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Motivated by several models introduced in the physics literature to study
the nonequilibrium coarsening dynamics of one-dimensional systems, we
consider a large class of “hierarchical coalescence processes” (HCP). An
HCP consists of an infinite sequence of coalescence processes {ξ(n)(·)}n≥1:
each process occurs in a different “epoch” (indexed by n) and evolves for an
infinite time, while the evolution in subsequent epochs are linked in such a
way that the initial distribution of ξ(n+1) coincides with the final distribution
of ξ(n). Inside each epoch the process, described by a suitable simple point
process representing the boundaries between adjacent intervals (domains),
evolves as follows. Only intervals whose length belongs to a certain epoch-
dependent finite range are active, that is, they can incorporate their left or
right neighboring interval with quite general rates. Inactive intervals cannot
incorporate their neighbors and can increase their length only if they are in-
corporated by active neighbors. The activity ranges are such that after a merg-
ing step the newly produced interval always becomes inactive for that epoch
but active for some future epoch.

Without making any mean-field assumption we show that: (i) if the initial
distribution describes a renewal process, then such a property is preserved at
all later times and all future epochs; (ii) the distribution of certain rescaled
variables, for example, the domain length, has a well-defined and universal
limiting behavior as n → ∞ independent of the details of the process (merg-
ing rates, activity ranges, . . .). This last result explains the universality in the
limiting behavior of several very different physical systems (e.g., the East
model of glassy dynamics or the Paste-all model) which was observed in
several simulations and analyzed in many physics papers. The main idea to
obtain the asymptotic result is to first write down a recursive set of nonlin-
ear identities for the Laplace transforms of the relevant quantities on different
epochs and then to solve it by means of a transformation which in some sense
linearizes the system.
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1. Introduction. There are several situations arising in one-dimensional
physics in which the nonequilibrium evolution of the system is dominated by
the coalescence of certain domains or droplets characterizing the experiment (e.g.,
large vapor droplets in breath figures or ordered domains in Ising and Potts models
at zero temperature) which leads to interesting coarsening phenomena. As pointed
out in the physics literature a common feature of these phenomena is the appear-
ance of a scale-invariant morphology for large times. Many models, even very
simple ones, have been proposed in order to capture and explain such a behavior
(see, e.g., [7–9] and [21]). Supported by computer simulations and under the key
assumption of a well-defined limiting behavior under suitable rescaling, physicists
have derived some nontrivial limiting distributions for the relevant quantities.

In many cases the coalescence process dominating the time evolution has a hi-
erarchical structure which can, informally, be described as follows.

Assume for simplicity that the state of the system is described by an infinite
sequence of adjacent intervals (“domains” in the physics language) with varying
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length and that its time evolution is governed by the merging of two consecutive
intervals. Then there exist infinitely many epochs and in the nth epoch only those
domains whose length belongs to a suitable epoch-dependent characteristic range
are active (or, better, n-active); that is, they can incorporate their left or right neigh-
bor interval with certain (bounded) rates which could depend on the epoch and on
the length of the domain. Each epoch lasts a very long (mathematically infinite)
time so that at the end of the epoch there are no longer n-active intervals, provided
that the total merging rate is strictly positive for any n-active domain. Then the
next epoch takes over and the process is repeated. Clearly, in order for the succes-
sive coalescences to be able to eliminate domains created by previous epochs and
therefore to increase the domain length, some assumptions about the active ranges
should be made. If the nth active range is the interval [d(n)

min, d
(n)
max), then we require

that d
(n)
max = d

(n+1)
min .

An interesting and highly nontrivial example of a hierarchical coalescence pro-
cess (HCP in the sequel) is represented by the high density (or low temperature)
nonequilibrium dynamics of the East model after a deep quench from a normal
density state (see [11, 22] for physics motivations and discussions and [12] for a
mathematical analysis). The East model is a well-known example of kinetically
constrained stochastic particle system with site exclusion which evolves according
to a Glauber dynamics submitted to the following constraint: the 0/1 occupancy
variable at a given site x ∈ Z can change only if the site x + 1 is empty. In this
case, if a domain represents a maximal sequence of consecutive occupied sites,
and if the particle density is very high, then the characteristic range of the length
of active domains for the nth epoch is [2n−1,2n), and active domains can only
merge with their left neighbor. Notice that with this choice for the active range
the merging of two n-active domains automatically produces a n-inactive domain.
This is a technical feature that will always be supposed true throughout the paper.

Another interesting HCP is given by the Paste-all model [9] which was devised
to model breath figures formed by coalescing droplets in one dimension. In this
case all the domains are sub-intervals of the integer lattice, the n-active length
interval is {n}, and active domains merge with their left/right neighbor with rate
one.

In [22] the authors, under the assumption that the scaled domain length has a
well-defined limiting behavior as n → ∞, computed the exact form of the limit-
ing distribution for the above defined HCP corresponding to East (see Section C
of [22]). Under a finite mean hypothesis they find that the limiting behavior is ex-
actly the same as the one computed in [9] (always assuming the limiting behavior
and the mean filed hypothesis) for the Paste-all model, a fact that they describe as
“surprising.”

Our main result, stated in Theorem 2.19, solves completely this enigma. In fact,
without making any mean field hypothesis, we:

(a) prove the existence of a well-defined limiting behavior which is independent
of the various merging rates;
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(b) classify the limiting distribution according to the initial one (i.e., the distri-
bution at the beginning of the first epoch).

Slightly more precisely the main content of our contribution can be formulated as
follows. Let ξ denote the random set of the separation points between the domains
(domain walls in physics jargon). Then, under very general assumptions on the
merging rates and on the active ranges but always assuming d

(n)
max = d

(n+1)
min for

each n:

(i) if at the beginning of the first epoch ξ is described by a renewal point
process (as implicitly done in the physics papers), then the same property holds
for all times and all epochs;

(ii) if Z(n) denotes the domain length at the beginning of the nth epoch rescaled
by a factor 1/d

(n)
min, and if g(n)(·) denotes its Laplace transform, then g(n) → g

(∞)
c0

where

g(∞)
c0

(s) = 1 − exp
{
−c0

∫ ∞
1

e−sx

x
dx

}
,(1.1)

provided that lims↓0 −s d
ds

g(1)(s)/(1 − g(1)(s)) = c0 (necessarily c0 ∈ [0,1]).
Moreover, the above limit exists with c0 = 1 when starting with a stationary re-
newal point process (which has therefore a finite mean). If instead the initial law is
in the domain of attraction of an α-stable law with α ∈ (0,1), then the limit exists
with c0 = α.

The above results, which can be generalized to exchangeable point processes, ex-
plain clearly why apparently very different physical systems (i.e., with different
merging rates and/or active ranges) show the same asymptotic behavior.

We want to stress here the crucial ideas behind the proof of our limit theorem.
The first step goes as follows. Inspired by the form of the limiting distribution
found by the physicists, one uses the theory of complete monotone functions and
Laplace transform, to show that for each n there exists a nonnegative Radon mea-
sure t (n) on (0,∞) such that the Laplace transform for the nth epoch, g(n), can be
written as

g(n)(s) = 1 − exp
{
−

∫
[1,∞)

e−sx

x
t(n)(dx)

}
.(1.2)

Then one observes that the Laplace transforms {g(n)}n≥1 must satisfy a nonlin-
ear and highly nontrivial recursive system of identities which, thanks to step one,
translate into recursive identities for the measures t (n). In turn the latter can be
solved to express the measure t (n) in terms of t (1) in a simple form. Finally, the
explicit form of t (n) allows us to pass to the limit n → ∞ in the recursive identities
and prove the main result.

Coalescence processes (also called coagulation or aggregation processes) and
their time-reversed analog given by fragmentation processes have also been re-
cently much studied in the mathematical literature with different motivations and
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from different points of view (see, e.g., [1, 3] and references therein). Most of the
mathematical research focused on models with a certain mean-field character (i.e.,
the spatial position of the coalescing objects does not play any role) with some ex-
ceptions (see, e.g., [2] and [18]). Although our model shows indeed a mean-field
nature (see, e.g., Remark 2.16) due to the fact that the domain wall process ξ is
a renewal process or exchangeable at any future time t if it was so at time t = 0,
we have been able to explore some dynamical aspects of the HCP for which the
geometrical alignment of the domains is relevant (see Section 3).

We conclude by mentioning that in [13] the methods developed here have been
successfully applied to other HCPs, where a domain can also coalesce with both
its neighboring domains as in [5]. In this class a particular interesting case is rep-
resented by the model in which (roughly) the smallest interval merges with its
two neighbors. In the mean-field approximation and by forgetting how much time
elapses between and during the merging events, one can derive a time evolution
equation for the domain size distribution in which the time variable t is a contin-
uous approximation of the discrete label n of the epochs. This equation has been
rigorously analyzed in [16] (see also [20] for an interesting review) by means of
nonlinear analysis techniques.

2. Model and results. In this section we introduce the main objects of our
analysis, namely the simple point processes, the one-epoch coalescence processes
and the hierarchical coalescence processes. Then we expose our main results. We
start by recalling some basic notions of simple point processes, referring to [6] and
[15] for a detailed treatment.

2.1. Simple point processes. We denote by N the family of locally finite sub-
sets ξ ⊂ R. N is a measurable space endowed with the σ -algebra of measurable
subsets generated by

{ξ ∈ N : |ξ ∩ A1| = n1, . . . , |ξ ∩ Ak| = nk},
A1, . . . ,Ak being bounded Borel sets in R and n1, . . . , nk ∈ N. On N one can de-
fine a metric such that the above measurable subsets correspond to the Borel sets
[19]. We call domains the intervals [x, x′] between nearest-neighbor points x, x′
in ξ ∪ {−∞,+∞}. Note that the existence of the domain [−∞, x ′] corresponds to
the fact that ξ is bounded from the left and its leftmost point is given by x′. A sim-
ilar consideration holds for [x,∞]. Points of ξ are also called domain separation
points. Given a point x ∈ R, we define

d�
x := inf{t > 0 :x − t ∈ ξ}, dr

x := inf{t > 0 :x + t ∈ ξ}
with the convention that the infimum of the empty set is ∞. Note that if x ∈ ξ ,
then d�

x (dr
x ) is simply the length of the domain to the left (right) of x.

We recall that a simple point process (shortly, SPP) is any measurable map from
a probability space to the measurable space N . With a slight abuse of notation we
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will denote the realization of a SPP by ξ while we will usually denote by Q its
law on the measurable space N . In what follows N (N+) will denote the set of
nonnegative (positive) integers.

DEFINITION 2.1. (i) We say that a SPP ξ is left-bounded if it has a leftmost
point and has infinite cardinality.

(ii) We say that a SPP ξ is Z-stationary if ξ ⊂ Z and its law Q is invariant by
Z-translations, that is, if for any x ∈ Z the random set ξ − x has law Q.

(iii) We say that a SPP ξ is stationary if its law Q is invariant under R-
translations, that is, if for any x ∈ R the random set ξ − x has law Q.

Thanks to Theorem 1.2.2 in [15] and its adaptation to the lattice case, if ξ is Z-
stationary or stationary, then a.s. the following dichotomy holds: ξ is unbounded
from the left and from the right, or ξ is empty. In the sequel we will always assume
the first alternative to hold a.s., and we will write ξ = {xk :k ∈ Z} with the rules:
x0 ≤ 0 < x1 and xk < xk+1 for all k ∈ Z. In the case of a left-bounded SPP, we
enumerate the points of ξ as {xk;k ∈ N} in increasing order.

REMARK 2.2. If ξ is Z-stationary and a.s. nonempty, then Q(0 ∈ ξ) > 0, and
therefore the conditional probability Q(·|0 ∈ ξ) is well defined. On the other hand,
if ξ is stationary, then Q(0 ∈ ξ) = 0, the above conditional probability is therefore
not well defined and has to be replaced by the Palm distribution associated to Q
[6, 15]. We recall that, given the law Q of a stationary SPP with finite intensity

λQ := EQ(|ξ ∩ [0,1]|)
and such that ξ is nonempty Q-a.s., the Palm distribution Q0 associated to Q is
defined as the probability measure on the measurable space N such that

Q0(A) = (1/λQ)EQ(|{x ∈ ξ ∩ [0,1] : τxξ ∈ A}|) ∀A ⊂ N measurable

(see Section 1.2.1 in [15]). Trivially, Q0 has support in

N ∞
0 := {ξ ∈ N : 0 ∈ ξ, |ξ ∩ (−∞,0]| = |ξ ∩ [0,∞)| = ∞}.(2.1)

Moreover, Q0 uniquely determines the law Q since it holds that

EQ[f (ξ)] = λQEQ0

[∫ x1(ξ)

0
f (ξ − t) dt

]
(2.2)

for any nonnegative measurable function f on N (cf. Theorem 1.2.9 in [15], The-
orem 12.3.II in [6]). Notice that, by taking f = 1, one gets λQ = 1/EQ0(x1). Con-
sider now the space (0,∞)Z endowed with the product topology with Borel mea-
surable sets. Setting dk(ξ) = xk(ξ) − xk−1(ξ) for k ∈ Z and ξ ∈ N ∞

0 , the map
N ∞

0  ξ → (0,∞)Z is a measurable injection, with measurable image. In partic-
ular, the Palm distribution can be thought of as a probability measure on (0,∞)Z.
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As stated in Theorem 1.3.1 in [15], a probability measure Q on (0,∞)Z is the Palm
distribution associated to a stationary SPP with finite intensity and a.s. nonempty
configurations if and only if Q is shift invariant, and its marginal distributions have
finite mean.

We now describe the main classes of SPPs we are interested in.

DEFINITION 2.3. Given a probability measure μ on (0,∞), we say that ξ is a
renewal SPP containing the origin and with interval law μ, and write Q = Ren(μ |
0), if:

(i) 0 ∈ ξ ;
(ii) ξ is unbounded from the left and from the right and, labeling the points in

increasing order with x0 = 0, the random variables dk = xk −xk−1, k ∈ Z, are i.i.d.
with common law μ.

DEFINITION 2.4. Given probability measures ν and μ on R and (0,∞), re-
spectively, we say that ξ is a right renewal SPP with first point law ν and interval
law μ, and write Q = Ren(ν,μ), if:

(i) ξ = {xk, k ∈ N} is a left-bounded SPP;
(ii) the first point x0 has law ν;

(iii) dk = xk − xk−1 (k ∈ N+) has law μ;
(iv) the random variables x0, {dk}k∈N+ are independent.

DEFINITION 2.5. Given a probability measure μ on N+ with finite mean,
we say that ξ is a Z-stationary renewal SPP with interval law μ, and write Q =
RenZ(μ), if:

(i) ξ is Z-stationary and a.s. nonempty;
(ii) w.r.t. the conditional probability Q(·|0 ∈ ξ) the random variables dk = xk −

xk−1, k ∈ Z, are i.i.d. with common law μ.

A basic example is the following. Consider a Bernoulli product measure on
{0,1}Z with parameter p. Any realization (Xi)i∈Z can be identified with the sub-
set ξ = {i ∈ Z :Xi = 1}. The resulting SPP is a Z-stationary renewal SPP with
geometric interval law.

REMARK 2.6. As proven in Appendix C, given a probability measure μ

on N+, the law Q = RenZ(μ) is well defined iff μ has finite mean. Other properties
of Z-stationary renewal SPPs are also discussed there.

DEFINITION 2.7. Given a probability measure μ on (0,∞) with finite mean,
we say that ξ is a stationary renewal SPP with interval law μ, shortly ξ = Ren(μ),
if:
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(i) ξ is a stationary SPP with finite intensity and ξ is nonempty a.s.;
(ii) the random variables dk = xk − xk−1, k ∈ Z, are i.i.d. with common law μ

w.r.t. the Palm distribution associated to Q.

A classical example of stationary renewal SPP is given by the homogeneous
Poisson point process, for which the interval law is an exponential.

REMARK 2.8. A stationary renewal SPP with interval law μ having infinite
mean cannot exist (see Proposition 4.2.I in [6]). As discussed after Theorem 1.3.4
in [15], Q = Ren(μ) if and only if the following holds: the random variables dk =
xk −xk−1, k �= 1, are i.i.d. with law μ and are independent from the random vector
(x0, x1), which satisfies

Q(−x0 > u,x1 > v) = λQ

∫ ∞
u+v

(
1 − F(t)

)
dt,

(2.3)
F(t) := μ((0, t]), u, v > 0.

We conclude with the definition of two large classes of “exchangeable” point
processes.

DEFINITION 2.9. We say that ξ is a left-bounded exchangeable SPP contain-
ing the origin if:

(i) ξ = {xk, k ∈ N} is a left-bounded SPP containing the origin;
(ii) Q, thought of as probability measure on (0,∞)N+ by the map ξ → (xk −

xk−1 :k ∈ N+), is exchangeable (i.e., invariante under permutations [10, 17]).

DEFINITION 2.10. We say that ξ is a stationary exchangeable SPP if:

(i) ξ is a stationary SPP with finite intensity and ξ is nonempty a.s.;
(ii) the Palm distribution Q0, thought of as probability measure on (0,∞)Z by

the map ξ → (xk − xk−1 :k ∈ Z), is exchangeable.

REMARK 2.11. Any left-bounded or stationary renewal SPP is also exchange-
able.

2.2. One-epoch coalescence process. We describe here the class of coales-
cence processes which will represent the modular unity of the, yet to be defined,
hierarchical coalescence process (HCP). For a reason that will become clear in the
next section, we call it one-epoch coalescence process (OCP).

