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JUMP-TYPE HUNT PROCESSES GENERATED BY LOWER
BOUNDED SEMI-DIRICHLET FORMS

BY MASATOSHI FUKUSHIMA AND TOSHIHIRO UEMURA

Osaka University and Kansai University

Let E be a locally compact separable metric space and m be a positive
Radon measure on it. Given a nonnegative function k defined on E × E off
the diagonal whose anti-symmetric part is assumed to be less singular than
the symmetric part, we construct an associated regular lower bounded semi-
Dirichlet form η on L2(E;m) producing a Hunt process X0 on E whose
jump behaviours are governed by k. For an arbitrary open subset D ⊂ E, we
also construct a Hunt process XD,0 on D in an analogous manner. When D is
relatively compact, we show that XD,0 is censored in the sense that it admits
no killing inside D and killed only when the path approaches to the boundary.
When E is a d-dimensional Euclidean space and m is the Lebesgue measure,
a typical example of X0 is the stable-like process that will be also identified
with the solution of a martingale problem up to an η-polar set of starting
points. Approachability to the boundary ∂D in finite time of its censored
process XD,0 on a bounded open subset D will be examined in terms of the
polarity of ∂D for the symmetric stable processes with indices that bound the
variable exponent α(x).

1. Introduction. Let E be a locally compact separable metric space equipped
with a metric d , m be a positive Radon measure with full topological support
and k(x, y) be a nonnegative Borel measurable function on the space E × E \
diag, where diag denotes the diagonal set {(x, x) :x ∈ E}. A purpose of the present
paper is to construct Hunt processes on E and on its subsets with jump behaviors
being governed by the kernel k by using general results on a lower bounded semi-
Dirichlet form on L2(E;m).

The inner product and the norm in L2(E;m) are denoted by (·, ·) and ‖ · ‖,
respectively. Let F be a dense linear subspace of L2(E;m) such that u ∧ 1 ∈ F
whenever u ∈ F . A (not necessarily symmetric) bilinear form η on F is called a
lower bounded closed form if the following three conditions are satisfied: we set
ηβ(u, v) = η(u, v) + β(u, v), u, v ∈ F . There exists a β0 ≥ 0 such that:

(B.1) (lower boundedness); for any u ∈ F , ηβ0(u,u) ≥ 0.
(B.2) (sector condition); for any u, v ∈ F ,

|η(u, v)| ≤ K
√

ηβ0(u,u) ·
√

ηβ0(v, v)
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for some constant K ≥ 1.
(B.3) (completeness); the space F is complete with respect to the norm

η
1/2
α (·, ·) for some, or equivalently, for all α > β0.

For a lower bounded closed form (η, F ) on L2(E;m), there exist unique semi-
groups {Tt ; t > 0}, {T̂t ; t > 0} of linear operators on L2(E;m) satisfying

(Ttf, g) = (f, T̂tg),
(1.1)

f,g ∈ L2(E;m),‖Tt‖ ≤ eβ0t ,‖T̂t‖ ≤ eβ0t , t > 0,

such that their Laplace transforms Gα and Ĝα are determined for α > β0 by

Gαf, Ĝαf ∈ F , ηα(Gαf,u) = ηα(u, Ĝαf ) = (f,u),

f ∈ L2(E;m),u ∈ F .

See the first part of Section 3 for more details. {Tt ; t > 0} is said to be Markovian if
0 ≤ Ttf ≤ 1, t > 0, whenever f ∈ L2(E;m),0 ≤ f ≤ 1. It was shown by Kunita
[15] that the semigroup {Tt ; t > 0} is Markovian if and only if

Uu ∈ F and η(Uu,u − Uu) ≥ 0 for any u ∈ F ,(1.2)

where Uu denotes the unit contraction of u: Uu = (0 ∨ u) ∧ 1. A lower bounded
closed form (η, F ) on L2(E;m) satisfying (1.2) will be called a lower bounded
semi-Dirichlet form on L2(E;m). The term “semi” is added to indicate that the
dual semigroup {T̂t ; t > 0} may not be Markovian although it is positivity preserv-
ing. As we shall see in Section 3 for a lower bounded semi-Dirichlet form η which
is regular in the sense stated below, if the associated dual semigroup {T̂t ; t > 0}
were Markovian, or equivalently, if m were excessive, then η is necessarily a non-
negative definite closed form, namely, β0 in conditions (B.1), (B.3) [resp., (B.2)]
can be retaken to be 0 (resp., 1).

A lower bounded semi-Dirichlet form (η, F ) is said to be regular if F ∩ C0(E)

is uniformly dense in C0(E) and ηα-dense in F for α > β0, where C0(E) denotes
the space of continuous functions on E with compact support. Carrillo-Menendez
[8] constructed a Hunt process properly associated with any regular lower bounded
semi-Dirichlet form on L2(E;m) by reducing the situation to the case where η

is nonnegative definite. We shall show in Section 4 that a direct construction is
possible without such a reduction.

