to carry out our analysis in a
framework in which the ω-dependence of the terms driven by ζ factorizes through
an Itô process. That is, we consider, for fixed (t0, x0) ∈ [0, T ] × R

n,

dXt = b(ω; t) dt + σ(ω; t) dWt , t0 ≤ t ≤ T ;Xt0 = x0 ∈ R
n,

−dYt = f (ω; t, Yt ,Zt ) dt + H(Xt,Yt ) dζ − Zt dW,

t0 ≤ t ≤ T ;YT = ξ ∈ L∞(FT ).

Our main-result is, under suitable conditions on f and H = (H1, . . . ,Hd), that any
sequence (ζ n) which is Cauchy in rough path metric gives rise to a solution (Y,Z)

of the BSDE with rough driver

−dYt = f (ω; t, Yt ,Zt ) dt + H(Xt,Yt ) dζ − Zt dWt,(2)

where ζ denotes the (rough path) limit of (ζ n) and where indeed (Y,Z) depends
only on ζ and not on the particular approximating sequence. An interesting feature
of this result, which somehow encodes the particular structure of the above equa-
tion, is that one does not need to construct or understand the iterated integrals of ζ

and W ; but only those of ζ which is tantamout to speak of the rough path ζ . This
is in strict contrast to the usual theory of rough differential equations in which both
dζ and dW figure as driving differentials, for example, in equations of the form
dy = V1(y) dζ + V2(y) dW .

If we specialize to a fully Markovian setting, say ξ = g(XT ), σ(ω; t) =
σ(t,Xt(ω)), b(ω; t) = b(t,Xt(ω)), f (ω; t, y, z) = f (t,Xt(ω), y, z), H = H(Xt,

Yt ), we find that the solution to (2), evaluated at t = t0, yields a solution to the
(terminal value problem of the) rough partial differential equation

−du = (Lu)dt + f (t, x, u,Du σ(t, x)) dt + H(x,u)dζ , uT (x) = g(x),

where L denotes the generator of X. If one is interested in the Cauchy problem,
ũ(t, x) = u(T − t, x) satisfies,

dũ = (Lũ) dt + f (x, ũ,Dũ σ (t, x)) dt + H(x, ũ) d ζ̃ , ũ0(x) = g(x),(3)

where ˜ζ = ζ (T − ·).
To the best of our knowledge, (2) is the first attempt to introduce rough path

methods [13, 18–20] in the field of backward stochastic differential equations [10,

3See however the recent work of Liang et al. [16] in which martingale representation is replaced
by an abstract transformation.
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15, 21]. Of course, there are many hints in the literature toward the possibility
of doing so: we mention in particular the Pardoux–Peng [22] theory of backward
doubly stochastic differential equations (BDSDEs) which amounts to replacing
dζ in (2) by another set of Brownian differentials, say dB , independent of W .
This theory was then employed by Buckdahn and Ma [3] to construct (stochastic
viscosity) solutions to (3) with dζ replaced by a Brownian differential and the
assumption that the vector fields H1(x, ·), . . . ,Hd(x, ·) commute.

This paper is structured as follows. In Section 2, we state and prove our main
result concerning the existence and uniqueness of BSDEs with rough drivers. Sec-
tion 3 specializes the setting to a purely Markovian one. In this context, BSDEs
with rough drivers are connected to rough partial differential equations, which we
analyze in their own right. In Section 4, we establish the connection to BDSDEs.

2. BSDE with rough driver. We fix once and for all a filtered probability
space (�, F , (F )t ,P), which carries an m-dimensional Brownian motion W . Let
Ft be the usual filtration of W . Denote by H 2[0,T ](Rm) the space of predictable

processes X in R
m such that ‖X‖2 := E[∫ T

0 |X|2r dr] < ∞. Denote by H∞[0,T ](R)

the space of predictable processes that are almost surely bounded. We will say a
sequence converges in H∞ if it converges uniformly on [0, T ], P-a.s. For a random
variable ξ we denote by ‖ξ‖∞ its essential supremum, for a process Y we denote
by ‖Y‖∞ the essential supremum of sup0≤t≤T |Yt |.

For a smooth path ζ in R
d and ξ ∈ L∞(FT ), we consider the BSDE

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr +

∫ T

t
H(Xr,Yr) dζ(r) −

∫ T

t
Zr dWr,

(4)
t ≤ T ,

where the R
n-valued semimartingale X has the form

Xt = x +
∫ t

0
σr dWr +

∫ t

0
br dr.

Here, H = (H1, . . . ,Hd) with Hk : Rn × R → R, k = 1, . . . , d and
∫ T
t H(Xr,

Yr) dζ(r) := ∑d
k=1

∫ T
t Hk(Xr,Yr)ζ̇

k(r) dr . W is an m-dimensional Brownian
motion (hence Z is a row vector taking values in R

m×1 identified with R
m).

f :� × [0, T ] × R × R
m → R is a predictable random function, x ∈ R

n, σ is a
predictable process taking values in R

n×m, b is a predictable process taking values
in R

n.

DEFINITION 1. We call equation (4) BSDE with data (ξ, f,H, ζ ). We call
(Y,Z) a solution if Y ∈ H∞[0,T ](R),Z ∈ H 2[0,T ](Rm) and (4) is satisfied.

For a vector x, we denote the Euclidean norm as usual by |x|. For a matrix X,
we denote by |X|, depending on the situation, either the 1-norm (operator norm),
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the 2-norm (Euclidean norm) or the ∞-norm (operator norm of the transpose).
This slight abuse of notation will not lead to confusion, as all inequalities will be
valid up to multiplicative constants.

We introduce the following assumptions:

(A1) There exists a constant Cσ > 0 such that P-a.s. for t ∈ [0, T ]
|σt (ω)| ≤ Cσ .

(A2) There exists a constant Cb > 0 such that P-a.s. for t ∈ [0, T ]
|bt (ω)| ≤ Cb.

(F1) There exists a constant C1,f > 0 such that P-a.s. for (t, y, z) ∈ [0, T ] ×
R × R

m4

|f (ω; t, y, z)| ≤ C1,f + C1,f |z|2,
|∂zf (ω; t, y, z)| ≤ C1,f + C1,f |z|.

(F2) There exists a constant C2,f > 0 such that P-a.s. for (t, y, z) ∈ [0, T ] ×
R × R

m

∂yf (ω; t, y, z) ≤ C2,f .

For given real numbers γ > p ≥ 1, we have the following assumption:

(Hp,γ ) Let H(x, ·) = (H1(x, ·), . . . ,Hd(x, ·)) be a collection of vector fields
on R, parameterized by x ∈ R

n. Assume that for some CH > 0, we have joint
regularity of the form

sup
i=1,...,d

|Hi |Lipγ+2(Rn+1) ≤ CH .

As a consequence of Theorems 2.3 and 2.6 in [15], we get the following lemma.

LEMMA 2. Assume (A1), (A2), (F1), (F2) and let H be Lipschitz on R
n × R.

Let ξ ∈ L∞(FT ) and a smooth path ζ be given. Then there exists a unique solution
to the BSDE with data (ξ, f,H, ζ ).

We want to give meaning to equation (4), where the smooth path ζ is replaced
by a general geometric rough path ζ ∈ C0,p-var([0, T ],G[p](Rd)), where G[p](Rd)

is the free step-[p] nilpotent group over R
d , realized as subset of R ⊕ R

d ⊕ · · · ⊕

4When we use partial derivatives, we assume implicitly that the function in question is continu-
ously differentiable in the respective variable. In fact, throughout, it would suffice to assume (local)
Lipschitzness and bound the Lipschitz constant analogously.
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(Rd)[p], equipped with Carnot–Caratheodory metric.5 We give our main result, the
proof of which we present at the end of the section.

THEOREM 3. Let p ≥ 1, γ > p and ζ n, n = 1,2, . . . , be smooth paths in
R

d . Assume ζ n → ζ in p-variation, for a path ζ ∈ C0,p-var([0, T ],G[p](Rd)). Let
ξ ∈ L∞(FT ). Let f be a random function satisfying (F1) and (F2). Moreover,
assume (A1), (A2) and (Hp,γ ). For n ≥ 1, denote by (Y n,Zn) the solutions to the
BSDE with data (ξ, f,H, ζ n).

Then there exists a process (Y,Z) ∈ H∞[0,T ] × H 2[0,T ] such that

Yn → Y uniformly on [0, T ] P-a.s.,

Zn → Z in H 2[0,T ].

The process is unique in the sense, that it only depends on the limiting rough
path ζ and not on the approximating sequence. We write (formally 6)

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr +

∫ T

t
H(Xr,Yr) dζ (r) −

∫ T

t
Zr dWr.(5)

Moreover, the solution mapping

C0,p-var([0, T ],G[p](Rd)
) × L∞(FT ) → H∞[0,T ] × H 2[0,T ],

(ζ , ξ) 
→ (Y,Z)

is continuous.

The problem in showing convergence of the processes (Y n,Zn) in the statement
of the theorem lies in the fact, that in general the Lipschitz constants for the cor-
responding BSDEs will tend to infinity as n → ∞. It does not seem possible then,
to directly control the solutions via a priori bounds, a standard tool in the theory of
BSDEs (see, e.g., [10]). We will take another approach and transform the BSDEs
corresponding to the smooth paths ζ n into BSDEs which are easier to analyze.

5In a Brownian context, one can take 2 < p < 3 and G[p](Rd) ∼= R
d ⊕ so(d) is the state space

for d-dimensional Brownian motion and it’s Lévy area. More generally, G[p](Rd) is the “correct”
state space for a geometric p-rough path; the space of such paths subject to p-variation regularity
(in rough path sense) yields a complete metric space under p-variation rough path metric. Technical
details of geometric rough path spaces (as found, e.g., in Section 9 of [13]) will not be necessary for
the understanding of the present paper.

6The “integral”
∫

H(X,Y )dζ is not a rough integral defined in the usual rough path theory (e.g.,
[19] or [13]); regularity issues aside one misses the iterated integrals of X (and thus W ) against
those of ζ . For what it’s worth, in the present context (5) can be taken as an implicit definition of∫

H(X,Y )dζ . (Somewhat similar in spirit: Föllmer’s Itô integral which appears in his Itô formula
sans probabilité.) More pragmatically, notation (5) is justified a posteriori through our uniqueness
result; in addition it is consistent with standard BSDE notation when ζ happens to be a smooth path.
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We start by defining the flow (parametrized by x)

φ(t, x, y) = y +
∫ T

t

d∑
k=1

Hk(x,φ(r, x, y)) dζ k(r).(6)

Let φ−1 be the y-inverse of φ, then

φ−1(t, x, y) = y −
∫ T

t

d∑
k=1

∂yφ
−1(r, x, y)Hk(x, y) dζ k(r).

We have the following lemma.

LEMMA 4. Assume (A1), (A2), (F1), (F2) and let H be Lipschitz on R
n × R.

Let ξ ∈ L∞(FT ) and a smooth path ζ be given and let φ be the corresponding flow
defined in (6). Let (Y,Z) be the unique solution to the BSDE with data (ξ, f,H, ζ ).

Then the process (Ỹ , Z̃) defined as

Ỹt := φ−1(t,Xt , Yt ), Z̃t := −∂xφ(t,Xt , Ỹt )

∂yφ(t,Xt , Ỹt )
σt + 1

∂yφ(t,Xt , Ỹt )
Zt ,

satisfies the BSDE

Ỹt = ξ +
∫ T

t
f̃ (r,Xr, Ỹr , Z̃r ) dr −

∫ T

t
Z̃r dWr,(7)

where [throughout, φ and all its derivatives will always be evaluated at (t, x, ỹ)]

f̃ (t, x, ỹ, z̃) := 1

∂yφ

{
f (t, φ, ∂yφz̃ + ∂xφσt ) + 〈∂xφ, bt 〉 + 1

2
Tr[∂xxφσtσ

T
t ]

+ 〈z̃, (∂xyφσt )
T 〉 + 1

2
∂yyφ|z̃|2

}
.

REMARK 5. This (“Doss-Sussman”) transformation is well known and has
been recently applied to BDSDEs [3] and rough partial differential equations [12].
We include details for the reader’s convenience.

PROOF OF LEMMA 4. Denoting ψ := φ−1 and θr := (r,Xr, Yr), we have by
Itô’s formula

ψ(t,Xt , Yt ) = ξ −
∫ T

t

d∑
k=1

∂yψ(θr)Hk(Xr,Yr)ζ̇
k(r) dr −

∫ T

t
〈∂xψ(θr), br〉dr

−
∫ T

t
〈∂xψ(θr), σr dWr〉 +

∫ T

t
∂yψ(θr)f (r, Yr,Zr) dr

+
∫ T

t

d∑
k=1

∂yψ(θr)Hk(Xr,Yr)ζ̇
k(r) dr −

∫ T

t
∂yψ(θr)Zr dWr
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− 1

2

∫ T

t
Tr[∂xxψ(θr)σrσ

T
r ]dr − 1

2

∫ T

t
∂yyψ(θr)|Zr |2 dr

−
∫ T

t
〈∂xyψ(θr), σrZ

T
r 〉dr

= ξ +
∫ T

t

[
∂yψ(θr)f (r, Yr,Zr) − 〈∂xψ(θr), br〉

− 1

2
Tr[∂xxψ(θr)σrσ

T
r ] − 1

2
∂yyψ(θr)|Zr |2

− 〈∂xyψ(θr), σrZ
T
r 〉

]
dr

−
∫ T

t
〈∂xψ(θr)σr + ∂yψ(θr)Zr, dWr〉.