This process depends on two constants 0 < dmin < dmax and on nonnegative
bounded functions λ�,λr defined on [dmin,∞] which, with λ(d) := λ�(d)+λr(d),
satisfy the following assumptions:
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(A1) λ(d) > 0 if and only if d ∈ [dmin, dmax);
(A2) if d, d ′ ≥ dmin, then d + d ′ ≥ dmax.

Trivially, (A2) is equivalent to the bound 2dmin ≥ dmax.
The one-epoch coalescence process is a Markov process with state space

N (dmin) given by the configurations ξ ∈ N having only domains of length not
smaller than dmin, that is,

N (dmin) = {ξ ∈ N :d�
x ≥ dmin, d

r
x ≥ dmin ∀x ∈ ξ}.(2.4)

The stochastic evolution is given by a jump dynamics with càdlàg paths (ξ(t) : t ≥
0) in the Skohorod space D([0,∞), N (dmin)) (cf. [4]), and at each jump a point is
removed. Formally, the Markov generator of the coalescence process is given by

Lf (ξ) = ∑
x∈ξ

(
λ�(d

�
x) + λr(d

r
x)

)[f (ξ \ {x}) − f (ξ)].(2.5)

We will write PQ for the law on D([0,∞), N (dmin)) of the one-epoch coalescence
process with initial law Q on N (dmin) and Qt for its marginal at time t .

We keep the discussion of the Markov generator at a formal level, since we
prefer to give a constructive definition of the coalescence process. Here we give
two rough alternative descriptions of the dynamics as a random process of points
or as a random process of domains (intervals).

Point dynamics. To each point x ∈ ξ(0) we associate two exponential random
variables Tx,� and Tx,r of parameter λ�(d

�
x) and λr(d

r
x), respectively. We stress that

d�
x and dr

x refer to the configuration ξ(0): at time 0 the domains on the left and on
the right of the point x are, respectively, [x − d�

x, x] and [x, x + dr
x]. All random

variables must be independent. If t = Tx,� ≤ Tx,r and at time t− the point x − d�
x

still exists, then we set ξ(t) = ξ(t−) \ {x}. Moreover, we say that the two domains
having x as separation point merge or coalesce at time t , and that the domain on the
left of x incorporates the domain on the right of x at time t . If t = Tx,r < Tx,�, and
at time t− the point x + dr

x still exists, then we set ξ(t) = ξ(t−) \ {x}. Moreover,
we say that the two domains having x as separation point merge or coalesce at
time t , and that the domain on the right of x incorporates the domain on the left of
x at time t . Finally, if t = Tx,r ∧ Tx,�, but the above two cases do not take place,
then we set ξ(t) = ξ(t−). See Figure 1 for an illustration.

In order to formalize the above construction, we proceed as follows. Given
t > 0, we define ϒt as the set of points x ∈ ξ(0) such that Tx,� ∧ Tx,r ≤ t . On
the set ϒt we define a graph structure putting an edge between points x, y ∈ ϒt

if and only if x and y are consecutive points in ξ(0). Since the functions λ�,λr

are bounded from above, a.s. for any fixed time t , the above graph ϒt has only
connected components (clusters) of finite cardinality. Then, ξ(0) \ ϒt is included
in ξ(s) for all s ∈ [0, t], while the evolution of (ξ(s) : s ∈ [0, t]) restricted to each
cluster of ϒt follows the rules stated at the beginning, which are now meaningful
a.s. since clusters have finite cardinality a.s.
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FIG. 1. An example of the one-epoch coalescence process starting from ξ(0). At time t = 0, the
domain of length d is inactive since d ≥ dmax. At time t1, site x disappears and since t1 = Tx,�,
the domain on the left of x incorporates the domain on the right of x. Analogously at t2 point y

disappears since the domain on the right of y incorporates the domain on the left of y. The domain

1 and 
3 are inactive since they are resulting from a coalescence. The domain 
2 is frozen for
t > t2, due to the presence of 
1 and 
3. This illustrates the blocking effect.

Domain dynamics. We give here only a rough description of the dynamics. In
Section 3.1 we will discuss in detail a basic coupling leading to the definition on
the same probability space of the domain dynamics for all initial configurations
ξ(0) ∈ N (dmin).

One assigns to each domain 
 = [x, x′] with length d present in ξ(0) an ex-
ponential random variable T
 of parameter λ(d) and a coin C
 with faces −1,1
appearing with probability λr(d)/λ(d) and λ�(d)/λ(d), respectively. All random
variables must be independent. If t = T
 and if at time t− the domain 
 still exists,
then at time t the domain 
 incorporates its left domain [i.e., ξ(t) = ξ(t−) \ {x}]
if C
 = −1, while 
 incorporates its right domain [i.e., ξ(t) = ξ(t−) \ {x′}] if
C
 = 1.

We can now explain the dynamical meaning of assumptions (A1) and (A2):

• (A1) means that a domain is active, that is, it can incorporate another domain,
iff its length d lies in [dmin, dmax).

• (A2) means that a domain resulting from a coalescence is not active.

As consequence, the following blocking effect appears: given three nearest-
neighbor inactive domains 
1,
2,
3, the intermediate domain 
2 is frozen, in
the sense that its extreme points cannot be erased; see Figure 1.

By definition of the one-epoch coalescence process, points can only be removed.
Therefore, on any finite interval I , ξ(t)∩ I converges as t → ∞, and the following
lemma follows at once.

LEMMA 2.12. For any given initial condition ξ ∈ N (dmin) the following
hold:

(i) ξ(t) ⊂ ξ(s) if s ≤ t ;
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(ii) the configuration ξ(t) is constant on bounded intervals eventually in t ;
(iii) there exists a unique element ξ(∞) in N (dmax) such that ξ(t) ∩ I =

ξ(∞) ∩ I for all large enough t (depending on I ) and all bounded intervals I .

Due to the above lemma, ξ(∞), the SPP representing the asymptotical state of
the coalescence process, is well defined. Our first main result is given by the fol-
lowing two theorems. It states that, starting from a left-bounded renewal (resp.,
a Z-stationary or stationary renewal) SPP ξ , at a later time t the coalescence pro-
cess ξ(t) remains of the same type. Moreover, there exists a key identity between
the Laplace transform of the interval law at time t = 0 and time t = ∞. This
equation, that we call one-epoch recursive equation, will play a crucial role in a
recursive scheme for the hierarchical coalescence process.

THEOREM 2.13 (Renewal property). Let ν,μ be probability measures on R

and [dmin,∞), respectively. Then, for all t ∈ [0,∞] there exist probability mea-
sures νt ,μt on R and [dmin,∞), respectively, such that ν0 = ν, μ0 = μ and:

(i) if Q = Ren(ν,μ), then Qt = Ren(νt ,μt );
(ii) if Q = Ren(μ), then Qt = Ren(μt );

(iii) if Q = RenZ(μ), then Qt = RenZ(μt );
(iv) If Q = Ren(δ0,μ), then Qt (· | 0 ∈ ξ) = Ren(δ0,μt );
(v) limt→∞ νt = ν∞ and limt→∞ μt = μ∞ weakly.

THEOREM 2.14 (Recursive identities). Let ν,μ be probability measures on R

and [dmin,∞), respectively, and let νt ,μt be the probability measures introduced
in Theorem 2.13.

(i) Consider the Laplace/characteristic functions

Gt(s) =
∫
[dmin,∞)

e−sxμt (dx), s ∈ R+ ∪ iR,(2.6)

Ht(s) =
∫
[dmin,dmax)

e−sxμt (dx), s ∈ R+ ∪ iR.(2.7)

Then, for any s ∈ R+ ∪ iR, the following one-epoch recursive equation holds:

1 − G∞(s) = [1 − G0(s)]eH0(s).(2.8)

(ii) Consider the Laplace/characteristic function

Lt(s) =
∫

e−sxνt (dx), s ∈ R+∪ ∈ iR.

(a) If λr ≡ 0, then νt = ν0 for all t ≥ 0. Hence Lt(s) = L0(s) for all t ≥ 0.
(b) If λ� = γ λr for some γ ∈ [0,∞), then, for any s ∈ R+ ∪ iR,

L∞(s) = L0(s) exp
{
H0(s) − H0(0)

1 + γ

}
.(2.9)
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Moreover, if Q = Ren(ν,μ)

PQ
(
x0(0) ∈ ξ(∞)

) = e−H0(0)/(1+γ ),(2.10)

where x0(0) denotes the first point of the initial configuration ξ(0).

The proofs of Theorems 2.13 and 2.14 are given in Sections 3 and 4.

REMARK 2.15. In (ii) we have analyzed two cases [(a) and (b)] motivated
by the East model and by the Paste-all model. The arguments used in the proof
of point (ii) could, however, be applied to other cases as well. We stress that the
Laplace transform Lt(s), s ∈ R+, could diverge since νt has support on R. There-
fore, the above identities in point (ii) have to be thought of as identities in the
extended space [0,∞].

We point out that the one-epoch recursive equation (2.8) uniquely determines
μ∞ when knowing μ0, dmin, dmax. In particular, these three elements are the
unique traces of the dynamics that asymptotically survive. In other words, the pre-
cise form of the rates λ� and λr is irrelevant. In the case of a left-bounded renewal
point process the limiting first point law ν∞ does not share such a universality,
although the trace of λ� and λr on ν∞ is only partial.

REMARK 2.16. Assume for simplicity that μ is concentrated on N+, so
that the domains have integer length at any time. After properly constructing the
Markov generator (2.5) one could prove that

∂tμt (d) = −λ(d)μt (d) +
d−1∑
x=1

[λ�(x) + λr(d − x)]μt(x)μt (d − x).(2.11)

Note that if d is active, then only the first addendum in the right-hand side is
present, while if d is inactive this first addendum is absent. From this observation,
one easily obtains that ∂tGt = (1 − Gt)∂tHt , and therefore

1 − Gt(s) = (
1 − G0(s)

)
exp{H0(s) − Ht(s)} ∀t, s ≥ 0.(2.12)

Taking the limit t → ∞ one gets (2.8). This strategy has been applied in [22],
where the treatment is not rigorous, and will be formalized in [13] in order to treat
other coalescence processes as in [5]. It could be applied to derive (2.9). While the
Smoluchoswski-type equation (2.11) has a mean-field structure (see, e.g., [1]), in
proving (2.8) and (2.9), we have followed here a more constructive strategy, and
we have investigated how a domain of given length can emerge at the end of the
epoch or how a given point can become the first point for the configuration ξ(∞)

at the end of the epoch.

2.3. The hierarchical coalescence process. We can finally introduce the hi-
erarchical coalescence process (HCP). The dynamics depend on the following
parameters and functions: a strictly increasing sequence of positive numbers
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{d(n)}n≥1 and a family of uniformly bounded functions λ
(n)
� , λ

(n)
r : [d(n),∞] →

[0,A], n ≥ 1. Without loss of generality we may assume that d(1) = 1. We set as
before λ(n) := λ

(n)
� + λ

(n)
r , and we assume:

(A1) for any n ∈ N+, λ(n)(d) > 0 if and only if d ∈ [d(n), d(n+1));
(A2) for any n ∈ N+, if d, d ′ ≥ d(n), then d +d ′ ≥ d(n+1) (i.e., 2d(n) ≥ d(n+1));
(A3) limn→∞ d(n) = ∞.

For example, one could take d(n) = n or d(n) = an−1 with a ∈ (1,2].
The HCP is then given by a sequence of one-epoch coalescence processes, suit-

ably linked. More precisely, the stochastic evolution of the HCP is described by the
sequence of paths {ξ (n)(·)}n≥1 where each ξ (n) is the random path describing the
evolution of the one-epoch coalescence process with rates λ

(n)
� , λ

(n)
r , active domain

lengths d
(n)
min = d(n), d

(n)
max = d(n+1) and initial condition ξ (n)(0) = ξ (n−1)(∞),

n ≥ 2. Informally we refer to ξ (n) as describing the evolution in the nth epoch.
See Figure 2 for a graphical illustration.

Theorem 2.13 gives us information on the evolution and its asymptotic inside
each epoch when the initial condition is a SPP of the renewal type. If, for example,
the initial distribution Q for the first epoch is Ren(ν,μ), we can use Theorem 2.13
together with the link ξ (n+1)(0) = ξ (n)(∞) between two consecutive epochs to
recursively define the measures μ(n), ν(n) by

μ(n+1) = μ(n)∞ , μ(1) = μ,
(2.13)

ν(n+1) = ν(n)∞ , ν(1) = ν.

FIG. 2. An example of HCP dynamics, with d(n) = n. The distances between the points are, from
left to right, 1, 1 (corresponding to 
1), 2, 1, 3 (corresponding to 
2), 1, 1, 2 (corresponding to

3). . . . At the beginning of epoch 1, only the domains of length in 1 are active. In particular, 
1 is
active while 
2 and 
3 are inactive. At the end of epoch 1, there are no more domains of length less
than 2 (see Lemma 2.12). At the beginning of epoch 2, domains of length 2 are active and at the end,
there are no more domains of length less than 3, and so on. Note that an inactive domain as 
2 can
increase its length.
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With this position it is then natural to ask if, in some suitable sense, the measures
μ(n), ν(n) have a well-defined limiting behavior as n → ∞. The affirmative answer
is contained in the following theorem, which is the core of the paper. Before stating
it we need a result on the Laplace transform of probability measures on [1,∞].

LEMMA 2.17. Let μ be a probability measure on [1,∞), and let g(s) be its
Laplace transform, that is, g(s) = ∫

e−sxμ(dx), s > 0.

(i) If

lim
s↓0

− sg′(s)
1 − g(s)

= c0,(2.14)

then necessarily 0 ≤ c0 ≤ 1.
(ii) The existence of limit (2.14) holds if:

(a) μ has finite mean and then c0 = 1, or
(b) for some α ∈ (0,1) μ belongs to the domain of attraction of an α-stable

law or, more generally, μ((x,∞)) = x−αL(x) where L(x) is a slowly
varying3 function at +∞, α ∈ [0,1], and in this case c0 = α.

REMARK 2.18. One could wonder if limit (2.14) always exists. The answer
is negative and an example is given in Appendix B.

The proof of Lemma 2.17 is discussed in Appendix A.

THEOREM 2.19. Let ν,μ be probability measures on R and [1,∞), respec-
tively, and let g(s) be the Laplace transform of μ. Let Q be the initial law of ξ (1),
and suppose that Q is either Q = Ren(ν,μ) or Q = Ren(μ) or Q = RenZ(μ). For
any n ∈ N+ let X(n) be a random variable with law μ(n) defined in (2.13) so that
g(s) := E[e−sX(1)].

If (2.14) holds for g, then the rescaled variable Z(n) := X(n)/d(n) weakly con-
verges to the random variable Z(∞) ≡ Z

(∞)
c0 whose Laplace transform is given

by

g(∞)
c0

(s) = 1 − exp
{
−c0

∫ ∞
1

e−sx

x
dx

}
.(2.15)

The corresponding probability density is of the form zc0(x)1x≥1, where zc0 is the
continuous function on [1,∞) given by

zc0(x) =
∞∑

k=1

(−1)k+1ck
0

k! ρk(x)1x≥k,(2.16)

3A function L is said to be slowly varying at infinity, if for all c > 0, limx→∞ L(cx)/L(x) = 1.
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where ρ1(x) = 1/x and

ρk+1(x) =
∫ ∞

1
dx1 · · ·

∫ ∞
1

dxk

1

x − ∑k
i=1 xi

k∏
j=1

1

xj

1∑k
i=1 xi≤x−1, k ≥ 1.

The proof of Theorem 2.19 is discussed in Section 6.2.

REMARK 2.20. The remarkable fact of the above result is that the only rem-
iniscence of the initial distribution in the limiting law is through the constant c0
which, as proved in Lemma 2.14, is “universal” for a large class of initial laws μ.
Hence the term universality in the title. We also stress that, starting with a sta-
tionary or Z-stationary renewal SPP, the weak limit of Z(n) always exists and it is
universal (c0 = 1), not depending on the rates λ

(n)
� , λ

(n)
r .

REMARK 2.21. We point out that the asymptotic Laplace distribution g
(∞)
c0

can be written also as

g(∞)
c0

(s) = 1 − exp
{
−c0

∫ ∞
s

e−x

x
dx

}
= 1 − exp{−c0 Ei(s)},

where Ei(·) denotes the exponential integral function. This is indeed the form ap-
pearing in [9] and [22] with c0 = 1 (see previous remark).

If the law μ has finite mean then by the above Theorem combined with (ii) of
Lemma 2.17 we know that Z(n) weakly converges to the random variable Z

(∞)
1 .

Actually we can improve our result to higher moments.

PROPOSITION 2.22. In the same setting of Theorem 2.19 assume that d(n) =
an−1 for some a ∈ (1,2], and that μ has finite kth moment, k ∈ N+. Then, for any
function f : [0,∞) → R such that |f (x)| ≤ C +Cxk for some constant C, it holds

lim
n→∞E

[
f

(
Z(n))] = E

[
f

(
Z

(∞)
1

)]
.(2.17)

REMARK 2.23. The choice d(n) = an−1 in Proposition 2.22 is technical and
could be relaxed, but at the price of extra hypotheses (that would not include the
case d(n) = n, e.g.). In order to keep the computations as simple as possible we
decided to focus on this particular example which is of interest for applications to
the East model.