Later on, the nonnegative definite semi-Dirichlet form was investigated by Ma,
Oberbeck and Röckner [16] and Fitzsimmons [10] specifically in a general context
of the quasi-regular Dirichlet form and the special standard process. However, in
producing the forms η from nonsymmetric kernels k corresponding to a consid-
erably wide class of jump type Hunt processes in finite dimensions whose dual
semigroups need not be Markovian, we will be forced to allow positive β0.

To be more precise, we set for x, y ∈ E,x 
= y,

ks(x, y) := 1
2{k(x, y) + k(y, x)} and ka(x, y) := 1

2{k(x, y) − k(y, x)},(1.3)
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that is, the kernel ks(x, y) denotes the symmetrized one of k, while ka(x, y) rep-
resents the anti-symmetric part of k. We impose four conditions (2.1)–(2.4) on ks

and ka stated below. Condition (2.1) on ks is nearly optimal for us to work with the
symmetric Dirichlet form (1.4) defined below, while conditions (2.2)–(2.4) require
ka to be less singular than ks .

Let conditions (2.1)–(2.4) be in force on k. Denote by C
lip
0 (E) the space of

uniformly Lipschitz continuous functions on E with compact support. We also let⎧⎪⎪⎨⎪⎪⎩
E (u, v) :=

∫ ∫
E×E\diag

(
u(y) − u(x)

)(
v(y) − v(x)

)
× ks(x, y)m(dx)m(dy),

F r = {u ∈ L2(E;m) :u is Borel measurable and E (u,u) < ∞}.
(1.4)

(E , F r ) is a symmetric Dirichlet form on L2(E;m) and F r contains the space
C

lip
0 (E). We denote by F 0 the E1-closure of C

lip
0 (E) in F r . (E , F 0) is then a

regular Dirichlet form on L2(E;m) (cf. [13], Example 1.2.4, Theorem 3.1.1 and
see also [23] and [24]).

For u ∈ C
lip
0 (E) and n ∈ N, the integral

Lnu(x) :=
∫
{y∈E : d(x,y)>1/n}

(
u(y) − u(x)

)
k(x, y)m(dy), x ∈ E,(1.5)

makes sense. We prove in Proposition 2.1 and Theorem 2.1 in Section 2 that the
finite limit

η(u, v) = − lim
n→∞

∫
E

Lnu(x)v(x)m(dx) for u, v ∈ C
lip
0 (E),(1.6)

exists, η extends to F 0 × F 0 and (η, F 0) is a lower bounded semi-Dirichlet form
on L2(E;m) with parameter β0 = 8(C1 ∨C2C3)(≥ 0) where C1–C3 are constants
appearing in conditions (2.2)–(2.4). Furthermore, the form E is shown to be a
reference (symmetric Dirichlet) form of η in the sense that, for each fixed α > β0,

c1E1(u,u) ≤ ηα(u,u) ≤ c2E1(u,u), u ∈ F 0,(1.7)

for some positive constants c1, c2 independent of u ∈ F 0. Therefore, (η, F 0) be-
comes a regular lower bounded semi-Dirichlet form on L2(E;m) and gives rise
to an associated Hunt process X0 = (X0

t , P
0
x ) on E. We call X0 the minimal Hunt

process associated with the form η. Equation (1.6) indicates that the limit of Ln in
n plays a role of a pre-generator of X0 informally.

If we define the kernel k∗ by

k∗(x, y) := k(y, x), x, y ∈ E,x 
= y,(1.8)

and the form η∗ by (1.5) and (1.6) with k∗ in place of k, we have the same con-
clusions as above for η∗ (Corollary 2.1 of Section 2). In particular, there exists a
minimal Hunt process X0∗ associated with the form η∗.
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In the second half of Section 3, we are concerned with a killed dual semigroup
{e−βt T̂t ; t > 0}, which can be verified to be Markovian for a large β > 0 but only
for a restricted subfamily of the forms η considered in Section 2 (lower order
cases). For a higher order η, the killed dual semigroup may not be Markovian no
matter how big β is. We shall also exhibit an example of a one-dimensional proba-
bility kernel k [

∫
R1 k(x, y) dy = 1] with m being the Lebesgue measure, for which

the associated semi-Dirichlet form η is not nonnegative definite and accordingly
the associated dual semigroup itself is non-Markovian.

When E = Rd the d-dimensional Euclidean space and m(dx) = dx the
Lebesgue measure on it, we shall verify in Section 5 that our requirements (2.1)–
(2.4) on the kernel k(x, y) are fulfilled by

k(1)(x, y) = w(x)|x − y|−d−α(x),
(1.9)

k(1)∗(x, y) = w(y)|x − y|−d−α(y), x, y ∈ Rd, x 
= y,

for w(x) given by (5.1) and α(x) satisfying the bounds (5.2). A Markov process
corresponding to k(1) is called a stable-like process and has been constructed by
Bass [4] as a unique solution to a martingale problem. In this case, we shall prove
that the minimal Hunt process associated with the corresponding form η is conser-
vative and actually a solution to the same martingale problem, identifying it with
the one constructed in [4] up to an η-polar set of starting points.