Now, by deriving the identity ψ(t, x,φ(t, x, ỹ)) = ỹ we get

0 = ∂xψ + ∂yψ∂xφ,

0 = ∂xxψ + ∂yxψ ⊗ ∂xφ + [∂xyψ + ∂yyψ∂xφ] ⊗ ∂xφ + ∂yψ∂xxφ

= ∂xxψ + 2∂xyψ ⊗ ∂xφ + ∂yyψ∂xφ ⊗ ∂xφ + ∂yψ∂xxφ,

1 = ∂yψ∂yφ,

0 = ∂xyψ∂yφ + ∂yyψ∂xφ∂yφ + ∂yψ∂xyφ,

0 = ∂yyψ(∂yφ)2 + ∂yψ∂yyφ.

And hence,

∂yyψ = − ∂yyφ

(∂yφ)3 , ∂xψ = −∂xφ

∂yφ
,

∂xyψ = ∂yyφ

(∂yφ)3 ∂xφ − ∂xyφ

(∂yφ)2 ,

∂xxψ = 2
[

∂yyφ

(∂yφ)3 ∂xφ − ∂xyφ

(∂yφ)2

]
⊗ ∂xφ

+ ∂xxφ

(∂yφ)3 ∂xφ ⊗ ∂xφ − 1

∂yφ
∂xxφ.

If we define

Ỹt := ψ(t,Xt , Yt ) = φ−1(t,Xt , Yt ),

Z̃t := ∂xψ(t,Xt , Yt )σt + ∂yψ(t,Xt , Yt )Zt

= −∂xφ(t,Xt , Ỹt )

∂yφ(t,Xt , Ỹt )
σt + 1

∂yφ(t,Xt , Ỹt )
Zt ,
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and [ψ and its derivatives are always evaluated at (t, x,φ(t, x, ỹ)), φ and its
derivatives are evaluated at (t, x, ỹ)]

f̃ (t, x, ỹ, z̃) := ∂yψf

(
t, φ, ∂yφ

(
z̃ + ∂xφσt

∂yφ

))
− 〈∂xψ,bt 〉 − 1

2
Tr[∂xxψσtσ

T
t ]

− 1

2
∂yyψ

∣∣∣∣ z̃ − ∂xψσt

∂yψ

∣∣∣∣
2

−
〈
∂xyψ,σt

(
z̃ − ∂xψσt

∂yψ

)T 〉

= 1

∂yφ

{
f (t, φ, ∂yφz̃ + ∂xφσt ) + 〈∂xφ, bt 〉 + 1

2
Tr[∂xxφσtσ

T
t ]

+ 〈z̃, (∂xyφσt )
T 〉 + 1

2
∂yyφ|z̃|2

}
,

we therefore obtain

Ỹt = ξ +
∫ T

t
f̃ (r, x, Ỹr , Z̃r ) dr −

∫ T

t
Z̃r dWr. �

DEFINITION 6. We call equation (7) BSDE with data (ξ, f̃ ,0,0).

The BSDE (4) only makes sense for a smooth path ζ . On the other hand, equa-
tion (6) yields a flow of diffeomorphisms for a general geometric rough path
ζ ∈ C0,p-var([0, T ],G[p](Rd)),p ≥ 1. Hence, we can, also in this case, consider
the function f̃ from the previous lemma. We now record important properties for
this induced function.

LEMMA 7. Let p ≥ 1, ζ ∈ C0,p-var([0, T ],G[p](Rd)) and γ > p. Assume
(A1), (A2), (F1), (F2) and (Hp,γ ). Let φ be the flow corresponding to equation
(6) (now solved as a rough differential equation). Then the function

f̃ (t, x, ỹ, z̃) := 1

∂yφ

{
f (t, φ, ∂yφz̃ + ∂xφσt ) + 〈∂xφ, bt 〉

(8)

+ 1

2
Tr[∂xxφσtσ

T
t ] + 〈z̃, (∂xyφσt )

T 〉 + 1

2
∂yyφ|z̃|2

}

satisfies the following properties:

• There exists a constant C̃1,f > 0 depending only on Cσ , Cb, C1,f , CH and
‖ζ‖p-var;[0,T ] such that

|f̃ (t, x, ỹ, z̃)| ≤ C̃1,f + C̃1,f |z̃|2, |∂z̃f̃ (t, x, ỹ, z̃)| ≤ C̃1,f + C̃1,f |z̃|.
• There exists a constant C̃2,f > 0 that only depends on Cσ , Cb, C2,f , CH and

‖ζ‖p-var;[0,T ] such that for every ε there exists an hε > 0 that only depends on
Cσ , Cb, CH and ‖ζ‖p-var;[0,T ] such that on [T − hε, T ] we have

∂ỹ f̃ (t, x, ỹ, z̃) ≤ C̃2,f + ε|z̃|2.
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PROOF. (i) Note that

|f̃ (t, x, ỹ, z̃)| ≤
∣∣∣∣ 1

∂yφ

∣∣∣∣
(
|f (t, φ, ∂yφz̃ + ∂xφσt )| + |〈∂xφ, bt 〉|

+
∣∣∣∣1

2
Tr[∂xxφσtσ

T
t ]

∣∣∣∣ + |〈z̃, (∂xyφσt )
T 〉| +

∣∣∣∣1

2
∂yyφ

∣∣∣∣|z̃|2
)

≤
∣∣∣∣ 1

∂yφ

∣∣∣∣
(
C1,f + C1,f |∂yφz̃ + ∂xφσt |2 + |∂xφ||bt |

+ 1

2
|∂xxφ||σtσ

T
t | + |z̃||∂xyφσt | + 1

2
|∂yyφ||z̃|2

)

≤
∣∣∣∣ 1

∂yφ

∣∣∣∣
(
C1,f + C1,f 2(|∂yφ|2|z̃| + |∂xφ||σT

t |) + |∂xφ||bt |

+ 1

2
|∂xxφ||σt |2 + |z̃||∂xyφ||σT

t | + 1

2
|∂yyφ||z̃|2

)

≤ C̃1,f + C̃1,f |z̃|2.
Here we have used (A1), (A2) and (F1). For the boundedness of the flow and its
derivatives, we have used Lemma B.1. Note that C̃1,f hence only depends on Cσ ,
Cb, C1,f , CH and ‖ζ‖p-var;[0,T ].

(ii) Note that

|∂z̃f̃ (t, x, ỹ, z̃)|
=

∣∣∣∣∂zf (t, φ, ∂yφz̃ + ∂xφσt ) + 1

∂yφ
(∂xyφσt + ∂yyφz̃)

∣∣∣∣

≤ C1,f + C1,f (|∂yφ||z̃| + |∂xφ||σt |) +
∣∣∣∣∂xyφ

∂yφ

∣∣∣∣|σt | +
∣∣∣∣∂yyφ

∂yφ

∣∣∣∣|z̃|
≤ C̃1,f + C̃1,f |z̃|.

Here we have used (A1), (A2) and (F1). For the boundedness of the flow and its
derivatives, we have used Lemma B.1. Note that again, C̃1,f hence only depends
on Cσ , Cb, C1,f , CH and ‖ζ‖p-var;[0,T ]. Without loss of generality, we can choose
it to be the same constant as in the estimate for (i).

(iii) Note that

∂ỹ f̃ (t, x, ỹ, z̃)

= − ∂yyφ

(∂yφ)2

{
f (t, φ, ∂yφz̃ + ∂xφσt ) + 〈∂xφ, bt 〉

+ 1

2
Tr[∂xxφσtσ

T
t ] + 〈z̃, (∂xyφσt )

T 〉 + 1

2
∂yyφ|z̃|2

}
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+ 1

∂yφ

{
∂yφ∂yf (t, φ, ∂yφz̃ + ∂xφσt ) + 〈∂yxφ, bt 〉

+ 1

2
Tr[∂yxxφσtσ

T
t ] + 〈z̃, (∂yxyφσt )

T 〉 + 1

2
∂yyyφ|z̃|2

}
.

Hence, using our assumptions on f , we get

∂ỹ f̃ (t, x, ỹ, z̃) ≤
∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣
{
C2,f + C2,f |∂yφz̃ + ∂xφσt |2 + |∂xφ||bt |

+ 1

2
|∂xxφ||σt |2 + |z̃||∂xyφ||σt | + 1

2
|∂yyφ||z̃|2

}

+ ∂yf (t, φ, ∂yφz̃ + ∂xφσt )

+ 1

∂yφ

{
|∂yxφ||bt | + 1

2
|∂yxxφ||σt |

+ (1 + |z̃|2)|∂yxyφ||σt |op + 1

2
∂yyyφ|z̃|2

}

≤
∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣
{
C2,f + C2,f 2|∂xφ|2|σt |2 + |∂xφ||bt |

+ 1

2
|∂xxφ||σt |2 + |∂xyφ||σt |

}

+ ∂yf (t, φ, ∂yφz̃ + ∂xφσt )

+ 1

∂yφ

{
|∂yxφ||bt | + 1

2
|∂yxxφ||σt | + |∂yxyφ||σt |

}

+
{∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣C2,f 2|∂yφ|2 +
∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣|∂xyφ||σt |

+
∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣1

2
|∂yyφ| + 1

∂yφ
|∂yxyφ||σT

t | + 1

∂yφ

1

2
∂yyyφ

}
|z̃|2

≤ C̃2,f +
{∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣C2,f 2|∂yφ|2 +
∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣|∂xyφ||σt |

+
∣∣∣∣ ∂yyφ

(∂yφ)2

∣∣∣∣1

2
|∂yyφ| + 1

∂yφ
|∂yxyφ||σT

t | + 1

∂yφ

1

2
∂yyyφ

}

× |z̃|2,
where C̃2,f only depends on Cσ , Cb, CH and ‖ζ‖p-var;[0,T ] (here we have used
Lemma B.1 to bound the flow and its derivatives).

By (A1), (A2) σ and b are bounded. Then, by the properties of the flow, the
term in front of |z̃|2 goes uniformly to zero as t approaches T . To be specific:
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using (Hp,γ ) we obtain, again by Lemma B.1, that for every ε > 0 there exists an
hε > 0, depending on Cσ , Cb, CH and ‖ζ‖p-var;[0,T ] such that on [T − hε, T ] we
have

∂ỹ f̃ (t, x, ỹ, z̃) ≤ C̃2,f + ε|z̃|2. �

We are now ready to prove Theorem 3.

PROOF OF THEOREM 3. For the sake of unified notation, we write (Y 0,Z0)

for the (rough BSDE) solution (Y,Z); similarly, we write ζ 0 for the rough path ζ .
1. Existence
Let φn,n ≥ 0 be the (ODE, for n ≥ 1 and RDE, when n = 0) solution flow

(parametrized by x)

φn(t, x, y) = y +
∫ T

t
H(x,φn(r, x, y)) dζ n(r).

By Lemma B.1, we have for all n ≥ 0, x ∈ R
n, that φn(t, x, ·) is a flow of C3-

diffeomorphisms. Let ψn(t, x, ·) be its y-inverse. We have that φn(t, ·, ·) and its
derivatives up to order three are bounded (Lemma B.1). The same holds true for
ψn(t, ·, ·) and its derivatives up to order three.

Moreover, by Lemma B.2 we have that locally uniformly on [0, T ] × R
n × R(

φn,
1

∂yφn
, ∂yφ

n, ∂yyφ
n, ∂xφ

n, ∂xxφ
n, ∂yxφ

n

)

(9)

→
(
φ0,

1

∂yφ0 , ∂yφ
0, ∂yyφ

0, ∂xφ
0, ∂xxφ

0, ∂yxφ
0
)
.

Denote for n ≥ 0 the function

f̃ n(t, x, ỹ, z̃) := 1

∂yφn

{
f (t, φn, ∂yφ

nz̃ + ∂xφ
nσt ) + 〈∂xφ

n, bt 〉

+ 1

2
Tr[∂xxφ

nσtσ
T
t ] + 〈z̃, (∂xyφ

nσt )
T 〉 + 1

2
∂yyφ

n|z̃|2
}
.

Now, we have seen above that for n ≥ 1, the process

(Ỹ n, Z̃n) := Ln(Y n,Zn)

:=
(
(φn)−1(·,X·, Y n· ),

− ∂xφ
n(·,X·, (φn)−1(·,X·, Y n· ))

∂yφn(·,X·, (φn)−1(·,X·, Y n· ))
σ·

+ 1

∂yφn(·,X·, (φn)−1(·,X·, Y n· ))
Zn·

)
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solves the BSDE with data (ξ, f̃ n,0,0).
Note that although (ξ, f̃ n,0,0) is a quadratic BSDE, existence and uniqueness

of a solution are guaranteed for n ≥ 1 by the fact that the mapping Ln is one to one
and by the existence of a unique solution to the untransformed BSDE (Lemma 2).

