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LIMIT THEOREMS FOR 2D INVASION PERCOLATION

BY MICHAEL DAMRON1 AND ARTËM SAPOZHNIKOV2

Princeton University and ETH Zürich

We prove limit theorems and variance estimates for quantities related to
ponds and outlets for 2D invasion percolation. We first exhibit several prop-
erties of a sequence (O(n)) of outlet variables, the nth of which gives the
number of outlets in the box centered at the origin of side length 2n. The
most important of these properties describes the sequence’s renewal structure
and exponentially fast mixing behavior. We use these to prove a central limit
theorem and strong law of large numbers for (O(n)). We then show conse-
quences of these limit theorems for the pond radii and outlet weights.

1. Introduction.

1.1. The model. Invasion percolation is a stochastic growth model both intro-
duced and numerically studied independently by [2] and [14]. Let G = (V ,E) be
an infinite connected graph in which a distinguished vertex, the origin, is chosen.
Let (τe)e∈E be independent random variables, uniformly distributed on [0,1]. The
invasion percolation cluster (IPC) of the origin on G is defined as the limit of an
increasing sequence (Gn) of connected subgraphs of G as follows. For an arbitrary
subgraph G′ = (V ′,E′) of G, we define the outer edge boundary of G′ as

�G′ = {e = 〈x, y〉 ∈ E : e /∈ E′, but x ∈ V ′ or y ∈ V ′}.
We define G0 to be the origin. Once the graph Gi = (Vi,Ei) is defined, we select
the edge ei+1 that minimizes τ on �Gi . We take Ei+1 = Ei ∪ {ei+1} and let Gi+1
be the graph induced by the edge set Ei+1. The graph Gi is called the invaded
region at time i. Let E∞ = ⋃∞

i=0 Ei and V∞ = ⋃∞
i=0 Vi . Finally, define the IPC

S = (V∞,E∞).

We study invasion percolation on two-dimensional lattices; however, for sim-
plicity we restrict ourselves hereafter to the square lattice Z

2 and denote by E
2

the set of nearest-neighbour edges. The results of this paper still hold for lattices
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which are invariant under reflection in one of the coordinate axes and under rota-
tion around the origin by some angle. In particular, this includes the triangular and
honeycomb lattices.

We define Bernoulli percolation using the random variables τe to make a cou-
pling with the invasion immediate. For any p ∈ [0,1] we say that an edge e ∈ E

2

is p-open if τe < p and p-closed otherwise. It is obvious that the resulting random
graph of p-open edges has the same distribution as the one obtained by declar-
ing each edge of E

2 open with probability p and closed with probability 1 − p,
independently of the state of all other edges. The percolation probability θ(p) is
the probability that the origin is in the infinite cluster of p-open edges. There is
a critical probability pc = inf{p : θ(p) > 0} ∈ (0,1). For general background on
Bernoulli percolation we refer the reader to [8].

In [3], it is shown that, for any p > pc, the invasion on (Zd,E
d) intersects the

infinite p-open cluster with probability one. In the case d = 2 this immediately
follows from the Russo–Seymour–Welsh theorem (see Section 11.7 in [8]). This
result has been extended to much more general graphs in [9]. Furthermore, the
definition of the invasion mechanism implies that if the invasion reaches the p-
open infinite cluster for some p, it will never leave this cluster. Combining these
facts yields that if ei is the edge added at step i, then lim supi→∞ τei

= pc. It is
well known that for Bernoulli percolation on (Z2,E

2), the percolation probability
at pc is 0. This implies that, for infinitely many values of i, the weight τei

sat-
isfies τei

> pc. The last two results give that τ̂1 = max{τe : e ∈ E∞} exists and is
greater than pc. The above maximum is attained at an edge which we shall call ê1.
Suppose that ê1 is invaded at step i1, that is, ê1 = ei1 . Following the terminology
of [15], we call the graph Gi1−1 the first pond of the invasion, denoting it by the
symbol V̂1, and we call the edge ê1 the first outlet. The second pond of the invasion
is defined similarly. Note that a simple extension of the above argument implies
that τ̂2 = max{τei

: ei ∈ E∞, i > i1} exists and is greater than pc. If we assume that
τ̂2 is taken on the edge ê2 at step i2, we call the graph Gi2−1 \ Gi1−1 the second
pond of the invasion, and we denote it V̂2. The edge ê2 is called the second outlet.
The further ponds V̂k and outlets êk are defined analogously. For a hydrological
interpretation of the ponds we refer the reader to [18].

In this paper, we consider a sequence of outlet variables introduced in [4]. We
continue the analysis from that paper, in which almost sure bounds were shown
for the sequence’s growth rate. Here, we prove limit theorems for the sequence
and, as a consequence, we obtain variance estimates for the sequence (τ̂k) of out-
let weights and for the sequence of pond radii. The current results were inspired by
limit theorems for critical percolation obtained by Kesten and Zhang in [13] and
later by Zhang in [20]. In those papers, the authors prove central limit theorems
for (a) the maximal number of disjoint open circuits around the origin in the box
of size n centered at the origin in critical percolation in two dimensions and (b) the
number of open clusters in the same box in any dimension in percolation with pa-
rameter p ∈ [0,1]. The martingale methods they use apply to some degree for our
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questions of invasion percolation, but our techniques, based on mixing properties
and moment bounds from [4], seem to reveal more of the underlying structure of
the process.

The mixing properties mentioned above are consequences of a more general
renewal mechanism that lies inside the invasion process on Z

2. In Section 3, we
show that for any m,k ≥ 1, the invaded regions at distances 2m and 2m+k from
the origin are equal to two statistically independent sets except on an event whose
probability decays exponentially in k. Roughly speaking, this means that the in-
vasion has a very weak dependence structure when viewed on exponential length
scales.

Last we would like to mention that limit theorems similar to ones we establish
in this paper were shown by Goodman [7] for invasion percolation on the regular
tree. Those results were also inspiration for the current work. Goodman showed,
for example, that the sizes of the ponds grow exponentially, with laws of large
numbers, central limit theorems and large deviation results. His analysis is based
on representing S in terms of the outlets weights τ̂n, as in [1].

1.2. Notation. In this section we collect most of the notation and the defini-
tions used in the paper.

For a ∈ R, we write |a| for the absolute value of a, and, for a site x = (x1,
x2) ∈ Z

2, we write |x| for max(|x1|, |x2|). For n > 0 and x ∈ Z
2, let B(x,n) =

{y ∈ Z
2 : |y − x| ≤ n} and ∂B(x,n) = {y ∈ Z

2 : |y − x| = n}. We write B(n) for
B(0, n) and ∂B(n) for ∂B(0, n). For m < n and x ∈ Z

2, we define the annulus
Ann(x;m,n) = B(x,n) \ B(x,m). We write Ann(m,n) for Ann(0;m,n).

We consider the square lattice (Z2,E
2), where E

2 = {〈x, y〉 ∈ Z
2 × Z

2 : |x −
y| = 1}. Let (Z2)∗ = (1/2,1/2) + Z

2 and (E2)∗ = (1/2,1/2) + E
2 be the vertices

and the edges of the dual lattice. For x ∈ Z
2, we write x∗ for x + (1/2,1/2). For

an edge e ∈ E
2 we denote its endpoints (left, resp., right or bottom, resp., top) by

ex, ey ∈ Z
2. The edge e∗ = 〈ex + (1/2,1/2), ey − (1/2,1/2)〉 is called the dual

edge to e. Its endpoints (bottom, resp., top or left, resp., right) are denoted by e∗
x

and e∗
y . Note that e∗

x and e∗
y are not the same as (ex)

∗ and (ey)
∗. For a subset

K ⊂ Z
2, let K∗ = (1/2,1/2) + K. We say that an edge e ∈ E

2 is in K ⊂ Z
2 if both

its endpoints are in K. For any graph G we write |G| for the number of vertices
in G .