The proof of Proposition 2.22 can be found in Section 6.5. Next we concentrate
on the asymptotic behavior of the first point law when starting with a left-bounded
renewal SPP.
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THEOREM 2.24. Let ν,μ be probability measures on R and [1,∞), respec-
tively, and consider the hierarchical coalescence process such that the initial law
Q of ξ (1) is Ren(ν,μ). Assume

λ
(n)
� = γ λ(n)

r ∀n ≥ 1,(2.18)

for some γ ∈ [0,∞), and let, for any n ∈ N+, X
(n)
0 be the position of the first point

of the HCP at the beginning of the nth epoch.
If limit (2.14) exists for the Laplace transform g of μ then, as n → ∞, the

rescaled random variable Y (n) := X
(n)
0 /d(n) weakly converges to the positive ran-

dom variable Y
(∞)
c0 with Laplace transform given by

E
(
e−sY

(∞)
c0

) = exp
{
− c0

1 + γ

∫
(0,1)

1 − e−sy

y
dy

}
, s ∈ R+.(2.19)

We point out that if λ
(n)
r ≡ 0 for all n ≥ 1, the first point does not move.4 In

particular, its asymptotic is trivial. Theorem 2.24 is proven in Section 6.3.
Finally, we evaluate the surviving probability of a given point:

THEOREM 2.25. Let ν,μ be probability measures on R and [1,∞), respec-
tively, and consider the hierarchical coalescence process with initial law Q. As-
sume

λ
(n)
� = γ λ(n)

r ∀n ≥ 1,(2.20)

for some γ ∈ [0,∞), and let, for any n ∈ N+, X
(n)
0 be the position of the first point

of the HCP at the beginning of the nth epoch.
If the limit (2.14) exists for the Laplace transform g of μ then, as n → ∞:

(i) if Q = Ren(ν,μ), then:

PQ
(
X

(n)
0 = X

(1)
0

) = (
1/d(n))(c0/(1+γ ))(1+o(1));

(ii) if Q = Ren(μ | 0), then

PQ
(
0 ∈ ξ (n)(0)

) = (
1/d(n))c0(1+o(1))

.

Note that (ii) does not depend on the value of γ . Theorem 2.25 is proven in
Section 6.4.

Extension of the above results to one-epoch coalescence process or hierarchical
coalescence process with initial law Q describing an exchangeable SPP will be
discussed in Appendix D.

4This is the case for the HCP associated to the West version of the East model, that is, to the
kinetically constrained model with Glauber dynamics for which the occupation variable at x can be
updated iff x − 1 is empty.
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3. Renewal property in the OCP: Proof of Theorem 2.13. In this section
and in the next one we will prove our results concerning the one-epoch coalescence
process (Theorems 2.13 and 2.14) in a more general setting, namely when the
interval [dmin, dmax) is replaced by a more general set A ⊂ (0,∞). More precisely,
let λ�,λr be bounded nonnegative functions on (0,∞], and set λ = λ� + λr . We
assume that:

(A1′) λ(d) > 0 if and only if d ∈ A;
(A2′) if d, d ′ ≥ inf(A), then d + d ′ /∈ A.

Above, dmin := inf(A) denotes the infimum of the set A. When A = [dmin, dmax),
(A1′) and (A2′) coincide with assumptions (A1) and (A2), respectively. A do-
main is called active if its length belongs to A. The initial distribution Q of the
one-epoch coalescence must be supported in [inf(A),∞). In (2.6) and (2.7) the
integration domains become [inf(A),∞) and A, respectively.

The proof of Theorem 2.13 requires the definition of a universal coupling, that
is, the construction on the same probability space of all one-epoch coalescence
processes obtained by varying the initial configuration. This coupling will be rele-
vant also in the proof of Theorem 2.25(ii).

3.1. Universal coupling for the domain dynamics. In Section 2 we have in-
troduced some enumerations of the points in ξ ∈ N , depending on the property
of ξ to be unbounded both from the left and from the right, or only from the left.
It is convenient here to have a universal enumeration. To this aim, given ξ ∈ N ,
we enumerate its points in increasing order, with the rule that the smallest positive
one (if it exists) gets the label 1, while the largest nonpositive one (if it exists) gets
the label 0. We write N(x, ξ) for the integer number labeling the point x ∈ ξ . This
allows to enumerate the domains of ξ as follows: a domain [x, x′] is said to be the
kth domain if (i) x is finite and N(x, ξ) = k, or (ii) x = −∞ and N(x ′, ξ) = k + 1.
Recall that if x = −∞, then ξ is unbounded from the left and x′ is the smallest
number in ξ .

We set ‖λ‖∞ = supd∈A λ(d), and we define λ∗
� = λr, λ

∗
r = λ�. Obviously λ =

λ� + λr = λ∗
� + λ∗

r . This change of notation should help the reader. Indeed, in
the point dynamics a point x is erased by the action of its left (right) domain of
length d with rate λ�(d) (λr(d)). On the other hand, as explained again below, if
we formulate the model in terms of a domain dynamics then a domain of length
d disappears because of the annihilation of its left (right) extreme with probability
rate λ∗

�(d) (λ∗
r (d)).

We consider now a probability space (�, F ,P ) on which the following ran-
dom objects are defined and are all independent: the Poisson processes T (k) =
{T (k)

m :m ∈ N} and T̄ (k) = {T̄ (k)
m :m ∈ N} of parameter ‖λ‖∞, indexed by k ∈ Z,

and the random variables U
(k)
m , Ū

(k)
m , uniformly distributed in [0,1], indexed by

k ∈ Z and m ∈ N.
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Next, given ζ ∈ N (dmin) and ω ∈ �, to each domain 
 that belongs to ζ we
associate the Poisson process T (k) if 
 is the kth domain in ζ . In this case, we write
T (
) instead of T (k). Similarly we define T̄ (
), U

(
)
m , Ū

(
)
m . We define Wt [ω, ζ ]

as the set of domains 
 in ζ such that{
s ∈ [0, t] : s ∈ T (
) ∪ T̄ (
), or s ∈ T (
′) ∪ T̄ (
′)

for some domain 
′ neighboring 

} �= ∅.

On Wt [ω, ζ ] we define a graph structure putting an edge between domains 
 and

′ if and only if they are neighboring in ζ . Since the function λ is bounded from
above, we deduce that the set

B(ζ ) := {ω : Wt [ω, ζ ] has all connected components of finite cardinality ∀t ≥ 0}
has P -probability equal to 1. Note that the event B(ζ ) depends on ζ only through
the infimum and the supremum of the set {N(x, ζ ) ∈ Z :x ∈ ζ }. By a simple argu-
ment based on countability, we conclude that P(B) = 1, where B is defined as the
family of elements ω ∈ � belonging to

⋂
ζ∈N (dmin)

B(ζ ) and such that all the sets
T (k)[ω] and T̄ (k)[ω], k ∈ Z, are disjoint.

In order to define the path {ξ(s)}s≥0 ≡ {ξζ (s,ω)}s≥0 we first fix a time t > 0
and define the path up to time t . If ω /∈ B, then we set

ξ(s) = ζ ∀s ∈ [0, t].
If ω ∈ B, recall the definition of the graph Wt [ω, ζ ]. Given a set of domains V we
write V̄ for the set of the associated extremes, that is, x ∈ V̄ if and only if there
exists a domain in V having x as left or right extreme. Moreover, we write Vt [ω, ζ ]
for the set of all domains in ζ that do not belong to Wt [ω, ζ ]. We define

ξ(s) ∩ Vt [ω, ζ ] := Vt [ω, ζ ] ∀s ∈ [0, t],(3.1)

that is, up to time t all points in Vt [ω, ζ ] survive. Let us now fix a cluster C in
the graph Wt [ω, ζ ]. The path (ξ(s) ∩ C̄ : s ∈ [0, t]) is implicitly defined by the
following rules (the definition is well posed since ω ∈ B). If s ∈ [0, t] equals T

(
)
m

with 
 = [x, x′] ∈ C and x, x′ ∈ ξ(s−), then the ring at time T
(
)
m is called legal if

U(
)
m ≤ λ∗

�(x
′ − x)

‖λ‖∞
,(3.2)

and in this case we set ξ(s) ∩ C̄ := (ξ(s−) ∩ C̄) \ {x}, otherwise we set ξ(s) ∩ C̄ =
ξ(s−) ∩ C̄ . In the first case, we say that x is erased and that the domain [x, x′]
has incorporated the domain on its left. Similarly, if s ∈ [0, t] equals T̄

(
)
m with


 = [x, x′] ∈ C and x, x′ ∈ ξ(s−), then the ring at time T̄
(
)
m is called legal if

Ū (
)
m ≤ λ∗

r (x
′ − x)

‖λ‖∞
,(3.3)



1D HIERARCHICAL COALESCENCE PROCESSES 1395

and in this case we set ξ(s) ∩ C̄ := (ξ(s−) ∩ C̄) \ {x′}, otherwise we set ξ(s) ∩ C̄ =
ξ(s−) ∩ C̄ . Again, in the first case we say that x′ is erased and that the domain
[x, x′] has incorporated the domain on its right.

We point out that C̄ ∩ C̄′ = ∅ if C and C′ are distinct clusters in Wt [ω, ζ ]. On the
other hand, it could be C̄ ∩ Vt [ω, ζ ] �= ∅. Let x be a point in the intersection, and
suppose for example that [a, x] ∈ C while [x, b] ∈ Vt [ω, ζ ]. Then, by definition of
Wt [ω, ζ ], one easily derives that the Poisson processes associated to the domains
[a, x] and [x, b] do not intersect [0, t], while at least one of the Poisson processes
associated to the domain on the left of [a, x] intersects [0, t]. In particular, x ∈
ξ(s) ∩ C̄ for all s ∈ [0, t], in agreement with (3.1). The same conclusion is reached
if [a, x] ∈ Vt [ω, ζ ] and [x, b] ∈ C . This allows to conclude that the definition of
the path {ξ(s)}s≥0 up to time t is well posed. We point out that this definition
is t-dependent. The reader can easily check that, increasing t , the resulting paths
coincide on the intersection of their time domains. Joining these paths together we
get {ξ(s)}s≥0.

At this point, it is simple to check that, given a configuration ζ ∈ N (dmin),
the law of the corresponding path {ξ(s)}s≥0 is that of the one-epoch coalescence
process defined in Section 2 with initial condition ζ . The advantage of the above
construction is that all one-epoch coalescence processes, obtained by varying the
initial configuration, can be realized on the the same probability space. Given a
probability measure Q on N (dmin), the one-epoch coalescence process with initial
distribution Q can be realized by the random path {ξ ·(s, ·)}s≥0, defined on the
product space � × N (dmin), endowed with the probability measure P × Q.

3.2. Proof of Theorem 2.13(i)–(iii). Before presenting the proof of Theorem
2.13(i)–(iii) we state and prove a key lemma.

LEMMA 3.1 (Separation effect). For any x ∈ R, any configuration ζ ∈
N (dmin) with x ∈ ζ , any event A in the σ -algebra generated by {ξ(s) ∩
(−∞, x)}s≤t , any event B in the σ -algebra generated by {ξ(s) ∩ (x,∞)}s≤t , it
holds

Pζ

(
A ∩ B ∩ {x ∈ ξ(t)})

(3.4)
= Pζ∩(−∞,x]

(
A ∩ {x ∈ ξ(t)})Pζ∩[x,∞)

(
B ∩ {x ∈ ξ(t)}).

PROOF. We set ζ� := ζ ∩ (−∞, x], ζr := ζ ∩ [x,∞), k := N (x, ζ ), j :=
N (x, ζ�) and u := N (x, ζr). The desired result (3.4) is implied by the following
facts (i) and (ii):

(i) For any ω ∈ � such x ∈ ξζ (t,ω) the following holds. At each time s ∈
[0, t] one has

ξζ�(s, ω̂) = ξζ (s,ω) ∩ (−∞, x],
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if ω̂ satisfies for any i < k and m ∈ N

T (i)(ω) = T (i+j−k)(ω̂), U(i+j−k)
m (ω) = U(i+j−k)

m (ω̂),(3.5)

and the same identities with T and U
(·)
m replaced by T̄ and Ū

(·)
m . Similarly, at each

time s ∈ [0, t] one has

ξζr (s, ω̃) = ξζ (s,ω) ∩ [x,∞),

if ω̃ satisfies for any i ≥ k and m ∈ N

T (i)(ω) = T (i+u−k)(ω̃), U(i)
m (ω) = U(i+u−k)

m (ω̃),(3.6)

and the same identities with T and U
(·)
m replaced by T̄ and Ū

(·)
m .

(ii) Take ω̂, ω̃ ∈ � such that x ∈ ξζ�(t, ω̂) and x ∈ ξζr (t, ω̃). At each time s ∈
[0, t] it holds

ξζ (s,ω) = ξζ�(s, ω̂) ∪ ξζr (s, ω̃),

if ω ∈ � satisfies (3.5) and the same identities with T and U
(·)
m replaced by T̄ and

Ū (·) for any i < k and m ∈ N, and ω satisfies (3.6) and the same identities with T
and U

(·)
m replaced by T̄ and Ū

(·)
m for any i ≥ k and m ∈ N. �

We first prove the renewal property for the OCP with initial distribution Q =
Ren(ν,μ). We take the special realization of the process defined by means of the
universal coupling at the end of the previous section. We concentrate on the joint
distribution of the random variables x0(t), d1(t), d2(t), proving that they are in-
dependent and giving an expression of their marginal distributions. We recall that
x0(t) is the leftmost point of ξ(t), while dk(t) is the length of the kth domain to
the right of x0(t) in ξ(t).

While d1(t), d2(t) are nonnegative random variables and their Laplace trans-
forms are always finite, x0(t) is a real random variable and its Laplace transform
could diverge. Hence, it is convenient to work with characteristic functions instead
of Laplace transforms. Given imaginary numbers s0, s1, s2 ∈ iR, we have

EQ
(
e−s0x0(t)−s1d1(t)−s2d2(t)

)
= ∑

i0<i1<i2∈N

EQ
(
e−s0x0(t)−s1d1(t)−s2d2(t);x0(t) = xi0(0);

(3.7)
x1(t) = xi1(0);x2(t) = xi2(0)

)
= ∑

i0<i1<i2∈N

∫
Q(dζ )e−s0xi0−s1(xi1−xi0 )−s2(xi2−xi1 )fi0,i1,i2(ζ ),

where ζ = {xk :k ∈ N} and the function fi0,i1,i2(ζ ) is defined as the P -probability
of the event U in � given by the elements ω satisfying the following properties:

(P1) ξζ (t,ω) ∩ (−∞, xi0] = {xi0},
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(P2) ξζ (t,ω) ∩ [xi0, xi1] = {xi0, xi1},
(P3) ξζ (t,ω) ∩ [xi1, xi2] = {xi1, xi2}.

Let us now set

ζ0 = ζ ∩ (−∞, xi0], ζ0,1 = ζ ∩ [xi0, xi1],
ζ1,2 = ζ ∩ [xi1, xi2], ζ2 = ζ ∩ [xi2,∞).

Then, by the separation effect described in Lemma 3.1, one has

fi0,i1,i2(ζ ) = P(U (ζ )) =
4∏

i=1

P
(
ω ∈ � :ω fulfills (Pi′)

)
,(3.8)

where

(P1′) ξζ0(t,ω) = {xi0},
(P2′) ξζ0,1(t,ω) = {xi0, xi1},
(P3′) ξζ1,2(t,ω) = {xi1, xi2},
(P4′) xi2 ∈ ξζ2(t,ω).

We stress that the factors in (3.8) are ζ -dependent, although we have omitted ζ

from the notation. In particular, the probability P(ω ∈ � :ω fulfills (Pi′)) depends
on ζ only through the first point x0 and the domain lengths d1, d2, . . . , di0 if i = 1,
the domain lengths di0+1, . . . , di1 if i = 2, the domain lengths di1+1, . . . , di2 if
i = 3 and the domain lengths di2+1, di2+2, . . . if i = 4. Thinking of ζ as a random
configuration sampled by Q, all the above domain lengths are i.i.d. with law μ and
are independent from x0 which has law ν. In particular, the random variables ζ →
P(ω ∈ � :ω fulfills (Pi ′)) are independent for i = 1, . . . ,4. Using the consequent
factorization and integrating over ζ in (3.7), we conclude that

EQ
(
e−s0x0(t)−s1d1(t)−s2d2(t)

)
= ∑

i0<i1<i2∈N

∫
Q(dζ )P

(
ω ∈ � :ω fulfills (P4′)

)

×
∫

Q(dζ )e−s0xi0 P
(
ω ∈ � :ω fulfills (P1′)

)
(3.9)

×
∫

Q(dζ )e−s1(xi1−xi0 )P
(
ω ∈ � :ω fulfills (P2′)

)

×
∫

Q(dζ )e−s2(xi2−xi1 )P
(
ω ∈ � :ω fulfills (P3′)

)
.

