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JUMP-TYPE HUNT PROCESSES GENERATED BY LOWER
BOUNDED SEMI-DIRICHLET FORMS

BY MASATOSHI FUKUSHIMA AND TOSHIHIRO UEMURA
Osaka University and Kansai University

Let E be a locally compact separable metric space and m be a positive
Radon measure on it. Given a nonnegative function £ defined on E x E off
the diagonal whose anti-symmetric part is assumed to be less singular than
the symmetric part, we construct an associated regular lower bounded semi-
Dirichlet form n on L2(E; m) producing a Hunt process X% on E whose
jump behaviours are governed by k. For an arbitrary open subset D C E, we
also construct a Hunt process XD-%0n Dinan analogous manner. When D is
relatively compact, we show that X D.0 js censored in the sense that it admits
no killing inside D and killed only when the path approaches to the boundary.
When E is a d-dimensional Euclidean space and m is the Lebesgue measure,
a typical example of X 0 is the stable-like process that will be also identified
with the solution of a martingale problem up to an n-polar set of starting
points. Approachability to the boundary 0D in finite time of its censored
process X D.0 on a bounded open subset D will be examined in terms of the
polarity of 9 D for the symmetric stable processes with indices that bound the
variable exponent o (x).

1. Introduction. Let E be a locally compact separable metric space equipped
with a metric d, m be a positive Radon measure with full topological support
and k(x, y) be a nonnegative Borel measurable function on the space E x E \
diag, where diag denotes the diagonal set {(x, x) :x € E}. A purpose of the present
paper is to construct Hunt processes on E and on its subsets with jump behaviors
being governed by the kernel k by using general results on a lower bounded semi-
Dirichlet form on L2(E ;m).

The inner product and the norm in L?(E;m) are denoted by (-,-) and | - |,
respectively. Let F be a dense linear subspace of L?(E;m) such that u A 1 € F
whenever u € F. A (not necessarily symmetric) bilinear form n on F is called a
lower bounded closed form if the following three conditions are satisfied: we set
ngu,v) =n(u,v) + Bu,v),u,v e F. There exists a By > 0 such that:

(B.1) (lower boundedness); for any u € F, ng,(u,u) > 0.
(B.2) (sector condition); for any u, v € F,

1, v)| < K \Jngy(u,u) - /ngy (v, v)
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for some constant K > 1.
(B.3) (completeness); the space F is complete with respect to the norm

né/ 2(-, -) for some, or equivalently, for all &« > So.

For a lower bounq\ed closed form (n, F) on L2(E; m), there exist unique semi-
groups {T;; ¢ > 0}, {T}; t > 0} of linear operators on L*(E; m) satisfying

(T: f, ) = (f, Trg),

(1.1) A
frg e LX(E;m), |T;|| < e | T,|| < e’ t >0,

such that their Laplace transforms G, and Gy are determined for o > Bo by

Gof,Gof €F,  1a(Gaf,u)=nq(u, Gof) = (f u),
feL*(E;m),uckF.

See the first part of Section 3 for more details. {7;; ¢ > 0} is said to be Markovian if
0<T;f <1,t >0, whenever f € LZ(E; m),0 < f < 1. It was shown by Kunita
[15] that the semigroup {7; ¢ > 0} is Markovian if and only if

(1.2) UueF and n(Uu,u—Uu)>0 for any u € F,

where Uu denotes the unit contraction of u: Uu = (0 vV u) A 1. A lower bounded
closed form (1, F) on L2(E; m) satisfying (1.2) will be called a lower bounded
semi-Dirichlet form on L?(E; m). The term “semi” is added to indicate that the
dual semigroup {Ty;1 >0} may not be Markovian although it is positivity preserv-
ing. As we shall see in Section 3 for a lower bounded semi-Dirichlet form n which
is regular in the sense stated below, if the associated dual semigroup {(T;;t > 0}
were Markovian, or equivalently, if m were excessive, then 7 is necessarily a non-
negative definite closed form, namely, Bo in conditions (B.1), (B.3) [resp., (B.2)]
can be retaken to be O (resp., 1).

A lower bounded semi-Dirichlet form (n, F) is said to be regular if F N Co(E)
is uniformly dense in Co(E) and n4-dense in F for o > By, where Co(E) denotes
the space of continuous functions on E with compact support. Carrillo-Menendez
[8] constructed a Hunt process properly associated with any regular lower bounded
semi-Dirichlet form on L?(E;m) by reducing the situation to the case where 7
is nonnegative definite. We shall show in Section 4 that a direct construction is
possible without such a reduction.

Later on, the nonnegative definite semi-Dirichlet form was investigated by Ma,
Oberbeck and Rockner [16] and Fitzsimmons [10] specifically in a general context
of the quasi-regular Dirichlet form and the special standard process. However, in
producing the forms 1 from nonsymmetric kernels k corresponding to a consid-
erably wide class of jump type Hunt processes in finite dimensions whose dual
semigroups need not be Markovian, we will be forced to allow positive fy.

To be more precise, we setfor x,y € E, x # y,

(13)  ke(x,y) =3k, y) +k(y,x)} and kq(x,y) = ${k(x,y) —k(y, x)},
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that is, the kernel kg (x, y) denotes the symmetrized one of k, while k,(x, y) rep-
resents the anti-symmetric part of k. We impose four conditions (2.1)—(2.4) on k;
and k, stated below. Condition (2.1) on k; is nearly optimal for us to work with the
symmetric Dirichlet form (1.4) defined below, while conditions (2.2)—(2.4) require
k, to be less singular than k.

Let conditions (2.1)—-(2.4) be in force on k. Denote by C(l)lp(E) the space of
uniformly Lipschitz continuous functions on E with compact support. We also let

E(u,v) = / /E g 10) ) ) —v(0)

X kg(x, y)m(dx)m(dy),
Fr=lue LZ(E; m) :u is Borel measurable and & (u, u) < 0o}.

(1.4)

(5_, JF") is a symmetric Dirichlet form on L*(E ; m) and F" contains the space
C(l)lp(E). We denote by FO the & -closure of C(l)lp(E) in F7. (£, FY) is then a
regular Dirichlet form on L%(E:m) (cf. [13], Example 1.2.4, Theorem 3.1.1 and
see also [23] and [24]).

Foru € C(l)lp(E) and n € N, the integral

(15) L'u(x):= / (u(y) — u()k(x, yym(dy),  x€E.
{yeE:d(x,y)>1/n}

makes sense. We prove in Proposition 2.1 and Theorem 2.1 in Section 2 that the

finite limit

(1.6) n(u,v) =— lim / L u(x)v(x)m(dx) foru,v e C(l)ip(E),
n—oo E

exists, 1 extends to FO x FO and (n, F) is a lower bounded semi-Dirichlet form
on L%(E; m) with parameter B9 = 8(C v C>C3)(> 0) where C1—C3 are constants
appearing in conditions (2.2)—(2.4). Furthermore, the form £ is shown to be a
reference (symmetric Dirichlet) form of n in the sense that, for each fixed o > By,

(L.7) c1&1(u,u) <ng(u,u) <cr&i(u,u), ue]:O,

for some positive constants c1, ¢ independent of u € FY. Therefore, (n, ]—"O) be-
comes a regular lower bounded semi-Dirichlet form on L?(E;m) and gives rise
to an associated Hunt process X° = (X9, P%) on E. We call X° the minimal Hunt
process associated with the form 7. Equation (1.6) indicates that the limit of £” in
n plays a role of a pre-generator of X informally.

If we define the kernel k* by

(1.8) k*(x,y) :==k(y, x), x,yeE, x#y,

and the form n* by (1.5) and (1.6) with k* in place of k, we have the same con-
clusions as above for n* (Corollary 2.1 of Section 2). In particular, there exists a
minimal Hunt process X%* associated with the form n*.
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In the second half of Section 3, we are concerned with a killed dual semigroup
{e7P'T}; t > 0}, which can be verified to be Markovian for a large B > O but only
for a restricted subfamily of the forms n considered in Section 2 (lower order
cases). For a higher order 5, the killed dual semigroup may not be Markovian no
matter how big g is. We shall also exhibit an example of a one-dimensional proba-
bility kernel k [ fg1 k(x, y) dy = 1] with m being the Lebesgue measure, for which
the associated semi-Dirichlet form 7 is not nonnegative definite and accordingly
the associated dual semigroup itself is non-Markovian.