Let (τe)e∈E2 be independent random variables, uniformly distributed on [0,1],
indexed by edges. We call τe the weight of an edge e. We define the weight of an
edge e∗ as τe∗ = τe. We denote the underlying probability measure by P and the
space of configurations by ([0,1]E2

, F ), where F is the natural σ -field on [0,1]E2
.

We say that an edge e is p-open if τe < p and p-closed if τe > p. An edge e∗ is
p-open if e is p-open, and it is p-closed if e is p-closed. The event that two sets

of sites K1, K2 ⊂ Z
2 are connected by a p-open path is denoted by K1

p←→ K2.
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For any k ≥ 1, let R̂k be the radius of the union of the first k ponds. In other
words,

R̂k = max

{
|x| :x ∈

k⋃
j=1

V̂k

}
.

For two functions g and h from a set X to R, we write g(z) � h(z) to indicate
that g(z)/h(z) is bounded away from 0 and ∞, uniformly in z ∈ X . We will also
use the standard notation g(z) = O(h(z)) if g(z)/h(z) is bounded away from ∞
uniformly in z ∈ X , and g(z) = o(h(z)) if for each ε > 0, |g(z)/h(z)| > ε for
only a finite number of values of z ∈ X . For any event A, we write I (A) for the
indicator function of A. For any sequence of random variables (Xi) and any k ≥ 0,
we say that the sequence is k-dependent if for every m ≥ 1, the set of variables
{X1, . . . ,Xm} is independent of the set of variables {Xm+k+1, . . .}. Similarly we
say that the sequence of events (Ai) is m-dependent if the sequence of variables
(I [Ai]) is. Throughout this paper we write log for log2. All the constants (Ci) in
the proofs are strictly positive and finite. Their exact values may be different from
proof to proof.

1.3. Main results.

1.3.1. The CLT for outlets. Let Ok be the number of outlets in the annulus
Ann(2k−1,2k) and ak = EOk . Let O(n) = ∑n

k=1 Ok,a(n) = EO(n) and b(n)2 =
Var O(n).

THEOREM 1. There exist positive and finite constants c1 and c2 such that for
all i, ai ∈ [c1, c2], and the variance of O(n) satisfies

b(n)2 � n.

Write N(0,1) for the distribution of a standard normal random variable, and let
⇒ denote convergence in distribution.

THEOREM 2. The sequence (O(n)) satisfies a CLT, that is,

O(n) − a(n)

b(n)
⇒ N(0,1).(1.1)

Furthermore, if r > 1/2, then the following convergence is almost sure:

O(n) − a(n)

nr
→ 0.(1.2)



2D INVASION PERCOLATION 897

1.3.2. Consequences of the CLT for outlets. As discussed in Section 1.1,
a main intention of this paper is to study the asymptotic behavior of the sequences
(R̂n) (toward infinity) and (τ̂n) (toward pc). In [4] it was proved that these se-
quences obey the following almost sure bounds. There exist constants C1 > 0 and
C2 < ∞ such that with probability one

C1n ≤ log R̂n ≤ C2n and C1n ≤ − log(τ̂n − pc) ≤ C2n

for all large n. Motivated by these results, we want study whether or not these
sequences converge, after properly shifting and normalizing. Further, we would
like know information about rates of convergence. It turns out that from the point
of view of these questions, the sequences are closely related to certain sequences
(Qn) and (Tn), which we now define.

Let

Qn = min{k : O(k) ≥ n} and Tn = min{k :a(k) ≥ n}.
Note that O(Qn − 1) < n ≤ O(Qn) and a(Tn − 1) < n ≤ a(Tn). We define a
sequence of random variables (a(Qn)), where a(Qn) equals a(k) if and only if
Qn = k. By this definition, a(Qn) takes values in the set {a(k) :k ≥ 1} with

P
(
a(Qn) = a(k)

) = P(Qn = k).

The CLT for outlets allows us to study the sequence (a(Qn)). Let σ 2
n = Var O(Tn).

THEOREM 3.
a(Qn) − n

σn

⇒ N(0,1).

[Or, equivalently, (a(Qn) − a(Tn))/σn ⇒ N(0,1).] Moreover,

E

(
a(Qn) − n

σn

)2

→ 1 as n → ∞.

REMARK 1. We would like to use Theorem 3 to deduce CLTs for the se-
quences (log R̂n) and (log(τ̂n − pc)), both of which are proved in the case of
the regular tree in [7]. It is not difficult to prove these results if one knows that
(Qn − Tn)/δn converges in distribution to a variable with the standard normal dis-
tribution for some sequence δn. Unfortunately, Theorem 3 does not appear to be
strong enough to show this. One possible approach to deduce a CLT for (Qn) from
Theorem 3 is to demonstrate that the sequence (an) does not fluctuate too quickly
as n → ∞. For instance one could try to prove that there exists a ∈ R such that for
every sequence (kn) of natural numbers,

(1/n)

kn+n∑
kn+1

ai → a as n → ∞.
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Although we are not able to prove CLTs for (log R̂n) and (log(τ̂n − pc)), we
show in the next corollaries that the fluctuations are of the correct order of magni-
tude.

COROLLARY 1.

E(Qn − Tn)
2 � n, E(Qn − EQn)

2 � n.

COROLLARY 2.

E(log R̂n − Tn)
2 � n, E(log R̂n − E log R̂n)

2 � n.

In the statements of the next two corollaries, we use the sequence (pn), defined
in Section 2.

COROLLARY 3.

E

(
log

τ̂n − pc

p2Tn − pc

)2
� n, E

(
log(τ̂n − pc) − E log(τ̂n − pc)

)2 � n.

Last we show that the sequences (Qn), (log R̂n) and (log(τ̂n −pc)) satisfy laws
of large numbers.

COROLLARY 4. For any r > 1/2, each of the following sequences converges
to 0 almost surely:(

Qn − Tn

nr

)
,

(
log R̂n − Tn

nr

)
,

(
1

nr
log

τ̂n − pc

p2Tn − pc

)
.

1.4. Structure of the paper. In Section 2 we recall the definition of the corre-
lation length, which is vital to all of our proofs. In Section 3 we describe and prove
several properties of the outlet variables (Ok) that will be used in the proofs of
Theorems 1 and 2 in Section 4. In Section 5, we prove consequences of the CLT:
Theorem 3 and Corollaries 1–4.

2. Correlation length.

2.1. Definition of correlation length. For m,n positive integers and p ∈
(pc,1] let

σ(n,m,p) = P(there is a p-open horizontal crossing of [0, n] × [0,m]).
Given ε > 0, we define

L(p, ε) = min{n :σ(n,n,p) ≥ 1 − ε}.(2.1)
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L(p, ε) is called the finite-size scaling correlation length and it is known that
L(p, ε) scales like the usual correlation length (see [12]). It was also shown in [12]
that the scaling of L(p, ε) is independent of ε given that it is small enough, that is,
there exists ε0 > 0 such that for all 0 < ε1, ε2 ≤ ε0 we have L(p, ε1) � L(p, ε2).
(Here, ε1 and ε2 are fixed numbers that do not depend on p.) For simplicity we
will write L(p) = L(p, ε0) in the entire paper. We also define

pn = sup{p :L(p) > n}.
It is easy to see that L(p) → ∞ as p → pc and L(p) → 0 as p → 1. In particular,
the probability pn is well defined. It is clear from the definitions of L(p) and pn

and from the RSW theorem that, for positive integers k and l, there exists δk,l > 0
such that, for any positive integer n and for all p ∈ [pc,pn],

P(there is a p-open horizontal crossing of [0, kn] × [0, ln]) > δk,l

and

P
(
there is a p-closed horizontal dual crossing of ([0, kn] × [0, ln])∗)

> δk,l.

By the FKG inequality and a standard gluing argument [8], Section 11.7, we get
that, for positive integers n and k ≥ 2 and for all p ∈ [pc,pn],

P
(
Ann(n, kn) contains a p-open circuit around the origin

)
> (δk,k−2)

4

and

P
(
Ann(n, kn)∗ contains a p-closed dual circuit around the origin

)
> (δ2k,k−1)

4.