By simple computations and using that Q = Ren(ν,μ), from the above identity we
derive that

EQ
(
e−s0x0(t)−s1d1(t)−s2d2(t)

) = L̂t (s0)Ĝt (s1)Ĝt (s2),(3.10)



1398 FAGGIONATO, MARTINELLI, ROBERTO AND TONINELLI

where

L̂t (s) = PRen(δ0,μ)

(
0 ∈ ξ(t)

)
L0(s)

∑
n≥0

E⊗nμ

(
e−sxn(0); ξ(t) = {xn(0)}),(3.11)

Ĝt (s) = ∑
n≥1

E⊗nμ

(
e−sxn(0); ξ(t) = {0, xn(0)}).(3.12)

Above L0(s) denotes the characteristic function of ν, while ⊗nμ denotes the law
of the SPP given by n + 1 points 0 = x0 < x1 < · · · < xn such that the random
variables di = xi − xi−1, 1 ≤ i ≤ n, are i.i.d. with common law μ.

Note that in the derivation of (3.11) one has to keep the contribution of both the
first and the second expectation in the right-hand side of (3.9).

By similar arguments, one obtains

EQ
(
e−(s0x0(t)+s1d1(t)+···+skdk(t))

) = L̂t (s0)

k∏
i=1

Ĝt (si) ∀k ≥ 0(3.13)

with the convention that the last product over k is equal to 1 if k = 0. The above
formula implies that the random variables x0(t), d1(t), d2(t), . . . are all indepen-
dent, x0(t) has characteristic function L̂t and dk(t) has characteristic function Ĝt

for each k ≥ 1. Note that the above arguments remain valid for s0, s1, . . . , sk ≥ 0
(and one speaks of Laplace transforms instead of characteristic functions), but if
E(e−s0x0(0)) = ∞ we get the trivial identities ∞ = ∞.

(ii)–(iii) We consider now the case Q = Ren(μ). Points are now labeled in in-
creasing order with the convention that x0 denotes the largest nonpositive point.
Similarly to the above proof, one can show that the random variables dk(t), k �= 1,
are i.i.d. and are independent from the random variable x1(t) − x0(t). Moreover,
their common law has Laplace transform (3.12). On the other hand, due to the
definition of the dynamics, ξt must be a stationary SPP. As a byproduct, we con-
clude that the law of ξt is Ren(μt ), μt being a probability measure on (0,∞) with
Laplace transform (3.12). The case Q = RenZ(μ) can be treated analogously.

It is convenient to isolate a technical fact derived in the above proof, which will
be the starting point in the proof of Theorem 2.14:

LEMMA 3.2. Recall that Gt(s) = ∫
[inf(A),∞) e

−sxμt (x) and Lt(s) = ∫
A e−sx×

νt (x) (s ∈ R+ ∪ iR). Then

Lt(s) = PRen(δ0,μ)

(
0 ∈ ξ(t)

)
L0(s)

∑
n≥0

E⊗nμ

(
e−sxn(0); ξ(t) = {xn(0)}),(3.14)

Gt(s) = ∑
n≥1

E⊗nμ

(
e−sxn(0); ξ(t) = {0, xn(0)}),(3.15)

where ⊗nμ denotes the law of the SPP given by n + 1 points 0 = x0 < x1 < · · · <
xn such that the random variables di = xi −xi−1, 1 ≤ i ≤ n, are i.i.d. with common
law μ.
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3.3. Proof of Theorem 2.13(iv). Suppose that Q = Ren(δ0,μ). Then we can
write

EQ
(
e−sd1(t);0 ∈ ξ(t)

)
= ∑

i∈N+
EQ

(
e−sxi(0);0 ∈ ξ(t);x1(t) = xi(0)

)
(3.16)

= ∑
i∈N+

∫
Q(dζ )e−sxi Pζ

(
ξ(t) ∩ [0, xi] = {0, xi}),

where ζ = {xk :k ≥ 0}. By the separation effect described in Lemma 3.1, we can
write the last probability inside the integrand in (3.16) as

Pζ∩[0,xi ]
(
ξ(t) = {0, xi})Pζ∩[xi ,∞)

(
xi ∈ ξ(t)

)
.

We observe that the last two factors, as functions of ζ , are Q-independent. More-
over, for all i ∈ N+, it holds∫

Q(dζ )Pζ∩[xi ,∞)

(
xi ∈ ξ(t)

) = PQ
(
0 ∈ ξ(t)

)
.

Therefore, coming back to (3.16), using the renewal property of Q and (3.15), we
get

EQ
(
e−sd1(t) | 0 ∈ ξ(t)

)
= ∑

i∈N+

∫
Q(dζ )Pζ∩[0,xi ]

(
ξ(t) = {0, xi}) = Gt(s).

By similar arguments, one gets

EQ
(
e
−∑k

j=1 sj dj (t) | 0 ∈ ξ(t)
) =

k∏
j=1

Gt(sj ), s1, . . . , sk ∈ R+ ∪ iR,

thus concluding the proof of Theorem 2.13(ii).

3.4. Proof of Theorem 2.13(v). From (3.14) and (3.15) we get that Lt(s) and
Gt(s) converge to L∞(s) and G∞(s) as t → ∞. This implies the weak conver-
gence to νt and μt to ν∞ and μ∞.

4. Recursive identities in the OCP: Proof of Theorem 2.14. The proof is
based on the identities (3.14) and (3.15) in Lemma 3.2. We first point out a block-
ing phenomenon in the dynamics that will be frequently used in what follows. Due
to assumption (A1′), a separation point x between two inactive domains cannot
be erased. As simple consequence, we obtain that the points between two nearest
neighbor inactive domains cannot all be erased: if there exists s ≥ 0 s.t. [a, b] and
[c, d] are inactive domains (including the cases a = −∞, d = ∞) with b ≤ c, then



1400 FAGGIONATO, MARTINELLI, ROBERTO AND TONINELLI

ξ(∞) ∩ [b, c] �= ∅. Indeed the set [b, c] ∩ ξ is nonempty (since b and c belongs
to it) and if we assume that all points in this set are killed, then the last one to be
killed is for sure a separation point between two inactive domains and a contradic-
tion arises. We will frequently use this fact below.

By Lemma 3.2 we can write, for s ∈ R+ ∪ iR,

G∞(s) =
∞∑

k=0

Ak(s),

(4.1)
Ak(s) = E⊗k+1μ

(
e−sxk+1(0); ξ(∞) = {0, xk+1(0)}).

We explicitly compute Ak(s). To this aim we consider the one-epoch coalescence
process with law P⊗k+1μ. We observe that, due to the blocking phenomenon, the
event ξ(∞) = {0, xk+1(0)} implies that (i) k ≥ 1, and the k + 1 initial domains are
all active, or (ii) k ≥ 0, and initially there are k active domains and one inactive
domain. Therefore, given k ≥ 0 and 1 ≤ j ≤ k + 1, we introduce the following
events:

Fk = {d1(0), d2(0), . . . , dk+1(0) ∈ A} ∩ {
ξ(∞) = {0, xk+1(0)}},

Ek,j = {
di(0) ∈ A ∀i ∈ {1, . . . , k + 1} \ {j}} ∩ {dj (0) /∈ A}
∩ {

ξ(∞) = {0, xk+1(0)}}.
By the above discussion, it holds

Ak(s) = E⊗k+1μ

(
e−sxk+1(0);Fk

)
1k≥1 +

k+1∑
j=1

E⊗k+1μ

(
e−sxk+1(0);Ek,j

)
.(4.2)

The exact computation of the two addenda in the right-hand side is given in the
following lemmas:

LEMMA 4.1. For each k ≥ 1, it holds

E⊗k+1μ

(
e−sxk+1(0);Fk

) = [∫ μ(dx)e−sx1x∈A]k+1

(k + 1) · (k − 1)! .(4.3)

LEMMA 4.2. For each k ≥ 0, it holds

k+1∑
j=1

E⊗k+1μ

(
e−sxk+1(0);Ek,j

)
(4.4)

=
∫

μ(dx)e−sx1x /∈A
[∫ μ(dx)e−sx1x∈A]k

k! .
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We postpone the proof of the lemmas in order to end the proof of point (i) of
Theorem 2.14. Due to (4.1), (4.2), Lemmas 4.1 and 4.2 we obtain

G∞(s) =
∞∑

k=1

[∫ μ(dx)e−sx1x∈A]k+1

(k + 1) · (k − 1)!

+
∞∑

k=0

∫
μ(dx)e−sx1x /∈A

[∫ μ(dx)e−sx1x∈A]k
k!

=
∞∑

k=1

H0(s)
k+1

(k + 1) · (k − 1)! +
∞∑

k=0

(
G0(s) − H0(s)

)H0(s)
k

k!(4.5)

= −H0(s) −
∞∑

j=2

[
1

(j − 1)! − 1

j · (j − 2)!
]
H0(s)

j + G0(s)e
H0(s)

= −
∞∑

j=1

H0(s)
j

j ! + G0(s)e
H0(s) = 1 − eH0(s) + G0(s)e

H0(s).

This concludes the proof of (2.8) (and hence of point (i) of Theorem 2.14).
Now we give the proofs of Lemmas 4.1 and 4.2.

PROOF OF LEMMA 4.1. From now on we work with the one-epoch coales-
cence process whose initial distribution is given by ⊗k+1μ.

Let us suppose that d1(0), d2(0), . . . , dk+1(0) ∈ A: we want to understand how
the event Fk takes place, that is, how points x1(0), . . . , xk(0) are erased while
x0(0) = 0 and xk+1(0) survive. The event Fk must be realized as follows:

(i) the first erased point must be of the form xi(0) with 1 ≤ i ≤ k;
(ii) after the disappearance of xi(0), restricting the observation on the left of

xi(0), one sees that xi−1(0), xi−2(0), . . . , x1(0) disappear one after the other, from
the rightmost point to the leftmost point;

(iii) after the disappearance of xi(0), restricting the observation on the right of
xi(0), one sees that xi+1(0), xi+2(0), . . . , xk(0) disappear one after the other, from
the leftmost point to the rightmost point.

(ii) and (iii) follow from the blocking phenomenon and the fact that the disap-
pearance of xi(0) creates an inactive domain, [xi−1(0), xi+1(0)]. Since the initial
configuration has a finite number of points, the coalescence process can be real-
ized as follows: each domain of initial length d waits independently from the other
domains an exponential time of parameter λ(d), afterwards if both the its extremes
are still present we say that the ring is effective and with probability λr(d)/λ(d)

its left extreme is erased otherwise the right extreme is erased, and after this jump
the dynamics start afresh. We can therefore describe the jumps in the coalescence
process (disregarding the jump times) by a string σ = (σ1, σ2, . . . , σm), where each
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FIG. 3. Example of a trajectory in Fk , with k = 5.

entry σi is a couple σi = (Ni,Li) with Ni ∈ {1,2, . . . , k + 1}, Ni �= Nj for i �= j

and Li ∈ {�, r} (N stands for “number” and L stands for “letter”). The meaning
of σi is the following: the domain which rings at the ith effective ring is given by
[xNi−1(0), xNi

(0)], while after its ring the erased extreme is the left one if Li = �

or the right one if Li = r . See Figure 3 for an example. We say that the number Ni

is associated to the letter Li . Given such a string σ we denote by B(σ ) the event
that the jumps of the coalescence process are indeed described by the string σ in
the sense specified above.

Due to our previous considerations it holds

Fk = ⋃
σ admissible

B(σ ),

where a string σ = (σ1, σ2, . . . , σm) is called admissible if the following properties
are satisfied:

(P1) if L1 = �, then N1 ∈ [2, k + 1]; the numbers Ni associated to the letter �

are all the integers in [N1, k + 1], and they appear in the string in increasing order;
the numbers Ni associated to the letter r are all the positive integers in [1,N1 − 2],
and they appear in the string in decreasing order;

(P2) if L1 = r , then N1 ∈ [1, k], the numbers Ni associated to the letter � are
all the integers in [N1 + 2, k + 1], and they appear in the string in increasing order;
the numbers Ni associated to the letter r are all the integers in [1,N1], and they
appear in the string in decreasing order.

Observe that an admissible string must have k entries, that is, m = k, and that the
knowledge of (Li)1≤i≤k allows to determine uniquely the numbers (Ni)1≤i≤k .

Recall that λ∗
�(d) = λr(d), λ∗

r (d) = λ�(d). Writing di(0) as di (for simplicity of
notation), if σ is admissible we get

E⊗k+1μ

[
e−sd1(∞); B(σ )

] = E⊗k+1μ[F(d1, d2, . . . , dk+1, σ )],(4.6)
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where

F(d1, d2, . . . , dk+1, σ )

=
(

k+1∏
i=1

e−sdi1di∈A

)
λ(dN1)

λ(d1) + · · · + λ(dk+1)

(4.7)

× λ∗
L1

(dN1)

λ(dN1)

k∏
i=2

λ(dNi
)∑k

j=i λ(dNj
)

λ∗
Li

(dNi
)

λ(dNi
)

=
(

k+1∏
i=1

e−sdi1di∈A

)
λ∗

L1
(dN1)

λ(d1) + · · · + λ(dk+1)

k∏
i=2

λ∗
Li

(dNi
)∑k

j=i λ(dNj
)

(the last factor is defined as 1 if k = 1).
Observe that the law ⊗k+1μ is exchangeable, that is, it is left invariant by per-

mutations of d1, d2, . . . , dk+1. This symmetry leads to the identity

E⊗k+1μ[F(d1, d2, . . . , dk+1, σ )] = E⊗k+1μ[G(d1, d2, . . . , dk+1, (Li)1≤i≤k)],
where

G(d1, d2, . . . , dk+1, (Li)1≤i≤k)

=
(

k+1∏
i=1

e−sdi1di∈A

)
λ∗

L1
(d1)

λ(d1) + · · · + λ(dk+1)

k∏
i=2

λ∗
Li

(di)∑k
j=i λ(dj )

.

Recall that an admissible string σ is uniquely determined by its letter string
(Li)1≤i≤k , and observe that each string in {�, r}[1,k] is the letter string (Li)1≤i≤k

for some admissible σ . Therefore we have

E⊗k+1μ

[
e−sd1(∞);Fk

]
= ∑

σ admissible

E⊗k+1μ[F(d1, d2, . . . , dk+1, σ )]
(4.8)

= ∑
L1,...,Lk∈{�,r}

E⊗k+1μ[G(d1, d2, . . . , dk+1, (Li)1≤i≤k)]

= E⊗k+1μ[H(d1, d2, . . . , dk+1)],
where

H(d1, d2, . . . , dk+1) =
(

k+1∏
i=1

e−sdi1di∈A

)
λ(d1)

λ(d1) + · · · + λ(dk+1)

k∏
i=2

λ(di)∑k
j=i λ(dj )

.

Applying Lemma E.1 in Appendix E with k + 1 instead of k, m = μ, f (x) =
e−sx1x∈A and g(x) = λ(x), we end up with

E⊗k+1μ[H(d1, . . . , dk+1)] = 1

(k + 1) · (k − 1)!
[∫

μ(dx)e−sx1x∈A

]k+1

.(4.9)
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This ends the proof of Lemma 4.1. �

PROOF OF LEMMA 4.2. The proof follows the main arguments in the proof of
Lemma 4.1, hence we skip some details. As in the proof of Lemma 4.1 we work
with the one-epoch coalescence process with law P⊗k+1μ.

Denoting the jumps of the coalescence process (disregarding the jump times)
with the same rule used in the proof of Lemma 4.1, that is, by means of the string σ ,
we get that

Ek,j = ⋃
σ j-admissible

B(σ ),(4.10)

where now j -admissible means that the numbers Ni associated to the letter � ap-
pear in the string σ in increasing order from j + 1 to k + 1, while the numbers Ni

associated to the letter r appear in the string σ in decreasing order from j − 1 to 1.
Note that in particular σ contains j − 1 letters “r” and “k + 1 − j” letters �, and
therefore σ has length k.

As in the previous proof we set dr = dr(0). We then compute the expectation

E⊗k+1μ

[
e−sd1(∞); B(σ )

]

= E⊗k+1μ

[
e−sdj 1dj /∈A

k∏
i=1

{
e−sdNi 1dNi

∈A
λ∗

Li
(dNi

)∑k
r=i λ(dNr )

}]

(4.11)

= E⊗k+1μ

[
e−sdk+11dk+1 /∈A

k∏
i=1

{
e−sdi1di∈A

λ∗
Li

(di)∑k
r=i λ(dr)

}]

=
(∫

e−sx1x /∈Aμ(dx)

)
E⊗kμ

[
k∏

i=1

{
e−sdi1di∈A

λ∗
Li

(di)∑k
r=i λ(dr)

}]
,

where in the second identity we have used the exchangeability of ⊗k+1μ, and in
the third identity we have simply factorized the probability measure.

Summing over j allows us to remove the constraint that σ must have j − 1
letters “r” and “k + 1 − j” letters �, hence

k+1∑
j=1

E⊗k+1μ

[
e−sd1(∞);Ek,j

]

= ∑
L1,...,Lk∈{�,r}

r.h.s. of (4.11)(4.12)

=
(∫

e−sx1x /∈Aμ(dx)

)
E⊗kμ

[
k∏

i=1

{
e−sdi1di∈A

λ(di)∑k
r=i λ(dr)

}]
.

Applying point (b) of Lemma E.1 [with f (x) = e−sx1x∈A and g(x) = λ(x)] com-
pletes the proof of Lemma 4.2. �
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4.1. Proof of Theorem 2.14(ii). The proof of point (ii)(a) is trivial, since
λr ≡ 0, then x0(t) = x0(0) for any time t ≥ 0. Indeed the first point x0(t) of ξ(t)

cannot be erased from the left due the infinite domain, and from the right due to
the assumption λr ≡ 0.