When E = R? the d-dimensional Euclidean space and m(dx) = dx the
Lebesgue measure on it, we shall verify in Section 5 that our requirements (2.1)—
(2.4) on the kernel k(x, y) are fulfilled by

KD, y) = w)lx — y[747e®,
(1.9)
KDy =wle =y 7470,y eRLx#y,

for w(x) given by (5.1) and «/(x) satisfying the bounds (5.2). A Markov process
corresponding to k1) is called a stable-like process and has been constructed by
Bass [4] as a unique solution to a martingale problem. In this case, we shall prove
that the minimal Hunt process associated with the corresponding form 7 is conser-
vative and actually a solution to the same martingale problem, identifying it with
the one constructed in [4] up to an n-polar set of starting points.

In Section 6, we consider an arbitrary open subset D of E. Define mp by
mp(B) =m(B N D) for any Borel set B C E. By replacing E and m with D
and m p, respectively, in (1.4), we obtain a symmetric Dirichlet form (€p, 7))

on L2(D; mp). Denote by D the closure of D and by C(l)ip(ﬁ) the restriction to
D of the space C(l)ip(E ). We also denote by C(l)ip(D) the space of uniformly Lip-
schitz continuous functions on D with compact support in D. Let Fp5 and .7-"1%
be the £p 1-closures of Cgp(ﬁ) and Cgp(D), respectively, in Fp,. Then (Ep, Fp)
is a regular symmetric Dirichlet form on LZ(E; mp), while (S?), .7-"%) is a regu-
lar symmetric Dirichlet form on L3(D: mp) where 8% is the restriction of £p to
FO x 79

By making the same replacement in (1.5) and (1.6), we get a form np on
Cgp(ﬁ) X C(l)lp(ﬁ), which extends to F5 x Fj to be a regular lower bounded
semi-Dirichlet form on L?(D; mp) possessing Ep as its reference form, yielding
an associated Hunt process X2 on D. We also consider the restriction nOD of np
to f% X f% so that (n%, ]—"g) is a regular lower bounded semi-Dirichlet form on
L%(D; mp) possessing EOD as its reference form. We shall show in Section 6 that
the part process X2-0 of X D on D, namely, the Hunt process obtained from X D
by killing upon hitting the boundary 9 D, is properly associated with (n%, .7-'%).

We shall also prove in Section 6 that X D admits no jump from D to 9D, and
furthermore when D is relatively compact, X is conservative so that X 20 admits
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no killing inside D and its sample path is killed only when it approaches to the
boundary 9 D. X?-0 is accordingly different from the part process of X° on the set
D in general because the sample path of X 0 may jump from D to E \ D resulting
in a killing inside D of its part process. By adopting k* instead of k, we get in an
analogous manner Hunt processes X P* on D and X P-%* on D satisfying the same
properties as above.

When (€, F") is the Dirichlet form on L?(R?) of a symmetric stable process
on R?, the space FU is identical with F”. In this case, for an arbitrary open set
D C R?, the symmetric Hunt process on D associated with (50D, f%) is a censored
stable process on D in the sense of Bogdan, Burdzy and Chen [7]. It was further
shown in [7] that, if D is a d-set, then the space F; coincides with 77, so that the
symmetric Hunt process on D associated with (£p, Fp) was called a reflecting
stable process over D.

For the nonsymmetric kernel kD on R? as (1.9), associated Hunt processes
X D0 x D0 on an arbitrary open set D C RY may well be called censored stable-
like processes in view of the stated properties of them. However, it is harder in this
case to identify the space F 5 with F7,, and accordingly we call the associated Hunt

processes X2, XP* over D modified reflecting stable-like processes analogously
to the Brownian motion case (cf. [11]). At the end of Section 6, we give sufficient
conditions in terms of the upper and lower bounds of the variable exponent o (x)
for the approachability in finite time of the censored stable-like processes to the
boundary.

We are grateful to Professor Yoichi Oshima for providing us with his unpub-
lished lecture notes [19] on nonsymmetric Dirichlet forms as well as an updated
version of a part of it, which are very valuable for us.

2. Construction of a lower bounded semi-Dirichlet form from k. Through-
out this section, we make the following assumptions on a nonnegative Borel mea-
surable function k(x, y) on E x E \ diag:

My e L} (E;m)  for Ms(x):/ (1 Ad(x, y)?)kg(x, y)m(dy),

@2.1) VA
x ek,

(2.2) Cy:=sup |ka(x, y)Im(dy) < oo,
xeEJd(x,y)=1
and there exists a constant y € (0, 1] such that
(2.3) Cy :=sup |ka (x, Y)Y m(dy) < oo,
xek d(x~y)<1
and furthermore, for some constant C3 > 0,
lka(x, )77 < C3ks(x, y) forany x,y € E

2.4)
with0 <d(x,y) <1.
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For each n € N, define £"u for u € C(l)ip(E) by (1.5) and n"(u, v) for u,v €
CoP (E) by
(2.5) Nt (u,v) = —/ L u(x)v(x)m(dx),
E

the integral on the right-hand side being absolutely convergent by (2.1). We note

that any u € C(l)lp(E ) belongs to the domain F” of the form £ defined by (1.4). In

fact, if we denote by K the support of u, then £(u, u) is dominated by twice the

integral of (u(x) — u(y))zks (x, y)ym(dx)m(dy) on K x E, which is finite by (2.1).
&(u, v) admits also an alternative expression for u, v € C(l)lp(E ),

awvyi=[[ (@)= u) ) - v@)k, mdmy),
E x E\diag
because the right-hand side of the above can be seen to be equal to the same integral
with k(y, x) in place of k(x, y) by interchanging the variables x, y, and we arrive
at the expression in (1.4) by averaging. In particular, &(u, v) = limy— o £" (u, v)
foru,v e C(l)lp(E) where
@6 &=/ (u(y) — () (U(y) ~ v))kCx. yym(dx)m(dy).
d(x,y)>1/n
PROPOSITION 2.1. Assume (2.1)~(2.4). Then for all u, v € C(l)ip(E), the limit
j— 1 n
n(u,v) = lim 7" (u,v)

exists. Moreover, the limit has the following expression:

Q7 n(u.v)= %S(u, V) + f fy (10 w0k, mdm(@y),

where £ is defined by (1.4) and the integral on the right-hand side is absolutely
convergent.

PROOF. Foru,v e C(l)ip(E), we have

n"(u,v) —n"(v,u) = —/‘/[;(x y)>l/n(u(y) — u (@) vk, y)m(dx)m(dy)
+//d(x,y)>l/n(v(y) — v(0))u(X)k(x, y)ym(dx)m(dy)
= —f/ u(MNv(x)k(x, y)ym(dx)m(dy)
d(x,y)>1/n
+//d(x,y)>1/n v(uk(x, yym(dx)m(dy)

B 2//al(x,y)>1/n u(x)v(y)ka(x, yym(dx)m(dy),
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and further
n"(u,v) +n"(v,u)

_— f f () — u(0))vk(, Yym(dx)m(dy)
d(x,y)>1/n
- / f (W(y) = v())ukCx, yym(dx)m(dy)
d(x,y)>1/n
- f f () — u(0)) () — vk (x, Y)m(dx)m(dy)
d(x,y)>1/n
- / f () — u())v(ykCx, yym(dx)m(dy)
d(x,y)>1/n
- / f (W(y) = v())ukCx, yym(dx)m(dy)
d(x,y)>1/n

=@ -2/ u(V(ka(x. YImdx)m(dy).
d(x,y)=1/n
By adding up the obtained identities, we get for u, v € C(l)ip(E),

2n”(u,v)=5”(u,v)+2//d( @ —u )y
x,y)>1/n

(2.8)
X kq(x, y)m(dx)m(dy).

Since £ (u, v) converges to £(u, v) as n — 00, it remains to see that the second
term of the right-hand side also converges absolutely as n — oo for each u, v €

C(E).
From the Schwarz inequality and (2.2), we see that

f ] () — () v3ka(x, ¥)|m(dx)m(dy)
d(x,y)>1/n
_ . v/2
< f /1 eyt 1O O O K )
X Jkq (x, WY 2m(dx)m(dy)

+//d( ) 1|M(X)—u(y)|‘Iv(y)lks(x,y)1/2|ka(x,y)|1/2m(dx)m<dy)
xX,y)z

_ 2 2—
5/ S,y 60 =0 et DBz meay

2
* \///;/n<d(x,y)<1 v(¥)?lka(x, )Y m(dx)m(dy)

VG ||v||\/ / /d @ a0k ym@nmdy)
X,y)=
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So, by making use of assumptions (2.3) and (2.4) and an elementary inequality
VA+ B < \/Z/A + B holding for A >0 and B > 0, we have

// () — u()v(ka (. y)|m(dx)m(dy)
d(x,y)>1/n
<V2JCi v C.G3|vll - VE (u, u).