For n = 0, using the good properties of f̃ 0 demonstrated in Lemma 7, there
exists a solution (Ỹ 0, Z̃0) ∈ H∞[0,T ] ×H 2[0,T ] to the BSDE with data (ξ, f̃ 0,0,0) by
Theorem 2.3 in [15]. Note that it is a priori not unique, but we will show that it is
at least unique on a small time interval up to T .

We now construct the process (Y 0,Z0) of the statement on subintervals of
[0, T ]. First of all, notice that we can choose the constant C̃1,f appearing in
Lemma 7 uniformly for all n ≥ 0. Let M := ‖ξ‖∞ + T C̃1,f . By Corollary 2.2
in [15], we have

‖Ỹ n‖∞ ≤ M, n ≥ 0.(10)

Now by Lemma 7:

• There exists C̃1,f > 0 that only depends on Cσ , Cb, C1,f , CH and ‖ζ‖p-var;[0,T ]
such that

|f̃ 0(t, x, y, z)| ≤ C̃1,f + C̃1,f |z|2,
|∂zf̃

0(t, x, y, z)| ≤ C̃1,f + C̃1,f |z|.
• There exists a constant C̃2,f > 0 that only depends on Cσ , Cb, C2,f , CH and

‖ζ‖p-var;[0,T ] such that for every ε there exists an hε > 0 that only depends on
Cσ , Cb, CH and ‖ζ‖p-var;[0,T ] such that on [T − hε, T ] we have

∂yf̃
0(t, x, y, z) ≤ C̃2,f + ε|z|2.

Hence, we can choose h = h
δ(C̃1,f ,M)

, such that for t ∈ [T − h,T ] we have

∂yf̃ (t, x, y, z) ≤ C̃2,f + δ(C̃1,f ,M)|z|2.
Here δ is the universal function given in the statement of Theorem A.2. We can
then apply Theorem A.2 to get uniqueness of our solution (Ỹ 0, Z̃0) on [T −h,T ].
Now, as a consequence of (9) we have

f̃ n → f̃ 0 uniformly on compacta.

Hence, by the argument of Theorem 2.8 in [15] we have that

Ỹ n → Ỹ 0 uniformly on [T − h,T ] P-a.s.,
(11)

Z̃n → Z̃0 in H 2[T −h,T ].
Moreover, if we define

Y 0
t := φ0(t,Xt , Ỹ

0
t ), t ∈ [T − h,T ],

Z0
t := ∂yφ

0(t,Xt , Ỹ
0
t )

[
Z̃0

t + ∂xφ
0(t,Xt , Ỹ

0
t )

∂yφ0(t,Xt , Ỹ
0
t )

σt

]
, t ∈ [T − h,T ],
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and remembering that by construction

Yn
t = φn(t,Xt , Ỹ

n
t ),

Zn
t = ∂yφ

n(t,Xt , Ỹ
n
t )

[
Z̃n

t + ∂xφ
n(t,Xt , Ỹ

n
t )

∂yφn(t,Xt , Ỹ
n
t )

σt

]
,

and using (9) we get

Yn → Y 0 uniformly on [T − h,T ] P-a.s.,
(12)

Zn → Z0 in H 2[T −h,T ].

Let us proceed to the next subinterval. To make the rough path disappear in the
BSDE, we will use a similar transformation via a flow as above. As before we
need to control the driver of the transformed BSDE, this time near T − h. For this
reason, we have to start the flow anew. First, we rewrite the BSDEs for n ≥ 1 as

Yn
t = Yn

T −h +
∫ T

t
f (r, Y n

r ,Zn
r ) dr −

∫ T −h

t
H(Xr,Y

n
r ) dζ n

r −
∫ T −h

t
Zn

r dWr.

Then define the flow φn,T −h started at time T − h, that is,

φn,T −h(t, x, y) = y +
∫ T −h

t
H(x,φn,T −h(r, x, y)) dζ n(r), t ≤ T − h.

On [0, T − h] define

(Ỹ n,T −h· , Z̃n,T −h· ) :=
(
(φn,T −h)−1(·,X·, Y n· ),

− ∂xφ
n,T −h(·,X·, (φn,T −h)−1(·,X·, Y n· ))

∂yφn,T −h(·,X·, (φn,T −h)−1(·,X·, Y n· ))
σ·

+ 1

∂yφn,T −h(·,X·, (φn,T −h)−1(·,X·, Y n· ))
Zn·

)
.

Then

Ỹ
n,T −h
t = Yn

T −h+
∫ T −h

t
f̃ n,T −h(r,Xr, Ỹ

n,T −h
r , Z̃n,T −h

r ) dr −
∫ T −h

t
Z̃n,T −h

r dWr,

where

f̃ n,T −h(t, x, ỹ, z̃) := 1

∂yφn,T −h

{
f (t, φn,T −h, ∂yφ

n,T −hz̃ + ∂xφ
n,T −hσt )

+ 〈∂xφ
n,T −h, bt 〉 + 1

2
Tr[∂xxφ

n,T −hσtσ
T
t ]

+ 〈z̃, (∂xyφ
n,T −hσt )

T 〉 + 1

2
∂yyφ

n,T −h|z̃|2
}
.
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This BSDE is also defined for n = 0 and as before we get via Lemma 7 for the
same h and the same C̃1,f and C̃2,f as before (here the explicit dependence of
these constants is crucial), that on [T − 2h,T − h] we have

∂yf̃
0,T −h(t, x, y, z) ≤ C̃2,f + δ(C̃1,f ,M)|z|2.

Hence, we can apply Comparison Theorem A.2 to get uniqueness of our solu-
tion (Ỹ 0,T −h, Z̃0,T −h) on [T − 2h,T − h]. Now, also note that for the terminal
value we have from (12) and (10)

Yn
T −h → Y 0

T −h P-a.s.,

|Yn
T −h| ≤ M, n ≥ 1.

Hence, again by the argument of Theorem 2.8 in [15]7

Ỹ n,T −h → Ỹ 0,T −h uniformly on [T − 2h,T − h] P-a.s.,

Z̃n,T −h → Z̃0,T −h in H 2[T −2h,T −h].

Finally, reversing the transformation, we get as above

Yn → Y 0 uniformly on [T − 2h,T − h] P-a.s.,

Zn → Z0 in H 2[T −2h,T −h].

Then, we can iterate this procedure on suberintervals of length h up to time 0.
Without loss of generality, we can assume that T = Nh for an N ∈ N. Then patch-
ing the results together we get

sup
t≤T

|Yn
t − Y 0

t | ≤
N∑

k=1

sup
(k−1)h≤t≤kh

|Yn
t − Y 0

t | → 0 P-a.s.

and

E

[∫ T

0
|Zn

r − Z0
r |2 dr

]
=

N∑
k=1

E

[∫ kh

(k−1)h
|Zn

r − Z0
r |2 dr

]
→ 0.

7Note that Theorem 2.8 in [15] demands convergence in L∞ of the terminal value. A closer look
at the proof though, reveals that P-a.s. convergence combined with a uniform deterministic bound
(M in our case) is enough. To be specific: the convergence of the terminal value is only used at two
instances for Theorem 2.8 and this is in the proof of Proposition 2.4 (which is the main ingredient
for Theorem 2.8). First, it is used on page 568, right before Step 2 where it reads “By Lebesgue’s
dominated . . . ”. Second, it is used on page 570, before the end of the proof where it reads “from
which we deduce that . . . ”. In both cases, the above stated requirement is enough.
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2. Uniqueness
Let ζ̄ n, n ≥ 1 be another sequence of smooth paths that converges to ζ in p-

variation. Let (Ȳ n, Z̄n) be the solutions to BSDEs with data (ξ, f,H, ζ̄ n). Then as
above

˜̄Yn → Ỹ 0 uniformly on [T − h,T ] P-a.s.,

˜̄Zn → Z̃0 in H 2[T −h,T ].

And hence,

Ȳ n → Y 0 uniformly on [T − h,T ] P-a.s.,

Z̄n → Z0 in H 2[T −h,T ].

Note that the choice of h in the proof of existence only depended on properties
of the limiting function f̃ 0, so we can use the same value here. One can now iterate
this argument up to time 0 to get

Ȳ n → Y 0 uniformly on [0, T ] P-a.s.,

Z̄n → Z0 in H 2[0,T ],

as desired.
3. Continuity of the solution map
We note that for a given B > 0, all terminal values ξ such that |ξ | ≤ B and all

geometric p-rough paths with ‖ζ‖p-var;[0,T ] ≤ B we can choose an h = h(B) > 0
such that the above constructed unique solution (Y 0,Z0) to the BSDE (5) is given
by

Y 0
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

φ0,T (t,Xt , Ỹ
T
t ), t ∈ [T − h,T ],

φ0,T −h(t,Xt , Ỹ
T −h
t ), t ∈ [T − 2h,T − h],

. . .

φ0,h(t,Xt , Ỹ
h
t ), t ∈ [0, h],

Z0
t =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂yφ
0,T (t,Xt , Ỹ

0,T
t )

[
Z̃

0,T
t + ∂xφ

0,T (t,Xt , Ỹ
0,T
t )

∂yφ0(t,Xt , Ỹ
0,T
t )

σt

]
,

t ∈ [T − h,T ],
∂yφ

0,T −h(t,Xt , Ỹ
0,T −h
t )

[
Z̃

0,T −h
t + ∂xφ

0,T −h(t,Xt , Ỹ
0,T −h
t )

∂yφ0,T −h(t,Xt , Ỹ
0,T −h
t )

σt

]
,

t ∈ [T − 2h,T − h],
. . .

∂yφ
0,h(t,Xt , Ỹ

0,h
t )

[
Z̃

0,h
t + ∂xφ

0,h(t,Xt , Ỹ
0,h
t )

∂yφ0,h(t,Xt , Ỹ
0,h
t )

σt

]
,

t ∈ [0, h],



1730 J. DIEHL AND P. FRIZ

where we used the unique solutions to the following BSDEs:

Ỹ
0,T
t = ξ +

∫ T

t
f̃ 0,T (r,Xr, Ỹ

0,T
r , Z̃0,T

r ) dr −
∫ T

t
Z̃0,T

r dWr,

Ỹ
0,T −h
t = φ0,T (T − h,XT −h, Ỹ

0,T
T −h) +

∫ T −h

t
f̃ 0,T −h(r,Xr, Ỹ

0,T −h
r , Z̃0,T −h

r ) dr

−
∫ T −h

t
Z̃0,T −h

r dWr,

. . .

Ỹ
0,h
t = φ0,2h(h,Xh, Ỹ

0,2h
h ) +

∫ h

t
f̃ 0,h(r,Xr, Ỹ

0,h
r , Z̃0,h

r ) dr −
∫ h

t
Z̃0,h

r dWr.

From this representation and stability results on BSDEs (Theorem 2.8 in [15]),
it easily follows that the solution map

C0,p-var([0, T ],G[p](Rd)) × L∞(FT ) → H∞[0,T ] × H 2[0,T ]
is continuous in balls of radius B . Since this is true for every B > 0 we get the
desired result. �

3. The Markovian setting—connection to rough PDEs. We now specialize
to a Markovian model. We are interested in solving the following forward back-
ward stochastic differential equation for (t0, x0) ∈ [0, T ] × R

n:

X
t0,x0
t = x0 +

∫ t

t0

σ(r,Xt0,x0
r ) dWr +

∫ t

t0

b(r,Xt0,x0
r ) dr, t ∈ [t0, T ],

Y
t0,x0
t = g(X

t0,x0
T ) +

∫ T

t
f (r,Xt0,x0

r , Y t0,x0
r ,Zt0,x0

r ) dr(13)

+
∫ T

t
H(Xt0,x0

r , Y t0,x0
r ) dζ r −

∫ T

t
Zt0,x0

r dWr, t ∈ [t0, T ].
Here σ : [0, T ] × R

n → R
n×m, b : [0, T ] × R

n → R
n, f : [0, T ] × R

n × R × R
m,

g : Rn → R, H = (H1, . . . ,Hd) : Rn × R → R
d , ζ : [0, T ] → R

d are continuous
mappings, on which more assumptions will be presented later.

Assume for the moment that ζ is actually a smooth path. Then (13) is connected
to the PDE

∂tu(t, x) + 1
2 Tr[σ(t, x)σ (t, x)T D2u(t, x)] + 〈b(t, x),Du(t, x)〉

+ f (t, x, u(t, x),Du(t, x)σ (t, x)) + H(x,u(t, x))ζ̇t = 0,
(14)

t ∈ [0, T ), x ∈ R
n,

u(T , x) = g(x), x ∈ R
n.

We will make this connection explicit after introducing the following adaption
(and strengthening) of previous assumptions:
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(MA1) There exists a constant Cσ > 0 such that for (t, x) ∈ [0, T ] × R
n

|σ(t, x)| ≤ Cσ ,

|∂xi
σ (t, x)| ≤ Cσ , i = 1, . . . , n.

(MA2) There exists a constant Cb > 0 such that for (t, x) ∈ [0, T ] × R
n

|b(t, x)| ≤ Cb,

|∂xb(t, x)| ≤ Cb.

(MF1) There exists a constant C1,f > 0 such that for (t, x, y, z) ∈ [0, T ] ×
R

n × R × R
m

|f (t, x, y, z)| ≤ C1,f ,

|∂zf (t, x, y, z)| ≤ C1,f .