We now concentrate on point (ii)(b). Due to (3.14), we can write (for s ∈ R+ ∪
iR)

L∞(s) = PRen(δ0,ν)

(
0 ∈ ξ(∞)

)
L0(s)

∞∑
k=0

Bk(s),(4.13)

where Bk(s) = E⊗kμ(e−sxk(0); ξ(∞) = {xk(0)}).
LEMMA 4.3. B0(s) = 1 while, for any k ≥ 1, it holds

Bk(s) = E⊗kμ

(
k∏

i=1

e−sdi
λ∗

�(di)1di∈A∑k
j=i λ(dj )

)
.(4.14)

PROOF. We work with the one-epoch coalescence process with law P⊗kμ.
The case k = 0 is trivial. We take k ≥ 1. Due to the blocking phenomenon, there
is only one possible way to realize the event {ξ(∞) = xk(0)}: only the points
x0(0), x1(0), . . . , xk−1(0) must disappear, one after the other from the left to the
right. Setting di = di(0), this implies that d1, . . . , dk belong to A. In this case,
knowing ξ(0), the above event has probability

λ∗
�(d1)∑k

j=1 λ(dj )
× λ∗

�(d2)∑k
j=2 λ(dj )

× · · · × λ∗
�(dk)

λ(dk)
=

k∏
i=1

λ∗
�(di)∑k

j=i λ(dj )
.

Since xk(0) = d1 + d2 + · · · + dk , we get (4.14). �

Since λ� = γ λr we have λ∗
r = γ λ∗

� . In particular λ = λ∗
� + λ∗

r = (1 + γ )λ∗
� .

Hence, due to (4.13) and Lemma 4.3, we get

L∞(s) = CL0(s)

∞∑
k=0

1

(1 + γ )k
E⊗kμ

(
k∏

i=1

e−sdi
λ(di)1di∈A∑k

j=i λ(dj )

)
,

where C := PRen(δ0,ν)(0 ∈ ξ(∞)) and where, in the last series, the addendum with
k = 0 is defined as 1. Applying point (b) of Lemma E.1 [with f (x) = e−sx1x∈A
and g(x) = λ(x)], and recalling that H0(s) = ∫

e−sx1x∈Aμ(dx), we end up with

L∞(s) = CL0(s)

∞∑
k=0

H0(s)
k

(1 + γ )k · k! = CL0(s) exp
{
H0(s)

1 + γ

}
.

Since L0(0) = L∞(0) = 1, the latter identity applied to s = 0 leads to C =
exp{−H0(0)

1+γ
} which in turn leads to (2.9). Then (2.10) follows immediately by

noticing that PRen(ν,μ)(x0(0) ∈ ξ(∞)) = PRen(δ0,μ)(0 ∈ ξ(∞)) and from the above
definition of C.
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5. Analysis of the recursive identity (2.8) in OCP. As mentioned in the In-
troduction, a crucial tool to prove Theorem 2.19 is given by a special integral
representation of certain Laplace transforms, which makes identities (2.8) and
(2.9) finally treatable. We first consider (2.8), focusing our attention on the one-
epoch coalescence process in the same setting of Section 2 (i.e., the active do-
mains have length in [dmin, dmax)). In what follows, we present an overview of
the global scheme, postponing proofs to the end of the section. It is convenient
to work with rescaled random variables. More precisely, in the same setting of
Theorem 2.13, we call X0,X∞ some generic random variables with law μ,μ∞,
respectively. Then we define

Z0 = X0/dmin and Z∞ = X∞/dmax

as the rescaled random variables. Setting for s > 0

g0(s) = E(e−sZ0), g∞(s) = E(e−sZ∞),
(5.1)

h0(s) = E(e−sZ0;Z0 < a), a = dmax

dmin
,

equation (2.8) becomes equivalent to

1 − g∞(as) = (
1 − g0(s)

)
eh0(s).(5.2)

By definition, and because of assumption (A2), we have Z0 ≥ 1, Z∞ ≥ 1 and
a ∈ [1,2]. These bounds will turn out to be crucial later on.

For later use, we point out some simple identities. We recall the definition of the
exponential integral function Ei(s), s > 0,

Ei(s) =
∫ ∞
s

e−t

t
dt =

∫ ∞
1

e−sx

x
dx.

Given a Radon measure t on [0,∞) (i.e., a Borel nonnegative measure, giving
finite mass to any bounded Borel set), by Fubini’s theorem it is simple to check
that ∫ ∞

0

e−s(1+x)

1 + x
t (dx) =

∫ ∞
s

du e−u
∫ ∞

0
e−uxt (dx).(5.3)

Above and in what follows, we will write
∫ ∞
c instead of

∫
[c,∞) for c ≥ 0. If t (dx) =

c0 dx, the quantity in (5.3) is simply the exponential integral Ei(s) and the right-
hand side of (5.3) gives an alternative integral representation of Ei(s). In particular,
the limit points in Theorem 2.19 have Laplace transform of the form

g(c0)∞ (s) = 1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t (dx)

}
(5.4)

= 1 − exp
{
−

∫ ∞
s

du e−u
∫ ∞

0
e−uxt (dx)

}
,
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where t (dx) = c0 dx.
This observation suggests to write the Laplace transforms g0, g∞ in the form

(5.4) for suitable Radon measures t0 and t∞. The following result guarantees that
such an integral representation exists.

LEMMA 5.1. Let Z be a random variable such that Z ≥ 1, and define g(s) =
E[e−sZ], s ≥ 0. Let w : (0,∞) → R be the unique function such that

g(s) = 1 − exp
{
−

∫ ∞
s

du e−uw(u)

}
, s > 0,(5.5)

that is,

w(s) = − esg′(s)
1 − g(s)

, s > 0.(5.6)

Then the function w is completely monotone. In particular, there exists a unique
Radon measure t (dx) on [0,∞) (not necessarily of finite total mass) such that

w(s) =
∫ ∞

0
e−sxt (dx), s > 0,(5.7)

and therefore

g(s) = 1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t (dx)

}
, s ≥ 0.(5.8)

Moreover,

lim sup
s↓0

− sg′(s)
1 − g(s)

∈ [0,1].(5.9)

We recall that a function f : (0,∞) → R is called completely monotone if it
possesses derivatives Dnf of all orders and

(−1)nDnf (x) ≥ 0 ∀x > 0.

Due to the above lemma, there exist two uniquely determined Radon measures t0
and t∞ on [0,∞), such that g0 and g∞ admit the integral representation (5.8) with
t replaced by t0 and t∞, respectively.

In order to rewrite (5.2) as identity in terms of t0 and t∞, we need to express the
function h0 in terms of t0. The following result gives us the solution:

LEMMA 5.2. Let Z be a random variable such that Z ≥ 1, and let g(s) be its
Laplace transform. Let t be the unique Radon measure on [0,∞) satisfying (5.8)
and call m(dx) the Radon measure with support in [1,∞) such that

m(A) =
∫ ∞

0

11+x∈A

1 + x
t (dx).(5.10)
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For each k ≥ 1, consider the convolution measure m(k) with support in [k,∞)

defined as

m(k)(A) =
∫ ∞

1
m(dx1)

∫ ∞
1

m(dx2) · · ·
∫ ∞

1
m(dxk)1x1+x2+···+xk∈A.(5.11)

Then the law of Z is given by
∞∑

k=1

(−1)k+1

k! m(k).(5.12)

In particular

E[e−sZ;Z < a] =
∫
[0,a−1)

e−s(1+x)

1 + x
t (dx), s ≥ 0.(5.13)

We point out that, given a bounded Borel set A, the series

m∗(A) =
∞∑

k=1

(−1)k+1

k! m(k)(A)

is a finite sum, since m(k) has support in [k,∞). The thesis includes that this sum is
a nonnegative number and that the set-function A �→ m∗(A), defined on bounded
Borel sets, extend uniquely to a Radon measure on all Borel sets.

Equation (5.13) above allows us to write h0(s) in terms of t0. Collecting the
above observations we get for s ≥ 0

g0(s) = 1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t0(dx)

}
,

g∞(s) = 1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t∞(dx)

}
,

h0(s) =
∫
[0,a−1)

e−s(1+x)

1 + x
t0(dx).

Due to the above identities, (5.2) is equivalent to∫ ∞
0

e−as(1+x)

1 + x
t∞(dx) =

∫
[a−1,∞)

e−s(1+x)

1 + x
t0(dx), s ≥ 0.(5.14)

It is convenient now to introduce the following notation. Given an increasing
function φ : [0,∞) → [0,∞) and a Radon measure m on [0,∞), we denote by
m ◦ φ the new Radon measure on [0,∞) defined by

m ◦ φ(A) = m(φ(A)), A ⊂ R Borel.(5.15)

Note that m ◦ φ is indeed a measure, due to the injectivity of φ. Moreover, it holds∫ ∞
0

f (x)m ◦ φ(dx) =
∫
[φ(0),∞)

f (φ−1(x))m(dx).(5.16)
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We are finally able to give a simple characterization of (5.14), which we know
to be equivalent to (5.2):

THEOREM 5.3. Consider the linear function φ : [0,∞) → [0,∞) defined as
φ(x) = a(1+x)− 1. Then, equation (5.14) [and therefore also (5.2)] is equivalent
to the relation

t∞ = (1/a)t0 ◦ φ.(5.17)

5.1. Proof of Lemma 5.1. First we prove that w is a completely monotone
function. Since g(s) < 1 for s > 0, we can write w = f

∑∞
k=0 gk where f (s) =

−esg′(s). Trivially, g is a completely monotone function. Since the product of
completely monotone functions is again a completely monotone function (see Cri-
terion 1 in Section XIII.4 of [14]), we conclude that gk is a completely monotone
function. Since the sum of completely monotone functions is trivially completely
monotone, we conclude that

∑∞
k=0 gk is completely monotone. It remains to prove

that f is completely monotone. To this aim we observe that, by the Leibniz rule,

Dnf (s) = −
n∑

k=0

(
n

k

)
Dn−k(es)Dk(g′(s)) = −es

n∑
k=0

(
n

k

)
Dk+1g(s)

= −es
n∑

k=0

(
n

k

)
(−1)k+1

E(e−sZZk+1) = es
E

(
e−sZZ

n∑
k=0

(
n

k

)
(−Z)k

)

= es
E

(
e−sZZ(1 − Z)n

)
.

Since 1 − Z ≤ 0, the sign of the nth derivative Dnf is (−1)n.
At this point, we can apply Theorem 1a in Section XIII.4 of [14] to get that

there exists a Radon measure t (dx) on [0,∞) (not necessarily of finite total mass)
satisfying (5.7). Moreover, the above measure t is uniquely determined due to the
inversion formula given in Theorem 2, Section XIII.4 of [14]. Finally, we derive
(5.8) for s > 0 from (5.3), (5.5) and (5.7). The extension to s = 0 follows from the
monotone convergence theorem.

In order to prove (5.9) we observe that ye−y ≤ 1 − e−y for all y ≥ 0, thus
implying that

−sg′(s) = E(sZe−sZ) ≤ 1 − E(e−sZ) = 1 − g(s) ∀s > 0.

In particular, the ratio in (5.9) is bounded by 1. On the other hand −sg′(s) =
E(sZe−sZ) > 0 while 1−g(s) > 0, thus implying that the ratio in (5.9) is positive.

5.2. Proof of Lemma 5.2. Due to the definition of m(dx), we can write∫ ∞
0

e−s(1+x)

1 + x
t (dx) =

∫ ∞
0

e−sxm(dx).(5.18)
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By (5.8), since g(s) < 1 for s > 0, we get that the above quantities are finite as
s > 0. Using the series expansion of the exponential function we can write

1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t (dx)

}
=

∞∑
k=1

(−1)k+1

k!
(∫ ∞

0
e−sxm(dx)

)k

.(5.19)

Since (∫ ∞
0

e−sxm(dx)

)k

=
∫ ∞

0
e−sxm(k)(dx),(5.20)

we can rewrite (5.19) as
∞∑

k=1

(−1)k+1

k!
∫ ∞

0
e−sxm(k)(dx) =

∞∑
k=1

( ∞∑
j=k

ak,j

)
,(5.21)

where

ak,j = (−1)k+1

k!
∫
Ij

e−sxm(k)(dx), Ij = [j, j + 1) for j ≥ 1.

Using again the series expansion of the exponential function and also (5.20), we
conclude that

∞∑
k=1

∞∑
j=1

|aj,k| =
∞∑

k=1

1

k!
∫ ∞

0
e−sxm(k)(dx)

(5.22)

= exp
{∫ ∞

0
e−sxm(dx)

}
− 1 < ∞.

In particular, we can arrange arbitrarily the terms in the series given by the right-
hand side of (5.21), getting always the same limit. This fact implies that

r.h.s. of (5.21) =
∞∑

j=1

( j∑
k=1

ak,j1k odd

)
+

∞∑
j=1

( j∑
k=1

ak,j1k even

)

(5.23)
=

∫ ∞
0

e−sxν+(dx) −
∫ ∞

0
e−sxν−(dx),

where the Radon measures ν+ and ν− on [0,∞) are defined as follows:

ν+(A) =
∞∑

k=1

1k odd

k! m(k)(A),

ν−(A) =
∞∑

k=1

1k even

k! m(k)(A).

We point out that for any bounded Borel subset A ⊂ [0,∞) the above series are
indeed finite sums since each m(k) has support in [k,∞). In addition, ν+ and ν−
have support contained in [1,∞) and [2,∞), respectively.



1D HIERARCHICAL COALESCENCE PROCESSES 1411

Collecting (5.8), (5.19), (5.21) and (5.23), we obtain that

g(s) =
∫ ∞

0
e−sxν+(dx) −

∫ ∞
0

e−sxν−(dx)

for all s > 0. Writing pZ for the law of Z, the above identity implies that the
Laplace transforms of the measures pZ + ν− and ν+ coincide on (0,∞). Due to
Theorem 2 in Section XIII.4 of [14], this implies that pZ + ν− = ν+. It follows
that

pZ(A) = ν+(A) − ν−(A) ∀A ⊂ R bounded and Borel.

Since for A as above we can write ν+(A) − ν−(A) = ∑∞
k=1

(−1)k+1

k! m(k)(A), we
get that the law pZ coincides with (5.12).

It remains now to prove (5.13). To this aim we observe that, since m(k) has
support contained in [k,∞), measure (5.12) equals m on [1,2). Since a ≤ 2, and
using the definition of the measure m given by (5.10), we obtain that

E[e−sZ;Z < a] =
∫
[1,a)

e−sxpZ(dx) =
∫
[1,a)

e−sxm(dx)

=
∫
[0,a−1)

e−s(1+x)

1 + x
t (dx).

This concludes the proof of (5.13).

5.3. Proof of Theorem 5.3. We write ρ(dx) for the measure in the right-hand
side of (5.17). Using that a[φ−1(x) + 1] = 1 + x, we obtain for s ≥ 0 that∫ ∞

0

e−as(1+x)

1 + x
ρ(dx) = a−1

∫
[φ(0),∞)

e−s(1+x)

a−1(1 + x)
t0(dx)

=
∫
[a−1,∞)

e−s(1+x)

1 + x
t0(dx).

The above identity implies that (5.14) holds if and only if∫ ∞
0

e−as(1+x)

1 + x
t∞(dx) =

∫ ∞
0

e−as(1+x)

1 + x
ρ(dx) ∀s ≥ 0.(5.24)

We write m∞ and m′ for the measures on [1,∞) such that

m∞(A) =
∫ ∞

0

11+x∈A

1 + x
t∞(dx), m′(A) =

∫ ∞
0

11+x∈A

1 + x
ρ(dx)

for bounded Borel subsets A ⊂ [1,∞). Then, by (5.24), we get that (5.14) holds
if and only if the Laplace transforms of the measures m∞ and m′ coincide on
(0,∞). By Theorem 2 in Section XIII.4 of [14], this last property is equivalent to
the identity m∞ = m′, which is equivalent to t∞ = ρ.
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6. Hierarchical Coalescence Process: Proofs.

6.1. Application of the recursive identity (2.8) to the HCP. We begin by col-
lecting some useful formulae for the hierarchical coalescence process that we de-
rive from results obtained for the one-epoch coalescence process in the previous
section. These formula will be used throughout the whole section.