2.2. Properties of correlation length. We give the following results without
proofs.

(1) Reference [12], Theorem 2. There is a constant D1 < ∞ such that, for all
p > pc,

θ(p) ≤ P
[
0

p←→ ∂B(L(p))
] ≤ D1P

[
0

pc←→ ∂B(L(p))
]
,(2.2)

where θ(p) = P(0
p←→ ∞) is the percolation function for Bernoulli percolation.

(2) Reference [16], Section 4. There is a constant D2 > 0 such that, for all
n ≥ 1,

P
(
B(n)

pn←→ ∞) ≥ D2.(2.3)

(3) For any n ≥ 1 and p ∈ [0,1], let Bn,p be the event that there is a p-closed
circuit around the origin in the dual lattice with radius at least n. There exist con-
stants D3 < ∞ and D4 > 0 such that for all p > pc,

P(Bn,p) ≤ D3 exp
{
−D4

n

L(p)

}
.(2.4)
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Equation (2.4) follows, for example, from [11], (2.6) and (2.8) (see also [17],
Lemma 37 and Remark 38).

(4) There exist constants D5 > 0 and D6 < ∞ such that for all m,n ≥ 1,

D5

∣∣∣∣log
m

n

∣∣∣∣ ≤
∣∣∣∣log

pm − pc

pn − pc

∣∣∣∣ ≤ D6

∣∣∣∣log
m

n

∣∣∣∣.(2.5)

This is a consequence of [17], Proposition 34, and a priori bounds on the 4-arm
exponent.

3. Properties of the outlet variables. In this section we describe several im-
portant properties of the variables (Ok). We first recall the following theorem from
[4] that gives k-independent bounds on all of their moments.

THEOREM 4. There exists c1 < ∞ such that for all t, k ≥ 1,

E(Ot
k) ≤ (c1t)

3t .(3.1)

One crucial feature of the invasion process that allows us to prove limit theorems
is its renewal structure. To describe this, we make a couple of definitions. For
k,m ≥ 1 and 1 ≤ l ≤ ∞, let G(k, l,m) be the graph of the invasion process that
invades the entire box B(2k−m) at step 1 [we take B(2k−m) to be the origin if
k < m], then proceeds with the usual invasion rules and stops when it invades any
vertex of ∂B(2k+l+m). In the case that l = ∞, we allow the invasion to run for all
of time. Write O for the set of all outlets of S , and write O(k, l,m) for the set of all
outlets of G(k, l,m). In the case of O(k, l,m), the outlets are defined in the same
way as in O; however, note that if the graph G(k, l,m) is finite (which corresponds
to the case of finite l), some of its outlets may have weight below pc.

For the next theorem, when l = ∞, Ann(m, l) will mean B(m)c.

THEOREM 5 (Renewal structure of the invasion). There are constants C < ∞
and δ > 0 such that for all k,m ≥ 1 and 1 ≤ l ≤ ∞,

P
(

S ∩ Ann(2k,2k+l) �= G(k, l,m) ∩ Ann(2k,2k+l)
)
< C exp(−δm)

and

P
(

O ∩ Ann(2k,2k+l) �= O(k, l,m) ∩ Ann(2k,2k+l)
)
< C exp(−δm).

PROOF. Clearly it suffices to prove the theorem for m > 4. We first con-
sider the case that k ≥ m and l < ∞. Observe that S ∩ Ann(2k,2k+l) =
G(k, l,m) ∩ Ann(2k,2k+l) and O ∩ Ann(2k,2k+l) = O(k, l,m) ∩ Ann(2k,2k+l)

if (1) there exists a pc-open circuit around the origin in Ann(2k−m,2k), (2)
there exists a p2k+l+m/4 -closed dual circuit around the origin in the annulus
Ann(2k+l ,2k+l+m/4)∗, (3) there exists a pc-open circuit around the origin in
Ann(2k+l+m/2,2k+l+m) and (4) the open circuit from (3) is connected by a
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FIG. 1. The event in the proof of Theorem 5 (in the case k ≥ m and l < ∞). The boxes, in
order from smallest to largest, are B(2k−m), B(2k), B(2k+l ), B(2k+l+m/4), B(2k+l+m/2) and
B(2k+l+m). (Boxes are not drawn to scale.) The dotted path is p2k+l+m/4 -closed, the path to infinity
is p2k+l+m/4 -open and the other two circuits are pc-open. If all these paths exist, the sets S and
G(k, l,m) coincide in Ann(2k,2k+l ).

p2k+l+m/4 -open path to infinity. (See Figure 1 for an illustration of the intersec-
tion of these four events.) Indeed, the first condition implies that in the exterior of
the pc-open circuit from (1), G(k, l,m) is a subset of S . The remaining conditions
(2)–(4) imply the existence of an edge e in Ann(2k+l ,2k+l+m), lying in the closure
of the exterior of the closed circuit from (2), such that e ∈ O ∩ O(k, l,m), and both
invasion processes invade e before any vertex of ∂B(2k+l+m). Therefore, once this
outlet is invaded (by either of the two invasion processes), the set of invaded edges
in the interior of the closed circuit from (2) does not change anymore. The RSW
theorem and (2.4) imply that the probability that any of (1)–(4) does not hold is
bounded from above by C exp(−δm) uniformly in k.

In the case that k < m and l < ∞, we exclude condition (1) from the above
argument. In the case k < m and l = ∞ there is nothing to prove. If k ≥ m and
l = ∞ we argue using only condition (1). �

REMARK 2. Similar ideas were used in the proof of the upper bound in The-
orem 1.4 in [4]. Note that there is a typo there in the definition of Xn

i . It should be
specified that Xn

i counts only disconnecting edges with weights larger than pc.

We now present corollaries of Theorem 5 that will help in the proofs of the next
section. The first two are about mixing properties of the sequence (Xk). Recall
the notation that ak = EOk and let Xk = Ok − ak . For any m1 ≤ m2, let 	

m2
m1

be the sigma algebra generated by the variables Xm1, . . . ,Xm2 . Write 	m1 for
limm2→∞ 	

m2
m1 and 	m2 for 	

m2
1 . For m ≥ 0, define the strong mixing coefficient

α(m) = sup
k≥1

sup
A,B

|P(A ∩ B) − P(A)P(B)|,(3.2)
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where the supremum is over all A ∈ 	k and B ∈ 	k+m.

COROLLARY 5. There exist constants C < ∞ and δ > 0 such that for all m,

α(m) ≤ C exp(−δm).(3.3)

PROOF. Clearly it suffices to prove the corollary for m > 4. Fix k ≥ 1 and
let A ∈ 	k , B ∈ 	k+m. For j = 1, . . . , k, let Ỹj be the number of outlets in
O(0, k, �m/2� − 1) ∩ Ann(2j−1,2j ) with weight > pc, and for j ≥ k + m, let
Ỹj be the number of outlets in O(k +m− 1,∞, �m/2�− 1)∩ Ann(2j−1,2j ) with
weight > pc. Let Yj = Ỹj − aj . By Theorem 5, there exist constants C1 < ∞ and
δ1 > 0 such that for all k ≥ 1, m > 4,

P(Ak,m) ≥ 1 − C1 exp(−δ1m),

where Ak,m is the event that Xj = Yj for all j ≤ k and for all j ≥ k + m.
Because A ∈ 	k , there exists a Borel set A′ ⊂ R

k such that A is the event that
(X1, . . . ,Xk) ∈ A′. Similarly, because B ∈ 	k+m, there exists a Borel set B ′ ⊂ R

∞
(with the product topology) such that B is the event that (Xk+m, . . .) ∈ B ′. Define
AY as the event that (Y1, . . . , Yk) ∈ A′ and BY as the event that (Yk+m, . . .) ∈ B ′.
Because AY and BY are independent,

|P(AY ∩ BY ) − P(AY )P(BY )| = 0.(3.4)

Also, when Ak,m occurs, the events A and AY (resp., B and BY ) are identical, so

|P(A ∩ B) − P(AY ∩ BY )| ≤ P(Ac
k,m) ≤ C1 exp(−δ1m)

and

|P(A)P(B) − P(AY )P(BY )| ≤ P(A)|P(B) − P(BY )|
+ P(BY )|P(A) − P(AY )|

≤ |P(B) − P(BY )| + |P(A) − P(AY )|
≤ 2C1 exp(−δ1m).