(MF2) There exists a constant C2,f > 0 such that such that for (t, x, y, z) ∈
[0, T ] × R

n × R × R
m

∂yf (t, x, y, z) ≤ C2,f .

(MF3) There exists a constant C3,f > 0 such that such that for (t, x, y, z) ∈
[0, T ] × R

n × R × R
m

∂xf (t, x, y, z) ≤ C3,f + C3,f |z|2,
and f is uniformly continuous in x, uniformly in (t, y, z).

(MG1) g is bounded and uniformly continuous.

We again consider for a smooth (or rough) path ζ the flow (parametrized by x)

φ(t, x, y) = y +
∫ T

t

d∑
k=1

Hk(x,φ(r, x, y)) dζ k(r).(15)

In what follows, BC([0, T ] × R
n) [resp., BC(Rn)] denotes the space of

bounded continuous functions on [0, T ]×R
n (resp., R

n) with the topology of uni-
form convergence on compacta. Similarly, BUC([0, T ] × R

n) [resp., BUC(Rn)]
denotes the space of bounded uniformly continuous functions on [0, T ] × R

n

(resp., R
n) with the topology of uniform convergence on compacta.

PROPOSITION 8. Assume (MA1), (MA2), (MF1), (MF2), (MF3), (MG1) and
let H be Lipschitz on R

n × R. Let ζ be a smooth path. Then there exists a unique
viscosity solution8 to (14) in BUC([0, T ],R

n).
It is given by

u(t, x) := Y
t,x
t ,

where for every (t0, x0) ∈ [0, T ] × R
n the process (Y t0,x0,Zt0,x0) is the solution

to (13).

8For an introduction to the theory of viscosity solutions, we refer the reader to [7].
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PROOF. The fact that u is a bounded, uniformly continuous viscosity solution
follows from Proposition 2.5 and Theorem 3.4 in [1]. Uniqueness of a bounded vis-
cosity solution to (14) follows from Theorem C.1. Note, that since ∂yf is bounded,
we can choose hε ≡ 0 in the statement of the theorem and hence get uniqueness
on the entire interval (0, T ]. Every BUC function on (0, T ] × R

n has a unique
extension to [0, T ] × R

n. Hence, u is unique in BUC([0, T ],R
n). �

REMARK 9. It is also possible to show existence of a (unique) solution to (14)
by purely deterministic methods; see, for example, Theorem 2 in [9].

Let now ζ n, n = 1,2, . . . , be smooth paths in R
d . Let γ > p ≥ 1 and assume

ζ n → ζ 0 in p-variation, for a ζ 0 ∈ C0,p-var([0, T ],G[p](Rd)). Assume (MA1),
(MA2), (MF1), (MF2), (MF3), (MG1) and (Hp,γ ), so that especially Theorem 3
holds true. It follows that the corresponding un (as given in Proposition 8) converge
pointwise to some function u0, that is,

un(t, x) → u0(t, x), t ∈ [0, T ], x ∈ R
n.

Again, the limiting function u0 does not depend on the approximating sequence,
but only on the limiting rough path ζ 0. We could hence define this u0 to be the
solution solution to (14). But it is not straightforward, via this approach, to show
uniform convergence on compacta as well as continuity of the solution map. We
hence work directly on the PDEs, as in [5] and [12]. First, we get the respective
versions of Lemma 4 and Lemma 7.

LEMMA 10. Assume (MA1), (MA2), (MF1), (MF2), (MG1) and let H(x, ·) =
(H1(x, ·), . . . ,Hd(x, ·)) be a collection of Lipschitz vector fields on R. Let a
smooth path ζ be given. Let u be the unique viscosity solution to (14).

Then v(t, x) := φ−1(t, x, u(t, x)) is a viscosity solution to

∂tv(t, x) + 1
2 Tr[σ(t, x)σ (t, x)T D2v(t, x)] + 〈b(t, x),Dv(t, x)〉

+ f̃ (t, x, v(t, x),Dv(t, x)σ (t, x)) = 0, t ∈ [0, T ), x ∈ R
n,

v(T , x) = g(x), x ∈ R
n,

where [in what follows the φ will always be evaluated at (t, x, ỹ)]

f̃ (t, x, ỹ, z̃) = 1

∂yφ

{
f

(
t, x,φ, ∂yφz̃ + ∂xφσ(t, x)

)

+ 〈∂xφ, b(t, x)〉 + 1

2
Tr[∂xxφσ(t, x)σ (t, x)T ]

+ 〈z̃, (∂xyφσ(t, x))T 〉 + 1

2
∂yyφ|z̃|2

}
.
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PROOF. This is an application of Lemma 5 in [12]. �

LEMMA 11. Let p ≥ 1, ζ ∈ C0,p-var([0, T ],G[p](Rd)) and γ > p. Assume
(MA1), (MA2), (MF1), (MF2), (MF3), (MG1) and (Hp,γ ). Let φ be the flow cor-
responding to equation (15) (solved as a rough differential equation). Then

f̃ (t, x, ỹ, z̃) = 1

∂yφ

{
f

(
t, x,φ, ∂yφz̃ + ∂xφσ(t, x)

)

+ 〈∂xφ, b(t, x)〉 + 1

2
Tr[∂xxφσ(t, x)σ (t, x)T ]

+ 〈z̃, (∂xyφσ(t, x))T 〉 + 1

2
∂yyφ|z̃|2

}

satisfies:

• There exists a constant C̃1,f > 0 depending only on Cσ , Cb, C1,f , CH and
‖ζ‖p-var;[0,T ] such that for (t, x, ỹ, z̃) ∈ [0, T ] × R

n × R × R
m

|f̃ (t, x, ỹ, z̃)| ≤ C̃1,f + C̃1,f |z̃|2,
|∂z̃f̃ (t, x, ỹ, z̃)| ≤ C̃1,f + C̃1,f |z̃|.

• There exists a constant C̃2,f > 0 that only depends on Cσ , Cb, C2,f , CH and
‖ζ‖p-var;[0,T ] such that for every ε > 0 there exists an hε > 0 that only depends
on Cσ , Cb, CH and ‖ζ‖p-var;[0,T ] such that for (t, x, ỹ, z̃) ∈ [T −hε, T ]×R

n ×
R × R

m

∂ỹf̃ (t, x, ỹ, z̃) ≤ C̃2,f + ε|z̃|2.
• There exists a C̃3,f > 0 that only depends on Cσ , Cb, C2,f , C3,f , CH and

‖ζ‖p-var;[0,T ] such that for (t, x, ỹ, z̃) ∈ [0, T ] × R
n × R × R

m

∂xf̃ (t, x, ỹ, z̃) ≤ C̃3,f + C̃3,f |z̃|2.

PROOF. The first three inequalities follow as in Lemma 7. Now for i ≤ n, we
have

∂xi
f̃ (t, x, ỹ, z̃)

= −∂xiyφ
1

∂yφ
f̃ (t, x, ỹ, z̃)

+ 1

∂yφ

[
∂yf

(
t, x,φ, ∂yφz̃ + ∂xφσ(t, x)

)
∂xi

φ

+ ∂zf
(
t, x,φ, ∂yφz̃ + ∂xφσ(t, x)

)

× (
∂xiyφz̃ + ∂xixφσ(t, x) + ∂xφ∂xi

σ (t, x)
)T
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+ 〈∂xixφ, b(t, x)〉 + 〈∂xφ, ∂xi
b(t, x)〉

+ 1

2
Tr[∂xixxφσ(t, x)σ (t, x)T ] + 1

2
Tr[∂xxφ∂xi

σ (t, x)σ (t, x)T ]

+ 1

2
Tr[∂xxφσ(t, x)∂xi

σ (t, x)T ] + 〈z̃, (∂xixyφσ(t, x))T 〉

+ 〈z̃, (∂xyφ∂xi
σ (t, x))T 〉 + 1

2
∂xiyyφ|z̃|2

]
.

So

|∂xi
f̃ (t, x, ỹ, z̃)|
≤ |∂xiyφ|

∣∣∣∣ 1

∂yφ

∣∣∣∣|f̃ (t, x, ỹ, z̃)|

+
∣∣∣∣ 1

∂yφ

∣∣∣∣
[∣∣∂yf

(
t, x,φ, ∂yφz̃ + ∂xφσ(t, x)

)∣∣|∂xi
φ|

+ ∣∣∂zf
(
t, x,φ, ∂yφz̃ + ∂xφσ(t, x)

)∣∣
× (|∂xiyφ||z̃| + |∂xixφ||σ(t, x)| + |∂xφ||∂xi

σ (t, x)|)
+ |〈∂xixφ||b(t, x)| + |∂xφ||∂xi

b(t, x)|
+ 1

2
|∂xixxφ||σ(t, x)|2 + |∂xxφ||∂xi

σ (t, x)||σ(t, x)|

+ |z̃||∂xixyφ||σ(t, x)| + |z̃||∂xyφ||∂xi
σ (t, x)| + 1

2
|∂xiyyφ||z̃|2

]

≤ C̃3,f + C̃3,f |z̃|2
with a constant C̃3,f only depending on Cσ , Cb, C1,f , C2,f , C3,f , CH and
‖ζ‖p-var;[0,T ]. Here, we have used the first inequality of the statement to bound f̃ ,
(MF1), (MF2), (MF3) to bound f and its y and z derivatives and Lemma B.1 to
bound the flow and its derivatives.

Summing over i then yields the desired result. �

THEOREM 12. Let γ > p ≥ 1 and let ζ n, n = 1,2, . . . be smooth paths in R
d .

Assume

ζ n → ζ

in p-variation, for a rough path ζ ∈ C0,p-var([0, T ],G[p](Rd)). Assume (MA1),
(MA2), (MF1), (MF2), (MF3), (MG1) and (Hp,γ ). Let un ∈ BUC([0, T ] × R

n)

be the unique solution to (14) with driving path ζ n (Proposition 8). Then there
exists u ∈ BC([0, T ] × R

n), only dependent on ζ but not on the approximating
sequence ζ n, such that

un → u locally uniformly.
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We write (formally)

du + [1
2 Tr[σ(t, x)σ (t, x)T D2u(t, x)] + 〈b(t, x),Du(t, x)〉

+ f (t, x, u(t, x),Du(t, x)σ (t, x))
]
dt

(16)
+ H(x,u(t, x)) dζ (t) = 0, t ∈ [0, T ), x ∈ R

n,

u(T , x) = g(x), x ∈ R
n.

Furthermore, the solution map

C0,p-var([0, T ],G[p](Rd)
) × BUC(Rn) → BC([0, T ] × R

n),

(ζ , g) 
→ u

is continuous.
At last we have the stochastic representation

u(t, x) = Y
t,x
t ,

where Y t,x is (the Y -component of) the solution to the BSDE (13).

REMARK 13. Equations like (16) have been considered in [12]. The setting
there is more general in the sense that the vector field H in front of the rough path
is allowed to also depend on the gradient. On the other hand, their f is independent
of the gradient and H is linear.

For the proof, we apply the same ideas as in the proof of Theorem 1 in [5]. We
however mimic our analysis of the BSDE case (Theorem 3) and proceed on small
intervals; a similar approach was carried out in Lions–Souganidis [17].

REMARK 14. We suspect the solution to actually lie in BUC([0, T ] × R
n).

Showing this would involve adapting the comparison theorem C.1 to directly yield
a modulus of continuity for solutions, as it has been done in [9] under different
assumptions on the coefficients.

PROOF. For the sake of unified notation, we write u0 for the (rough PDE)
solution u; similarly, we write ζ 0 for the rough path ζ .

1. Existence
Let φn,n ≥ 0 be the (ODE, for n ≥ 1 and RDE, when n = 0) solution flow

(parametrized by x)

φn(t, x, y) = y +
∫ T

t
H(x,φn(r, x, y)) dζ n(r).

Then, by Lemma 10, for n ≥ 1, un is a solution to (14) if and only if vn(t, x) :=
(φn)−1(t, x, un(t, x)) is a solution to

∂tv
n(t, x) + 1

2 Tr[σ(t, x)σ (t, x)T D2vn(t, x)] + 〈b(t, x),Dvn(t, x)〉
+ f̃ n(t, x, vn(t, x),Dvn(t, x)σ (t, x)) = 0, t ∈ [0, T ), x ∈ R

n,(17)

vn(T , x) = g(x), x ∈ R
n,
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where

f̃ n(t, x, ỹ, z̃) = 1

∂yφn

{
f (t, x,φn, ∂yφ

nz̃ + ∂xφ
nσ(t, x)) + 〈∂xφ

n, b(t, x)〉

+ 1

2
Tr[∂xxφ

nσ(t, x)σ (t, x)T ]

+ 〈z̃, (∂xyφ
nσ (t, x))T 〉 + 1

2
∂yyφ

n|z̃|2
}
.