We use notation and definitions of Theorem 2.19. In particular μ and ν are prob-
ability measures on [1,∞) and R, respectively. We define here X(n), n ∈ N+, as
the length of the leftmost domain inside (0,∞) at the beginning of the nth epoch,
that is, X(n) = x

(n)
2 (0) − x

(n)
1 (0). Moreover we set Z(n) = X(n)/d(n). Note that

X(n) has law μ(n). Also, E stands for the expectation with respect to the hierarchi-
cal coalescent process starting indifferently from Q = Ren(ν,μ), Q = Ren(μ) or
Q = RenZ(μ). For any n ∈ N+ and any s ≥ 0 let

g(n)(s) = E
(
e−sZ(n))

, h(n)(s) = E
(
e−sZ(n)

11≤Z(n)<an

)
,(6.1)

where an = d(n+1)/d(n). Thanks to Theorem 2.13, [see also (5.2)], we get a system
of recursive identities

1 − g(n)(san−1) = (
1 − gn−1(s)

)
eh(n−1)(s) ∀n ≥ 2.(6.2)

These recursive identities will be essential in the subsequent computations. Since
Z(n) ≥ 1, by Lemma 5.1 there exists a unique measure t (n) on [0,∞) such that

g(n)(s) = 1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t(n)(dx)

}
, n ≥ 1.(6.3)

Invoking now Theorem 5.3 we conclude that

t (n) = (1/an−1)t
(n−1) ◦ φn−1, n ≥ 2,(6.4)

where φn(x) = an(1 + x) − 1.
Up to now we have only moved from the system of recursive identities (6.2) to

the new system (6.4). But while the former is highly nonlinear and complex, the
latter is solvable. Indeed if we define

ψn(x) := φ1 ◦ φ2 ◦ · · · ◦ φn(x),(6.5)

then ψn(x) = d(n+1)(1 + x) − 1 and (5.15) together with (6.4) imply

t (n) = 1

d(n)
t (1) ◦ ψn−1, n ≥ 2.(6.6)

Finally, using (5.13) and (6.6), it is simple to check that

h(n)(s) =
∫
[d(n)−1,d(n+1)−1)

e−s(1+x)/d(n)

(1 + x)−1t (1)(dx), n ≥ 1,(6.7)

where we used the identity (1 + ψ−1
n−1(x)) = (1 + x)/d(n).
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6.2. Asymptotic of the interval law in the HCP: Proof of Theorem 2.19. Sec-
tion 6.1 provides us with most of the tools necessary for the proof of Theorem 2.19.
In particular our starting point is identity (6.3):

g(n)(s) = 1 − exp
{
−

∫ ∞
0

e−s(1+x)

1 + x
t(n)(dx)

}
, n ≥ 1.(6.8)

Defining

U(n)(x) =
{

t (n)([0, x]), if x ≥ 0,
0, otherwise,

(6.9)

we get that U(n) is a càdlàg function, dU(n) = t (n) and U(n)(x) = 0 for x < 0. By
(6.6) it holds that

U(n)(x) = 1

d(n)

[
U(1)(ψn−1(x)) − U(1)(ψn−1(0)−)

]
,

(6.10)

= 1

d(n)

[
U(1)(d(n)(1 + x) − 1

) − U(1)((d(n) − 1
)−)]

, n ≥ 1.

If we fix n ≥ 2, integrate by parts and use U(n)(0−) = 0, we can rewrite the integral
in (6.8) as

∫ ∞
0

e−s(1+x)

1 + x
t(n)(dx) =

∫ ∞
0

e−s(1+x)

1 + x
dU(n)(x)

= lim
y↑∞

e−s(1+y)

1 + y
U(n)(y)(6.11)

−
∫ ∞

0

(
d

dx

(
e−s(1+x)

1 + x

))
U(n)(x) dx.

We now use (2.14), the key hypothesis. Since g(1)(s) = g(s) because d(1) = 1, if
w(1) denotes the Laplace transform of t (1) [i.e., w(1)(s) = ∫ ∞

0 e−sxt (1)(dx)], then
(2.14) together with (5.6) implies

lim
s↓0

sw(1)(s) = c0.(6.12)

Finally, Tauberian Theorem 2 in Section XIII.5 of [14] shows that (6.12) gives

lim
y↑∞

U(1)(y)

y
= c0.(6.13)

The above limit together with (6.10) implies that there exists a suitable constant
C > 0 such that

U(n)(x) ≤ C(1 + x), n ≥ 1, x ≥ 0.(6.14)
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In particular, the limit in the right-hand side of (6.11) is zero and

∫ ∞
0

e−s(1+x)

1 + x
t(n)(dx) = −

∫ ∞
0

(
d

dx

(
e−s(1+x)

1 + x

))
U(n)(x) dx,

(6.15)
n ≥ 2.

By (6.10), (6.13) and the fact that cn → ∞, limn→∞ U(n)(x) → c0x for all x ≥ 0.
This limit together with (6.14) allows us to apply the dominated convergence the-
orem, to get that

lim
n→∞

∫ ∞
0

e−s(1+x)

1 + x
t(n)(dx) = −c0

∫ ∞
0

(
d

dx

(
e−s(1+x)

1 + x

))
x dx

= c0

∫ ∞
0

e−s(1+x)

1 + x
dx

(in the last identity we have simply integrated by parts). In conclusion we have
shown that g(n) converges point-wise to the function g

(∞)
c0 defined as in (2.15).

Since in addition lims↓0 g
(∞)
c0 (s) = 1, by Theorem 2 in Section XIII.1 of [14], we

conclude that g
(∞)
c0 is the Laplace transform of some nonnegative random variable

Z
(∞)
c0 and that Z(n) weakly converges to Z

(∞)
c0 .

Finally, Lemma 5.2 allows us to determine the law of Z
(∞)
c0 . Indeed, the mea-

sure m associated to t (dx) := c0 dx by means of (5.10) is simply of the form
m(dx) = (c0/x)1x≥1 dx. In particular m(k)(dx) = ck

0ρk(x)1x≥k dx with ρk de-
fined in (2.16). It remains then to apply (5.12).

REMARK 6.1. It is useful to observe that if the initial scale d(1) was different
from one than necessarily g(s) �= g(1)(s). However, and that is the reason why we
could fix d(1) = 1, the limit (2.14) is invariant under rescaling the variable s by a
constant, that is, (2.14) for g implies the same limit for g(1).

6.3. Asymptotic of the first point law in the HCP: Proof of Theorem 2.24. We
first prove the result for the special case ν = δ0. We set

�(n)(s) = E
[
exp

{−sX
(n)
0 /d(n)}], s ∈ R+.

Recall the notation of Section 6.1 and in particular the definition of the constants
an = d(n+1)/d(n). By applying to each epoch the key identity (2.9), we get the
recursive system,

�(n)(s) = �(n−1)(s/an−1) exp
{

1

1 + γ

[
h(n−1)(s/an−1) − h(n−1)(0)

]}
, n ≥ 2.
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Since ajaj+1 · · ·an−1 = d(n)/d(j), by combining the above recursive identities we
get

�(n)(s) = �(1)(s/d(n)) exp
{

1

1 + γ

n−1∑
j=1

[
h(j)(sd(j)/d(n)) − h(j)(0)

]}
,

(6.16)
n ≥ 2.

We now use the integral representation (6.7) to get

h(j)(sd(j)/d(n)) =
∫
[d(j)−1,d(j+1)−1)

(1 + x)−1e−(s/d(n))(1+x)t (1)(dx),

(6.17)
j ≥ 1.

This allows us to write

F (n)(s) :=
n−1∑
j=1

h(j)(sd(j)/d(n))
(6.18)

=
∫
[0,d(n)−1)

(1 + x)−1e−s(1+x)/d(n)

t (1)(dx).

Setting U(1)(x) = t (1)([0, x]), we can use integration by parts and the change of
variable y = (1 + x)/d(n) to conclude that

F (n)(s) = [e−s]U
(1)(d(n) − 1)

d(n)
+

∫
[1/d(n),1)

e−sy

[
s

y
+ 1

y2

]
U(1)(d(n)y − 1)

d(n)
dy.

In particular, we can write

F (n)(s) − F (n)(0) = (e−s − 1)
U(1)(d(n) − 1)

d(n)

+
∫
[1/d(n),1)

se−sy U(1)(d(n)y − 1)

d(n)y
dy

+
∫
[1/d(n),1)

e−sy − 1

y

U(1)(d(n)y − 1)

d(n)y
dy.

We have already observed that (2.14) together with a Tauberian theorem implies
the limit (6.13). Since d(n) → ∞, we can then apply the dominated convergence
theorem to conclude that

lim
n→∞F (n)(s) − F (n)(0)

(6.19)

= c0

(
e−s − 1 +

∫
(0,1)

se−sy dy +
∫
(0,1)

e−sy − 1

y
dy

)
.
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Collecting (6.16), (6.18) and (6.19), we conclude that for any s ∈ R+ the sequence
(�(n)(s))n≥1 converges to

exp
{
− c0

1 + γ

∫
(0,1)

1 − e−sy

y
dy

}
.

Since the latter is continuous at s = 0 we get the desired weak convergence (cf.
Theorem 3.3.6 in [10]).

Now we prove the result for a general ν. By translation invariance, for any
x ∈ R, PRen(δx,μ)(X

(n+1)
0 = x) = PRen(δ0,μ)(X

(n+1)
0 = 0). Hence, for any bounded

continuous function f ,

ERen(ν,μ)

(
f

(
X

(n)
0 /d(n))) =

∫
ν(dx)ERen(δx,μ)

(
f

(
X

(n)
0 /d(n)))

=
∫

ν(dx)ERen(δ0,μ)

(
f

((
X

(n)
0 − x

)
/d(n))),

and the result follows from the case ν = δ0 considered above once we use the
assumption limn→∞ d(n) = +∞. This completes the proof.

6.4. Asymptotic of the survival probability: Proof of Theorem 2.25. This sec-
tion is dedicated to the proof of Theorem 2.25. We use the notation and definitions
of Section 6.1. We start with point (i).

6.4.1. Proof of (i). As in the proof of Theorem 2.24 it is enough to consider
the case ν = δ0. Recall the definition of μ(n) introduced before Theorem 2.19.
By a simple induction argument based on Theorem 2.13(ii), if the initial law Q
is Ren(δ0,μ), then the law of ξ (j)(0), that is, the SPP at the beginning of the j th
epoch, conditional to the event {0 ∈ ξ (j)(0)} is Ren(δ0,μ

(j)). Hence, by condition-
ing and by using the Markov property, we get

PQ
(
X

(n+1)
0 = 0

) = PQ
(
X

(1)
0 = 0

) n∏
j=1

PQ
(
X

(j+1)
0 = 0 | X(j)

0 = 0
)

=
n∏

j=1

PRen(δ0,μ
(j))

(
X

(j+1)
0 = 0

)
.

In the last line, we also used the trivial equality PQ(X
(1)
0 = 0) = 1. Theo-

rem 2.14(ii) ensures that

PRen(δ0,μ
(j))

(
X

(j+1)
0 = 0

) = e−h(j)(0)/(1+γ ) ∀j ≥ 1,

where, thanks to (6.7),

h(j)(0) = μ(j)([d(j), d(j+1))) =
∫
[d(j)−1,d(j+1)−1)

(1 + x)−1t (1)(dx).
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It follows that

PQ
(
X

(n+1)
0 = 0

) = exp

{
− 1

1 + γ

n∑
j=1

h(j)(0)

}

(6.20)

= exp
{
− 1

1 + γ

∫
[0,d(n+1)−1)

t (1)(dx)

1 + x

}
.

If U(1)(x) = t (1)([0, x]), and using integration by parts one gets∫
[0,d(n+1)−1)

t (1)(dx)

1 + x
= U(1)(d(n+1) − 1)

d(n+1)
+

∫
[0,d(n+1)−1)

U(1)(x)

(1 + x)2 dx.

As in (6.13) our assumption implies that limy→∞ U(1)(y)
y

= c0. Since d(n) → ∞
we get immediately that U(1)(d(n+1)−1)

d(n+1) = c0 + o(1). On the other hand, if A =√
ln(d(n+1)) and using again that limy→∞ U(1)(y)

y
= c0, we have

∫
[0,d(n+1)−1)

U(1)(x)

(1 + x)2 dx =
∫
[0,A)

U(1)(x)

(1 + x)2 dx +
∫
[A,d(n+1)−1)

U(1)(x)

c0(1 + x)

c0

1 + x
dx

≤ U(1)(A) + (
1 + o(1)

) ∫
[A,d(n+1)−1)

c0

1 + x
dx

= (
1 + o(1)

)
c0 ln

(
d(n+1)).

Similarly, ∫
[0,d(n+1)−1)

U(1)(x)

(1 + x)2 dx ≥
∫
[A,d(n+1)−1)

U(1)(x)

c0(1 + x)

c0

1 + x
dx

= (
1 + o(1)

)
c0 ln

(
d(n+1)).

In conclusion
∫
[0,d(n+1)−1)

t(1)(dx)
1+x

= (1 + o(1))c0 ln(d(n+1)). Result (i) of Theo-
rem 2.25 follows from (6.20).

6.4.2. Proof of (ii). The second part of Theorem 2.25 follows from part (i)
using the universal coupling introduced in Section 3.1.

We distinguish between two cases. Assume first that γ = 0. This implies λ� = 0.
In turn, site 0 cannot be erased from any ring of its left domain. Hence, the event
{0 ∈ ξ (n)(∞)} depends only on the rings of the domains on the right of 0. Therefore

PRen(μ|0)

(
0 ∈ ξ (n)(∞)

) = PRen(δ0,μ)

(
X

(n+1)
0 = 0

)
and the expected result follows at once from point (i) (with γ = 0).

Now assume that γ > 0. Then, by Lemma 3.1 we can write

PRen(μ|0)

(
0 ∈ ξ (n)(∞)

) = P
∗
Ren(δ0,μ)

(
X

(n+1)
0 = 0

) × PRen(δ0,μ)

(
0 ∈ ξ (n)(∞)

)
,
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where P
∗ denotes the probability measure with respect to the hierarchical coales-

cent process built with λ
(n,∗)
r = λ

(n)
� and λ

(n,∗)
� = λ

(n)
r (i.e., the mirror with respect

to the origin of the hierarchical coalescence process built with λ
(n)
r and λ

(n)
� ). The

identity λ
(n)
� = γ λ

(n)
r implies λ

(n,∗)
� = 1

γ
λ

(n,∗)
r . Hence, by applying twice the result

of part (i), we get

PRen(μ|0)

(
0 ∈ ξ (n)(∞)

) = (
1/d(n+1))(c0/(1+1/γ ))(1+o(1))(1/d(n+1))(c0/(1+γ ))(1+o(1))

= (
1/d(n+1))c0(1+o(1))

,

and the proof is complete.

6.5. Convergence of moments in the HCP: Proof of Proposition 2.22. The
proof of Proposition 2.22 will be divided in various steps. First we will prove
the result for f (x) = xk , and then for a generic function f satisfying |f (x)| ≤
c(1 + xk). The parameter k ≥ 1 is fixed once for all.

In what follows, we will use the notation and the definitions of Theorem 2.19.
In particular μ and ν are probability measures on [1,∞) and R, respectively,
X(n) is a random variable with law μ(n) chosen here as X(n) = x

(n)
2 (0) − x

(n)
1 (0),

Z(n) = X(n)/an−1 and, Z(∞) = Z
(∞)
1 is the weak limit of Z(n) proven in Theo-

rem 2.19. Recall that d(n) = an−1 and in particular d(1) = 1. Also, E stands for the
expectation with respect to the hierarchical coalescent process starting indiffer-
ently from Q = Ren(ν,μ), Q = Ren(μ) or Q = RenZ(μ). Following Section 6.2,
for any n ≥ 1 and any s ≥ 0 we introduce g(n)(s) = E(e−sZ(n)

), the Laplace trans-
form of Z(n), and h(n)(s) = E(e−sZ(n)

11≤Z(n)<a). Thanks to Theorem 2.13 [see
also (6.2)] we have

1 − g(n)(as) = (
1 − g(n−1)(s)

)
eh(n−1)(s) ∀s ≥ 0,∀n ≥ 2.(6.21)

Notation warning. In the sequel for any pair of C∞ functions f,g the symbol
Dkf (x) will stand for the kth derivative of f computed at the point x while the
symbol Dk

xf (g(x)) will denote the kth derivative w.r.t x of f (g(x)).
The above recursive identity will be very useful in our computations. Note that

by Lebesgue’s theorem, for any n and any k, E([Z(n)]k) = lims→0(−1)kDk ×
g(n)(s) ∈ [0,∞]. We shall write, for simplicity, Dkg(n)(0) := lims→0 Dkg(n)(s).
It is not difficult to prove by induction on n that |Dkg(n)(0)| < ∞, by taking
the kth derivative of both sides of (6.21), using the Leibniz rule and the fact that
E([Z(1)]k) < ∞. In turn

E
([

Z(n)]k) < ∞ ∀n ≥ 1.(6.22)

As a technical preliminary we prove that the above bound holds uniformly in n.



1D HIERARCHICAL COALESCENCE PROCESSES 1419

LEMMA 6.2. Assume that μ as finite kth moment, that is, E([Z(1)]k) < ∞.
Then

sup
n≥1

E
([

Z(n)]k) < ∞.

PROOF. It is not restrictive to take n ≥ 2. By (6.22), E([Z(n)]k) is well defined.
Moreover, E([Z(n)]k) = (−1)kDkg(n)(0). Hence, since xke−x ≤ B := kke−k for
x ≥ 0, we have

E
([

Z(n)]k) = E
([

Z(n)]ke−Z(n)) + (−1)k
(
Dkg(n)(0) − Dkg(n)(1)

)
≤ B +

∫ 1

0

∣∣Dk+1g(n)(u)
∣∣du.

The above bound and Lemma 6.3 below imply that

E
([

Z(n)]k) ≤ 3

2
A + B + 2ea

(a − 1)an−1

∫ 1

0

∣∣∣∣Dk+1g(1)

(
u

an−1

)∣∣∣∣du

for some constant A that depends on k and on E([Z(1)]k). Now by definition of
g(1) and Fubini’s theorem, we get that∫ 1

0

∣∣∣∣Dk+1g(1)

(
u

an−1

)∣∣∣∣du = E

(∫ 1

0
[Z(1)]k+1 exp

{
−uZ(1)

an−1

}
du

)

= an−1
E

([
Z(1)]k(1 − exp

{
− Z(1)

an−1

}))

≤ an−1
E

([
Z(1)]k).