Then taking n — oo,
//;é () — u())v(»)ka(x, y)|m(dx)m(dy)
y#x
<V2JC1 v CiCs v - VE(u, u) < o0

as was to be proved. [

For u, v € Cy*(E), set
ng(u,v) =nu,v)+ pu,v), B >0,

and
Q9 Baw= [ (w6 -kt mdnm.
Then equation (2.7) reads
(2.10) N, v) =18, v) + Bu,v),  u,veCP(E),
while we get from the proof of the preceding proposition
2.11) B, v)| < Cal|vIVE @, u),

where C4 = \/E A C1V CaC3. Now we put ,30 = 4-(C4)2 = 8(C1. Vv CrC3).
From equation (2.10) and the bound (2.11), we have for u € C(l)lp(E ),

Ny, u) = SEg u, ) + L€, u) + 3 ollull® + Bu, u)
> 18y, 1) +~V3CaV/Eu, w) ull + Blu, u) > 1Ep, (u, ).
Further, for u, v € Cy"(E),
@, )| < F1E@W, V)| + [Bu, v)]
< IVEU, u)VEW, v) + CallvIVEw, u)
< J(VEW, v) +2C4lIvI)VE (u, u)
< 2 JEp,w.v),/Epy . w).
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So it also follows that
(2.12) I, v)| < 22 gy (. )0y (v, v)

and

i
(2.13) 1€y (u, u) < npy(u, u) < 2+Tf25,30(u, i), u,veCyl(E).

Let F9 be the &;-closure of Cgp (E) in F". Since FV is complete with respect
to &, for any @ > 0, the estimates obtained above readily lead us to the first con-
clusion of the following theorem.

THEOREM 2.1. Assume (2.1)~(2.4). Then the form n defined by Proposi-
tion 2.1 extends from C(l)lp(E) X C(l)lp(E) 10 FO x FV to be a lower bounded closed
form on L%(E;m) satisfying (B.1)-(B.3) with Bo =8(C; v C2C3), K = 242 and
possessing (£, F0) as a reference form in the sense of (1.7).

Furthermore, the pair (7, F°) is a regular lower bounded semi-Dirichlet form
on L*(E; m).

We note that the above constant By is equal to O if k is symmetric: k(x, y) =
k(y,x),(x,y) € E x E\ diag.

PROOF OF THEOREM 2.1. It suffices to prove the contraction property (1.2)
for the present pair (1, FY). We first show this for u € C(l)lp(E ). Note that Uu €

C(l)ip(E) and, forn e N,
n""(Uu,u —Uu)

=— // (Uu(y) — Uu(x))(u(x) — Uu(x))k(x, y)m(dx)m(dy)
dx,y)>1/n
-/ (1 = Uu) () — Dk(x, yym(dx)m(dy)
{d(x,y)>1/n}N{x:u(x)>1}

-/ Uu(y)u(x)k(x, yym(dxym(dy)
{d(x,y)>1/n}N{x : u(x) <0}
> 0.
Then, we have by Proposition 2.1
— N n _
n(Wu,u —Uun) —nll)rr;on Uu,u—Uu)=>0.
Following a method in [17], Lemma 4.9, we next prove (1.2) for any u € s

Choose a sequence {u,} C C(l)lp(E ) which is £;-convergent to u. Then

(2.14) |Uug — Uul| — 0,  £— oo,
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because U is easily seen to be a continuous operator from L?(E;m) to L2(E; m).

Fix o > Bp. We then get from (1.7) the boundedness

supng (Uug, Uug) < Casup &1 (ug, ug) < 00.
¢ ¢

On the other hand, using the dual resolvent 60, associated with the lower bounded
closed form (n, FY), we see from equation (3.1) below that, for any g € L2(E;m),

ne(Uug, Gug) = (Uug, g) — (Uu, g) = 1e(Uu, Gag), ¢ — oo.

Since {aag:g e L2(E,m)} is Ne-dense in FY, we can conclude by making use
of the above 1,-bound of {Uu,} and the sector condition (B.2) that {Uug} is nq-
weakly convergent to Uu as £ — oo. In particular, by the above 7,-bound and
(B.2) again, we have

(2.15) Ne(Uug,up) = ng(Uu, u), {— 0.
We consider the dual form 7 and the symmetrizing form 7 of 1 defined by
N, v) =n(v,u), i(u, v) = $(n(u, v) + n(v, ), u,veF.

In the same way as above, we can see that {Uu,} converges as £ — oo to Uu
No-weakly and consequently 7),-weakly. Since (74, FY isa nonnegative definite
symmetric bilinear form, it follows that

Ne(Uu, Uu) =1e(Uu,Uu) < I%minfﬁa(Uuz, Uuy)
(2.16) o
=liminfny, (Uug, Uug).
£— 00

We can then obtain (1.2) for u € F° from (2.14), (2.15) and (2.16) as
nWUu,u —Uu) > lim n(Uuyg,up) — liminfn(Uug, Uuy)
{— 00 {— 00

=limsupn(Uug,us — Uuy) > 0.

{— 00

For the kernel k* defined by (1.8), we have obviously
(217) k;k(x»)’)zks(x»)’) and k:;(X,y)=_ka(x7Y), x’yEE,x#y‘

Hence, if the kernel k(x, y) satisfies (2.1)—(2.4), so does the kernel k*(x, y). Define
n* as in Proposition 2.1 with £*(x, y) in place of k(x, y). The same calculations
made above for k(x, y) remain valid for £*(x, y). Note also that the domain F O is
the same as FC since the symmetric form £* defined by k* is also the same as &.
Thus, we can have the following corollary.

COROLLARY 2.1.  Assume conditions (2.1)~(2.4) hold. Then the pair (n*, FOy
is also a regular lower bounded semi-Dirichlet form on L*>(E; m).
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3. Markov property of dual semigroups. First, we fix a general lower
bounded closed form (5, F) on L*(E; m) satisfying (B.1)—(B.3) and make sev-
eral remarks on it. The last condition (B.3) is equivalent to

(B.3)" (#1g,. F) is a closed symmetric form on L2(E;m),

where 77 denotes the symmetrization of the form n: 7(u, v) = %(n(u, v)+n(v, u)).
ng, is therefore a coercive closed form in the sense of [17], Definition 2.4, so
that, by [17], Theorem 2.8, there exist uniquely two families of linear bounded
operators {Gg o> gy {(A?a}wﬂo on L%(E; m) such that, for & > Bo, Go(L*(E; m)),
Go(L*(E; m)) C F and

(3.1) Na(Ga f, ) = (f,u) = 1o, Go f), feL*E;m)ueF.

In particlular, G, and Gy are mutually adjoint:

(3.2) (Gog, ) =(8,.Gof),  fgeL*(E;m),a> fo.

We call {Gy; a > Bo} (resp., {Ga; o > Bo}) the resolvent (resp., dual resolvent)
associated with (n, F).

Accordingly we see in exactly the same way as the proof of Theorem 2.8 of [17]
that there exist strongly continuous contraction semigroups {S;; ¢ > 0}, {(Si:1 > 0}
of linear operators on LZ(E; m) such that, fora > 0, f € LZ(E; m),

o0 ~ o —~
Gpraf = [ e Sifdt. Gpuaf = [ e S s ar.

We then set 7; = ePor S, T, = Po'S, to get strongly continuous semigroups {T;; t >
0}, {T3; t > 0} satisfying

o0 —~ o0 —~
(33) Gof =/ T fdt,  Gof =/ eUT fdt, o> Po
0 0

as well as (1.1).

We call {T;; t > 0} (resp., {Ty; 1 > 0}) the semigroup (resp., dual semigroup) on
L2(E:; m) associated with the lower bounded closed form (17, F). We introduce the
dual form 77 of n by

nu,v) =n,u), u,veF.

Then (77, F) is a lower bounded closed form on L?(E; m) with which {T}; t >0}
and {Go; o > Po} are the associated semigroup and resolvent, respectively.
Suppose (1, F) is a lower bounded semi-Dirichlet form, namely, it satisfies the
contraction property (1.2) additionally. As in the proof of the corollary to Theo-
rem 4.1 of [15] or the proof of Theorem 4.4 of [17], we can then readily verify
that the family {«¢G,; o > Bp} is Markovian, which is in turn equivalent to the
Markovian property of {7;; ¢t > 0}. Together with {T;; ¢ > 0}, its Laplace trans-
form then determines a bounded linear operator G, on L*°(E; m) for every o > 0
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and {¢G; o > 0} becomes Markovian. Further, {7;; t > 0} is positivity preserving
in view of (1.1).