In the proof of Theorem 3, we have already seen that f̃ n → f̃ 0, locally uni-
formly. From the method of semi-relaxed limits (Lemma 6.1, Remarks 6.2–6.4 in
[7]), the pointwise (relaxed) limits

v̄0 := ∗
lim supvn, v0 := lim inf∗ vn,

are viscosity (sub resp. super) solutions to the (transformed) PDE (17) for n = 0.
Here, we have used the fact, that v̄0 and v0 are indeed finite, say bounded in
norm by M > 0. This follows from the Feyman–Kac representation (Proposi-
tion 8) for each un, in combination with bounds [uniform in (t0, x0) and n] on
the corresponding BSDEs (Corollary 2.2 in [15]). [Although not completely ob-
vious, such uniform bounds can also be obtained without BSDE arguments; one
would need to exploit comparison for (14), and then (17), clearly valid when n ≥ 1,
with rough path estimates for RDE solutions which will serve as sub- and super-
solutions without spatial structure.] Note also, that the semi-relaxed limiting pro-
cedure preserves the terminal value (see, e.g., Proposition 5.1 in [11] or Section 10
in [5]).

By Lemma 11, the function f̃ 0 satisfies the conditions of Theorem C.1. Hence,
the PDE (17) for n = 0 satisfies comparison on [T − h,T ] for h sufficiently small
(as long as T −h > 0), and h only depends on M and the constants C̃2,f , C̃1,f and
C̃2,f for f̃ 0 given by Lemma 11. So v0(t, x) := v̄0(t, x) = v0(t, x), t ∈ [T −h,T ]
is the unique (and continuous, since v̄, v are respectively upper resp. lower semi-
continuous) solution to (17) with n = 0 on [T − h,T ]. Moreover, using a Dini-
type argument (Remark 6.4 in [7]), one sees that this limit must be uniform on
compact sets. Undoing the transformation, we see that un → u0 locally uniformly
on [T − h,T ], where u0(t, x) := φ0(t, x, v0(t, x)), t ∈ [T − h,T ].

We proceed to the next subinterval. We use the same argument as above, we just
work with a different transformation. For n ≥ 0, let φn,T −h be the solution flow
started at time T − h, that is,

φn,T −h(t, x, y) = y +
∫ T −h

t
H(x,φn,T −h(r, x, y)) dζ n(r).
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Then, for n ≥ 1, un|[0,T −h] is a solution to

∂tu
n(t, x) + 1

2 Tr[σ(t, x)σ (t, x)T D2un(t, x)] + 〈b(t, x),Dun(t, x)〉
+ f (t, x, un(t, x),Dun(t, x)σ (t, x)) + H(x,un(t, x))ζ̇r = 0,

t ∈ [0, T − h], x ∈ R
n,

u(T − h,x) = φn(
T − h,x, vn(T − h,x)

)
, x ∈ R

n.

if and only if vn,T −h(t, x) := (φn,T −h)−1(t, x, un(t, x)) is a solution to

∂tv
n,T −h(t, x) + 1

2 Tr[σ(t, x)σ (t, x)T D2vn,T −h(t, x)] + 〈b(t, x),Dvn,T −h(t, x)〉
+ f̃ n,T −h(t, x, vn,T −h(t, x), σ (t, x)Dvn,T −h(t, x)) = 0,

t ∈ (0, T − h), x ∈ R
n,

vn,T −h(T , x) = φn(
T − h,x, vn(T − h,x)

)
, x ∈ R

n,

where of course f̃ n,T −h is defined as f̃ n was, with φn replaced by φn,T −h.
Now we have already shown that the terminal values of these PDEs converge,

for example,

φn(
T − h, ·, vn(T − h, ·)) → φ

(
T − h, ·, v(T − h, ·)) locally uniformly.

As before, one also shows that f̃ n,T −h → f̃ 0,T −h, locally uniformly. By Theo-
rem C.1, we again get comparison, now on [T − 2h,T − h], and hence again via
the method of semi-relaxed limits we arrive at9

vn,T −h → v0,T −h locally uniformly on [T − 2h,T − h] × R
n.

Hence, un → u0 locally uniformly on [T − 2h,T − h], where u0(t, x) =
φ0,T −h(t, x, v0,T −h(t, x)). Iterating this argument up to time 0, we get

un → u0 locally uniformly on [0, T ] × R
n,

where u0 is defined on intervals of length h as above.10

2. Uniqueness, continuity of solution map
Uniqueness of the limit and continuity of the solution map now follow by the

same arguments as in the proof of Theorem 3, adapted to the PDE setting.

9Remark 6.3 in [7] does not take into account converging terminal values. But the result is imme-
diate: the relaxed limit is a sub resp. super solution by Lemma 6.3 and by Proposition 2 in [5] their
terminal value is exactly the limit of the given converging terminal values.

10The attentive reader will observe that convergence at t = 0 is not immediate, since Theorem C.1
was not formulated to give comparison at t = 0. But we can argue by extending the coefficients as
well as the (rough) paths ζn for t ∈ [−1,0] as

σ(t, x) := σ(0, x), b(t, x) := b(0, x), f (t, x, y, z) := f (0, x, y, z), ζ n
t := ζn

0

and considering the PDEs on the interval [−1, T ].
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3. Stochastic representation
Let ζ n → ζ 0 as above. Denote by un the solution to the corresponding PDE

(rough PDE for n = 0). Denote by Yn,t,x the solution to the BSDE (13) (BSDE
with rough driver for n = 0) corresponding to the path ζ n.

Then, using the result from step 1, the stochastic representation in the case of
a smooth path from Proposition 8 and the convergence of the BSDEs from Theo-
rem 3, we get

u0(t, x) = lim
n→∞un(t, x) = lim

n→∞Y
n,t,x
t = Y

0,t,x
t . �

4. Connection to BDSDEs. Let �1 = C([0, T ],R
d), �2 = C([0, T ],R

m),
with the respective Wiener measures P

1, P
2 on them. Let � = �1 × �2, with the

product measure P := P
1 ⊗ P

2. For (ω1,ω2) ∈ � let B(ω1,ω2) = ω1 be the coor-
dinate mapping with respect to the first component. Analogously, W(ω1,ω2) = ω2

is the coordinate mapping with respect to the second component. In particular, B is
a d-dimensional Brownian motion and W is an independent m-dimensional Brow-
nian motion.

Define Ft := F B
t,T ∨ F W

0,t , where F B
t,T := σ(Br : r ∈ [t, T ]), F W

0,t := σ(Wr : r ∈
[0, t]). Note that F is not a filtration, since it is neither increasing nor decreasing.
In this setting, Pardoux and Peng [22] considered backward doubly stochastic dif-
ferential equations (BDSDEs). An F -adapted process (Y,Z) is called a solution
to the BDSDE

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr +

∫ T

t
H(Xr,Yr) ◦ dBr −

∫ T

t
Zr dWr,(18)

if E[supt≤T |Yt |2] < ∞, E[∫ T
0 |Zr |2 dr] < ∞ and (Y,Z) satisfies P-a.s. (18) for

t ≤ T . Here X is again the semimartingale

Xt = x +
∫ t

0
σr dWr +

∫ t

0
br dr.

Under appropriate (essentially Lipschitz) conditions on f and H they were able
to show existence and uniqueness of a solution.11 The connection to BSDEs with
rough driver is given by the following theorem.

THEOREM 15. Let p ∈ (2,3), γ > p. Let ξ ∈ L∞(FT ). Let f be a random
function satisfying (F1) and (F2). Moreover, assume (A1), (A2), (F1), (F2) and
(Hp,γ ).

Then by Theorem 1.1 in [22] there exists a unique solution (Y,Z) to the BDSDE

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr +

∫ T

t
H(Xr,Yr) ◦ dBr −

∫ T

t
Zr dWr.

11Pardoux and Peng considered equations where the Stratonovich integral was actually a backward
integral. But if H is smooth enough, the formulations are equivalent. See also Section 4 in [3].
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Let Bt = exp(Bt +At) be the Enhanced Brownian motion (over B)12, especially
B ∈ C

0,p-var
0 ([0, T ],G2(Rd)) P

1 a.s. By setting B = 0 on a null set, we get B ∈
C

0,p-var
0 ([0, T ],G2(Rd)). By Theorem 3 we can, for every ω1 ∈ �1, construct the

solution to the BSDE with rough driver

Y rp(ω1, ·)t = ξ(·) +
∫ T

t
f (r, Y rp

r ,Zrp
r ) dr +

∫ T

t
H(Xr,Y

rp(ω1, ·)) dBr (ω
1)

−
∫ T

t
Zrp(ω1, ·) dWr(·), t ∈ [0, T ].

We then have for P
1-a.e. ω1 that P

2-a.s.

Yt (ω
1, ·) = Y

rp
t (ω1, ·), t ≤ T

and

Zt(ω
1, ·) = Z

rp
t (ω1, ·), dt ⊗ P

2-a.s.

PROOF. As in the proof of Theorem 3, in the BDSDE setting, one can trans-
form the integral belonging to the Brownian motion B away. In [3] it was shown
that if we let φ be the stochastic (Stratonovich) flow

φ(ω1; t, x, y) = y +
∫ T

t
H(x,φ(ω1; r, x, y)) ◦ dBr(ω

1),

then with Ỹt := φ−1(t,Xt , Yt ), Z̃t := 1
∂yφ(t,Xt ,Yt )

Zt we have P-a.s.

Ỹt (ω
1,ω2) = ξ(ω2) +

∫ T

t
f̃ (ω1,ω2; r,Xr, Ỹr (ω

1,ω2), Z̃r (ω
1,ω2)) dr

(19)

−
∫ T

t
Z̃r (ω

1,ω2) dWr(ω
2), t ≤ T .

Here

f̃ (ω1,ω2; t, x, ỹ, z̃) := 1

∂yφ

{
f (ω2; t, φ, ∂yφz̃ + ∂xφσt ) + 〈∂xφ, bt 〉

+ 1

2
Tr[∂xxφσtσ

T
t ] + 〈z̃, (∂xyφσt )

T 〉 + 1

2
∂yyφ|z̃|2

}
,

where φ and its derivatives are always evaluated at (ω1;x, ỹ). Especially by a
Fubini type theorem (e.g., Theorem 3.4.1 in [2]), there exists �1

0 with P
1(�1

0) = 1
such that for ω1 ∈ �1

0 equation (19) holds true P
2 a.s.

12B is precisely d-dimensional Brownian motion enhanced with its iterated integrals in Stratonovich
sense; it is in 1 − 1 correspondence with Brownian motion enhanced with Lévy’s area; exp denotes
the exponential map from the Lie algebra R

d ⊕ so(d) to the group, realized inside the truncated
tensor algebra. See, for example, Section 13 in [13] for more details.
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On the other hand, we can construct ω1-wise the rough flow

φrp(ω1; t, x, y) = y +
∫ T

t
H(x,φrp(ω1; r, x, y)) dBr (ω

1).

Assume for the moment that we have global comparison, so that we can solve
the transformed BSDE uniquely, that is, for every ω1 ∈ �1, we have P

2 a.s.

Ỹ
rp
t (ω1,ω2) = ξ(ω2) +

∫ T

t
f̃ rp(ω1; r, Ỹ rp

r (ω1,ω2), Z̃rp
r (ω1,ω2)) dr

−
∫ T

t
Z̃rp

r (ω1,ω2) dWr(ω
2), t ≤ T ,

where

f̃ rp(ω1,ω2; t, x, ỹ, z̃)

:= 1

∂yφrp

{
f (ω2; t, φrp, ∂yφ

rpz̃ + ∂xφ
rpσt ) + 〈∂xφ

rp, bt 〉

+ 1

2
Tr[∂xxφ

rpσtσ
T
t ] + 〈z̃, (∂xyφ

rpσt )
T 〉 + 1

2
∂yyφ

rp|z̃|2
}
,

where φ and its derivatives are always evaluated at (ω1;x, ỹ). It is a classical rough
path result that there exists �1

1 with P
1(�1

1) = 1 such that for ω1 ∈ �1
1 we have

φrp(ω1; ·, ·, ·) = φ(ω1; ·, ·, ·).
Combining above results, we have for ω1 ∈ �1

0 ∩�1
1 that (Ỹt (ω

1, ·), Z̃t (ω
1, ·)) and

(Ỹ
rp
t (ω1, ·), Z̃rp

t (ω1, ·)) satisfy the same BSDE. Hence, we have by uniqueness

Ỹt (ω
1, ·) = Ỹ

rp
t (ω1, ·), t ≤ T ,P

2-a.s.

and

Z̃t (ω
1, ·) = Z̃

rp
t (ω1, ·), dt ⊗ P

2-a.s.

By reversing the transformation, we get the desired result for Y and Z.
Now, since comparison does not necessarily hold globally, we must argue dif-

ferently. Define Ak := {ω1 ∈ �1 :‖B(ω1)‖p-var ≤ k}. Then on Ak we have for an
h = h(k) > 0 comparison on [T − h,T ], and we argue on subsequent intervals as
above. Now, since P(

⋃
k Ak) = 1, we get the desired result. �

APPENDIX A: COMPARISON FOR BSDES

DEFINITION A.1. Let ξ ∈ L∞(FT ), W an m-dimensional Brownian motion
and f a predictable function on � × R+ × R × R

m.
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We call an adapted process (Y,Z,C) a supersolution to the BSDE with data
(ξ, f ) if Y ∈ H∞[0,T ], Z ∈ H 2[0,T ], C is an adapted right continuous increasing pro-
cess and

Yt = ξ +
∫ T

t
f (r, Yr,Zr) dr −

∫ T

t
Zr dWr +

∫ T

t
dCr, t ≤ T .