Therefore,

E
([

Z(n)]k) ≤ 3

2
A + B + 2ea

a − 1
E

([
Z(1)]k),

and the expected result follows. �

LEMMA 6.3. Assume that μ has finite kth moment. Then there exists a positive
constant A (that depends on k and E([Z(1)]k) but does not depend on n) such that

∣∣Dk+1g(n+1)(u)
∣∣ ≤ A(1 + u) + 2ea

(a − 1)an

∣∣∣∣Dk+1g(1)

(
u

an

)∣∣∣∣ ∀n ≥ 1,∀u > 0.

PROOF. Iterating (6.21) we get

1 − g(n+1)(s)
(6.23)

=
(

1 − g(1)

(
s

an

))
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)}
∀s ≥ 0,∀n ≥ 1.
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Hence, by the Leibniz formula,

Dk+1g(n+1)(s)

=
k+1∑
�=0

(
k + 1

�

)[
Dk+1−�

s

(
g(1)

(
s

an

)
− 1

)]

×
[
D�

s

(
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)})]

= 1

an(k+1)
Dk+1g(1)

(
s

an

)
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)}
(6.24)

+
k∑

�=1

(
k + 1

�

)
1

an(k+1−�)

[
Dk+1−�g(1)

(
s

an

)]

×
[
D�

s

(
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)})]

+
(
g(1)

(
s

an

)
− 1

)
Dk+1

s

(
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)})
.

In order to bound D�
s (exp{∑n−1

j=0 h(j+1)( s
an−j )}), one has to deal with

n−1∑
j=0

D�
sh

(j+1)

(
s

an−j

)
=

n−1∑
j=0

1

a�(n−j)
D�h(j+1)

(
s

an−j

)
.

By definition of h(j+1), we have∣∣D�h(j+1)(s)
∣∣ = E

([
Z(j+1)]�e−sZ(j+1)

11≤Z(j+1)<a

) ≤ a�.

Therefore∣∣∣∣∣
n−1∑
j=0

D�
sh

(j+1)

(
s

an−j

)∣∣∣∣∣ ≤
n−1∑
j=0

(
a

an−j

)�

=
n−1∑
j=0

(a−�)j ≤ a�

a� − 1
∀� ≥ 1.

In turn, for any � = 1,2, . . . , k + 1, since h(j+1)(u) ≤ h(j+1)(0) for any u and
any j , ∣∣∣∣∣D(�)

s

(
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)})∣∣∣∣∣ ≤ C exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)}

(6.25)

≤ C exp

{
n−1∑
j=0

h(j+1)(0)

}
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for some constant C depending only on k, where we used the fact that for any F

smooth enough and any � ≥ 1, it holds

D�
xe

F(x) = P�(DF(x),D2F(x), . . . ,D�F (x))eF(x),

where P� is a polynomial in the variables X1, . . . ,X� of total degree �, whose
coefficients belong to {0,1, . . . , (� + 1)!}.

Now observe that, for any � = 1,2, . . . , k, by definition of g(1) and since
Z(1) ≥ 1,∣∣Dk+1−�g(1)(u)

∣∣ = E
([

Z(1)]k+1−�
e−uZ(1)) ≤ E

([
Z(1)]k) ∀u ≥ 0.(6.26)

On the other hand, since 1 − e−x ≤ x for x ≥ 0 and since Z(1) ≥ 1, one has∣∣∣∣g(1)

(
s

an

)
− 1

∣∣∣∣ ≤ s

an
E

(
Z(1)).(6.27)

Hence, by (6.24), (6.25), (6.26), (6.27) and using the facts that a > 1 and
h(j+1)(u) ≤ h(j+1)(0) for any u and any j , we end up with

∣∣Dk+1g(n+1)(s)
∣∣ ≤

(
C′(1 + s) + 1

an

∣∣∣∣Dk+1g(1)

(
s

an

)∣∣∣∣
)

1

an
exp

{
n−1∑
j=0

h(j+1)(0)

}

for some constant C′ depending only on k and E([Z(1)]k). The expected result of
Lemma 6.3 follows from Claim 6.4 below.

CLAIM 6.4. For any n ≥ 1 it holds

1

an
exp

{
n−1∑
j=0

h(j+1)(0)

}
≤ 2ea

a − 1
.

PROOF. Fix s ∈ [0,1]. Since Z(1) ≥ 1 and s ∈ [0,1], we have

1 − g(1)

(
s

an

)
= 1 − E

(
e−(s/an)Z(1)) ≥ 1 − e−s/an ≥ s

2an
,

where in the last line we used that 1 − e−x ≥ x
2 for x ∈ [0,1]. Hence, we deduce

from (6.23) that

1 ≥ 1 − g(n+1)(s) =
(

1 − g(1)

(
s

an

))
exp

{
n−1∑
j=0

hj+1

(
s

an−j

)}

≥ s

2an
exp

{
n−1∑
j=0

h(j+1)

(
s

an−j

)}
.
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Now, by definition of h(j) and since e−x − 1 ≥ −x for any x ≥ 0,

n−1∑
j=0

h(j+1)

(
s

an−j

)

=
n−1∑
j=0

E
([

e−(s/an−j )Z(j+1) − 1
]
11≤Z(j+1)<a

) +
n−1∑
j=0

h(j+1)(0)

≥ −
n−1∑
j=0

s

an−j
E

(
Z(j+1)11≤Z(j+1)<a

) +
n−1∑
j=0

h(j+1)(0)

≥ −
n−1∑
j=0

s

an−j−1 +
n−1∑
j=0

h(j+1)(0)

= − s(an − 1)

an−1(a − 1)
+

n−1∑
j=0

h(j+1)(0).

We deduce that

1

an
exp

{
n−1∑
j=0

h(j+1)(0)

}
≤ 2

s
exp

{
s(an − 1)

an−1(a − 1)

}
.

Optimizing over s ∈ [0,1] (choose s = an−1(a−1)
an−1 ) finally leads to

1

an
exp

{
n−1∑
j=0

h(j+1)(0)

}
≤ 2e(an − 1)

an−1(a − 1)
≤ 2ea

a − 1
.

The claim follows. �

The proof of Lemma 6.3 is complete. �

We can now prove Proposition 2.22 for the special choice f (x) = xk .

PROPOSITION 6.5. Assume that μ as finite kth moment, that is, E([Z(1)]k) <

∞. Then, in the same setting of Proposition 2.22, Z(∞) has also finite kth moment.
Moreover,

lim
n→∞ E

([
Z(n)]k) = E

([
Z(∞)]k).

PROOF. Thanks to Lemma 6.2 supn∈N+ E([Z(n)]k) < ∞. Fix a decreasing se-
quence of positive numbers (sm)m∈N that converges to 0. Since xke−smx is a con-
tinuous bounded function on R+, Theorem 2.19 implies that limn→∞ E([Z(n)]k ×
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e−smZn) = E([Z(∞)]ke−smZ(∞)
). Hence, by Levi’s theorem,

E
([

Z(∞)]k) = lim
m→∞ E

([
Z(∞)]ke−smZ(∞)) = lim

m→∞ lim
n→∞E

([
Z(n)]ke−smZ(n))

< ∞.

Hence Z(∞) has finite kth moment.
Next, for any s > 0, we write

E
([

Z(n)]k) = E
([

Z(n)]ke−sZ(n)) + (−1)k
(
Dkg(n)(0) − Dkg(n)(s)

)
= E

([
Z(n)]ke−sZ(n)) + (−1)k+1

∫ s

0
Dk+1g(n)(u) du.

Hence, thanks to Lemma 6.3,∣∣E([
Z(n)]k) − E

([
Z(∞)]k)∣∣

≤ ∣∣E([
Z(n)]ke−sZ(n)) − E

([
Z(∞)]k)∣∣ + ∫ s

0

∣∣Dk+1g(n)(u)
∣∣du

≤ ∣∣E([
Z(n)]ke−sZ(n)) − E

([
Z(∞)]k)∣∣ + As(1 + s)

+ 2ea

(a − 1)an−1

∫ s

0

∣∣∣∣Dk+1g(1)

(
u

an−1

)∣∣∣∣du,

where A is a positive constant that depends on k and E([Z(1)]k) but does not de-
pend on n. Note that, by definition of g(1), Fubini’s theorem and then the domi-
nated convergence theorem,

1

an−1

∫ s

0

∣∣∣∣Dk+1g(1)

(
u

an−1

)∣∣∣∣du

= 1

an−1 E

(∫ s

0

[
Z(1)]k+1

e−(uZ(1))/an−1
du

)

= E
([

Z(1)]k[1 − e−(sZ(1))/an−1])−−−→
n→∞ 0.

By applying Theorem 2.19 E([Z(n)]ke−sZ(n)
) → E([Z(∞)]ke−sZ(∞)

) when n tends
to infinity. Therefore,

lim
n→∞

∣∣E([
Z(n)]k) − E

([
Z(∞)]k)∣∣

≤ ∣∣E([
Z(∞)]ke−sZ(∞)) − E

([
Z(∞)]k)∣∣ + As(1 + s) ∀s > 0.

The proof is completed by taking the limit as s ↓ 0. �

PROOF OF PROPOSITION 2.22. Let f be such that |f (x)| ≤ C +Cxk . For any
L ≥ 0 we define fL(x) = f (x) if |x| ≤ L, and fL(x) = f (L) if |x| ≥ L. Note that
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by Proposition 6.5 E(f (Z(∞))) < ∞. Also, |f (x) − fL(x)| ≤ 2C(1 + xk)1|x|≥L,
and fL is bounded by construction. It follows that∣∣E(

f
(
Z(n))) − E

(
f

(
Z(∞)))∣∣

≤ ∣∣E(
f

(
Z(n))) − E

(
fL

(
Z(n)))∣∣ + ∣∣E(

fL

(
Z(n))) − E

(
fL

(
Z(∞)))∣∣

+ ∣∣E(
fL

(
Z(∞))) − E

(
f

(
Z(∞)))∣∣

≤ 2CE
((

1 + [
Z(n)]k)1Z(n)≥L

) + ∣∣E(
fL

(
Z(n))) − E

(
fL

(
Z(∞)))∣∣

+ 2CE
((

1 + [
Z(∞)]k)1Z(∞)≥L

)
.

Since fL is bounded and continuous, limn→∞ |E(fL(Z(n))) − E(fL(Z(∞)))| = 0.
On the other hand, taking L among the points of continuity of the distribution
function of Z(∞), using that x �→ xk1x<L and x �→ 1x<L are bounded and Propo-
sition 6.5, we have

lim
n→∞E

((
1 + [

Z(n)]k)1Z(n)≥L

)
= lim

n→∞
{
1 − E

(
1Z(n)<L

) + E
([

Z(n)]k) − E
([

Z(n)]k1Z(n)<L

)}
= 1 − E

(
1Z(∞)<L

) + E
([

Z(∞)]k) − E
([

Z(∞)]k1Z(∞)<L

)
= E

((
1 + [

Z(∞)]k)1Z(∞)≥L

)
.

Therefore,

lim
n→∞

∣∣E(
f

(
Z(n))) − E

(
f

(
Z(∞)))∣∣ ≤ 4CE

((
1 + [

Z(∞)]k)1Z(∞)≥L

)
.

Now, since E([Z(∞)]k) < ∞ and by Lebesgue’s theorem, the right-hand side of
the latter tends to 0 when L tends to infinity. This achieves the proof. �

APPENDIX A: PROOF OF LEMMA 2.17

We provide the proof of Lemma 2.17. Part (i) follows immediately from Lem-
ma 5.1.

As far as part (ii) is concerned, if the mean of μ is finite, it is trivial to check
that limit (2.14) holds with c0 = 1. Indeed, by the Dominated Convergence the-
orem, both −g′(s) and (1 − g(s))/s converge to the mean as s ↓ 0. Let us now
assume that the mean is infinite and that for some α ∈ [0,1] F̄ (x) := μ((x,∞)) =
x−αL(x) for some slowly varying function L. Notice that F̄ (1−) = 1. Let

ZA(s) =
∫
[As,∞)

(e−y − ye−y)y−αL(y/s) dy,

WA(s) =
∫
[As,∞)

e−yy−αL(y/s) dy.
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Using integration by parts and the change of variables y = sx, given A > 1 we can
write

−sg′(s) = −
∫
[1,∞)

sxe−sx dF̄ (x)

= −
∫
[1,A)

sxe−sx dF̄ (x) − sxe−sxF̄ (x)

∣∣∣∣
∞

A−

+
∫
[A,∞)

(e−sx − sxe−sx)F̄ (x)s dx(A.1)

= −
∫
[1,A)

sxe−sx dF̄ (x) + sAe−sAF̄ (A−) + sαZA(s)

= E + sαZA(s),

where the error term E satisfies |E | ≤ sA. Similarly, we can write

1 − g(s) = 1 +
∫
[1,∞)

e−sx dF̄ (x)

= 1 +
∫
[1,A)

e−sx dF̄ (x) − e−sAF̄ (A−) + sαWA(s)(A.2)

= E ′ + sαWA(s)

and via a Taylor expansion we get |E ′| ≤ C(A)s for a suitable positive constant
C(A) depending only on A. Since the mean is infinite, the monotone convergence
theorem and De l’Hopital rule imply that

lim
s↓0

(
1 − g(s)

)
/s = lim

s↓0
−g′(s) = ∞.(A.3)

Comparing the above limits with (A.1) and (A.2) we deduce that both sαZA(s) and
sαWA(s) must diverge as s goes to zero. In particular, limit (2.14) is equivalent to
the limit

lim
A↑∞ lim

s↓0

ZA(s)

WA(s)
= α.(A.4)

As proved in [14] (see Section VIII.9 there), L is slowly varying at ∞ if and
only if it is of the form

L(x) = a(x) exp
{∫ x

1

ε(y)

y
dy

}
,(A.5)

where ε(x) → 0 and a(x) → c < ∞ as x → ∞. In particular, given δ > 0, for any
x large enough x−δ ≤ L(x) ≤ xδ . Since in (A.5) ε(x) → 0 and a(x) → c < ∞, for
any δ > 0 there exists A > 0 such that c/2 ≤ a(x) ≤ 2c and |ε(x)| ≤ δ for x ≥ A.
Thus, for any s < 1/A the integral representation (A.5) implies that

1

4
(y−δ ∧ yδ) ≤ L(y/s)

L(1/s)
≤ 4(y−δ ∨ yδ), y ≥ As.(A.6)
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We now distinguish two cases:

• Case α ∈ [0,1). Choose δ > 0 such that α + δ < 1, A > 1 and s ≥ 1/A. The
Dominated Convergence theorem together with (A.6) implies that

lim
s↓0

ZA(s)/L(1/s) =
∫ ∞

0
(e−y − ye−y)y−αdy,(A.7)

lim
s↓0

WA(s)/L(1/s) =
∫ ∞

0
e−yy−αdy.(A.8)

At this point, (A.4) follows from (A.7), (A.8) and a trivial calculation.
• Case α = 1. It is convenient to write

ZA(s) = WA(s) − TA(s), TA(s) :=
∫
[As,∞)

e−yL(y/s) dy.

Then, (A.4) follows if we can prove that

lim
A↑∞ lim sup

s↓0

TA(s)

WA(s)
= 0.(A.9)

Given δ > 0 we take A > 1 and s ≤ 1/A assuring (A.6). Then we can bound

TA(s)

WA(s)
≤ 4

∫ ∞
0 e−y(yδ ∨ y−δ) dy

(1/4e)
∫ 1
As(1/y)(y−δ ∧ yδ)

= C∫ 1
As yδ−1 dy

= δC

(1 − (As)δ)
.

The above bound trivially implies (A.9).

APPENDIX B: AN EXAMPLE OF INTERVAL LAW NOT
SATISFYING (2.14)

We provide here an example of a law which does not satisfy (2.14) and there-
fore does not fulfill the hypothesis under which our main Theorem 2.19 holds.
Furthermore we have numerically analyzed the set of identities (6.6) with t (1)

corresponding to this choice for the initial distribution. The results for the cor-
responding function U(n), displayed in Figure 4, strongly suggest that in this case
the measure μ(n) does not have a well-defined limiting behavior as n → ∞.

PROPOSITION B.1. Let G be a geometric random variable with parame-
ter p = 1 − e−λ, λ ∈ (0,1). Define X = eG and g(s) = E(e−sX), s ≥ 0. Then,
lims→0

sg′(s)
1−g(s)

does not exist. More precisely, for any α ∈ [0,1) and any n ∈ N,

set sn = e−n−α . Then limn→∞ sng′(sn)
1−g(sn)

=: Lα exists, and α → Lα is a nonconstant
function.

Note that the constraint λ ∈ (0,1) is equivalent to the fact that X has infinite
mean.
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FIG. 4. We consider an HCP with d(n) = 2n−1 (the relevant choice to describe East model) with
initial law specified in Proposition B.1 and parameter q := 1 −p = 0.1,0.5,0.8. In the first case the
limit (2.14) exists with c0 = 1. Instead, for q = 0.5,0.8 as proven in Proposition B.1 the limit (2.14)
does not exists. We plot here U(n)(x)/x for x = 10 as a function of n. The data indicate clearly
that for p = 0.1 U(n)(10)/10 converges to 1 as we have proven [see Theorem 2.19 and especially the
comment below formula (6.15)]. Instead of the other two choices of the parameters, U(n)(10)/10 has
an oscillating behavior which strongly indicates the nonexistence of the limit for U(n)(x), hence for
g(n)(s). We have checked that an analogous behavior occurs for different choices of x. Note that if
we were instead considering for the same initial distribution but a different choice of d(n) (satisfying
the basic hypothesis d(n) → ∞ for n → ∞) we would get the same behavior. Indeed if we consider
for example the choice relevant for the Paste-all model, d(n) = n, then the plot of U(n)(10)/10 would
exactly be the same as above but with n replaced by log2(n) in the x-axis (and in this case our data
would cover 220 epochs).