Combining the two above inequalities with (3.4) gives the corollary. �

Now that we have a bound on the decay of the sequence (α(m)), we can relate
this to the decay of covariances using the following classical result.

COROLLARY 6 ([6], (2.2)). Let k,m ≥ 1 and let f and g be functions such
that f is 	k-measurable and g is 	k+m-measurable. Suppose that 1/p + 1/q < 1
and that the moments E|f |p and E|g|q exist. Then

|Efg − Ef Eg| ≤ 12[E|f |p]1/p[E|g|q]1/q[α(m)]1−1/p−1/q .(3.5)
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PROOF. For completeness, we will outline the proof in the Appendix. �

Corollaries 5 and 6 tell us that the variables (Xk) are very weakly dependent.
This is one main ingredient for proving the CLT and SLLN for this sequence.
In the first part of the following corollary, we will bound moments of the sums
(
∑n

k=1 Xk)n. This is the second main ingredient necessary for proving the CLT.
The second part of the corollary will control fluctuations of the sums and will be
useful in proving the SLLN.

COROLLARY 7. The following statements hold.

(1) For each 0 ≤ t ≤ 4, there exists D(t) < ∞ such that for all k ≥ 1 and m ≥ 0,

E

∣∣∣∣∣
k+m∑
j=k

Xj

∣∣∣∣∣
t

≤ D(t)mt/2.

(2) There exists C < ∞ such that for any λ > 0 and n ≥ 1,

P

(
max

1≤i≤n

∣∣∣∣∣
i∑

k=1

Xk

∣∣∣∣∣ ≥ λ

)
≤ Cn

λ2 + C
√

n

λ
.

PROOF. We will begin with the proof of the first statement. It suffices to con-
sider t = 4 because for t < 4 we can use Jensen’s inequality to reduce to this case.
The statement will follow from Proposition 2.2 of [19], which we state below as
Lemma 1. For the statement, we need some definitions. For 0 ≤ k < n, define

c(13)(k, n) = max
1≤x1,x2=x1+k≤x3≤x4≤n

EXx1Xx2Xx3Xx4

and

c(31)(k, n) = max
1≤x1≤x2≤x3,x4=x3+k≤n

EXx1Xx2Xx3Xx4 .

Also set

c(k;1,3) = sup
n≥k

[
c(13)(k, n) + c(31)(k, n)

]
.

LEMMA 1. Suppose that supk≥1 EX4
k < ∞ and

m∑
k=0

(k + 1)c(k;1,3) = O(mγ ) as m → ∞ for γ ≥ 0.(3.6)

Then

sup
b≥0

E(Xb + · · · + Xb+a)
4 = O(a2+γ ) as a → ∞.
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We make the choice γ = 0. The condition supk≥1 EX4
k < ∞ holds from The-

orem 4. As for (3.6), it is not difficult to see that it will hold as long as we show
that there exist constants C1 < ∞ and δ1 > 0 such that for any m ≥ 1 and for any
natural numbers i1, . . . , i4 such that the distance from i1 to the set {i2, i3, i4} is at
least equal to m,

|EXi1 · · ·Xi4 | ≤ C1 exp(−δ1m).(3.7)

Condition (3.7) holds by Corollary 6. To show this, suppose that i1 ≤ i2 ≤ i3 ≤ i4
(the other cases are handled similarly). We make the choices f = Xi1 and g =
Xi2Xi3Xi4 , with p = 2 and q = 4. From Theorem 4, there exists C2 such that for
all (ij ), both (Eg4)1/4 ≤ C2 and (Ef 2)1/2 ≤ C2. Since Ef = 0, Corollary 6 gives

|EXi1 · · ·Xi4 | ≤ C2
2α(m)1/4.

Bounding α(m) using Corollary 5 shows (3.7) and completes the proof of the first
statement of Corollary 7.

We now prove the second statement. It is the same as the proof of Lemma 2.2
in [6]. Let An be the event in the statement, and write Sn = ∑n

k=1 Xk . Let

Ai
n = {|Sj | < λ for j = 1, . . . , i − 1 but |Si | ≥ λ}.

Similarly to the proof of Kolmogorov’s maximal inequality for independent ran-
dom variables, one can show that

P(An) ≤ 1

λ2

(
ES2

n + 2
n∑

i=1

E
[
I [Ai

n]Si(Sn − Si)
])

.(3.8)

By the first part of this corollary, ES2
n ≤ C3n. Next, write the summand as

E
[
I [Ai

n]Xi(Sn − Si)
] +

n∑
j=i+1

E[I [Ai
n]Si−1Xj ].

The absolute value of the first term is bounded by∣∣∣∣∣
n∑

k=i+1

E[I [Ai
n]XiXk]

∣∣∣∣∣ ≤
n∑

k=i+1

C4[α(k − i)]1/4 ≤ C5,

where we use Corollary 6 with f = I [Ai
n]Xi and g = Xk , with p = 2 and q = 4

(bounding the moments using Theorem 4) in the first inequality. For the second
term we also use Corollary 6 but choose f = I [Ai

n]Si−1 and g = Xj , with p = 2
and q = 4. This produces the bound

C6

n∑
j=i+1

(E[Si−1I [Ai
n]]2)1/2[α(j − i)]1/4 ≤ C6λ

√
P(Ai

n)

∞∑
j=1

[α(j)]1/4

≤ C7λ

√
P(Ai

n).
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Summing over i and using Jensen’s inequality with the square root function (re-
calling that the events Ai

n are disjoint in i), we see that the sum in (3.8) is no bigger
than

2C5n + 2C7λn

(
1

n

n∑
i=1

√
P(Ai

n)

)
≤ C8n + C9λ

√
n.

Putting both this bound and the one on ES2
n into (3.8) finishes the proof. �

The following corollary shows a way to construct a sequence of c logn-
dependent random variables (Õk) related to (Ok). We will not use this sequence
in the rest of the paper; however, the proofs of the CLT and the SLLN given in
Section 4 can be replaced by ones that make reference to neither [6] nor [19] but
that come from corresponding statements involving independent random variables
by using the Õk’s. An example of such an approach is the proof of Theorem 1.4
in [4].

COROLLARY 8. For any γ > 0, there exists c < ∞ such that for all n ≥ 1,
defining mn = c logn, with probability at least 1 − cn−γ , all random variables
Omn+1, . . . ,On are equal to some random variables Õmn+1, . . . , Õn, which are
mn-dependent and satisfy Theorem 4.

PROOF. Let c be an integer to be chosen later and let k ≥ c logn. We define
Õk as the number of outlets in O(k − 1,1, �mn/2� − 1) ∩ Ann(2k−1,2k) with
weight > pc. The reader may verify that exactly the same argument used in [4] for
the proof of Theorem 4 applies to each Õk . Also, the variables (Õk) are obviously
mn-dependent. By Theorem 5, there exist C < ∞ and β > 0 such that for any
k ≥ c logn,

P(Õk �= Ok) ≤ Cn−β,

where β → ∞ as c → ∞. Therefore,

P(Õk �= Ok for some k ∈ [c logn,n]) ≤ Cn1−β. �

4. CLT and SLLN for the outlets.

4.1. Proof of Theorem 1. First we will show the statement about the ak’s. The-
orem 4 implies the upper bound on ak , so we need only show the lower bound. The
proof is similar to the first part of Theorem 1.4 in [4]. For k ≥ 1, let Ak be the event
that (a) there is a p2k -closed circuit around the origin in Ann(2k−1,2k), (b) there is
a p2k -open circuit in Ann(2k−1,2k) and (c) the circuit from (b) is connected by a
p2k -open path to infinity. By the RSW theorem and (2.3), there exists C1 > 0 such
that for all k,

P(Ak) > C1.
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But Ak implies the event {Ok ≥ 1}, so

ak = EOk ≥ P(Ak) ≥ C1.