Suppose additionally that (n, F) is regular. Then the associated Markovian
semigroup and resolvent can be represented by the transition function {P;; ¢ > 0}
and the resolvent {R,; o > 0} of the associated Hunt process X specified in The-
orem 2 of the next section: Py f =T;f,t > 0, and R, f = G f, @ > 0, for any
feBy(E)N L2(E:; m). We call a o -finite measure i on E excessive relative to X
if u Py < p for any ¢ > 0. The next lemma was already observed in Silverstein [20].

LEMMA 3.1. Let n be a regular lower bounded semi-Dirichlet form on
L%(E; m).

(1) The following three conditions are mutually equivalent:
1. m is excessive relative to X.
2. The dual semigroup { T,:t > 0} is Markovian.
3. n(u —Uu, Uu) >0 for anyu € F.

(i1) If one of the three conditions in (i) is satisfied, then 1 is nonnegative definite
and the constant B in conditions (B.1), (B.3) [resp., (B.2)] can be retaken to
be O (resp., 1).

PROOF. (i) 3 is the Markovian criterion (1.2) for the dual semigroup. If 2
is satisfied, then for any f € L>(E;m) with 0 < f <1, 0 < T}f <1 so that
(f, Pth) = (ﬁf, h) < (1,h) forany h € By N L?(E; m), from which 1 follows.
The converse can be shown similarly.

(i1) By the Schwarz inequality,

(Ro f (x))? < Ry L(x) Ry f2(x) < éRaf%x), x€E, feBy(E)NL*(E;m).

Assuming 1 of (i), an integration with respect to m yields o?||Gq f 12 < | f 12,
the L2-contraction property of «G. In view of [17], Theorem 2.13, n(u,u) =
limy_, oo ¢(u —aGqu, u)u € F, which particularly implies that n(u, u) > 0,u € F,
and {ny; o > 0} become equivalent on 7. [

We now return to the setting of the preceding section that (n, F°) is defined
in terms of the kernel k satisfying conditions (2.1)—(2.4). By Proposition 2.1,
7, v) = +E(v, u) + B(v,u) where B is defined by (2.9) on F° x FO. On the
other hand, we have from (2.17) that n*(u, v) = %E(u, v) — B(u, v) and conse-
quently

(3.4) A(u, v) = n*(u, v) + (B, v) + B(v, u)), u,veFo

We know from Theorem 2.1 and Corollary 2.1 that both (5, F 0y and (n*, FOy
are regular lower bounded semi-Dirichlet forms. In order to get a similar property
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for the dual form 7, we need to impose on the kernel k stronger conditions than
(2.1)—(2.4) making the additional term on the right-hand side of (3.4) controllable.
In the rest of this section, we assume that the kernel k satisfies the condition

My e L2 (E;m)  for My(x) = / (1 Ad(x, ))ks (x, y)m(dy),

(3.5) i

x ek,

in place of (2.1), and further satisfies condition (2.2) as well as (2.3) for y =1 so
that

% = sup/ lka(x, y)|m(dy)
xeE Jx#y

(3.6)

1
=sup [ kG 3) = kG0 m(dy) < oo.
xeE x#y

Notice that condition (2.4) for y = 1 is always satisfied with C3 = 1.
Then the integrals

Lut) = [ () = u)kr, ymdy)  and
3.7) VA
Cu(x) = / (u(y) — u@))k*(x, yym(dy),

y#x
converge for u € C(])ip(E ), x € E, and we get from Proposition 2.1 the identities
(3.8) n(u,v)=—(Lu,v), n*(u,v) = —(Lu,v), u,veC(l)ip(E).

Furthermore,

K(x):=2 kq(x, y)m(dy)
YEY

=), (k(x,y) —k(y,x))m(dy),  x€E,
VF#X

(3.9)

defines a bounded function on E and (3.4) readily leads us to
A, v) =n*@,v)+ u, Kv),  u,veF,

which combined with (3.7) means that L =L*— K is the formal adjoint of L.
7 does not necessarily satisfy the contraction property (1.2), but the form

g (u, v) =n*(u, v) + (u, (K + p)v), B = Bi,

does because so does the form n* by Corollary 2.1 and K 4+ 8 > 0 if 8 > B;1. So
we have the following proposition.
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PROPOSITION 3.1.  Assume that (3.5) and (3.6) hold. Then (7, FO, which is
the dual of (ng, FO), is a regular lower bounded semi-Dirichlet form on L*>(E; m)
provided that 8 > B.

This proposition means that, under conditions (3.5) and (3.6), {e‘ﬁ’ T}; t > 0}is
Markovian for the dual semigroup { T,;t > 0} associated with n when 8 > B;. If
(3.6) fails, the dual semigroup of {e P'T,: 1 >0} may not be Markovian no matter
how large B is.

A nonnegative Borel function k on E x E is said to be a probability kernel if
[gk(x, y)m(dy) =1,x € E. A probability kernel k with the additional property

(3.10) sup | k(y,x)m(dy) < oo
xeEJD

satisfies conditions (3.5) and (3.6) and 5 defined by (3.8) yields a regular lower
bounded semi-Dirichlet form on L?(E; m). We now give an example of a such a
kernel on R! with m being the Lebesgue measure for which the associated semi-
Dirichlet form 7 is not nonnegative definite so that, according to Lemma 3.1, the
associated dual semigroup {T}, t > 0} is not Markovian although {e= P! T}; t >0}
is Markovian for a large f > 0 in view of Proposition 3.1. A transition probabil-
ity density function with respect to the Lebesgue measure of the one-dimensional
Brownian motion with a mildly localized drift serves to be an example of such a
kernel k.

Consider a diffusion ¥ on R! with generator Gu = %u/ "+ Ab(x)u’ where M\ is a

_d d

positive constant and b is a function in Cé (R!) not identically 0. Then G = Tm s

for
dm(x) =m(x)dx, ds(x) =2m(x)_1dx,

where

m(x) = 26Xp{2)» /Ox b(y) dy},

namely, Y is a diffusion with canonical scale s and canonical (speed) measure dm.

The following facts about Y are taken from [12]. Since m(x) is bounded from
above and from below by positive constants, both 00 are nonapproachable in the
sense that s(£00) = £oo. Therefore, Y is recurrent and consequently conserva-
tive: g:(x, E) = 1,x € E, where {g;; t > 0} denotes the transition function of Y.
Y is m-symmetric and its Dirichlet form (£¥, F¥) on L2(R!, m) is given by

E¥(u,v) = %/Rl u' (V' (x)m(x) dx,

FY ={u e L>(R'; m) : u is absolutely
continuous and EY (u, u) < oo} (=H'(R)).
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For u € Cé RY), &Y (u, --) is seen to be equal to %le ((u")? = 2xbu'u) dx and

1
Sy(u,ﬁ):—(/ (u/)2dx+A/ b/uzdx)
m 2 \JRr! R!

There is a finite interval / C R! where &’ is strictly negative. Choose uq € Cé R
not identically zero and with support being contained in /. We can then make a
choice of A > 0 such that the right-hand side of the above equation is negative for
U = Uug.

Since ¢; maps L?>(R!;m) into ¥ ¢ C(R'), ¢:(x,-) is absolutely continu-
ous with respect to m and hence with respect to the Lebesgue measure for each
x € R!. Denote by ¢,(x, y) its density with respect to the Lebesgue measure so
that [p1 g:(x,y)dy =1,x € Rl, with

SO

1
(3.11) qr(y, x) =m(x)q(x, y)m-

We know that the left-hand side of the above equation equals

1 1
ltiirg 7 (u(x) — qtu(x))%m(x) dx = lzifol 7 (u(x) — qru(x))u(x)dx

and so, for k(x, y) = gy, (x, y) with a sufficiently small 7o > 0,

o) == [ | [ 00 = w0ty dy luo(ydx <o

Equality (3.10) follows from (3.11).

4. Associated Hunt process and martingale problem. Let (1, F) be a reg-
ular lower bounded semi-Dirichlet form on L%(E; m) as is defined in Section 1.
For the symmetrization 7, (7g,, F) is then a closed symmetric form on L*(E;m)
but not necessarily a symmetric Dirichlet form. A symmetric Dirichlet form £ on
L?(E; m) with domain F will be called a reference (symmetric Dirichlet) form of
n if, for each fixed o > fo,

4.1 &1, u) <ng(u,u) <c2&(u,u), uelF,

for some positive ¢y, ¢ independent of u € F. £ is then a regular Dirichlet form.
In what follows, we assume that n admits a reference form £. This assumption
is really unnecessary (cf. [16, 19]) but convenient to simplify some arguments.
The regular lower bounded semi-Diriclet form (n, FO9 constructed in Section 2
from a kernel k satisfying (2.1)—(2.4) has a reference form (€, F°) defined right
after (1.4).