In Section 6, we consider an arbitrary open subset D of E. Define mD by
mD(B) = m(B ∩ D) for any Borel set B ⊂ E. By replacing E and m with D

and mD , respectively, in (1.4), we obtain a symmetric Dirichlet form (ED, F r
D)

on L2(D;mD). Denote by D the closure of D and by C
lip
0 (D) the restriction to

D of the space C
lip
0 (E). We also denote by C

lip
0 (D) the space of uniformly Lip-

schitz continuous functions on D with compact support in D. Let FD̄ and F 0
D

be the ED,1-closures of C
lip
0 (D) and C

lip
0 (D), respectively, in F r

D . Then (ED, FD̄)

is a regular symmetric Dirichlet form on L2(D;mD), while (E 0
D, F 0

D) is a regu-
lar symmetric Dirichlet form on L2(D;mD) where E 0

D is the restriction of ED to
F 0

D × F 0
D .

By making the same replacement in (1.5) and (1.6), we get a form ηD on
C

lip
0 (D) × C

lip
0 (D), which extends to FD̄ × FD̄ to be a regular lower bounded

semi-Dirichlet form on L2(D;mD) possessing ED as its reference form, yielding
an associated Hunt process XD̄ on D. We also consider the restriction η0

D of ηD

to F 0
D × F 0

D so that (η0
D, F 0

D) is a regular lower bounded semi-Dirichlet form on
L2(D;mD) possessing E 0

D as its reference form. We shall show in Section 6 that

the part process XD,0 of XD̄ on D, namely, the Hunt process obtained from XD̄

by killing upon hitting the boundary ∂D, is properly associated with (η0
D, F 0

D).

We shall also prove in Section 6 that XD̄ admits no jump from D to ∂D, and
furthermore when D is relatively compact, XD̄ is conservative so that XD,0 admits
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no killing inside D and its sample path is killed only when it approaches to the
boundary ∂D. XD,0 is accordingly different from the part process of X0 on the set
D in general because the sample path of X0 may jump from D to E \ D resulting
in a killing inside D of its part process. By adopting k∗ instead of k, we get in an
analogous manner Hunt processes XD̄∗ on D and XD,0∗ on D satisfying the same
properties as above.

When (E , F r ) is the Dirichlet form on L2(Rd) of a symmetric stable process
on Rd , the space F 0 is identical with F r . In this case, for an arbitrary open set
D ⊂ Rd , the symmetric Hunt process on D associated with (E 0

D, F 0
D) is a censored

stable process on D in the sense of Bogdan, Burdzy and Chen [7]. It was further
shown in [7] that, if D is a d-set, then the space FD̄ coincides with F r

D so that the
symmetric Hunt process on D associated with (ED, F r

D) was called a reflecting
stable process over D.

For the nonsymmetric kernel k(1) on Rd as (1.9), associated Hunt processes
XD,0,XD,0∗ on an arbitrary open set D ⊂ Rd may well be called censored stable-
like processes in view of the stated properties of them. However, it is harder in this
case to identify the space FD̄ with F r

D , and accordingly we call the associated Hunt

processes XD̄,XD̄∗ over D modified reflecting stable-like processes analogously
to the Brownian motion case (cf. [11]). At the end of Section 6, we give sufficient
conditions in terms of the upper and lower bounds of the variable exponent α(x)

for the approachability in finite time of the censored stable-like processes to the
boundary.

We are grateful to Professor Yoichi Oshima for providing us with his unpub-
lished lecture notes [19] on nonsymmetric Dirichlet forms as well as an updated
version of a part of it, which are very valuable for us.

2. Construction of a lower bounded semi-Dirichlet form from k. Through-
out this section, we make the following assumptions on a nonnegative Borel mea-
surable function k(x, y) on E × E \ diag:

Ms ∈ L2
loc(E;m) for Ms(x) =

∫
y 
=x

(
1 ∧ d(x, y)2)

ks(x, y)m(dy),

(2.1)
x ∈ E,

C1 := sup
x∈E

∫
d(x,y)≥1

|ka(x, y)|m(dy) < ∞,(2.2)

and there exists a constant γ ∈ (0,1] such that

C2 := sup
x∈E

∫
d(x,y)<1

|ka(x, y)|γ m(dy) < ∞,(2.3)

and furthermore, for some constant C3 ≥ 0,

|ka(x, y)|2−γ ≤ C3ks(x, y) for any x, y ∈ E
(2.4)

with 0 < d(x, y) ≤ 1.
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For each n ∈ N, define Lnu for u ∈ C
lip
0 (E) by (1.5) and ηn(u, v) for u, v ∈

C
lip
0 (E) by

ηn(u, v) := −
∫
E

Lnu(x)v(x)m(dx),(2.5)

the integral on the right-hand side being absolutely convergent by (2.1). We note
that any u ∈ C

lip
0 (E) belongs to the domain F r of the form E defined by (1.4). In

fact, if we denote by K the support of u, then E (u,u) is dominated by twice the
integral of (u(x)−u(y))2ks(x, y)m(dx)m(dy) on K ×E, which is finite by (2.1).