We move on to the statement about b(n). The upper bound follows from the case
t = 2 of the first statement in Corollary 7, so we will focus on the lower bound.
Let k be an integer between 1 and n and let Ln := logn. For i = 1, . . . ,5 define
qk(i) = pc + i(p2k − pc). We define An,k as the event that:

(1) there is an edge e1 in Ann(2k+1,2k+2), with weight between qk(4) and
qk(5), which is connected by a pc-open path to a pc-open circuit around the origin
that is in Ann(2k,2k+1);

(2) the endpoints of e∗
1 are connected by a qk(5)-closed dual path in Ann(2k+1,

2k+2)∗ such that the union of this path and e∗
1 encloses the origin;

(3) there is an edge e2 in Ann(2k+2,2k+3), with weight in [qk(1), qk(2)] ∪
[qk(3), qk(4)], which is connected by a pc-open path to an endpoint of e1;

(4) the endpoints of e∗
2 are connected by a qk(5)-closed dual path in Ann(2k+2,

2k+3)∗ such that the union of this path and e∗
2 encloses the origin;

(5) there is an edge e3 in Ann(2k+3,2k+4) with weight in [qk(2), qk(3)], which
is connected by a pc-open path to an endpoint of e2;

(6) the endpoints of e∗
3 are connected by a qk(5)-closed dual path in Ann(2k+3,

2k+4)∗ such that the union of this path and e∗
3 encloses the origin;

(7) an endpoint of e3 is connected by a qk(1)-open path to ∂B(2k+Ln).

Notice that if An,k occurs with edges e1 − e3, it cannot occur with any other edges.
It follows from [5], Lemma 6.3, and RSW arguments (similar to the proof of [5],
Corollary 6.2) that there exists C2 > 0 such that for any n, k,

P(An,k) ≥ C2.(4.1)

Since, in addition, the events An,k are Ln-dependent for fixed n, there exists C3 > 0
such that

P(An,3k occurs for at least C3n values of k ∈ [1, n/3]) → 1
(4.2)

as n → ∞.

To see this, we will give the proof in Theorem 1.4 of [4]. Let j be an integer be-
tween 1 and Ln, and define B

j
i = An,3(j+iLn). Note that the events (B

j
i )

�n/3Ln�−1
i=0

are independent. Therefore we may use Lemma 5.2 from [4]. Its proof is standard,
so we omit it.

LEMMA 2. Let c > 0. There exist α > 0 and β < 1 depending on c with the
following property. If Yi are independent 0/1 random variables (not necessarily
identically distributed) with P(Yi = 1) > c for all i, then for all n,

P

(
n∑

i=1

Yi < αn

)
< βn.
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In view of this lemma and (4.1), there exist α > 0 and β < 1 such that for any n

and 1 ≤ j ≤ Ln,

P

(�n/3Ln�−1∑
i=0

I [Bj
i ] <

αn

3Ln

)
< βn/3Ln.

Therefore,

P

(
Ln∑
j=1

�n/3Ln�−1∑
i=0

I [Bj
i ] < αn/3

)

≤ P

(�n/3Ln�−1∑
i=0

I [Bj
i ] < αn/3Ln for some j ∈ [1,Ln]

)

≤ Lnβ
n/3Ln,

which converges to 0 as n → ∞. This proves (4.2).
Define Ãn,k the same way as we defined An,k except that in item 7, the qk(1)-

open path connects e3 to infinity. (See Figure 2 for an illustration of the event
Ãn,k .) Note that if Ãn,k occurs, then e1 and e3 are outlets, and e2 is an outlet
if and only if its weight is in [qk(3), qk(4)]. If An,k occurs but Ãn,k does not,
then there exists a qk(1)-closed dual circuit around the origin with radius at least

FIG. 2. The event Ãn,k . The boxes, in order from smallest to largest, are B(2k+i ) for i = 0, . . . ,4.
The dotted paths are qk(5)-closed, the path from e3 to infinity is qk(1)-open and all the other paths
are pc-open. The weight of e1 is in [qk(4), qk(5)], the weight of e3 is in [qk(2), qk(3)] and the weight
of e2 is in [qk(1), qk(2)] ∪ [qk(3), qk(4)]. The edges e1 and e3 are outlets. The edge e2 is an outlet
if and only if its weight is in [qk(3), qk(4)].
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2k+Ln . By (2.4), there exist constants C4 < ∞ and C5 > 0 such that for all n, k,
P(An,k \ Ãn,k) ≤ C4 exp(−C52k+Ln/2k), so

P(An,k \ Ãn,k occurs for some k ∈ [1, n]) → 0.

Therefore we may find C6 > 0 such that for all n,

P(Ãn,3k occurs for at least C3n values of k ∈ [1, n/3]) > C6.

Call A the above event whose probability is bounded below by C6. On the
event A, we define the vector �f = (f1, . . . , f�C3n�) whose entries are the first
�C3n� edges e (ordered from distance to the origin) such that there exist edges
ē1 and ē3 such that ē1, e and ē3 satisfy the properties of e1, e2 and e3, respec-
tively, in the definition of An,3k for some k ∈ [1, n/3]. Write O �f (n) for the num-

ber of outlets that appear in the vector �f , and write U �f for the number of out-

lets in B(2n) that do not appear in �f . At least one of {U �f + (C2n)/2 ≥ a(n)}
or {U �f + (C2n)/2 ≤ a(n)} has probability at least C6/3. Let us assume that it is
the first event; if it is the other then the subsequent argument can be easily modi-
fied. Write B = {U �f + (C2n)/2 ≥ a(n)}. Since U �f is defined only on A, we have
B ⊂ A.

Associated to each fk in �f in the definition of An,k are two intervals Ik(1) =
[qk(1), qk(2)] and Ik(2) = [qk(3), qk(4)]. Let η( �f ) be the configuration of weights
outside of �f . If �f and η( �f ) are fixed, then the variable U �f is a constant function
of the weights τfk

. Also, when these variables are fixed, O �f (n) is equal to the
number of values of k ∈ [1, �C3n�] such that τfk

∈ Ik(2). Since the lengths of
Ik(1) and Ik(2) are equal, the distribution of O �f (n) conditioned on �f , η( �f ) and
B is Binomial(�C3n�,1/2). If Y is an independent variable with this distribution,
then

P
(|O(n) − an| ≥ √

n
) ≥ E

[
P

(
O �f (n) ≥ (C3n)/2 + √

n | B, �f ,η( �f )
)]

P(B)

≥ (C6/3)P
(
Y ≥ (C3n)/2 + √

n
)
,

which is bounded below uniformly in n. This completes the proof.

4.2. Proof of Theorem 2.

PROOF OF THE CLT. We will apply Theorem 2.1 of [19]. To state that the-
orem, we need to introduce the notion of l-mixing. For k ≥ 0, n ≥ 1 and u ∈ R,
set

ln(k, u) = max
1≤j≤n−k

sup |E[eiuP e−iuF ] − EeiuP
Ee−iuF |,(4.3)

where

P = b(n)−1
j∑

l=1

δlXl, F = b(n)−1
n∑

l=j+k

δlXl,
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and the supremum in (4.3) is over all {δl = 0 or 1}. Now for k ≥ 0 and u ∈ R, set

l(k, u) = sup
n≥1

ln(k, u).

The sequence (Xk) is called l-mixing if for all real u, l(k, u) → 0 as k → ∞.

REMARK 3. As mentioned in the discussion below Definition 2.2 in [19], the
inequality

l(k, u) ≤ 16α(k)(4.4)

from page 307 in [10] holds for all k ≥ 0 and u ∈ R, so since α(k) → 0 as k → ∞,
the sequence (Xk) of outlet variables is l-mixing.

For k ≥ 0, define

c̃(k) = sup
j≥1

|EXjXj+k|.