In formulating an association of a Hunt process with n, Carrillo Menendez
adopted a functional capacity theorem due to Ancona [2]. More specifically, denote
by O the family of all open sets A C E with L4 ={u € F:u > 1m-ae.on A} #
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&. Fix @ > Bp and, for A € O, let e4 be the n,-projection of 0 on L4 in Stampac-
chia’s sense [21] (cf. [17], Theorem 2.6):

4.2) ea €Ly, Na(ea, w) > ng(ea, ea) forany w € L4.

Aset N C E is called n-polar if there exist decreasing A, € O containing N such
that e4,, is ne-convergent to 0 as n — oo. A numerical function u on E is called n-
quasi-continuous if there exist decreasing A, € O such that ey, is n,-convergent
to 0 as n — oo and u| g\ 4, 1s continuous for each n.

The capacity Cap for the reference form & is defined by

Cap(A) =inf{& 1 (u,u) :u € L4}, AeO.
It then follows from (4.1) that

c1Cap(A) < ny(ea,ea) < c2K2Cap(A), A€O,
4.3)

because (4.2) and (B.2) imply 1y (€4, e4) < Kozlna(w, w), w € L4. Equation (4.3)
means that a set N is n-polar iff it is £-polar in the sense that Cap(N) =0, and a
function u is n-quasi-continuous iff it is £-quasi-continuous in the sense that there
exist decreasing A, € O with Cap(A,) | 0 asn — oo and u|g\ 4, is continuous for
each n. Every element of F admits its n-quasi-continuous m-version. If {u,} C F
is ne-convergent to u € F and if each u,, is n-quasi-continuous, then (4.1) implies
that a subsequence of {u,} converges n-q.e., namely, outside some n-polar set, to
an n-quasi-continuous version of u#. We shall occasionally drop n from the terms
n-polar, n-q.e. and n-quasi-continuity for simplicity.

Recall that the L2-resolvent {G4;«a > o} associated with 7 determines the
resolvent {Ggy; o > 0} on L®(E;m) with |Gy flloo < éllflloo, a>0, fe€
L°°(E; m).

LEMMA 4.1.  Suppose Gg f admits a quasi-continuous m-version Rg f for a
fixed B > Bo and for every bounded Borel f € L>(E;m). Then, for any o with
0 < o < By and for any bounded Borel f € L*(E; m),

Rof(x) =Y (B—a)" 'REf(x)
k=1

converges q.e. and defines a quasi-continuous m-version of Gy f. Further the re-
solvent equation

Rof —Rgf+(a—B)RyRpgf =0
holds q.e. for any bounded Borel f € L*(E; m).
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PROOF. Choose a regular nest {F;} so that Rgf € C({F¢}) for k > 1. Define
Un(X) =4 (B— a)k_lef(x). By the resolvent equation for {G,; @ > 0}, we
have

G(xf =v, + (/3 - a)nG%Gaf-

The L°°-norm of the second term of the right-hand side is dominated by
é(ﬁ%)"ll flloo, Which tends to 0 as n — oo. Therefore, {v,} is convergent uni-
formly on each set Fy to a quasi-continuous version of G, f. The resolvent equa-
tion is clear. [J

THEOREM 4.1. There exist a Borel n-polar set No C E and a Hunt process
X = (X¢, Py) on E\ Ng which is properly associated with (n, F) in the sense that
R, f is a quasi continuous version of G, f for any o > 0 and any bounded Borel
f e L?*(E; m). Here Ry is the resolvent of X and G, is the resolvent associated
with .

This theorem was proved in [8] first by assuming that fp = 0 and then reduc-
ing the situation to this case. Actually the proof can be carried out without such
a reduction. Indeed, after constructing the kernel VA of [8], Proposition II.2.1, for
every rational A > Bg ([8], Proposition 11.2.2) can be shown first for every ratio-
nal A > B, and then for every 0 < A < By by using Lemma 4.1. The rest of the
arguments in [8] then works in getting to Theorem 4.1.

Our next concern will be exceptional sets and fine continuity for the Hunt
process X = (X;, Py) appearing in Theorem 4.1. Denote by B(E) the family of
all Borel sets of E. For B € B(E), we let

op =inf{t > 0: X; € B}, op =inf{t > 0:X,_ € B}, inf @ = oo.
A € B(E) is called X-invariant if
Px(UE\A /\b\'E\A<OO)=O Vx e A.

N € B(E) is called properly exceptional (with respect to X) if m(N) = 0 and
E\ N is X-invariant.

A set N C E is called m-polar if there exists N D N, N1 € B(E) such that
Py (on, <00) =0. Any properly exceptional set is m-polar.

THEOREM 4.2.

(i) For A € O, the function p9 defined by p(x) = Ex[e™*°A],x € E \ Ny, is
a quasi-continuous version of e4, o > fo.

(i1) For any n-polar set B, there exists a Borel properly exceptional set N
containing No U B.
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(iii) If u is n-quasi-continuous, then there exists a Borel properly exceptional
set N D Ny such that, for any x € E\ N,

44) P (Erfllu(x,/) = u(X0) ¥t = 0 and limu(Xy) = u(X,-) Vi € 0, O)=1,

where ¢ is the lifetime of X. In particular, u is finely continuous with respect to the
restricted Hunt process X|g\n.

(iv) Any X-semi-polar set is n-polar.

(v) A set N C E is n-polar if and only if N is m-polar.

PROOF. (i) A function u € L?(E;m) is said to be a-excessive if u >0,
BGaypu <u, B > 0. A function u € F is a-excessive iff 14 (u, v) > 0 for all non-
negative v € F (cf. [16], Theorem 2.4). In particular, e4 is a-excessive and fur-
ther v =ey A p9 is an a-excessive function in F (cf. [16], Theorem 2.6). Hence,
Na(v,eq —v) >0.Since v € L4, ny(ea,ea —v) <0sothat v=ey and e4 < pg.
The converse inequality can be obtained as in the proof of Theorem 6.1 below by
using the optional sampling theorem for a supermartingale but with time parameter
set being a finite set.

Since the quasi-continuous function SRy gp9 converges to p§ as f — 00
pointwise and in 7y, we get the quasi-continuity of p%.

(i1) Choose a decreasing sets A, € O with A, D B, Cap(A,) — 0,n — oo and
put By =, An. By (4.1) and (i), lim, . p3 =0 g.e. so that

Py(op, NGB, <00) =0, x € E\ Ny,

for some polar set Ni. Choose next a decreasing sets A), € O containing By U
N1 U Ny with Cap(A)) — 0,n — oo and put B, =), A),. Then the above identity
holds for x € E \ B>. Moreover, the above identity holds true for B; in place of
B1 and for some polar set N, in place of N;. Repeating this procedure, we get an
increasing sequence { By} of G;-sets which are polar sets such that

Py(op, NGB, <00) =0, x € E\ Bgy1.

It then suffices to put N = | J; Bx.

(iii) Choose decreasing A, € O such that Cap(A,) — 0,n — 0, and u|g\4,
is continuous for each n. Let N be a properly exceptional set constructed in (ii)
starting with this sequence {A,}. Then, for any x € E \ N, lim,_, p%n x)=0
and consequently Py (lim,_, o 04, = 00) = 1, which readily implies (4.4).

(iv) We reproduce a proof by Silverstein [20]. For B € B(E), consider the en-
try time op = inf{t > 0: X; € B} and the function p%(x) = E [e ®%B],x € E,
o > fo. Let K be a compact thin set: K admits no regular point relative to X. It
suffices to show that K is n-polar.

Choose relatively compact open sets {G,} such that G, D 6n+1 and N, G, =
K. Due to the quasi-left continuity of X, p‘(";n (x) = pfg” (x) then decreases to
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P%(x) as n — oo for each x € E. By (i) and (4.1) and (4.2), the sequence {pgn}
is £1-bounded so that the Cesaro mean sequence f, of its suitable subsequence is
&1-convergent. Since f, are quasi-continuous and converges to p% pointwise as
n — 0o, we conclude that p% is a quasi-continuous element of . On the other
hand, the quasi-continuous function SRy g p’% converges to p% as B — oo point-
wise and in 1, so that p% is also a quasi-continuous version of p%. Therefore,
P% = P% q.e. and in particular K is n-polar.