E (u, v) admits also an alternative expression for u, v ∈ C
lip
0 (E),

E (u, v) :=
∫ ∫

E×E\diag

(
u(y) − u(x)

)(
v(y) − v(x)

)
k(x, y)m(dx)m(dy),

because the right-hand side of the above can be seen to be equal to the same integral
with k(y, x) in place of k(x, y) by interchanging the variables x, y, and we arrive
at the expression in (1.4) by averaging. In particular, E (u, v) = limn→∞ E n(u, v)

for u, v ∈ C
lip
0 (E) where

E n(u, v) :=
∫ ∫

d(x,y)>1/n

(
u(y) − u(x)

)(
v(y) − v(x)

)
k(x, y)m(dx)m(dy).(2.6)

PROPOSITION 2.1. Assume (2.1)–(2.4). Then for all u, v ∈ C
lip
0 (E), the limit

η(u, v) = lim
n→∞ηn(u, v)

exists. Moreover, the limit has the following expression:

η(u, v) = 1

2
E (u, v) +

∫ ∫
y 
=x

(
u(x) − u(y)

)
v(y)ka(x, y)m(dx)m(dy),(2.7)

where E is defined by (1.4) and the integral on the right-hand side is absolutely
convergent.

PROOF. For u, v ∈ C
lip
0 (E), we have

ηn(u, v) − ηn(v,u) = −
∫ ∫

d(x,y)>1/n

(
u(y) − u(x)

)
v(x)k(x, y)m(dx)m(dy)

+
∫ ∫

d(x,y)>1/n

(
v(y) − v(x)

)
u(x)k(x, y)m(dx)m(dy)

= −
∫ ∫

d(x,y)>1/n
u(y)v(x)k(x, y)m(dx)m(dy)

+
∫ ∫

d(x,y)>1/n
v(y)u(x)k(x, y)m(dx)m(dy)

= 2
∫ ∫

d(x,y)>1/n
u(x)v(y)ka(x, y)m(dx)m(dy),



864 M. FUKUSHIMA AND T. UEMURA

and further

ηn(u, v) + ηn(v,u)

= −
∫ ∫

d(x,y)≥1/n

(
u(y) − u(x)

)
v(x)k(x, y)m(dx)m(dy)

−
∫ ∫

d(x,y)≥1/n

(
v(y) − v(x)

)
u(x)k(x, y)m(dx)m(dy)

=
∫ ∫

d(x,y)≥1/n

(
u(y) − u(x)

)(
v(y) − v(x)

)
k(x, y)m(dx)m(dy)

−
∫ ∫

d(x,y)≥1/n

(
u(y) − u(x)

)
v(y)k(x, y)m(dx)m(dy)

−
∫ ∫

d(x,y)≥1/n

(
v(y) − v(x)

)
u(x)k(x, y)m(dx)m(dy)

= E n(u, v) − 2
∫ ∫

d(x,y)≥1/n
u(y)v(y)ka(x, y)m(dx)m(dy).

By adding up the obtained identities, we get for u, v ∈ C
lip
0 (E),

2ηn(u, v) = E n(u, v) + 2
∫ ∫

d(x,y)>1/n

(
u(x) − u(y)

)
v(y)

(2.8)
× ka(x, y)m(dx)m(dy).

Since E n(u, v) converges to E (u, v) as n → ∞, it remains to see that the second
term of the right-hand side also converges absolutely as n → ∞ for each u, v ∈
C

lip
0 (E).
From the Schwarz inequality and (2.2), we see that∫ ∫

d(x,y)>1/n

∣∣(u(x) − u(y)
)
v(y)ka(x, y)

∣∣m(dx)m(dy)

≤
∫ ∫

1/n<d(x,y)<1
|u(x) − u(y)| · |v(y)||ka(x, y)|γ /2

× |ka(x, y)|1−γ /2m(dx)m(dy)

+
∫ ∫

d(x,y)≥1
|u(x) − u(y)| · |v(y)|ks(x, y)1/2|ka(x, y)|1/2m(dx)m(dy)

≤
√∫ ∫

1/n<d(x,y)<1

(
u(x) − u(y)

)2|ka(x, y)|2−γ m(dx)m(dy)

×
√∫ ∫

1/n<d(x,y)<1
v(y)2|ka(x, y)|γ m(dx)m(dy)

+ √
C1‖v‖

√∫ ∫
d(x,y)≥1

(
u(x) − u(y)

)2
ks(x, y)m(dx)m(dy).



LOWER BOUNDED SEMI-DIRICHLET FORM 865

So, by making use of assumptions (2.3) and (2.4) and an elementary inequality√
A + √

B ≤ √
2
√

A + B holding for A ≥ 0 and B ≥ 0, we have∫ ∫
d(x,y)>1/n

∣∣(u(x) − u(y)
)
v(y)ka(x, y)

∣∣m(dx)m(dy)

≤ √
2
√

C1 ∨ C2C3‖v‖ · √
E n(u,u).