The following is Theorem 2.1 of [19].

LEMMA 3. The following conditions are sufficient for∑n
k=1 Xk

b(n)
⇒ N(0,1).

For some ε > 0 and γ ≥ 0,

sup
a≥1

E

∣∣∣∣∣
a+b∑
k=a

Xk

∣∣∣∣∣
2+ε

= O(b1+ε/2+γ ) as b → ∞;(4.5)

the sequence (Xk) is l-mixing and for all real u,

l(k, u) = o(k−θ ) as k → ∞, where θ = 2γ /ε,(4.6)

and

b(n) → ∞ as n → ∞ and
∞∑

j=0

c̃(j ) < ∞.(4.7)

To prove the CLT, we simply need to verify the conditions of Lemma 3. Condi-
tion (4.5) holds with ε = 2 and γ = 0 by the first part of Corollary 7, using t = 4.
Using (4.4) and Corollary 5, we see that condition (4.6) holds. Also, the first part
of Corollary 7 with t = 2 shows the first part of condition (4.7). Finally, to verify
the second part of (4.7), we appeal to Corollary 6 using f = Xm and g = Xm+k

(for fixed m ≥ 1 and k ≥ 0), with p = 2 and q = 4. It follows that

c̃(k) ≤ C1α(k)1/4
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for some C1 < ∞. In view of Corollary 5, this proves the second part of (4.7) and
completes the proof of the CLT. �

PROOF OF THE SLLN. For i ≥ 1, take ni = 2i . The second statement of
Corollary 7 implies that for any ε > 0,

P

(
max

ni≤j≤ni+1
|O(j) − a(j)| ≥ εnr

i

)
≤ C

ε2

(
ni+1

n2r
i

+
√

ni+1

ni

)

≤ C1

(
1

(22r−1)i
+ 1

(2r−1/2)i

)
.

Since r > 1/2, this probability is summable in i. Since the function nr is mono-
tone, it follows that

∞∑
i=1

P

(
max

ni≤j≤ni+1

|O(j) − a(j)|
j r

≥ ε

)
< ∞.

The Borel–Cantelli lemma finishes the proof. �

5. Further results for invasion percolation. We begin with a lemma.

LEMMA 4. There exist constants C < ∞ and α > 0 such that for all m,n ≥ 1,

P
(
O(n,n + m) ≤ αm

) ≤ C exp(−mα),

where O(n,n + m) is the number of outlets in Ann(2n,2n+m).

PROOF. The proof of the lower bound in Theorem 1.4 of [4] shows the case
n = 1. For general n the proof is similar. For i,m ≥ 1, let Gi,m be the event that
there is no p2i -closed dual circuit around the origin with radius larger than 2i+logm,
and let Ki,m be the event that (a) there exists a p2i -closed dual circuit C around
the origin in Ann(2i ,2i+1)∗, (b) there exists a pc-open circuit C′ around the origin
in Ann(2i ,2i+1) and (c) the circuit C′ is connected to ∂B(2i+logm) by a p2i -open
path. By the RSW theorem and (2.3), there exists C1 > 0 such that for all i ≥ 0
and m ≥ 1,

P(Ki,m) ≥ C1.

Now let j be an integer between 1 and logm, and define the event K
j
i,m =

Kn+j+i�logm�,m. Note that for fixed j , the events (K
j
i,m)

�m/ logm�−1
i=0 are indepen-

dent. Therefore we can apply Lemma 2 to deduce that there exist α0 > 0 and
β0 < 1 such that for any m,n and 1 ≤ j ≤ logm,

P

(�m/ logm�−1∑
i=0

I [Kj
i,m] <

α0m

�logm�
)

< β
m/ logm
0 .
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Therefore,

P

(�logm�∑
j=1

�m/ logm�−1∑
i=0

I [Kj
i,m] < α0m

)

≤ P

(�m/ logm�−1∑
i=0

I [Kj
i,m] < α0m/�logm� for some j ∈ [1, logm]

)

≤ logmβ
m/ logm
0 ≤ C2 exp(−mα)

for some C2 < ∞ and α > 0. By (2.4), we also have the estimate

m∑
i=0

P(Gc
n+i,m) ≤ C3

m∑
i=0

exp(−C4m) ≤ C3 exp(−C5m).

Since the event Ki,m∩Gi,m implies Oi+1 ≥ 1, we can combine the above estimates
to deduce

P
(
O(n,n + m) ≤ α0m

) ≤ C2 exp(−mα) + C3 exp(−C5m),

which implies the lemma. �

Recall the definitions of Qn and Tn from Section 1.3. Since a(n) � n, Tn is
comparable with n.

PROOF OF THEOREM 3. It follows from the definition of Qn, the CLT for
O(n) and the fact that for any x, σn+x

√
n/σn → 1 as n → ∞ that

P(Qn < Tn+xσn) → �(x),

where � is the standard normal cumulative distribution function. Recall that the
ai ’s [ai = a(i) − a(i − 1)] are uniformly bounded away from 0 and ∞ by Theo-
rem 1. Therefore,

P(Qn < Tn+xσn) = P
(
a(Qn) < a(Tn+xσn)

) = P
(
a(Qn) < n + xσn + rn

)
,

where rn is uniformly bounded in n. It remains to prove the second part of the
proposition. The first statement implies that for any M > 0,

E min
{(

a(Qn) − n

σn

)2

,M

}
→ E min{Z2,M},

where Z is a standard normal random variable. Therefore, it suffices to show that
for any ε > 0 there exists C1 > 0 such that

lim sup
n→∞

E

(
a(Qn) − n

σn

)2

I
(|a(Qn) − n| > C1σn

)
< ε.
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This will follow if we show that there exists C2 such that for all n,

E

(
a(Qn) − n

σn

)4

< C2.

In other words, we need to show that E(a(Qn) − n)4 = O(n2). Since the ai ’s are
uniformly bounded away from 0 and ∞, it suffices to show that E(Qn − Tn)

4 =
O(n2). For c > 0, consider

An = {
O(n,n + k) > ck,O(n − k,n) > ck for all k ≥ √

n
}
.

It follows from Lemma 4 that there exists c > 0 such that

P(Ac
n) ≤ C3 exp(−nc).

We write

E(Qn − Tn)
4 = E(Qn − Tn)

4I (Qn ≤ C4n) + E(Qn − Tn)
4I (Qn > C4n).

If C4 is large enough, E(Qn − Tn)
4I (Qn > C4n) = o(n2) (One can write I (Qn >

C4n) as
∑∞

k=1 I (Qn ∈ (kC4n, (k +1)C4n]) and use Lemma 4). We now bound the
first expectation.

E(Qn − Tn)
4I (Qn ≤ C4n)

≤ (C4n)4
P(Ac

Tn
) + T 2

n + E(Qn − Tn)
4I

(|Qn − Tn| >
√

Tn,ATn

)
.

The first two summands are bounded by C5n
2. It remains to bound the last sum-

mand

E(Qn − Tn)
4I

(
Qn − Tn >

√
Tn,ATn

)
≤ E(Qn − Tn)

4I
(
Qn > Tn,O(Tn,Qn − 1) > c(Qn − 1 − Tn)

)
≤ 8

c4 E
(
O(Qn − 1) − O(Tn)

)4
I (Qn > Tn) + 8

≤ 8

c4 E
(
O(Tn) − n

)4 + 8

≤ C6n
2,

where the last inequality follows from Corollary 7. Similarly, one can show that
E(Qn − Tn)

4I (Qn − Tn < −√
Tn,ATn) ≤ C7n

2. �

PROOF OF COROLLARY 1. It follows from Theorem 1 that a(Tn) = n+O(1),
σn � √

n and |a(m) − a(n)| � |m − n| independently of m,n. Therefore, the first
statement of Corollary 1 follows directly from Theorem 3. The upper bound in the
second statement follows immediately from the upper bound in the first statement.
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For the lower bound, we may apply the CLT for (a(Qn)) to deduce that there exists
C > 0 such that for all n,

P
(
Qn ≥ Tn + √

n
)
> C and P

(
Qn ≤ Tn − √

n
)
> C.