We call (Y,Z,C) a subsolution to the BSDE with data (ξ, f ) if (Y,Z,−C) is a
supersolution.

The following statement, as well as its proof, are based on Theorem 2.6 in [15].

THEOREM A.2. There exists a (universal) strictly positive function δ : R2+ →
(0,∞) such that the following statement is true.

Let (Y (1),Z(1),C(1)) be a supersolution to the BSDE with data (ξ (1), f (1)). Let
(Y (2),Z(2),C(2)) be a subsolution to the BSDE with data (ξ (2), f (2)). Let M ∈ R+
be a bound for Y (1) and Y (2), that is,

‖Y (1)‖∞, ‖Y (2)‖∞ ≤ M.

Assume that P-a.s.

f (1)(Y (1)
t ,Z

(1)
t

) ≤ f (2)(t, Y (1)
t ,Z

(1)
t

) ∀t ∈ [0, T ],
ξ (1) ≤ ξ (2).

Assume that there exist constants C > 0,L > 0,K > 0 such that for (t, y, z) ∈
[0, T ] × [−M,M] × R

m

∣∣f (2)(t, y, z)
∣∣ ≤ L + C|z|2 P-a.s.,∣∣∂zf

(2)(t, y, z)
∣∣ ≤ K + C|z| P-a.s.

Assume that there exists a constant N > 0 such that for (t, y, z) ∈ [0, T ] ×
[−M,M] × R

m

∂yf
(2)(t, y, z) ≤ N + δ(C,M)|z|2 P-a.s.(20)

Then P-a.s.

Y
(1)
t ≤ Y

(2)
t , 0 ≤ t ≤ T .(21)

REMARK A.3. We note that, as in Theorem 2.6 of [15], the assumptions could
be weakened by replacing the constants L,K,N with deterministic functions lt ∈
L1(0, T ), kt ∈ L2(0, T ) and nt ∈ L1(0, T ).

In our application of Theorem A.2 in the proof of Theorem 3, condition (20) is
not satisfied on [0, T ]. But we are able to choose h > 0 small enough, such that it
is satisfied on [T − h,T ]. Comparison (21) then holds on [T − h,T ].
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PROOF. Let λ > 0, B > 1 be constants, to be specified later on. We begin by
constructing several functions, on whose properties we will rely later in the proof.
Define

γ (ỹ) := γλ,B(ỹ) := 1

λ
log

(
eλBỹ + 1

B

)
− M, ỹ ∈ R.

Then

γ −1(y) = 1

λB
log

(
Beλ(y+M) − 1

)
, γ ′(ỹ) = B

1

1 + e−λBỹ
.

Denote g(y) := e−λ(y+M), then 0 < g ≤ 1, on [−M,M]. Define

w(y) := γ ′(γ −1(y)) = B − g(y).

Then

w′(y) = λg(y), w′′(y) = −λ2g(y),

w′(y)

w(y)
= λg(y)

B − g(y)
,

w′′(y)

w(y)
= −λ2g(y)

B − g(y)
.

In particular, w > 0 on [−M,M].
Define α(y) := γ −1(y). Then, since (Y (1),Z(1),C(1)) is a supersolution to the

BSDE with data (ξ (1), f (1)), Itô’s formula gives

α(Y
(1)
t ) = α

(
Y

(1)
0

) −
∫ t

0
α′(Y (1)

r

)
f (1)(r, Y (1)

r ,Z(1)
r

)
dr +

∫ t

0
α′(Y (1)

r

)
Z(1)

r dWr

−
∫ t

0
α′(Y (1)

r

)
dCr +

∫ t

0
α′′(Y (1)

r

)∣∣Z(1)
r

∣∣2 dr.

Define

˜Y (1) := α
(
Y (1)), ˜Z(1) := Z(1)

γ ′(Ỹ (1))
= Z(1)

w(Y (1))
.

and

F (1)(t, ỹ, z̃) := 1

γ ′(ỹ)

[
f (1)(t, γ (ỹ), γ ′(ỹ)z̃) + 1

2
γ ′′(ỹ)|z̃|2

]
.

Since α′ > 0 we have that (Ỹ (1), Z̃(1),
∫ ·

0 α′(Y (1)
r ) dC

(1)
r ) is a supersolution

to the BSDE with data (α(ξ (1)),F (1)). Analogously, we have that (Ỹ (2), Z̃(2),∫ ·
0 α′(Y (2)

r ) dC
(2)
r ) is a subsolution to the BSDE with data (α(ξ (2)),F (2)). Since

α is increasing, it is now enough to verify that Ỹ (1) ≤ Ỹ (2).
We will verify that F (2) satisfies the conditions of Proposition 2.9 in [15]. Es-

pecially we will show that there exist constants A,G > 0 such that

∂yf
(2)(t, y, z)+A

∣∣∂zf
(2)(t, y, z)

∣∣2 ≤ G ∀(t, y, z) ∈ [0, T ]× R × R
m.(22)
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For simplicity, denote F := F (2), f := f (2). Denote y = γ (ỹ), z = γ ′(ỹ)z̃ =
w(y)z̃. For convenience, w and its derivatives will always be evaluated at y. Then

∂z̃F (t, ỹ, z̃) = ∂zf (t, y, z) + z
w′

w
,

∂ỹF (t, ỹ, z̃) = 1

w

[
1

2
w′′|z|2 + w′(∂zf (t, y, z)z − f (t, y, z)

)] + ∂yf (t, y, z).

Hence,

∂ỹF (t, ỹ, z̃) ≤ 1

w

[
1

2
w′′|z|2 + w′(|z|[K + C|z|] + L + C|z|2)

]
+ ∂yf (t, y, z)

and

|∂z̃F (t, ỹ, z̃)|2 ≤
[
K + C|z| + w′

w
|z|

]2

.

So, for A > 0,

(∂ỹF + A|∂z̃F |2)(t, ỹ, z̃) ≤ |z|2
[

1

2

w′′

w
+ w′

w
2C + A

(
C + w′

w

)2]

+ K|z|
[
w′

w
+ 2A

(
C + w′

w

)]

+ w′

w
L + ∂yf (t, y, z) + AK2.

Note, that for the second term we have

K|z|
[
w′

w
+ 2A

(
C + w′

w

)]
≤ K|z|

[
(1 + 2A)

(
C + w′

w

)]

≤ A

(
C + w′

w

)2

|z|2 + (1 + 2A)2

A
K2.

Hence,

(∂ỹF + A|∂z̃F |2)(t, ỹ, z̃) ≤ |z|2
[

1

2

w′′

w
+ w′

w
2C + 2A

(
C + w′

w

)2]

+ w′

w
L + ∂yf (t, y, z) +

(
A + (1 + 2A)2

A

)
K2.

Now

1

2

w′′

w
+ w′

w
2C + 2A

(
C + w′

w

)2

= 1

2

w′′

w
+ w′

w
2C + 2AC2 + 4AC

w′

w
+ 2A

(
w′

w

)2
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= −λ2

2

g(y)

B − g(y)
+ 2C(1 + 2A)

λg(y)

B − g(y)
+ 2AC2 + 2A

λ2g(y)2

(B − g(y))2

= g(y)

(B − g(y))2

[
−λ2

2

(
B − g(y)

) + 2C(1 + 2A)λ
(
B − g(y)

) + 2Aλ2g(y)

]

+ 2AC2

= g(y)

(B − g(y))2

[
λ2

2

(
(1 + 4A)g(y) − B

) + 2C(1 + 2A)λ
(
B − g(y)

)]

+ 2AC2.

For all A < 1, we hence have

1

2

w′′

w
+ w′

w
2C + 2A

(
C + w′

w

)2

≤ g(y)

(B − g(y))2

[
λ2

2

(
5g(y) − B

) + 2C3λ
(
B − g(y)

)] + 2AC2.

Now, choose B = 6. Hence, 5g(y) − B ≤ −1, y ∈ [−M,M]. Then choose λ =
λ(C) sufficiently large such that the term in square brackets is strictly negative,
say smaller then −1 for all y ∈ [−M,M]. This is possible since it is a polynomial
in λ and the leading power has a negative coefficient. Then for y ∈ [−M,M]

g(y)

(6 − g(y))2

[
λ2

2

(
5g(y) − 6

) + 2C3λ
(
6 − g(y)

)] ≤ − g(y)

(6 − g(y))2

≤ − 1

36
e−λ2M =: −2δ,

where δ depends only M and λ and hence only on M and C, that is,

δ = δ(C,M) = 1
72e−λ(C)2M.

Now choose A ∈ (0,1) small enough such that 2AC2 < δ. If for some N > 0 we
have

∂yf (t, y, z) ≤ N + δ(C,M)|z|2,
it follows that

(∂ỹF + A|∂z̃F |2)(t, ỹ, z̃) ≤ w′

w
L + N +

(
A + (1 + 2A)2

A

)
K2

≤ λ

B − 1
L + N +

(
A + (1 + 2A)2

A

)
K2

=: G.

So we have shown (22) and comparison then follows from Proposition 2.9 in
[15]. �
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APPENDIX B: FLOW PROPERTIES

Consider the solution flow φ to

φ(t, x, y) = y +
∫ T

t
H(x,φ(r, x, y)) dζr,(23)

where H and ζ will be specified in a moment. We need to control

∂yφ − 1, ∂xφ, ∂xxφ, ∂xyφ, ∂yyφ, ∂yyyφ, ∂xyyφ, ∂xxyφ

over a small interval [T −h,T ]. Note that each of the above expressions is 0 when
evaluated at t = T .

LEMMA B.1. Let p ≥ 1, ζ ∈ C0,p-var([0, T ],G[p](Rd)) and γ > p. Assume
that Hi = Hi(x, y) has joint regularity of the form

sup
i=1,...,d

|Hi(·, ·)|Lipγ+2(Rn+1) ≤ c1

and

‖ζ‖p-var;[0,T ] ≤ c2.

Then, the solution to (23) induces a flow of C3 diffeomorphisms, parametrized
by x ∈ R

n, and there exists a positive L = L(c1, c2, T ) so that, uniformly over
x ∈ Rn,y ∈ R and t ∈ [0, T ]

max
{
∂xφ, ∂yφ,

1

∂yφ
, ∂xxφ, ∂xyφ, ∂yyφ, ∂yyyφ, ∂xyyφ, ∂xxyφ

}
< L.

Moreover, for every ε > 0 there exists a positive δ = δ(ε, c1, c2) so that, uni-
formly over x ∈ Rn,y ∈ R and t ∈ [T − δ, T ]

max{∂xφ, ∂yφ − 1, ∂xxφ, ∂xyφ, ∂yyφ, ∂yyyφ, ∂xyyφ, ∂xxyφ} < ε.

PROOF. Consider the extended RDE

dξ = 0,

−dφ = H(ξ,φ)dζ

with terminal data (ξT ,φT ) = (x, y). The assumption on (Hi) implies that (ξ,φ)

evolves according to a rough differential equation with Lipγ+2-vector fields. In
this case, the ensemble

φ̂ = (ξ,φ, ∂xφ, ∂yφ, ∂xxφ, ∂xyφ, ∂yyφ, ∂yyyφ, ∂xyyφ, ∂xxyφ)
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can be seen to be the (unique13, nonexplosive) solution to an RDE along Lipγ−1
loc

vector fields. Thanks to nonexplosivity we can, for fixed terminal data

φ̂T = (x, y,0,1,0,0,0,0,0,0),

localize the problem and assume without loss of generality that the above ensemble
is driven along Lipγ−1 vector fields. Since we want estimates that are uniform in
x, y we make another key observations: there is no loss of generality in taking
(x, y) = (0,0) provided H is replaced by Hx,y = H(x + ·, y + ·). This also shifts
the derivatives [evaluated at some (x, y)] to derivatives evaluated at (0,0). As
announced, we can now safely localize, and assume that the vector fields required
for φ̂, obtain by taking formal (x, y) derivatives in

dξ = 0,

−dφ = H(ξ,φ)dζ,

are globally Lipγ−1. A basic estimate (Theorem 10.14 in [13]) for RDE solutions
implies that for some C = C(p,γ )

|φ̂t − φ̂T | ≤ |φ̂|p-var;[t,T ] = C × ϕp(|Hx,y |Lipγ+2‖ζ‖p-var;[T −h,T ]),

where ϕp(x) = max(x, xp). At last, we note that |Hx,y |Lipγ+2 = |H |Lipγ+2 thanks
to invariance of such Lip norms under translation. The proof is then easily finished.

�

LEMMA B.2. Assume the setting of the previous lemma. Assume that ζ n,
n ≥ 1 is a sequence of p rough paths that converge to a rough path ζ 0 in p-
variation.

Then locally uniformly on [0, T ] × R
n × R

(
φn,

1

∂yφn
, ∂yφ

n, ∂yyφ
n, ∂xφ

n, ∂xxφ
n, ∂yxφ

n

)

→
(
φ0,

1

∂yφ0 , ∂yφ
0, ∂yyφ

0, ∂xφ
0, ∂xxφ

0, ∂yxφ
0
)
.