Then taking n → ∞,∫ ∫
y 
=x

∣∣(u(x) − u(y)
)
v(y)ka(x, y)

∣∣m(dx)m(dy)

≤ √
2
√

C1 ∨ C2C3‖v‖ · √
E (u,u) < ∞

as was to be proved. �

For u, v ∈ C
lip
0 (E), set

ηβ(u, v) = η(u, v) + β(u, v), β > 0,

and

B(u, v) :=
∫ ∫

x 
=y

(
u(x) − u(y)

)
v(y)ka(x, y)m(dx)m(dy).(2.9)

Then equation (2.7) reads

η(u, v) = 1
2 E (u, v) + B(u, v), u, v ∈ C

lip
0 (E),(2.10)

while we get from the proof of the preceding proposition

|B(u, v)| ≤ C4‖v‖√
E (u,u),(2.11)

where C4 = √
2 · √C1 ∨ C2C3. Now we put β0 := 4(C4)

2 = 8(C1 ∨ C2C3).
From equation (2.10) and the bound (2.11), we have for u ∈ C

lip
0 (E),

ηβ0(u,u) = 1
4 Eβ0(u,u) + 1

4 E (u,u) + 3
4β0‖u‖2 + B(u,u)

≥ 1
4 Eβ0(u,u) + √

3C4
√

E (u,u)‖u‖ + B(u,u) ≥ 1
4 Eβ0(u,u).

Further, for u, v ∈ C
lip
0 (E),

|η(u, v)| ≤ 1
2 |E (u, v)| + |B(u, v)|

≤ 1
2

√
E (u,u)

√
E (v, v) + C4‖v‖√

E (u,u)

≤ 1
2

(√
E (v, v) + 2C4‖v‖)√

E (u,u)

≤
√

2
2

√
Eβ0(v, v)

√
Eβ0(u,u).
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So it also follows that

|η(u, v)| ≤ 2
√

2
√

ηβ0(u,u)
√

ηβ0(v, v)(2.12)

and

1
4 Eβ0(u,u) ≤ ηβ0(u,u) ≤ 2+√

2
2 Eβ0(u,u), u, v ∈ C

lip
0 (E).(2.13)

Let F 0 be the E1-closure of C
lip
0 (E) in F r . Since F 0 is complete with respect

to Eα for any α > 0, the estimates obtained above readily lead us to the first con-
clusion of the following theorem.

THEOREM 2.1. Assume (2.1)–(2.4). Then the form η defined by Proposi-
tion 2.1 extends from C

lip
0 (E) × C

lip
0 (E) to F 0 × F 0 to be a lower bounded closed

form on L2(E;m) satisfying (B.1)–(B.3) with β0 = 8(C1 ∨ C2C3),K = 2
√

2 and
possessing (E , F 0) as a reference form in the sense of (1.7).

Furthermore, the pair (η, F 0) is a regular lower bounded semi-Dirichlet form
on L2(E;m).

We note that the above constant β0 is equal to 0 if k is symmetric: k(x, y) =
k(y, x), (x, y) ∈ E × E \ diag.

PROOF OF THEOREM 2.1. It suffices to prove the contraction property (1.2)
for the present pair (η, F 0). We first show this for u ∈ C

lip
0 (E). Note that Uu ∈

C
lip
0 (E) and, for n ∈ N,

ηn(Uu,u − Uu)

= −
∫ ∫

d(x,y)>1/n

(
Uu(y) − Uu(x)

)(
u(x) − Uu(x)

)
k(x, y)m(dx)m(dy)

=
∫ ∫

{d(x,y)>1/n}∩{x : u(x)≥1}
(
1 − Uu(y)

)(
u(x) − 1

)
k(x, y)m(dx)m(dy)

−
∫ ∫

{d(x,y)>1/n}∩{x : u(x)≤0}
Uu(y)u(x)k(x, y)m(dx)m(dy)

≥ 0.

Then, we have by Proposition 2.1

η(Uu,u − Uu) = lim
n→∞ηn(Uu,u − Uu) ≥ 0.

Following a method in [17], Lemma 4.9, we next prove (1.2) for any u ∈ F 0.
Choose a sequence {u�} ⊂ C

lip
0 (E) which is E1-convergent to u. Then

‖Uu� − Uu‖ → 0, � → ∞,(2.14)
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because U is easily seen to be a continuous operator from L2(E;m) to L2(E;m).
Fix α > β0. We then get from (1.7) the boundedness

sup
�

ηα(Uu�,Uu�) ≤ C2 sup
�

E1(u�, u�) < ∞.

On the other hand, using the dual resolvent Ĝα associated with the lower bounded
closed form (η, F 0), we see from equation (3.1) below that, for any g ∈ L2(E;m),

ηα(Uu�, Ĝαg) = (Uu�, g) → (Uu,g) = ηα(Uu, Ĝαg), � → ∞.

Since {Ĝαg :g ∈ L2(E,m)} is ηα-dense in F 0, we can conclude by making use
of the above ηα-bound of {Uu�} and the sector condition (B.2) that {Uu�} is ηα-
weakly convergent to Uu as � → ∞. In particular, by the above ηα-bound and
(B.2) again, we have

ηα(Uu�,u�) → ηα(Uu,u), � → ∞.(2.15)

We consider the dual form η̂ and the symmetrizing form η̃ of η defined by

η̂(u, v) = η(v,u), η̃(u, v) = 1
2

(
η(u, v) + η(v,u)

)
, u, v ∈ F 0.