(v) “only if” part follows from (ii). To show “if”” part, assume that K is a com-
pact m-polar set. Then p% = 0 m-a.e. Choose for K relatively compact open
sets {G,} as in the proof of (iv) so that the Cesaro mean f; of a certain subse-
quence { p"c‘;ne} is £1-convergent to p% as £ — oo which is now a zero element

of F9. Since f; > 1 m-a.e. on G,,, we have Cap(K) < Cap(Gy,) < E1(fe, fo)
and we get Cap(K) = 0 by letting £ — oo. For any Borel m-polar set N, we have
Cap(N) =sup{Cap(K): K C N, Kis compact} =0. [J

Clearly, the restriction of X outside its properly exceptional set is again a Hunt
process properly associated with 7.

Our final task in this section is to relate the Hunt process of Theorem 4.1 to a
martingale problem.

We consider the case where 1 admits the expression

(4.5) n(f,8)=—(Lf 8, feDKL),geF,
for a operator £ with domain D(L) satisfying the following:

(L.1) D(L) is a linear subspace of F N Co(E),

(L.2) L is a linear operator sending D (L) into L2(E;m) N Cy(E),

(L.3) there exists a countable subfamily Dy of D(L) such that each f € D(L)
admits f, € Dy such that f,, L f, are uniformly bounded and converge pointwise
to f, Lf, respectively, as n — oo.

We also consider an additional condition that

(L.4) there exists f, € D(L) such that f,, L f, are uniformly bounded and con-
verge to 1, 0, respectively, as n — oo.

THEOREM 4.3. Assume that n admits the expression (4.5) with L satisfying
conditions (L.1), (L.2), (L.3).

(i) There exists then a Borel properly exceptional set N containing Nqo such
that, for every f € D(L),

t
(4.6) M = £(X) — £(Xo) - /0 (LF)(X)ds, 120,

is a Px-martingale for each x € E'\ N.
(i1) If the additional condition (L.4) is satisfied, then the Hunt process X|g\n
is conservative.
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PROOF. (i) Take f € D(L) and g € L*(E; m). By (4.5) and (3.2), we have,
for a > fo,
(GoLf,8) = (LS, Gag) =—n(f,Gag)
= —nu(f, Gag) + (£, Gag)
=—(f.9) +a(Gaf, 8.
Thus, (G4 L f, g) = (¢Gyf — f, g) holds for any g € F and

1
—Gul(Lf)(0)=Guf x )—M m-a.e.

We denote by { P;; t > 0} and {Ry; a > 0} the transition function and the resolvent
of X, respectively:

Pih(x) =E.[h(X)], Ryh(x) = /Ooo e " Ph(x)dt.

Since X is properly associated with n by Theorem 4.1, we get

1
o Ra(LF)x) = Ra f(x )—M

Hence, by virtue of Theorem 4.2(ii), there exists a Borel properly exceptional set
N such that

00 t o
/0 e—M(fO Ps(ﬁf)(x)ds)dtzfo e (Pf(x) = f(0))dt,  xeE\N,

holds for any « € Q4 with o > By and for any f € Dy.
Since P;h(x) is a right continuous in ¢ > 0 for any & € Cp(E), we get

4.7 sz(X)—f(X)=/0lPs(£f)(X)dsa 1>0,x € E\N,

holding for any f € Dy. By virtue of condition (L.3), we conclude that the equation
(4.7) holds true for any f € D(L). Equation (4.7) implies that, for any f € D(L),
the functional M, 71 ,t >0, defined by (4.6) is a mean zero, square integrable ad-
ditive functional of the Hunt process X|g\n so that it is a Py-martingale for each
xeE\N.

(i1) Under the additional condition (L..4), we let n — oo in equation (4.7) with
Jfn in place of f arrivingat P,1=1,r>0. U

Theorem 4.3 will enable us in the next section to relate our Hunt process to the
solution of a martingale problem in a specific case.
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5. Stable-like process. In this section, we consider the case that £ = R and
m(dx) = dx is the Lebesgue measure on R?. For a positive measurable function
o (x) defined on R?, Bass introduced the following integro-differential operator in
[5] (see also [4, 6]): for u € CZ(RY),

Lu(x) = w(x) fh#o(u(x +h) —u(x) — Vu(x) - hlgay (b)) k|~ dh,

x eRY,

where w(x) is a function chosen so that Le** = —|u|*™®) e~ and Cg (R?) denotes
the set of twicely differentiable bounded functions. If « is Lipschitz continuous,
bounded below by a constant which is greater than 0, and bounded above by a
constant which is less than 2, then he constructed a unique strong Markov process
associated with £ by solving the £-martingale problem for every starting point
x € R?. Using the theory of stochastic differential equation with jumps, Tsuchiya
[22] also succeeded in constructing the Markov process associated with £ (see
also [18]). Note that the weight function w(x) is given by

_ D+ o)/ ((e(x) +d)/2) sin(ra(x)/2)

d
2T—a() 7 d/2+1 xeR

5.1 wk)

(see, e.g., [3D).

Put k(x, y) = w(x)|x — y|747*@ x y e R? with x # y. Then this falls into
our case when we consider the following conditions: there exist positive constants
o, @, M and 8 so that for x, y € RY,

O<g§a(x)§&<2,&<l+% and
(5.2)

1
|oz(x)—oz(y)|§M|x—y|‘S f0r8with0<§(26—g)<8§1.
PROPOSITION 5.1. Assume (5.2) holds. Then conditions (2.1)—(2.4) are sat-
isfied by the function
(5.3) k(r,y) =w@)lx —y[797*W, x yeR x#y.
PROOF. Note first that, from equation (5.1) defining the weight w(x), we eas-
ily see that there exist constants ¢; (i =1, 2, 3) so that for x, y € R4,
c1 S w(x) < e, [w(x) —w(y)| < c3lalx) —a(y)l.
Then
ks (e, y) = S (w)|x — y]77® +w(y)lx — y| 770

<{M|x—y|“"a, lx—yl=1,
“IMx -y, x—y|> 1
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This and the condition 0 < o <o < 2 imply that condition (2.1) is fulfilled be-
cause the function My in it is bounded. Condition (2.2) is also valid as |k, (x, y)| <

ks(x,y).
On the other hand, since

ka(x,y) = w)lx =y 77 —w(y)lx — y| 7T

= (w(x) —w(y))|x — y|747*®

+w)lx —y| 7 (jx — y|7¢W — |x — y|7*W)

and
a(x)
b= 317 — =170 = [y
a(y) Injx — y|
we see that for |[x — y| < 1,
Ika (x, )| < Jw(x) — w(y)] - |x — y| 747
1
+w)lx =y ax) —a(y)] - x — y[T@DVeOD
Infx — y|~!
_ _ 1
S M(|x _ yl—d—Ol-HS _|_ |X _ y|—d—01+5—)
Injx — y|~!
<M/|x_y|—d—a+5 1 .
B Injx — y|~!
So if y satisfies
yd+oa—-68)—-d-1) <1,
then condition (2.3) holds. As for condition (2.4), note that
ke(e,y)=M'lx —y|77%,  x—yl<1.
So, (2.4) is valid when
d+a—-8)2—y)<d+a.
Therefore, conditions (2.3) and (2.4) hold provided that y satisfies
d+2a—2—«a d
<y < —.
d+a—3s Y= dva—s O

Let (1, F9 be the regular lower bounded semi-Dirichlet form on L?(RY) as-
sociated with the kernel (5.3) satisfying (5.2) according to Theorem 2.1. Let
X = (X;, P) be the Hunt process on R? properly associated with (1, F) by The-
orem 4.1.
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Define a linear operator £ by
D(L) = C5(RY),
w(x)dh
G4 | Lux)= /};#O(u(x +h) —u(x) — Vu(x) - hlg, ) (h))W,

x eRY,

C%(Rd) is a linear subspace of FON Co(RY) and, by condition (5.2), we can see
that £ maps Cg(]Rd) into LZ(RY) N Cp(RY). As any continuously differentiable
function and its derivatives can be simultaneously approximated by polynomials
and their derivatives uniformly on each rectangles (cf. [9], Chapter II), conditions
(L.1), (L.2), (L..3) in the preceding section on £ are fulfilled. We can easily verify
that the present £ satisfies condition (L.4) as well.