PROOF OF PROPOSITION B.1. Fix α ∈ [0,1) and set sn = e−n−α . Since
P(G = k) = p(1 − p)k−1 for k ≥ 1, we have F̄ (x) = P(X ≥ x) = e−λ�lnx�+λ =
x−λeλ{lnx} where �z� = z + 1 − {z} is the ceiling function of z (i.e., the smallest
integer greater than or equal to z), and {z} ∈ (0,1] is the fractional part of z. Note
that F̄ (e) = 1.

Then, using an integration by parts and the change of variables u = sx, we have

−g′(s) = E(Xe−sX) = −
∫
[e,∞)

xe−sx dF̄ (x)

= e1−se +
∫
[e,∞)

(1 − sx)e−sxF̄ (x) dx
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= e1−se + 1

s

∫
[es,∞)

(1 − u)e−uF̄

(
u

s

)
du

= e1−se + sλ−1
∫
[es,∞)

(1 − u)u−λe−ueλ{lnu−ln s} du.

Similarly

1 − g(s) = 1 +
∫
[e,∞)

e−sx dF̄ (x) = 1 − e−se + sλ
∫
[es,∞)

u−λe−ueλ{lnu−ln s} du.

Since {lnu − ln sn} = {lnu + α} for any n, it follows that [recall that λ ∈ (0,1)]

lim
n→∞

−sng
′(sn)

1 − g(sn)
= lim

n→∞
sne

1−sne + sλ
n

∫
[esn,∞)(1 − u)u−λe−ueλ{lnu+α} du

1 − e−sne + sλ
n

∫
[esn,∞) u

−λe−ueλ{lnu+α} du

=
∫
(0,∞)(1 − u)u−λe−ueλ{lnu+α} du∫

(0,∞) u
−λe−ueλ{lnu+α} du

=: Lα.

Suppose Lα to be equal to 1 − C for all α. Then, by the change of variable
v = u/β where β = e−α , we can write

1 − Lα = β
∫ ∞

0 v−λ+1e−βveλ{lnv} dv∫ ∞
0 v−λe−βveλ{lnv} dv

(B.1)

= (B + 1)
∫ ∞

0 v−λ+1e−ve−Bveλ{lnv} dv∫ ∞
0 v−λe−Bve−veλ{lnv} dv

= C,

where B = β − 1. Consider now the functions f and g on D = {z ∈ C : |z| < 1}
defined as

f (z) =
∫ ∞

0
v−λ+1e−ve−zveλ{lnv} dv,

g(z) =
∫ ∞

0
v−λe−zve−veλ{lnv} dv.

By Fubini’s theorem and the series expansion of the exponential function, one
gets that f and g are holomorphic functions on D. Hence, the same holds for
the function H(z) = (1 + z)f (z) − Cg(z). Due to the last identity in (B.1) we
get that H is zero on a subinterval of the real line. Due to a theorem of complex
analysis, the zeros of a nonconstant holomorphic function are isolated points. As
a byproduct, we get that H(z) = 0 for all z ∈ D.

Writing the power expansion of H(z) around z = 0 and using that H ≡ 0, we
get∫ ∞

0
v−λ+1+ne−veλ{lnv} dv = (C − 1)

∫ ∞
0

v−λ+ne−veλ{lnv} dv ∀n ≥ 0.
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Note that it must be C > 1. By iteration we get∫ ∞
0

v−λ+ne−veλ{lnv} dv ≤ (C − 1)n, n ≥ 0.(B.2)

On the other hand the above left-hand side is larger than �(n + 1 − λ) :=∫ ∞
0 v−λ+ne−v dv. Iterating the identity �(z + 1) = z�(z) we get that

�(n + 1 − λ) = (n − λ)(n − λ − 1) · · · (1 − λ)�(1 − λ),

which leads to a contradiction with (B.2). �

APPENDIX C: Z-STATIONARY SPPS

Z-stationary SPPs and stationary SPPs have many common features. In this
Appendix we point out some properties of Z-stationary SPPs, whose proof (only
sketched here) follows by suitably adapting the arguments used in the continuous
case.

Let us suppose that Q is the law of a Z-stationary SPP, nonempty a.s. We
derive here some identities relating Q to the conditional probability measure

Q0 := Q(·|0 ∈ ξ). These identities are similar to the ones relating the law of a
stationary SPP to its Palm distribution [6, 15]. Since all random sets are included
in Z it is more natural to work with the subspaces of N defined as

N Z = {ξ ∈ N : ξ ⊂ Z},(C.1)

N Z
0 = {ξ ∈ N Z : 0 ∈ ξ}.(C.2)

Moreover, we prefer to write τxξ instead of ξ − x.
Similarly to (2.2) we get a simple relation characterizing Q by means of Q0:

LEMMA C.1. Given a nonnegative measurable function f on N Z it holds

∫
Q(dξ)f (ξ) = Q(0 ∈ ξ)

∫
Q0(dξ)

x1(ξ)−1∑
x=0

f (τxξ).(C.3)

PROOF. From the Z-stationarity of Q it is simple to derive for all measurable
functions g : N Z

0 → [0,∞) and t ∈ N+ that∫
Q0(dξ)g(ξ) = 1

t Q(0 ∈ ξ)

∫
Q(dξ)

∑
y∈ξ∩(0,t]

g(τyξ).(C.4)

Given a measurable map v : Z× N Z
0 → [0,∞), setting g(ξ) = ∑

x∈Z v(x, ξ) in the
above identity, we get

∑
x∈Z

∫
Q0(dξ)v(x, ξ) = 1

t Q(0 ∈ ξ)

∫
Q(dξ)

∑
x∈Z

∑
y∈ξ∩(0,t]

v(x, τyξ).(C.5)
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Reasoning as in the proof of (1.2.10) in [15], for any measurable function w : Z ×
Z × N Z → [0,∞) we get

∑
x∈Z

∑
y∈Z

∫
Q(dξ)w(x, y, τyξ)1(y ∈ ξ)

(C.6)
= ∑

x∈Z

∑
y∈Z

∫
Q(dξ)w(y, x, τyξ)1(y ∈ ξ).

Combining (C.5) with (C.6) where w(x, y, ξ) = v(x, ξ)1(y ∈ (0, t])/t we get

∑
x∈Z

∫
Q0(dξ)v(x, ξ) = 1

Q(0 ∈ ξ)

∑
x∈Z

∫
Q(dξ)v(x, τxξ)1(x ∈ ξ).(C.7)

At this point, we take

v(x, ξ) := 1
(
x = x0(τ−xξ)

)
f (τ−xξ)

[if ξ = ∅ we set v(x, ξ) = 0]. Note that v(x, τxξ) = 1(x = x0(ξ))f (ξ), thus im-
plying together with (C.7) that∫

Q(dξ)f (ξ) = ∑
x∈Z

∫
Q(dξ)v(x, τxξ)1(x ∈ ξ)

(C.8)
= Q(0 ∈ ξ)

∑
x∈Z

∫
Q0(dξ)v(x, ξ).

In order to understand the last integral, take ξ ∈ N Z
0 . Then x = x0(τ−xξ) if and

only if 0 ≤ −x < x1(ξ). Therefore, changing at the end x into −x, we get

∑
x∈Z

v(x, ξ) = ∑
x∈Z:

0≤−x<x1(ξ)

f (τ−xξ) =
x1(ξ)−1∑

x=0

f (τxξ) ∀ξ ∈ N Z
0 .(C.9)

Combining (C.8) and (C.9) we get the thesis. �

Taking f = 1 in (C.3) we deduce that x1(ξ) must have finite mean w.r.t. Q0. In
particular, if Q0 is the law of the renewal SPP on Z containing the origin and with
domain length μ [i.e., Q0 is the law of Ren0(μ)], then μ must have finite mean.
On the other hand, given μ probability measure on N+ with finite mean, identity
(C.3) uniquely determines the probability measure Q if Q0 is defined as the law of
Ren(μ | 0). One can then prove that the so-defined Q is the law of a Z-stationary
SPP and that Q0 = Q(·|0 ∈ ξ). Finally, as in the continuous case, relation (C.3)
allows us to derive a simple description of Z-stationary renewal SPPs similar to the
one mentioned after Definition 2.7. We leave the details to the interested reader.
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APPENDIX D: EXCHANGEABLE SPPS

We endow the space � = (0,∞)N+ of sequences of positive numbers with the
product topology, and we denote by B its Borel σ -field. We write a generic ele-
ment of � as ω = (ωn :n ∈ N+). Let En be the σ -subfield generated by the events
that are invariant under permutations of Z fixing all points x ∈ N+ with x > n. Let
E := ⋂∞

n=1 En be the exchangeable σ -field. Since � is a standard Borel set, given
a probability measure Q on � there exists a regular conditional probability asso-
ciated to E , that is, a measurable map ρQ :�× B → [0,1] satisfying the following
properties:

(i) for each A ∈ B, ρQ(·,A) is a version of P(A|E );
(ii) for Q-a.e. ω ∈ �, ρQ(ω, ·) is a probability measure on (�, B).

Due to de Finetti’s theorem, if Q is an exchangeable probability measure on �,
then for Q-a.e. ω the measure ρQ(ω, ·) is a product probability measure on �. The
inverse implication is trivially true; hence de Finetti’s theorem provides a charac-
terization of the exchangeable probability measures on �.

Suppose that Q is a left-bounded exchangeable SPP containing the origin (see
Definition 2.9). By definition, Q has support on the subspace � ⊂ N given by
the configurations ξ ∈ N empty on (−∞,0), containing the origin and given by a
sequence of points xk(ξ), k ∈ N, diverging to +∞. We can define the measurable
injective map � :� → �, with �(ξ) = ω and ωn = xn(ξ) − xn−1(ξ). We call Q

the measure Q ◦ �−1. Trivially, Q is an exchangeable measure on �; hence we
can apply de Finetti’s theorem and get Q(A) = ∫

� Q(dω)ρQ(ω,A) for all A ∈ B,
where ρQ(ω, ·) is a product probability measure. Since trivially ρQ(ω, ·) has sup-
port on �(�), the pull-back of ρQ(ω, ·) is a well-defined probability measure on
� corresponding to the law of Ren(δ0,μω). As byproduct, we get

Q(A) =
∫
�

Q(dω)Ren(δ0,μω)[A], A ⊂ N measurable.(D.1)

The above decomposition allows us to extend our results stated in Section 2
to right exchangeable SPPs containing the origin. We give only some comments,
leaving the details to the interested reader. Consider, for example, the HCP starting
from Q, that is, ξ (1)(0) has law Q. By applying inductively Theorem 2.13 we get
that, given n ≥ 1 and t ∈ [0,∞], the law of ξ (n)(t) conditioned to the fact that
0 ∈ ξ (n)(t) has the integral representation∫

�
Q(dω)Ren

(
δ0, [μω](n)

t

)

for a suitable probability measure [μω](n)
t on (0,∞).

In particular, if each μω satisfies the limit (2.14) for some constant c0(ω), we get
the following: fixed k ≥ 1, the rescaled random variable [x(n)

k (0) − x
(n)
k−1(0)]/d(n)

min,



1432 FAGGIONATO, MARTINELLI, ROBERTO AND TONINELLI

defined for the HCP starting with law Q and conditioned to the event {0 ∈ ξ (n)(0)},
weakly converges to a random variable whose Laplace transform g(∞) is given by

g(∞)(s) =
∫
�

Q(dω)g∞
c0(ω)(s),

where g∞
(c0)

has been defined in (2.15). Note that new limit laws emerge in this
way.

Let us now pass to stationary exchangeable SPPs. One can formulate de Finetti’s
theorem also for exchangeable laws on the space �′ = (0,∞)Z of two-sided se-
quences of positive numbers. At the end we get that a stationary SPP, nonempty
a.s. and with finite intensity, is exchangeable if and only if its Palm distribution Q0
satisfies

Q0(A) =
∫
�′

Q(dω)Ren0(μω)[A], A ⊂ N measurable,(D.2)

where (i) μω is a probability measure on (0,∞); (ii) for any A ⊂ N measurable
the map �′  ω → Ren0(μω)[A] is measurable (thus implying that the map ω →
μω is measurable); (iii) Q is the image of the law Q of the SPP under the map
N ∞

0 → (0,∞)Z, mapping ξ in (xk(ξ) − xk−1(ξ) :k ∈ Z) [recall (2.1)].
Using (D.2) and (2.2) we conclude that

Q(A) =
∫
�′

Q(dω)Ren(μω)[A], A ⊂ N measurable.(D.3)

The above decomposition of Q allows us to extend our limit theorems to the HCP
starting with law Q, that is, from a stationary exchangeable SPPs. In particular,
ξ (n)(t) will be a stationary exchangeable SPP for all n ≥ 1 and all t ∈ [0,∞]. In ad-
dition, for k �= 1, as n → ∞ the rescaled random variable [x(n)

k (0)−x
(n)
k−1(0)]/d(n)

min

weakly converges to the random variable Z
(∞)
1 introduced in Theorem 2.19.

APPENDIX E: A COMBINATORIAL LEMMA ON EXCHANGEABLE
PROBABILITY MEASURES

The next combinatorial lemma has been used in Section 3.

LEMMA E.1. Let mk be an exchangeable probability measure on Sk , S =
(0,∞); that is, mk is left invariant by any permutation of the coordinates
(s1, . . . , sk) ∈ Sk . Call m the marginal of mk along a coordinate (it does not depend
on the coordinate). Then, for any bounded function f :S → R, and any bounded
function g :S → (0,∞), it holds

(a) Emk

(
g(s1)

g(s1) + · · · + g(sk)

k−1∏
i=2

g(si)∑k−1
j=i g(sj )

k∏
i=1

f (si)

)
= Em(f )k

k · (k − 2)! ,

(b) Emk

(
k∏

i=1

g(si)f (si)∑k
j=i g(sj )

)
= Em(f )k

k! .



1D HIERARCHICAL COALESCENCE PROCESSES 1433

PROOF. We will give only the proof of point (a) which is a bit harder. The
proof of point (b) follows essentially the same lines; details are left to the reader.

Since the law mk is left invariant by any permutations of the coordinates
(s1, . . . , sk) ∈ Sk , we have

Emk

(
g(s1)

g(s1) + · · · + g(sk)

k−1∏
i=2

g(si)∑k−1
j=i g(sj )

k∏
i=1

f (si)

)

= 1

k!
∑

σ∈Sk

Emk

(
g(sσ(1))

g(sσ(1)) + · · · + g(sσ(k))

k−1∏
i=2

g(sσ(i))∑k−1
j=i g(sσ(j))

k∏
i=1

f
(
sσ(i)

))

= 1

k!Emk

(
f (s1) · · ·f (sk)

∑
σ∈Sk

g(sσ(1))

g(s1) + · · · + g(sk)

k−1∏
i=2

g(sσ(i))∑k−1
j=i g(sσ(j))

)
,

where Sk stands for the symmetric group of {1, . . . , k}. Hence the result will follow
from the identity

∑
σ∈Sk

g(sσ(1))

g(s1) + · · · + g(sk)

k−1∏
i=2

g(sσ(i))∑k−1
j=i g(sσ(j))

= k − 1(E.1)

and the product structure of mk . Now we prove (E.1). Divide the sum in (E.1)
depending on the value of σ(1) and σ(k)

l.h.s. of (E.1) =
k∑

i1=1

g(si1)

g(s1) + · · · + g(sk)

k∑
ik=1
ik �=i1

∑
σ∈Sk :

σ(1)=i1
σ(k)=ik

k−1∏
i=2

g(sσ(i))∑k−1
j=i g(sσ(j))

.

The thesis will follow from the fact that, for any i1, ik , the last sum in the latter is
equal to 1. Equivalently, we need to prove that, for any n,

∑
σ∈Sn

n∏
i=1

g(sσ(i))∑n
j=i g(sσ(j))

= 1.(E.2)

This is done by induction. Indeed, the thesis is trivial for n = 1. Assume that (E.2)
holds at rank n − 1. Then,∑

σ∈Sn

n∏
i=1

g(sσ(i))∑n
j=i g(sσ(j))

=
n∑

i1=1

∑
σ∈Sn:

σ(1)=i1

n∏
i=1

g(sσ(i))∑n
j=i g(sσ(j))

=
n∑

i1=1

g(si1)

g(s1) + g(s2) + · · · + g(sn)

∑
σ∈Sn:

σ(1)=i1

n∏
i=2

g(sσ(i))∑n
j=i g(sσ(j))

.
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Note that, by the induction hypothesis, the second sum is equal to 1 (for any i1).
Hence,

∑
σ∈Sn

n∏
i=1

g(sσ(i))∑n
j=i g(sσ(j))

=
n∑

i1=1

g(si1)

g(s1) + g(s2) + · · · + g(sn)
= 1.

This ends the proof of (E.2) and thus of point (a). As already mentioned the proof
of point (b) is easier [only (E.2) has to be used]; details are left to the reader. �
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