In the same way as above, we can see that {Uu�} converges as � → ∞ to Uu

η̂α-weakly and consequently η̃α-weakly. Since (η̃α, F 0) is a nonnegative definite
symmetric bilinear form, it follows that

ηα(Uu,Uu) = η̃α(Uu,Uu) ≤ lim inf
�→∞ η̃α(Uu�,Uu�)

(2.16)
= lim inf

�→∞ ηα(Uu�,Uu�).

We can then obtain (1.2) for u ∈ F 0 from (2.14), (2.15) and (2.16) as

η(Uu,u − Uu) ≥ lim
�→∞η(Uu�,u�) − lim inf

�→∞ η(Uu�,Uu�)

= lim sup
�→∞

η(Uu�,u� − Uu�) ≥ 0. �

For the kernel k∗ defined by (1.8), we have obviously

k∗
s (x, y) = ks(x, y) and k∗

a(x, y) = −ka(x, y), x, y ∈ E,x 
= y.(2.17)

Hence, if the kernel k(x, y) satisfies (2.1)–(2.4), so does the kernel k∗(x, y). Define
η∗ as in Proposition 2.1 with k∗(x, y) in place of k(x, y). The same calculations
made above for k(x, y) remain valid for k∗(x, y). Note also that the domain F 0∗ is
the same as F 0 since the symmetric form E ∗ defined by k∗ is also the same as E .
Thus, we can have the following corollary.

COROLLARY 2.1. Assume conditions (2.1)–(2.4) hold. Then the pair (η∗, F 0)

is also a regular lower bounded semi-Dirichlet form on L2(E;m).
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3. Markov property of dual semigroups. First, we fix a general lower
bounded closed form (η, F ) on L2(E;m) satisfying (B.1)–(B.3) and make sev-
eral remarks on it. The last condition (B.3) is equivalent to

(B.3)′ (η̃β0, F ) is a closed symmetric form on L2(E;m),

where η̃ denotes the symmetrization of the form η : η̃(u, v) = 1
2(η(u, v)+η(v,u)).

ηβ0 is therefore a coercive closed form in the sense of [17], Definition 2.4, so
that, by [17], Theorem 2.8, there exist uniquely two families of linear bounded
operators {Gα}α>β0, {Ĝα}α>β0 on L2(E;m) such that, for α > β0, Gα(L2(E;m)),
Ĝα(L2(E;m)) ⊂ F and

ηα(Gαf,u) = (f,u) = ηα(u, Ĝαf ), f ∈ L2(E;m),u ∈ F .(3.1)

In particlular, Gα and Ĝα are mutually adjoint:

(Gαg,f ) = (g, Ĝαf ), f, g ∈ L2(E;m),α > β0.(3.2)

We call {Gα;α > β0} (resp., {Ĝα;α > β0}) the resolvent (resp., dual resolvent)
associated with (η, F ).

Accordingly we see in exactly the same way as the proof of Theorem 2.8 of [17]
that there exist strongly continuous contraction semigroups {St ; t > 0}, {Ŝt ; t > 0}
of linear operators on L2(E;m) such that, for α > 0, f ∈ L2(E;m),

Gβ0+αf =
∫ ∞

0
e−αtStf dt, Ĝβ0+αf =

∫ ∞
0

e−αt Ŝtf dt.

We then set Tt = eβ0t St , T̂t = eβ0t Ŝt to get strongly continuous semigroups {Tt ; t >

0}, {T̂t ; t > 0} satisfying

Gαf =
∫ ∞

0
e−αtTtf dt, Ĝαf =

∫ ∞
0

e−αt T̂tf dt, α > β0,(3.3)

as well as (1.1).
We call {Tt ; t > 0} (resp., {T̂t ; t > 0}) the semigroup (resp., dual semigroup) on

L2(E;m) associated with the lower bounded closed form (η, F ). We introduce the
dual form η̂ of η by

η̂(u, v) = η(v,u), u, v ∈ F .

Then (η̂, F ) is a lower bounded closed form on L2(E;m) with which {T̂t ; t > 0}
and {Ĝα;α > β0} are the associated semigroup and resolvent, respectively.

Suppose (η, F ) is a lower bounded semi-Dirichlet form, namely, it satisfies the
contraction property (1.2) additionally. As in the proof of the corollary to Theo-
rem 4.1 of [15] or the proof of Theorem 4.4 of [17], we can then readily verify
that the family {αGα;α > β0} is Markovian, which is in turn equivalent to the
Markovian property of {Tt ; t > 0}. Together with {Tt ; t > 0}, its Laplace trans-
form then determines a bounded linear operator Gα on L∞(E;m) for every α > 0
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and {αGα;α > 0} becomes Markovian. Further, {T̂t ; t > 0} is positivity preserving
in view of (1.1).