Since the vector valued function hw(x)1p, o) (h)|A] —d—a(x) is odd with respect
to the variable & for each x € R?, we get for u € Cg (RY),

== [[ ) - 0 avay

w(x)
././h|>1/n (u(x+h) —u@)v(x)——— S dxdh

_ _//|h|>l/n(u(x +h) —u(x) — Vu(x) - hlBl(O)(h))U(x)

w(x)

X WT()C)dth

By letting n — 0o, we have
77(“, U) = —(EM, v)7

that is, 7 is related to £ by (4.5).
By virtue of Theorem 4.3, there exists a Borel properly exceptional set N C R¢
so that X |Rd\  1s conservative and, for each x € R4 \'N,

t
MY = £ (X)) — f(Xo) —fo LA(X)ds, 120,

is a martingale under P, for every f € Cg (RY). Approximating f € Cg (RY)
by a uniformly bounded sequence {f,} C CS(R") such that {£ f,,} is uniformly
bounded and convergent to L f, we see that (4.6) remains valid for f € C}%(Rd)
and M,[f lis still a martingale under P, for x € R? \ N. For each x € R? \ N, the
measure P, is thus a solution to the martingale problem for the operator £ of (5.4)
starting at x so that P, coincides with the law constructed by Bass [5] because of
the uniqueness also due to [5].
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REMARK 5.1. Let

w(y)

d
W, X,ER,X#_)).

(5.5) K (x,y) =
Under condition (5.2), the form n* corresponding to the kernel k* is a regular
lower bounded semi-Dirichlet form on L2(R¢) by virtue of Proposition 5.1 and
Corollary 2.1. By Theorem 4.1, n* admits a properly associated Hunt process X*
on R?. Furthermore, we can have an explicit expression n*(u, v) = —(L*u, v) for
u e C3(RY) and v € F° with

w(x +h)dh
|h|d+a(x+h)

w(x + h) wx —h) d
Vu(x) - h<|h|d+a(x+h) - |h|d+a(x—h)) dh, x €R%.

Lu(x) = /h;éo(u(x +h) —u(x) — Vu(x) - h1p, ) (h))

2 Jo<|n|<1

In a lower order case as is considered in Section 3, both £ and £* admit simpler
expressions (3.7) and £* — K is a formal adjoint of £ for a function K defined by
(3.9).

6. Associated Hunt processes on open subsets and on their closures. We
make the same assumptions on E,m, k as in Section 2. Let D be an arbitrary
open subset of E and D be the closure of D, mp is defined to be mp(B) =
m(B N D),B € B(E) and (u,v)p denotes the inner product of L*(D,mp)

(=L%(D, mp)). Consider the related function spaces COP(D) and COp (D) intro-
duced in Section 1. Define

Epu, v) = f fD R CORIOITORIE)

X ks(x, y)mp(dx)mp(dy),
p={ue L2(D' mp) :u is Borel measurable and Ep (u, u) < oo},

(6.1)

and let Fp and .7-"0 be the Ep 1-closures of COP(D) and Chp(D) in F7,, re-
spectively. (Ep, Fp) [resp., (8 ,]—"O) is a regular symmetric Dirichlet form
on L*(D;mp) [resp., LZ(D;m p)] where 5% denotes the restriction of £p to
]—'g X .7-'%. Furthermore, in view of [13], Theorem 4.4.3, we have the identity

(6.2) Fy={ueFp:ii=0,Ep-qe.on dD},

where i denotes an £p-quasi continuous version of u € 7. We keep in mind that
a subset of D is polar for (Ep, .7-'10)) iff so it is for (£p, F}5), and the restriction to
D of a quasi continuous function with respect to the latter is quasi-continuous with
respect to the former.

Now define for u € C(l)ip(ﬁ) andn e N

(6.3) Hu(x) = /{yED.d(x y)>1/n}(u(y) —u(x))k(x, y)mp(dy), x € D.
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Then, just as in Proposition 2.1 and Theorem 2.1 of Section 2, we conclude that
the finite limit

(6.4) npu,v)= _nl—i>nolo_/D L'hu(x)v(x)mp(dx) foru,v e Cgp(ﬁ)

exists, np extends to 5 x Fp and (np, Fp) becomes a regular lower bounded
semi-Dirichlet form on Lz(ﬁ; mp) possessing (Ep, F ) as its reference symmet-
ric Dirichlet form. In parallel with (np, ), the space (n%, ]-'%) becomes a regu-
lar lower bounded semi-Dirichlet form on L?(D; mp) possessing (5%, j’-'OD) as its
reference symmetric Dirichlet form. Here n% is the restriction of np to f{l)) X J’-"g.

Let X? = (X;, P;) be a Hunt process on D properly associated with the form
(mp, Fp) on L?(D: mp). Denote by xb0 = (XtD’O, P,) the part process of xP
on D, namely, X ,D 0'is obtained from X ¢ by killing upon hitting the boundary 0 D:

xPP=x,, t<oyp; XP'=A,  t=oyp.

X -0 is a Hunt process with state space D.

THEOREM 6.1. The part process XP-0 of X2 on D is properly associated
with the regular lower bounded semi-Dirichlet form (n%, ]-"%) on L*(D; mp).

PROOF. Let {Ry; a > 0} be the resolvent of X D& will denote the hitting time
of 0D by XP:0 =0yp. Put, fore > 0 and x € D,

RPOf(x) = E, [ [ e‘“’f(x»dr],
0
H2Pu(x) = Ex[e ™ u(Xy)l, x eD.

{RO?’OlD; o > 0} is the resolvent of the part process XD*O_of xD on D.
We need to prove that, for any o > B¢ and any f € B(D) N L*(D,mp),

RD0 £ is n% -quasi-continuous,
(6.5)
RPOfe 7D, nho(ROCfv)=(f,v)p  foranyveFyp.

We denote by G the space appearing in the right-hand side of (6.2). Notice
that £p-q.e. (resp., £p-quasi-continuity) is now a synonym of 1np-q.e. (resp., 1p-
quasi-continuity). As the set of points of d D that are irregular for d D is known to
be semi-polar, we have Py(0 =0) =1 and so Ro?*of(x) =0 for np-q.e. x € 9D
owing to Theorem 4.2(iv). Since

R, f is np-quasi-continuous,

Rof € Fp, np.«(Roefiv) =(f,v)p  foranyveFp
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and
(6.6) Ryf(x)=R2Vf(x)+HIPRy f(x).  x€D,
we see that, for the proof of (6.5), it is enough to show that

HO? DR, f is np-quasi-continuous,
(6.7)
HO?DRO,feFD, nD,a(HO?DRaf, v)=0 forany v € G.
To this end, we fix @ > By, f € B4(D) N L*(D; mp) and put u = R, f. Con-
sider a closed convex subset of 7 defined by

Luap={veFp, v>iiqe ondD}
Let uy be the np o-projection of 0 on L, yp:
Ug € Lyap, ND,a (e, v —Ug) =0, forany v e Ly 5p.

Both u and u, are a-excessive elements of F 5. By making use of the function
v =uqy A u as in the proof of Proposition 3.1(i), we readily get

(6.8) Ug=uq.e.onobD, np.oWy,v) =0 forany v € G.
Finally, we prove that
(6.9) HO?DM is np-quasi continuous, HO?DM = Uy,

which leads us to the desired property (6.7). By (6.6), H?Pu is an a-excessive
function dominated by u € Fp so that H?Py is a quasi-continuous element of
F - Further H?Pu =u q.e. on 3D by (6.6) and an observation made preceding it.
Letv= HO‘?Du Algy. Then v = Ho?Du Alg =u q.e.on dD sothat np o (Ue, Uy —
v) = 0 by (6.8). On the other hand, v is a-excessive and so np (v, Uy —v) > 0.
Consequently, 1y (g — v, ug — v) < 0 and we get the inequality u, < Ho? Dy,

To get the converse inequality, consider a bounded nonnegative Borel function
h on D with [, hdm = 1. Denote by {p;;t > 0} the transition function of X D
We choose a Borel measurable quasi-continuous version iy of uy € Fp. We set
i (A) =0 for the cemetery A of XP. Since u, is a-excessive, e p;itg < iy
m-a.e., and we can see that the process {¥; = e i, (X,); t > 0} is a right con-
tinuous positive supermartingale under Pj.,, in view of Theorem 4.2(iii). For any
compact set K C d D, we get from the optional sampling theorem and (6.8),