The lower bound follows from these two estimates. Indeed, if EQn ≥ Tn, then
Qn ≤ Tn − √

n implies that Qn ≤ EQn − √
n and so

E(Qn − EQn)
2 ≥ nP

(
Qn ≤ Tn − √

n
)
> Cn.

If EQn ≤ Tn, then the argument is similar. �

PROOF OF COROLLARY 2. The proofs of both statements are similar so we
only show the proof of the first. We first prove the lower bound. The CLT for
(a(Qn)) implies that there exists C1 such P(Qn > Tn + √

n) > C1. It is obvi-
ous that R̂n ≥ 2Qn−1. Therefore, P(R̂n ≥ 2Tn+√

n−1) > C1, which implies that
E(log R̂n − Tn)

2 ≥ (
√

n − 1)2C1.
We now prove the upper bound. We first observe that by Theorem 4, using t = 4,

P
(
R̂n < 2

√
n) ≤ P

(
Qn ≤ √

n
) ≤ P

(
O

(√
n
) ≥ n

)
(5.1)

≤ EO
(√

n
)4

/n4 = O(n−2).

Therefore, E(log R̂n − Tn)
2I (R̂n < 2

√
n) = o(n). We next rule out the case when

R̂n > 2C2n for large enough C2.

E(log R̂n − Tn)
2I (R̂n > 2C2n) ≤ E(log R̂n)

2I (R̂n > 2C2n)

≤
∞∑

k=1

(
C2n(k + 1)

)2
P(R̂n > 2C2nk).

Note that P(R̂n > 2C2nk) is bounded above by

P
(
there is no pc-open circuit around the origin in Ann

(
2C2nk−√

C2nk,2C2nk))
+ P

(
Qn > C2nk − √

C2nk
)
.

Using the RSW theorem and Lemma 4 if C2 is large enough, this gives the bound

P(R̂n > 2C2nk) ≤ C3 exp(−(nk)C4).(5.2)

Therefore,

E(log R̂n − Tn)
2I (R̂n > 2C2n) = o(n).

Let Ãn be the event that there exists a pc-open circuit around the origin in
Ann(2k−√

k,2k) for all k ≥ √
n. It follows from the RSW theorem that

P(Ãc
n) ≤ C5 exp(−nC6).(5.3)
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Therefore,

E(log R̂n − Tn)
2I (R̂n ≤ 2C2n, Ãc

n) = o(n).

Moreover, if R̂n > 2
√

n and Ãn occurs, then Qn ≥ log R̂n −
√

log R̂n − 1. Hence

E(log R̂n − Tn)
2I

(
2
√

n ≤ R̂n ≤ 2C2n, Ãn

)
≤ 2E(Qn − Tn)

2 + 2E(log R̂n − Qn)
2I

(
Qn > log R̂n − √

C2n − 1
)

≤ C7n.

The last inequality follows from Corollary 1 and from the fact that Qn ≤ log R̂n +
1. The upper bound is proved. �

PROOF OF COROLLARY 3. For any n, let

f (n) = max{τe : e is an outlet in B(n)c}
and g(n) = min{τe : e is an outlet in B(n)} if there is an outlet in B(n) and g(n) = 0
otherwise.

LEMMA 5. There exists C < ∞ such that for any t ≥ 1 and n ≥ 1,

E

(∣∣∣∣log
f (n) − pc

pn − pc

∣∣∣∣t
)

≤ (Ct)Ct and E

(∣∣∣∣log
g(n) − pc

pn − pc

∣∣∣∣t
)

≤ (Ct)Ct .

PROOF. Using the RSW theorem and (2.4), respectively, we see that there
exist constants C1 < ∞ and C2 > 0 such that for any n ≥ 1 and p ∈ (0,1),

P
(
f (n) < p

) ≤ P
(
B(n)

p↔ ∞) ≤ C1

(
n

L(p)

)C2

and

P
(
f (n) ≥ p

) ≤ P(Bn,p) ≤ C1 exp
(
−C2

n

L(p)

)
,

where Bn,p is defined directly above (2.4). For k ∈ Z, let qk = p2kn

E

(∣∣∣∣log
f (n) − pc

pn − pc

∣∣∣∣
t)

= ∑
k

E

(∣∣∣∣log
f (n) − pc

pn − pc

∣∣∣∣
t

I
(
f (n) ∈ [qk+1, qk)

))

≤ ∑
k≥0

∣∣∣∣log
qk+1 − pc

pn − pc

∣∣∣∣
t

P
(
f (n) < qk

)

+ ∑
k<0

∣∣∣∣log
qk − pc

pn − pc

∣∣∣∣
t

P
(
f (n) ≥ qk+1

)
.
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The first result of the lemma follows from (2.5) and the above estimates. It remains
to prove the second statement. Note that for any n ≥ 1 and p ∈ (0,1),

P
(
g(n) < p

) ≤ P
(
B(n)

p↔ ∞) ≤ C1

(
n

L(p)

)C2

.

To bound P(g(n) ≥ p), note that if g(n) ≥ p, then there is an outlet in B(n). For
1 ≤ m ≤ �logn�+1, consider the event Am,n that Ann(�n/2m�, n) contains an out-
let. (For the case m = �logn� + 1, we use the convention that Ann(�n/2m�, n) =
B(n).) Note that for m = 0, Am,n is equal to the null event and that for fixed n, the
events Am,n are increasing in m. By Lemma 4, there exists C3 < ∞ and C4 > 0
such that for all m,n,

P(Ac
m,n) ≤ C3 exp(−mC4).

Using this estimate, we get

P
(
g(n) ≥ p

) =
�logn�∑
m=0

P
(
g(n) ≥ p,Ac

m,n,Am+1,n

)

≤
�logn�∑
m=0

P
(
B�n/2m+1�,p,Ac

m,n

)

≤
�logn�∑
m=0

P
(
B�n/2m+1�,p

)1/2
P(Ac

m,n)
1/2

≤ C5

�logn�∑
m=0

[
exp

(
−C2

�n/2m+1�
L(p)

)
exp(−mC4)

]1/2

for some C5 < ∞. In particular, for k < 0,

P
(
g(n) ≥ qk

) ≤ C6 exp(−|k|C7).

The remainder of the proof of the lemma is similar to the proof of the first state-
ment. �

We proceed with the proof of the corollary. We will only prove the first state-
ment; the proof of the second is similar. Inequality (2.5) and Corollary 1 imply
that

E

(
log

p2Qn − pc

p2Tn − pc

)2

� E(Qn − Tn)
2 � n.

Note that

g(2Qn) ≤ τ̂n ≤ f (2Qn−1).
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Therefore the corollary will follow if we show that there exists C8 such that for
all n,

E

(
log

g(2Qn) − pc

p2Qn − pc

)2

≤ C8
√

n and E

(
log

f (2Qn−1) − pc

p2Qn − pc

)2

≤ C8
√

n.

Let Dn be the event that (a) there exists a pc-open circuit in the annulus
Ann(2n−n1/4

,2n−1), (b) this circuit is connected to infinity by a p
2n−2n1/4 -open

path and (c) there exists a p
2n+n1/4 -closed dual circuit around B(2n)∗. The RSW

theorem and (2.4) imply that there exist constants C9 and C10 such that for all n,

P(Dc
n) ≤ C9e

−nC10
.(5.4)

Recall that for all n,

E

(
log

g(2n) − pc

p2n − pc

)4

≤ C11 and E

(
log

f (2n−1) − pc

p2n − pc

)4

≤ C11.

Therefore,

E

(
log

g(2Qn) − pc

p2Qn − pc

)2

I (Dc
Qn

) ≤
∞∑

k=1

E

(
log

g(2k) − pc

p2k − pc

)2

I (Dc
k) ≤ C12,

where DQn is the event
⋃

k(Dk ∩ {Qn = k}). Similarly,

E

(
log

f (2Qn−1) − pc

p2Qn − pc

)2

I (Dc
Qn

) ≤ C12.