Suppose additionally that (η, F ) is regular. Then the associated Markovian
semigroup and resolvent can be represented by the transition function {Pt ; t > 0}
and the resolvent {Rα;α > 0} of the associated Hunt process X specified in The-
orem 2 of the next section: Ptf = Ttf, t > 0, and Rαf = Gαf,α > 0, for any
f ∈ Bb(E) ∩ L2(E;m). We call a σ -finite measure μ on E excessive relative to X

if μPt ≤ μ for any t > 0. The next lemma was already observed in Silverstein [20].

LEMMA 3.1. Let η be a regular lower bounded semi-Dirichlet form on
L2(E;m).

(i) The following three conditions are mutually equivalent:
1. m is excessive relative to X.
2. The dual semigroup {T̂t : t > 0} is Markovian.
3. η(u − Uu,Uu) ≥ 0 for anyu ∈ F .

(ii) If one of the three conditions in (i) is satisfied, then η is nonnegative definite
and the constant β0 in conditions (B.1), (B.3) [resp., (B.2)] can be retaken to
be 0 (resp., 1).

PROOF. (i) 3 is the Markovian criterion (1.2) for the dual semigroup. If 2
is satisfied, then for any f ∈ L2(E;m) with 0 ≤ f ≤ 1, 0 ≤ T̂tf ≤ 1 so that
(f,Pth) = (T̂tf, h) ≤ (1, h) for any h ∈ B+ ∩ L2(E;m), from which 1 follows.
The converse can be shown similarly.

(ii) By the Schwarz inequality,

(Rαf (x))2 ≤ Rα1(x)Rαf 2(x) ≤ 1

α
Rαf 2(x), x ∈ E,f ∈ Bb(E)∩L2(E;m).

Assuming 1 of (i), an integration with respect to m yields α2‖Gαf ‖2 ≤ ‖f ‖2,
the L2-contraction property of αGα . In view of [17], Theorem 2.13, η(u,u) =
limα→∞ α(u−αGαu,u)u ∈ F , which particularly implies that η(u,u) ≥ 0, u ∈ F ,
and {ηα;α > 0} become equivalent on F . �

We now return to the setting of the preceding section that (η, F 0) is defined
in terms of the kernel k satisfying conditions (2.1)–(2.4). By Proposition 2.1,
η̂(u, v) = 1

2 E (v, u) + B(v,u) where B is defined by (2.9) on F 0 × F 0. On the
other hand, we have from (2.17) that η∗(u, v) = 1

2 E (u, v) − B(u, v) and conse-
quently

η̂(u, v) = η∗(u, v) + (
B(u, v) + B(v,u)

)
, u, v ∈ F 0.(3.4)

We know from Theorem 2.1 and Corollary 2.1 that both (η, F 0) and (η∗, F 0)

are regular lower bounded semi-Dirichlet forms. In order to get a similar property
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for the dual form η̂, we need to impose on the kernel k stronger conditions than
(2.1)–(2.4) making the additional term on the right-hand side of (3.4) controllable.

In the rest of this section, we assume that the kernel k satisfies the condition

Ms ∈ L2
loc(E;m) for Ms(x) =

∫
y 
=x

(
1 ∧ d(x, y)

)
ks(x, y)m(dy),

(3.5)
x ∈ E,

in place of (2.1), and further satisfies condition (2.2) as well as (2.3) for γ = 1 so
that

β1

2
:= sup

x∈E

∫
x 
=y

|ka(x, y)|m(dy)

(3.6)

= sup
x∈E

1

2

∫
x 
=y

|k(x, y) − k(y, x)|m(dy) < ∞.

Notice that condition (2.4) for γ = 1 is always satisfied with C3 = 1.
Then the integrals

Lu(x) =
∫
y 
=x

(
u(y) − u(x)

)
k(x, y)m(dy) and

(3.7)
L∗u(x) =

∫
y 
=x

(
u(y) − u(x)

)
k∗(x, y)m(dy),

converge for u ∈ C
lip
0 (E), x ∈ E, and we get from Proposition 2.1 the identities

η(u, v) = −(Lu, v), η∗(u, v) = −(L∗u, v), u, v ∈ C
lip
0 (E).(3.8)

Furthermore,

K(x) := 2
∫
y 
=y

ka(x, y)m(dy)

(3.9)
=

∫
y 
=x

(
k(x, y) − k(y, x)

)
m(dy), x ∈ E,

defines a bounded function on E and (3.4) readily leads us to

η̂(u, v) = η∗(u, v) + (u,Kv), u, v ∈ F 0,

which combined with (3.7) means that L̂ = L∗ − K is the formal adjoint of L.
η̂ does not necessarily satisfy the contraction property (1.2), but the form

η̂β(u, v) = η∗(u, v) + (
u, (K + β)v

)
, β ≥ β1,

does because so does the form η∗ by Corollary 2.1 and K + β ≥ 0 if β ≥ β1. So
we have the following proposition.
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PROPOSITION 3.1. Assume that (3.5) and (3.6) hold. Then (η̂β, F 0), which is
the dual of (ηβ, F 0), is a regular lower bounded semi-Dirichlet form on L2(E;m)

provided that β ≥ β1.