Eh~m[YUK] =Enm [e_aUKﬁa(X(rK)]
= Eh~m[e_aaKu(XUK)] < Epm[Yol
= (h9 MCI)D~

By choosing K such thatog | o Pp.,-a.e., we obtain (A, HO?DM)D < (h,uy)p and
HPy <u,. O
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As a preparation for the next lemma, we take any open set G C D and denote
by m¢ the restriction of m to G. Let ]—'g be the £p 1-closure of C(l)lp(G) in 77, and
n% be the restriction of np to .7-"2 X ]-"8 Then, just as above,

fgz{ueszﬁzoggq.e.onﬁ\G}

and (noc, fg) becomes a regular lower bounded semi-Dirichlet form on L*(G;

mg) with which the part process X% of X D on G is properly associated. The
resolvent of X %0 will be denoted by RS-0,
Define

H?\Ou(x) = Ecle *"P\6u(X,y )1, x€D.
As (6.7), we have, for u = R, f, f € B(D) N L*(D; mp), o > Bo,
HO? \Gyis p-quasi-continuous,

(6.10) } _
HaD\Gue}"D, nD,a(HaD\Gu,v)zO foranyvej’-"g,

and the bound nD,a(Ho?\Gu, H(XD\GM) <np.«(u,u). We can easily see that (6.10)

holds true for any u € F D'n Co(D) where Co(D) denotes the restrictions to D
of functions in Co(E). In fact, by the resolvent equation, (6.10) is true for Rgu,
B > Bo, in place of u. Since {B, Rg,u} converges to u pointwise as well as in np -

metric as 8, — 00, so does the sequence {8, Hof) \GR,gnu}, arriving at the validity
of (6.10) for such u.

LEMMA 6.1. Let G be a relatively compact open set with G C D. Then for
any v € FP N Co(D) with supp[v] C D \ G, it follows for a > By that

(6.11) Ec[e " v(X,)] = Rg’ogv(x) forq.e.x €G,

where TG = Op\g A& IS the first leaving time from G and g, is a function given by

(6.12) g(x)=1c(x) |_ _k(x,y)v(y)mp(dy), x €D.
D\G

PROOF. Take any u € ]:D N Co(D) such that supplu] C G. From (6.3) and
(6.4), we then have

(6.13) npu,v) = —/GX(D\G)u(y)v(X)k(x,y)mD(dX)mD(dy)-

We can now proceed as in [13], page 163. The function g, defined by (6.12) be-
longs to L2(G; mg) on account of condition (2.1) on the kernel k. Therefore, we
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obtain from (6.13)

7 o (R9Vg,, u) = /G go(X)u(x)mg (dx)

= ) u(x)v()k(x, y)mp(dx)mp(dy)

G x(D\G
= _UD(U» I/l) = _UD,a(U, l/l)
=00 w—HP\Cv,u),  a> p,

the last identity being a consequence of (6.10). Since F Dn Co(G) is n%’a—dense
in ]-'g, we get

HaD\GU(x) — H(XD\GU(X) —v(x) = Rg’ogv(x) for mg-a.e. on G.

We then obtain (6.11) because Ho? \Gy and jo Og, are n%—quasi—continuous by
(6.10). O

THEOREM 6.2.
() XD = (X, P) admits no jump from D to 9 D:
(6.14) P.(X;— € D, X;€0D forsomet >0)=0 forgqg.e.x € D.

(i) If D is relatively compact, then X D s conservative: denoting by ¢ the
lifetime of XP,

(6.15) P.(t=00)=1 for g.e.x € D.

(iii) If D is relatively compact, then X DO — (x ,D ’0, P,) admits no killing in-
side D: denoting by ¢° the lifetime of X0,

(6.16) Px(XfO’E €D, "<00)=0  forge x€D.

PROOF. (i) For any open set G as Lemma 6.1 and any compact subset F of
dD, we can find a uniformly bounded sequence {v,} C F? N Co(D) with support
being contained in a common compact subset of D\ G and lim,_, oo v, = 1. Then
gv, (x) are uniformly bounded and converge to g1, (x) =0 as n — oo. Therefore,
by letting n — oo in (6.11) with v, in place of v, we get Py (X, € F) =0 for g.e.
x € G. Since G and F are arbitrary with the stated properties, we have (6.14).

(i) When D is relatively compact, 1 € C(l)lp(ﬁ) so that we see from (6.3) and
(6.4) that 1 € FP and np(1, v) =0 for any v € FP . We have therefore, for any
a > Boand f € L>(D, mp),

0=np(1,Gouf) =, fHp—a(l,Guf)p=(—aRyl, f)p,
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where éa is the dual resolvent. This implies that « Ry1 = 1 mp-a.e. for o > By
and consequently q.e. on D because R, 1 is quasi-continuous. Equation (6.15) is
proven.

(iii) This is an immediate consequence of (i), (ii) as X D.0 i the part process of
XPonD. O

We conjecture that the property (6.16) for X -9 holds true without the assump-
tion of the relative compactness of D and especially for the minimal process X°
on E.

Finally, we consider the case where E is R¢ and m is the Lebesgue measure
on it. For « € (0, 2) and an arbitrary open set D C R?, we make use of the Lévy
kernel

2710 (@ + d) /2) 1
e _¢
) = AT A —a2) x = y[Te’

X,y € Rd,
of the symmetric «-stable process to introduce the Dirichlet form

[o] . _ _ [o]
el = [ [ g B~ HEON ) v, ) dxay,

fg‘]’r ={ue L*(D): u is Borel measurable and ng](u, u) < oo},

(6.17)

on L?(D) based on the Lebesgue measure on D. Denote by fgx] the S[Doi]l -closure

of C(l)lp(ﬁ) in ‘7_—1[;:],r. For s € (0, d], a Borel subset I of R is said to be an s-
set if there exist positive constants cy, c» such that for all x € I" and r € (0, 1],
cir¥ < H(' N B(x,r)) < cor®, where H® denotes the s-dimensional Hausdorff
measure on R? and B(x, r) is the ball of radius r centered at x € R<.

If the open set D is a d-set, then, by making use of Jonsson—Wallin’s trace
theorem [14] as in [7], one can show that fg‘] = fl[g]’r and moreover that a subset

of D is EB‘]—polar iff it is polar with respect to the symmetric «-stable process
on R4,

Let us consider the kernel k! of (1.9) for w(x) given by (5.1) and «(x) satis-
fying condition (5.2). In particular, it is assumed that

O<a<ax)<a<?2

for some constant o, @. k1) satisfies conditions (2.1)—(2.4) by Proposition 5.1 and
one can associate with it the regular lower bounded semi-Dirichlet form np (resp.,
n%) on L2(D; 1pdx) [resp., L3(D)] possessing as its reference form Ep (resp.,
S?)) defined right after (6.1) for k() and the Lebesgue measure in place of k and .
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Suppose D is bounded, then there exist positive constants c3, c4 with
3k, y) <kP e, y) <eakl®x,y), x.yeD,
so that

6.18) 3@, u) < Epu,u) < caflPw,w),  ue (D).

For the kernel k!, the Hunt process X D on D associated with (mp, Fp) is
called a modified reflecting stable-like process, while its part process X2:* on D,
which is associated with (nOD, .7-"%), is called a censored stable-like process.

PROPOSITION 6.1. Assume that D is a bounded open d-set.

() If 3D is polar with respect to the symmetric @-stable process on R?, then
the censored stable-like process X DO — (x tD ’O, P, ¢ 9y is conservative and it does
not approach to d D in finite time:

6.19)  P(’=o00)=1,  P.(XP"€dD for somet>0)=0.

(i) If 8D is nonpolar with respect to the symmetric a-stable process on R?,
then the censored stable-like process X0 satisfies

(6.20) fD PX(X;)O’E €dD, " <oco)h(x)dx = fD P (2° < 0o)h(x)dx >0
for any strictly positive Borel function h on D with [, h(x)dx = 1.

PROOF. (i) Since &p is a reference form of (np, Fp), we see that 0D is np-
polar by (6.18) and the stated observation in [7]. The assertions of (i) then follows
from Theorem 4.2(ii) and Theorem 6(ii).

(i1) 9 D is not np-polar by (6.18) and accordingly not m-polar with respect to the
process X? by Theorem 4.2(v), where m is the Lebesgue measure on D. Taking
Theorem 6.2(i), (iii) into account, we then get (6.20). [

The polarity of a set N C R? with respect to the symmetric a-stable process is
equivalent to C%/%2(N) = 0 for the Bessel capacity C%/%2 (cf. Section 2.4 of the
second edition of [13]). The latter has been well studied in [1] in relation to the
Hausdorff measure and the Hausdorff content. For instance, when o < d and 0D
is a s-set, d D is polar in this sense if and only if o + s < d. Of course, we get the
same results as above for the second kernel k(V* in (1.9).
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