PROOF. Using enlargement of the state space as in the proof of Lemma B.1
we can apply the same reasoning as in Theorems 11.14 and 11.15 in [13] to get the
desired result. �

13This is actual a subtle point since uniqueness in general requires Lipγ
loc-regularity. The point is

that the RDEs obtain by differentiating the flow have a special structure so that for the final level

of derivatives only rough integration is need; as is well known, for this it suffices to have Lipγ−1
loc

regularity. Chapter 11 in [13] contains a detailed discussion of this.
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APPENDIX C: COMPARISON FOR PDES

We consider the equation

−∂tu − 1
2 Tr[σ(t, x)σ (t, x)T D2u] − 〈b(t, x),Du〉

(24)
− f (t, x, u,Duσ(t, x)) = 0, (t, x) ∈ (0, T ) × R

n,

where f : [0, T ]×R
n ×R×R

m → R, b : [0, T ]×R
n → R

n and σ : [0, T ]×R
n →

R
n×m, are a continuous functions.
The following statement as well as its proof are a modification of Theorem 3.2

in [15]. (The statement is not in its most general form, but adjusted to what we
need in the main text.)

THEOREM C.1. Assume that there exists a constant Cb > 0 such that for
(t, x), (t, y) ∈ [0, T ] × R

n

|b(t, x) − b(t, y)| + |σ(t, x) − σ(y)| ≤ Cb|x − y|,
|b(t, x)| ≤ Cb.

Assume that there exists a constant Cσ > 0 such that for (t, x), (t, y) ∈ [0, T ]×
R

n

|σ(t, x) − σ(y)| ≤ Cσ |x − y|,
|σ(t, x)| ≤ Cσ .

Assume that there exists a constant C1,f > 0 such that for (t, x, y, z) ∈ [0, T ]×
R

n × R × R
m

|f (t, x, y, z)| ≤ C1,f (1 + |z|2),
|∂zf (t, x, y, z)| ≤ C1,f (1 + |z|).

Assume that there exists a constant C2,f such that for every ε > 0 there exists an
hε ∈ (0, T ] such that for (t, x, y, z) ∈ [T − hε, T ] × R

n × R × R
m we have

∂yf (t, x, y, z) ≤ C2,f + ε|z|2.(25)

Assume that there exists a constant C3,f > 0 such that for (t, x, y, z) ∈ [0, T ] ×
R

n × R × R
m

|∂xf (t, x, y, z)| ≤ C3,f (1 + |z|2).
Let u, v be a bounded semicontinuous sub-(resp., super-)solution to (24)

on (0, T ) × R
n, with u(T , ·) ≤ v(T , ·). Then there exists an ε∗ = ε∗(‖u‖∞ ∨

‖v‖∞,C,C2,f ) > 0 such that for (t, x) ∈ (T − hε∗, T ] × R
n we have

u(t, x) ≤ v(t, x).
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PROOF. 1. Reduction
We will first transform the PDE into a PDE with coefficient that satisfies a cer-

tain structure condition (equation (24) in [15]). Set M := max{‖u‖∞,‖v‖∞} + 1.
Let λ > 0,A > 1,K > 0 be constants to be chosen later. We begin by construct-

ing several functions, whose properties we will rely on later in the proof. Define

ϕ(ỹ) := 1

λ
ln

(
eλAỹ + 1

A

)
: R →

(
− ln(A)

λ
,∞

)
.

We will have to choose A ≥ eλ2MeKt
, since we shall need later on that {eKt (y −

M) :y ∈ [−M,M]} is contained in the range of ϕ. Then

ϕ′(ỹ) = A
1

1 + e−λAỹ
, ϕ−1(y) = 1

λA
ln(Aeλy − 1).

Define r(y) := ϕ−1(eKt (y − M)), its inverse s(ỹ) := ϕ(ỹ)e−Kt + M and g(y) :=
e−λeKt (y−M) : [−M,M] → [1, eλ2MeKt ]. Then g′(y) = −λeKtg(y). Define

w(y) := e−Ktϕ′(r(y)) = ∂ỹs|ỹ=r(y) = e−Kt [A−e−λeKt (y−M)] = e−Kt [A−g(y)],
which is nonnegative for A ≥ eλ2MeKt

. Then

w′(y) = λg(y), w′′(y) = −eKtλ2g(y).

Let now u(t, x) be a solution to (24). Let ũ(t, x) := r(u(t, x)). Then u(t, x) =
s(ũ(t, x)), and hence

∂xi
u(t, x) = ϕ′(ũ(t, x))e−Kt∂xi

ũ(t, x),

∂xj xi
u(t, x) = ϕ′′(ũ(t, x))e−Kt∂xj

ũ(t, x)∂xi
ũ(t, x) + ϕ′(ũ(t, x))e−Kt∂xj xi

ũ(t, x),

that is,

Du(t, x) = ϕ′(ũ(t, x))e−KtDũ(t, x),

D2u(t, x) = ϕ′′(ũ(t, x))e−KtDũ(t, x) ⊗ Dũ(t, x) + ϕ′(ũ(t, x))e−KtD2ũ(t, x).

Hence,

∂t ũ(t, x)

= 1

ϕ′(ũ(t, x))

[
KeKt (u(t, x) − M

) + eKt∂tu(t, x)
]

= 1

ϕ′(ũ(t, x))
KeKt (u(t, x) − M

)

− 1

ϕ′(ũ(t, x))
eKt

[
1

2
Tr[σ(t, x)σ (t, x)T D2u(t, x)] + 〈b(t, x),Du(t, x)〉

]

− 1

ϕ′(ũ(t, x))
eKtf (t, x, u(t, x),Du(t, x)σ (t, x))
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= K
ϕ(ũ(t, x))

ϕ′(ũ(t, x))
− 1

2
Tr[σ(t, x)σ (t, x)T D2ũ(t, x)]

− ϕ′′(ũ(t, x))

ϕ′(ũ(t, x))

1

2
Tr[σ(t, x)σ (t, x)T Dũ(t, x) ⊗ Dũ(t, x)]

− 〈b(t, x),Dũ(t, x)〉
− 1

ϕ′(ũ(t, x))
eKtf (t, x, s(ũ(t, x)), ϕ′(ũ(t, x))e−KtDũ(t, x)σ (t, x)).

Analogously, by resorting to test functions, one shows, that if u (resp., v) is
a viscosity sub-(resp., super-) solution to (24), then ũ(t, x) := r(u(t, x)) [resp.,
ṽ(t, x) := r(v(t, x))] is a viscosity sub-(resp., super-) solution to

−∂t ũ(t, x) − 1
2 Tr[σ(t, x)σ (t, x)T D2ũ(t, x)] − 〈(b(t, x),Dũ(t, x)〉

(26)
− f̃ (t, x, ũ(t, x),Dũ(t, x)σ (t, x)) = 0, t ∈ (0, T ), x ∈ R

n,

where, denoting from now on y = s(ỹ), z = w(y)z̃,

f̃ (t, x, ỹ, z̃) = −K
ϕ(ỹ)

ϕ′(ỹ)
+ ϕ′′(ỹ)

ϕ′(ỹ)

1

2
|z̃|2

+ 1

ϕ′(ỹ)
eKtf (t, x, s(ỹ), ϕ′(ỹ)e−Kt z̃)

= −K
y − M

w(y)
+ w′(y)

1

2
|z̃|2 + 1

w(y)
f (t, x, y,w(y)z̃).

We also obviously have ũ(T , ·) ≤ ṽ(T , ·).
We will bound the ỹ-derivative of f̃ , while at the same time choosing the con-

stants K,λ,A. First,

∂ỹ f̃ (t, x, ỹ, z̃) = −K

(
1 − (y − M)

w′(y)

w(y)

)
+ 1

2

w′′(y)

w(y)
|z|2

− w′(y)

w(y)
f (t, x, y, z) + ∂yf (t, x, y, z)

+ w′(y)

w(y)
∂zf (t, x, y, z)z

≤ −K

(
1 − (y − M)

w′(y)

w(y)

)
+ 1

2

w′′(y)

w(y)
|z|2

+ w′(y)

w(y)
C1,f (1 + |z|2) + ∂yf (t, x, y, z)

+ w′(y)

w(y)
C1,f (1 + |z|)|z|
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≤ |z|2
w(y)

(
1

2
w′′(y) + C1,f w′(y) + C1,f w′(y)

)

− K

(
1 − (y − M)

w′(y)

w(y)

)
+ ∂yf (t, x, y, z)

+ C1,f

w′(y)

w(y)
+ C1,f

w′(y)

w(y)
|z|.

Now using

C1,f

w′(y)

w(y)
|z| ≤ |z|2

w(y)
w′(y) + w′(y)

w(y)
C2

1,f ,

we get

∂ỹ f̃ (t, x, ỹ, z̃) ≤ |z|2
w(y)

(
1

2
w′′(y) + (2C1,f + 1)w′(y)

)

(27)

− K + ∂yf (t, x, y, z) + w′(y)

w(y)

(
C1,f + K(y − M) + C2

1,f

)
.

Note that

C1,f + K(y − M) + C2
1,f ≤ C1,f − K + C2

1,f , y ∈ [−(M − 1),M − 1].
Hence, we can choose K0 = K0(C1,f ) sufficiently large, such that

C1,f + K0(y − M) + C2
1,f ≤ −1, y ∈ [−(M − 1),M − 1].

Then we have that for all choices of K0 > K , and all choices λ > 0 that the last
term in (27),

w′(y)

w(y)

(
C1,f + K(y − M) + C2

1,f

)

= e−λeKt (y−M)

A − e−λeKt (y−M)
λeKt (C1,f + K(y − M) + C2

1,f

)
,

is negative for y ∈ [−(M − 1),M − 1] as long as A > eλ2MeKt
. We now fix K =

K(C1,f ,C2,f ) = max{K0(C1,f ),C2,f } + 1. Then

1
2w′′(y) + (2C1,f + 1)w′(y) = −1

2eKtλ2g(y) + λ(2C1,f + 1)g(y)

≤ −1
2λ2g(y) + λ(2C1,f + 1)g(y)

= g(y)λ
[
(2C1,f + 1) − 1

2λ
]
.

So, if we choose λ = λ(C1,f ) = 4C1,f + 4, we have

1
2w′′(y) + (2C1,f + 1)w′(y) ≤ g(y)(4C1,f + 4)(−1) ≤ −(4C1,f + 4) ≤ −1.
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We now fix A = A(λ(C1,f ),M,K(C1,f ,C2,f )) = A(M,C1,f ,C2,f ) =
eλ2MeKT + 1. Then for the first term in (27)

|z|2
w(y)

(
1

2
w′′(y) + (2C1,f + 1)w′(y)

)

= |z|2
eλ2MeKT + 1 − e−λeKt (y−M)

eKt

(
1

2
w′′(y) + (2C1,f + 1)w′(y)

)

≤ − |z|2
eλ2MeKT + 1 − e−λeKt (y−M)

eKt

≤ − |z|2
eλ2MeKT

eKt

< −δ|z|2 < 0,

with

δ = δ(λ(C1,f ),K(C1,f ,C2,f ),M) = δ(M,C1,f ,C2,f ) = eKt

eλ2MeKT + 1
> 0.

We now set ε∗ = ε∗(M,C2,f ,C2,f ) := δ
2 . Then on [T − hε∗, T ] we have

∂yf (t, x, y, z) ≤ C2,f + δ

2
|z|2,

and hence we get that on [T − hε∗, T ] (remember that K ≥ C2,f + 1)

∂ỹ f̃ (t, x, ỹ, z̃) ≤ |z|2
w(y)

(
1

2
w′′(y) + (2C1,f + 1)w′(y)

)

− K + ∂yf (t, x, y, z) + w′(y)

w(y)

(
C1,f + K(y − M) + C2

1,f

)

≤ −δ|z|2 − K + C2,f + δ

2
|z|2

≤ −δ|z|2 + δ

2
|z|2 − 1

= −δ

2
|z|2 − 1

= −δ

2
|w(y)|2|z̃|2 − 1

≤ −K̃(1 + |z̃|2) for y ∈ [−(M − 1),M − 1].
for some K̃ > 0.
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Moreover by the definition of f̃ and the assumptions on f it is straightforward
to bound the other partial derivatives of f̃ . So in total we get K̃, C̃ > 0 such that
for t ∈ [T − hε∗, T ], y ∈ [−(M − 1),M − 1], z̃ ∈ R

m

∂ỹf̃ (t, x, ỹ, z̃) ≤ −K̃(1 + |z̃|2),
|∂xf̃ (t, x, ỹ, z̃)| ≤ C̃(1 + |z̃|2),(28)

|∂z̃f̃ (t, x, ỹ, z̃)| ≤ C̃(1 + |z̃|).
Let M := r(−(M − 1)), M̄ := r(M − 1). Then, since u, v take values in [−(M −
1),M − 1], ũ, ṽ take values in [M,M̄]. We can then define

˜̃
f (t, x, ỹ, z̃) :=

⎧⎨
⎩

f̃ (t, x,M, z̃) − K̃(1 + |z̃|2)(ỹ − M), ỹ < M ,
f̃ (t, x, ỹ, z̃), ỹ ∈ [M,M̄],
f̃ (t, x, M̄, z̃) − K̃(1 + |z̃|2)(ỹ − M̄), M̄ < ỹ.