On the other hand, if Dn occurs and, moreover, there is an outlet in the annulus
Ann(2n−1,2n), then

g(2n) and f (2n−1) are both in [p
2n+n1/4 ,p2n−2n1/4 ].

This observation and inequality (2.5) imply [note that Ann(2Qn−1,2Qn) always
contains an outlet]

E

(
log

g(2Qn) − pc

p2Qn − pc

)2

I (DQn) ≤ C13EQ1/2
n ≤ C14

√
n

and, similarly,

E

(
log

f (2Qn−1) − pc

p2Qn − pc

)2

I (DQn) ≤ C14
√

n.

This completes the proof of the corollary. �

PROOF OF COROLLARY 4. We start with the proof of the first statement. Take
r > 1/2. The SLLN for outlets gives that (O(n) − a(n))/nr → 0 a.s. as n → ∞.
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Theorem 1.4 in [4] states that there are constants C1 > 0 and C2 < ∞ such that
with probability 1, for all large n,

C1n < O(n) < C2n.

This implies that there exist constants C3 > 0 and C4 < ∞ such that with proba-
bility 1, for all large n,

C3n < Qn < C4n.

Therefore,

O(Qn) − a(Qn)

nr
→ 0 a.s. as n → ∞.

Because a(Qn) − n � Qn − Tn, the first statement of the corollary will follow if
we show that (O(Qn) − n)/nr → 0 a.s. Note that n ≤ O(Qn) ≤ n + OQn by the
definition of Qn. Since there exists a finite constant C5 such that (a) Qn < C4n a.s.
for all large n and (b) P(Oi > nr/2 for some i = 1, . . . ,C4n) ≤ C5/n2 (this second
statement is a consequence of Theorem 4), it follows that, a.s. for all large n,
OQn ≤ nr/2. The desired convergence follows.

The second and third statements follow easily from the first and from estimates
developed in the proofs of Corollaries 2 and 3. Indeed, since (Qn − Tn)/nr → 0
a.s., the statements about log R̂n and τ̂n will follow if we show that

log R̂n − Qn

nr
→ 0 and

1

nr
log

τ̂n − pc

p2Qn − pc

→ 0 a.s.(5.5)

It follows from the proof of Corollary 2 and the Borel–Cantelli lemma that there
exists C6 < ∞ such that, a.s., for all large n,

log R̂n − √
C6n − 1 ≤ Qn ≤ log R̂n + 1.(5.6)

To see this, note first that by (5.1), with probability one, log R̂n ≥ √
n for all

large n. Next, let Ãn be the event that for all k ≥ √
n, there is a pc-open cir-

cuit around the origin in the annulus Ann(2k−√
k,2k). By (5.3), with probability

one the events (Ãn) occur for all large n. Last, by (5.2) (setting k = 1 there), there
exists C6 < ∞ such that with probability one, for all large n, log R̂n ≤ C6n. Since
Ãn ∩ {√n < log R̂n < C6n} implies (5.6), it in fact occurs a.s. for all large n. This
implies the desired SLLN for (log R̂n).

Similarly, one may use arguments from the proof of Corollary 3 and the Borel–
Cantelli lemma to show that a.s., for all large n,

p
2Qn+(C4n)1/4 ≤ τ̂n ≤ p

2Qn−2(C4n)1/4 .(5.7)

To prove this, define Dn as in the proof of that corollary: it is the event that (a)
there exists a pc-open circuit in Ann(2n−n1/4

,2n−1), (b) this circuit is connected to
infinity by a p

2n−2n1/4 -open path and (c) there exists a p
2n+n1/4 -closed dual circuit
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around B(2n)∗. By (5.4), a.s. Dn occurs for all large n. The fact that if Dn occurs
and there is an outlet in Ann(2n−1,2n), then g(2n) and f (2n−1) are in the interval
[p

2n+n1/4 ,p2n−2n1/4 ], combined with the fact that Ann(2Qn−1,2Qn) always contains
an outlet, shows (5.7) a.s. for all large n. Along with (2.5), this implies the second
part of (5.5) and completes the proof of Corollary 4. �

APPENDIX: COVARIANCE ESTIMATES

Here we give the proof of Corollary 6. The proof we present is directly from [6].
We begin with a lemma, which is (17.2.2) from [10].

LEMMA 6. Suppose that f is 	k-measurable, and g is 	k+m-measurable,
and there are constants C1,C2 < ∞ such that |f | ≤ C1 and |g| ≤ C2 a.s. Then

|E[fg] − Ef Eg| ≤ 4C1C2α(m),(A.1)

where α(m) was defined in (3.2).

PROOF. We write the left-hand side of (A.1) as∣∣E[
f E[g − Eg | 	k]]∣∣ ≤ C1E

[∣∣E[g − Eg | 	k]∣∣] = C1E
[
f1E[g − Eg | 	k]],

where f1 = sgn(E[g − Eg | 	k]). Since f1 is 	k-measurable,

|E[fg] − Ef Eg| ≤ C1|E[f1g] − Ef1Eg|.
Similarly comparing g to g1 = sgn(E[g − Eg | 	k+m]),

|E[fg] − Ef Eg| ≤ C1C2|E[f1g1] − Ef1Eg1|.
Define A = {f1 = 1} and B = {g1 = 1}. Then the right-hand side of the above
inequality is bounded above by

C1C2|P(A,B) + P(Ac,Bc) − P(Ac,B) − P(A,Bc)

− P(A)P(B) − P(Ac)P(Bc) + P(Ac)P(B) + P(A)P(Bc)|,
which is bounded above by 4C1C2α(m). �

Now we will suppose that one function is bounded and the other is in Lp for
p > 1. The following is Lemma 2.1 from [6].

LEMMA 7. Suppose that f is 	k-measurable, and g is 	k+m-measurable and
that there exists C < ∞ such that |g| ≤ C a.s. Further, suppose that there is p > 1
such that the moment E|f |p < ∞ exists. Then

|E[fg] − Ef Eg| ≤ 6C[E|f |p]1/pα(m)1/q,(A.2)

where 1/p + 1/q = 1.
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PROOF. Let N be a positive number to be chosen later and set fN = f I [|f | <
N ]. Applying the previous lemma to fN and g, we get

|E[fNg] − EfNEg| ≤ 4CNα(m).(A.3)

To estimate the difference between this and the quantity in this lemma, note that
the left-hand side of (A.2) is bounded above by

|E[fNg] − EfNEg| + |E[f̃Ng] − Ef̃NEg|,
where f̃N = f − fN . Since |g| ≤ C, we find that the second term is no bigger than
2CE|f̃N |, and

E|f̃N | = E
[|f |p|f |1−pI [|f | ≥ N ]] ≤ N1−p

E|f |p.

Combining this with (A.3) gives

|E[fg] − Ef Eg| ≤ 4CNα(m) + 2CN1−p
E|f |p.(A.4)

Choosing N = [E|f |p]1/pα(m)−1/p yields (A.2). �

For the proof of Corollary 6 we use a similar method to the one given above.
We let C be a positive number to be chosen later and set gC = gI [|g| < C]. By
Lemma 7,

|E[fgC] − Ef EgC | ≤ 6C[E|f |p]1/pα(m)1/p′
,

where 1/p+1/p′ = 1. To estimate the difference, we write g̃C = g−gC and again
see that

|E[fg] − Ef Eg| ≤ |E[fgC] − Ef EgC | + |E[f g̃C] − Ef Eg̃C |.
We bound the last term using Hölder’s inequality by

[E|f |p]1/p[E|g̃C − Eg̃C |p′ ]1/p′

and then use

[E|g̃C − Eg̃C |p′ ]1/p′ ≤ 2[E|g̃C |p′ ]1/p′
,

which we can bound above by 2(Cp′−q
E|g|q)1/p′

as in (A.4). Choosing C =
[E|g|q]1/qα(m)−1/q and combining the estimates as before completes the proof.
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