This function ˜̃
f then satisfies14 for some K̃, C̃ > 0 and for all t ∈ [T −hε∗, T ], ỹ ∈

R, z̃ ∈ R
m

∂ỹ
˜̃

f (t, x, ỹ, z̃) ≤ −K̃(1 + |z̃|2),
|∂x

˜̃
f (t, x, ỹ, z̃)| ≤ C̃(1 + |z̃|2),(29)

|∂z̃
˜̃

f (t, x, ỹ, z̃)| ≤ C̃(1 + |z̃| + |ỹ||z̃|)
and ũ, ṽ are also sub-(resp., super-) solution to (26) with f̃ replaced by ˜̃

f .15 We
can hence assume the validity of (29) for f̃ .

2. Comparison under structure condition
Let ũ, ṽ be a semicontinuous sub-(resp., super-)solution to

−∂t ũ(t, x) − 1
2 Tr[σ(t, x)σ (t, x)T D2ũ(t, x)] − 〈(b(t, x),Dũ(t, x)〉

− f̃ (t, x, ũ(t, x),Dũ(t, x)σ (t, x)) = 0, t ∈ (0, T ), x ∈ R
n,

where f̃ satisfies (29) for t ∈ [0, T ], ỹ ∈ R, z̃ ∈ R
m. Let ũ be bounded above and

ṽ be bounded.

14Note that ˜̃
f is not necessarily continuously differentiable in ỹ anymore, but, as was noted on

page 1718, we can directly work with functions that are only (locally) Lipschitz and bound the
corresponding Lipschitz constants.

15The reason one wants bounds globally in y is that is that the proof involves ũγ = ũ − γ /t which
is unbounded.

In fact, it is possible to carry out the comparison proof without penalizing t = 0. It suffices to use
a slightly more general version of the parabolic theorem of sums such as established in [9]. Following
this approach would also lead to comparison at t = 0, if we take into consideration the remarks in [6]
on the accessibility of a subsolution.
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Assume ũ(T , ·) ≤ ṽ(T , ·). We show ũ ≤ ṽ on (0, T ] × R
n.

First of all, note that ũγ (t, x) := ũ(t, x) − γ
t

is also a subsolution. Since ũ ≤ ṽ

follows from ũγ ≤ ṽ in the limit γ → 0, it suffices to prove comparison under the
additional assumption

lim
t→0

ũ(t, x) = −∞ uniformly on R
n.

Define

L := sup
x∈Rn,t∈(0,T ]

[ũ(t, x) − ṽ(t, x)]

and also

L(h) := sup
|x−x′|≤h,t∈(0,T ]

[ũ(t, x) − ṽ(t, x′)],

L′ := lim
h→0

L(h).

One has of course L ≤ L′. We will show L′ ≤ 0. Consider

ψε,η(t, x, x′) := ũ(t, x) − ṽ(t, x′) − |x − x′|2
ε2 − η(|x|2 + |x′|2).

Let Lε,η be the maximum of ψε,η and (t̂ , x̂, x̂′) = (t̂ε,η, x̂ε,η, x̂
′
ε,η) ∈ (0, T ] × R

n a
maximizing point, which exists by the assumptions on ũ and ṽ.

We argue by contradiction. Hence, assume ũ(s, z) − ṽ(s, z) > δ for some (s, z).
Then also L′ > δ. We first argue, that for small enough values of ε, η the optimizing
time parameter t̂ cannot be T . Indeed, assuming t̂ = T we can estimate

δ − 2η|z|2 = ψε,η(s, z, z)

≤ ψε,η(T , x̂, x̂′)

= sup
x,x′

[
u(T , x) − v(T , x′) − |x − x′|2

ε2 − η(|x|2 + |x′|2)
]
.

Now by Theorem 3.1 in [7], applied to u(T , x) − η|x|2 and v(T , x) + η|x′|2, we
get

lim
ε→0

ψε,η(T , x̂, x̂′) = sup
x

[u(T , x) − v(T , x) − 2η|x|2]
≤ sup

x
[u(T , x) − v(T , x)] ≤ 0.

It follows that for ε, η small enough, t̂ �= T . Also, by assumption ũ(s, z)− ṽ(s, z) >

δ; hence, we have for η small enough, that ũ(t̂ , x̂) − ṽ(t̂ , x̂ ′) ≥ Lε,η ≥ δ > 0. We
assume to be in this scenario from now on.
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By applying the parabolic theorem on sums (e.g., Theorem 8.3 in [7]), we get

(b, p̂, X̂) ∈ P̄ 2,+ũ(t̂ , x̂),

(b′, p̂′, X̂′) ∈ P̄ 2,+ṽ(t̂ , x̂′),

such that b − b′ = 0, p̂ = 2 x̂−x̂′
ε2 + 2ηx̂, p̂′ = 2 x̂−x̂′

ε2 − 2ηx̂′ and
(

X̂ 0
0 −X̂′

)
≤ 4

ε2

(
I −I

−I I

)
+ 4η

(
I 0
0 I

)
.(30)

Indeed, defining ϕ(t, x, x′) := |x−x′|2
ε2 + η(|x|2 + |x′|2) we have

A := D2ϕ(t, x, x′) = 2

ε2

(
I −I

−I I

)
+ 2η

(
I 0
0 I

)
.

Then

A2 =
(

8

ε4 + 8
η

ε2

)(
I −I

−I I

)
+ 4η2

(
I 0
0 I

)
.

By the Theorem on Sums, for every a > 0 there exist said elements of the jets such
that (

X̂ 0
0 −X̂′

)
≤ A + aA2.

Hence, we can choose a so small such that (30) holds.
By the viscosity property,

0 ≤ Tr[σσT (t̂, x̂)X̂] − Tr[σσT (t̂, x̂′)X̂′] + 〈b(t̂, x̂), p̂〉 − 〈b(t̂ , x̂′), p̂′〉
+ f̃ (t̂ , x̂, ũ(t̂ , x̂), p̂σ (t̂, x̂)) − f̃ (t̂ , x̂′, ṽ(t̂ , x̂′), p̂′σ(t̂, x̂′))

= (i) + (ii) + (iii).

Where

(i) := Tr[σσT (t̂, x̂)X̂] − Tr[σσT (t̂, x̂′)X̂′],
(ii) := 〈b(t̂, x̂), p̂〉 − 〈b(t̂, x̂′), p̂′〉,

(iii) := f̃ (t̂ , x̂, ũ(t̂ , x̂), p̂σ (t̂, x̂)) − f̃ (t̂ , x̂′, ṽ(t̂ , x̂′), p̂′σ(t̂, x̂′)).

Multiplying (30) with
(σ(t̂,x̂)

σ (t̂,x̂′)
)

from the right side, with
(σ(t̂,x̂)

σ (t̂,x̂′)
)T

from the left
and then taking the trace, we get

(i) = Tr[σσT (t̂, x̂)X̂] − Tr[σσT (t̂, x̂′)X̂′]
≤ 4

ε2 ‖σ(t̂, x̂) − σ(t̂, x̂′)‖2
2 + 4η

(‖σ(t̂, x̂)‖2
2 + ‖σ(t̂, x̂′)‖2

2
)

≤ Cσ

4

ε2 |x̂ − x̂′|2 + 8ηC2
σ .
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Moreover,

(ii) = 〈b(t̂, x̂′), p̂′〉 − 〈b(t̂, x̂), p̂〉
≤ |b(t̂, x̂′) − b(t̂, x̂)|

∣∣∣∣2 x̂ − x̂′

ε2

∣∣∣∣ + |b(t̂, x̂)||2ηx̂′ + 2ηx̂|

≤ Cb|x̂ − x̂′|
∣∣∣∣2 x̂ − x̂′

ε2

∣∣∣∣ + Cb2η(|x̂′| + |x̂|)

= Cb2
|x̂ − x̂′|2

ε2 + Cb2η(|x̂′| + |x̂|).
We have

(iii) = f̃ (t̂ , x̂, ũ(t̂ , x̂), p̂σ (t̂, x̂)) − f̃ (t̂ , x̂′, ṽ(t̂ , x̂′), p̂′σ(t̂, x̂′))

=
∫ 1

0

[
∂xf̃ ((∗))(x̂ − x̂′) + ∂ỹ f̃ ((∗))

(
ũ(t̂ , x̂) − ṽ(t̂ , x̂′)

)

+ ∂z̃f̃ ((∗))
(
p̂σ (t̂ , x̂) − p̂′σ(t̂, x̂′)

)]
dλ,

where

(∗) := (
t̂ , λx̂+(1−λ)x̂′, λũ(t̂ , x̂)+(1−λ)ṽ(t̂ , x̂′), λp̂σ (t̂ , x̂)+(1−λ)p̂′σ(t̂, x̂′)

)
.

We know |ṽ(t̂ , x̂′)| ≤ ‖ṽ‖∞ < ∞ and by the upper boundedness of ũ and by the
definition of the maximizier we get ∞ > C ≥ ũ(t̂ , x̂) ≥ ũ(T ,0) − ‖ṽ‖∞ > ∞.
Hence, λũ(t̂ , x̂) + (1 − λ)ṽ(t̂ , x̂′) is always bounded and we can assume that actu-
ally

|∂z̃f̃ (t, x, ỹ, z̃)| ≤ C̃(1 + |z̃|).
Remember moreover that we assume η small enough, such that ũ(t̂ , x̂) −

ṽ(t̂ , x̂′) ≥ Lε,η ≥ δ > 0. Especially we have |x̂− x̂′| ≤ ε

√
ũ(t̂ , x̂) − ṽ(t̂ , x̂′). Hence,

we can estimate [let (∗∗) := λp̂σ (t̂, x̂) + (1 − λ)p̂′σ(t̂, x̂′)]

(iii) ≤
∫ 1

0

[
C̃

(
1 + |(∗∗)|2)|x̂ − x̂′| − K̃

(
1 + |(∗∗)|2)(

ũ(t̂ , x̂) − ṽ(t̂ , x̂′)
)

+ C̃
(
1 + |(∗∗)|)|p̂σ (t̂ , x̂) − p̂′σ(t̂, x̂′)|]dλ

≤
∫ 1

0

[
C̃

(
1 + |(∗∗)|2)

ε

√
ũ(t̂ , x̂) − ṽ(t̂ , x̂′)

− K̃
(
1 + |(∗∗)|2)(

ũ(t̂ , x̂) − ṽ(t̂ , x̂′)
)

+ C̃ϑ
(
1 + |(∗∗)|)2(

ũ(t̂ , x̂) − ṽ(t̂ , x̂′)
)

+ 1

ϑ(ũ(t̂ , x̂) − ṽ(t̂ , x̂′))
|p̂σ (t̂ , x̂) − p̂′σ(t̂, x̂′)|2

]
dλ
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≤
∫ 1

0

[
C̃

(
1 + |(∗∗)|2)

ε

√
ũ(t̂ , x̂) − ṽ(t̂ , x̂′)

− K̃
(
1 + |(∗∗)|2)(

ũ(t̂ , x̂) − ṽ(t̂ , x̂′)
)

+ C̃ϑ2
(
1 + |(∗∗)|2)(

ũ(t̂ , x̂) − ṽ(t̂ , x̂′)
)

+ 1

ϑ(ũ(t̂ , x̂) − ṽ(t̂ , x̂′))
|p̂σ (t̂ , x̂) − p̂′σ(t̂, x̂′)|2

]
dλ.

Choose ϑ = C̃

6K̃
. We then have for ε2 < C̃

√
δ

3K̃

(iii) ≤ −K̃

3

(
ũ(t̂ , x̂) − ṽ(t̂ , x̂′)

) + |p̂σ (t̂ , x̂) − p̂′σ(t̂, x̂′)|2 1

ϑ(ũ(t̂ , x̂) − ṽ(t̂ , x̂′))

≤ −K̃

3

(
ũ(t̂ , x̂) − ṽ(t̂ , x̂′)

)

+ (|p̂|Cσ |x̂ − x̂′| + |p̂ − p̂′|Cσ )2 1

ϑ(ũ(t̂ , x̂) − ṽ(t̂ , x̂′))

≤ −K̃

3

(
ũ(t̂ , x̂) − ṽ(t̂ , x̂′)

)

+
(

2
|x̂ − x̂′|2

ε2 + 2Cση|x̂||x̂ − x̂′| + Cσ |2ηx̂ + 2ηx̂′|
)2

× 1

ϑ(ũ(t̂ , x̂) − ṽ(t̂ , x̂′))
.

Now, Lemma 3.5 in [15] (see also Lemma 2 in [5]) yields

lim inf
ε→0

lim inf
η→0

[ũ(t̂ , x̂) − ṽ(t̂ , x̂′)] = L′,

lim sup
ε→0

lim sup
η→0

|x̂ − x̂′|
ε

= 0,

lim sup
ε→0

lim sup
η→0

η(|x̂|2 + |x̂′|2) = 0.

Hence, we get lim supε→0 lim supη→0 (i) ≤ 0, lim supε→0 lim supη→0 (ii) ≤ 0,

and lim supε→0 lim supη→0 (iii) ≤ − K̃
3 L′. Combining, we arrive at

0 ≤ −K̃

3
L′,

which is the desired contradiction. �
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