This proposition means that, under conditions (3.5) and (3.6), {e−βt T̂t ; t > 0} is
Markovian for the dual semigroup {T̂t ; t > 0} associated with η when β ≥ β1. If
(3.6) fails, the dual semigroup of {e−βtTt ; t > 0} may not be Markovian no matter
how large β is.

A nonnegative Borel function k on E × E is said to be a probability kernel if∫
E k(x, y)m(dy) = 1, x ∈ E. A probability kernel k with the additional property

sup
x∈E

∫
D

k(y, x)m(dy) < ∞(3.10)

satisfies conditions (3.5) and (3.6) and η defined by (3.8) yields a regular lower
bounded semi-Dirichlet form on L2(E;m). We now give an example of a such a
kernel on R1 with m being the Lebesgue measure for which the associated semi-
Dirichlet form η is not nonnegative definite so that, according to Lemma 3.1, the
associated dual semigroup {T̂t , t > 0} is not Markovian although {e−βt T̂t ; t > 0}
is Markovian for a large β > 0 in view of Proposition 3.1. A transition probabil-
ity density function with respect to the Lebesgue measure of the one-dimensional
Brownian motion with a mildly localized drift serves to be an example of such a
kernel k.

Consider a diffusion Y on R1 with generator Gu = 1
2u′′ + λb(x)u′ where λ is a

positive constant and b is a function in C1
0(R1) not identically 0. Then G = d

dm
· d

ds
for

dm(x) = m(x)dx, ds(x) = 2m(x)−1 dx,

where

m(x) = 2 exp
{

2λ

∫ x

0
b(y) dy

}
,

namely, Y is a diffusion with canonical scale s and canonical (speed) measure dm.
The following facts about Y are taken from [12]. Since m(x) is bounded from

above and from below by positive constants, both ±∞ are nonapproachable in the
sense that s(±∞) = ±∞. Therefore, Y is recurrent and consequently conserva-
tive: qt (x,E) = 1, x ∈ E, where {qt ; t > 0} denotes the transition function of Y .
Y is m-symmetric and its Dirichlet form (E Y , F Y ) on L2(R1,m) is given by⎧⎪⎪⎪⎨⎪⎪⎪⎩

E Y (u, v) = 1

2

∫
R1

u′(x)v′(x)m(x)dx,

F Y = {u ∈ L2(R1;m) :u is absolutely
continuous and E Y (u,u) < ∞} (=H 1(R1)).
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For u ∈ C1
0(R1), E Y (u, u

m
) is seen to be equal to 1

2

∫
R1((u′)2 − 2λbu′u)dx and

so

E Y

(
u,

u

m

)
= 1

2

(∫
R1

(u′)2 dx + λ

∫
R1

b′u2 dx

)
.

There is a finite interval I ⊂ R1 where b′ is strictly negative. Choose u0 ∈ C1
0(R1)

not identically zero and with support being contained in I . We can then make a
choice of λ > 0 such that the right-hand side of the above equation is negative for
u = u0.

Since qt maps L2(R1;m) into F Y ⊂ C(R1), qt (x, ·) is absolutely continu-
ous with respect to m and hence with respect to the Lebesgue measure for each
x ∈ R1. Denote by qt (x, y) its density with respect to the Lebesgue measure so
that

∫
R1 qt (x, y) dy = 1, x ∈ R1, with

qt (y, x) = m(x)qt (x, y)
1

m(y)
.(3.11)

We know that the left-hand side of the above equation equals

lim
t↓0

1

t

∫
R1

(
u(x) − qtu(x)

) u(x)

m(x)
m(x)dx = lim

t↓0

1

t

∫
R1

(
u(x) − qtu(x)

)
u(x) dx

and so, for k(x, y) = qt0(x, y) with a sufficiently small t0 > 0,

η(u0, u0) = −
∫

R1

[∫
R1

(
u0(y) − u0(x)

)
k(x, y) dy

]
u0(x) dx < 0.

Equality (3.10) follows from (3.11).

4. Associated Hunt process and martingale problem. Let (η, F ) be a reg-
ular lower bounded semi-Dirichlet form on L2(E;m) as is defined in Section 1.
For the symmetrization η̃, (η̃β0, F ) is then a closed symmetric form on L2(E;m)

but not necessarily a symmetric Dirichlet form. A symmetric Dirichlet form E on
L2(E;m) with domain F will be called a reference (symmetric Dirichlet) form of
η if, for each fixed α > β0,

c1E1(u,u) ≤ ηα(u,u) ≤ c2E1(u,u), u ∈ F ,(4.1)

for some positive c1, c2 independent of u ∈ F . E is then a regular Dirichlet form.
In what follows, we assume that η admits a reference form E . This assumption
is really unnecessary (cf. [16, 19]) but convenient to simplify some arguments.
The regular lower bounded semi-Diriclet form (η, F 0) constructed in Section 2
from a kernel k satisfying (2.1)–(2.4) has a reference form (E , F 0) defined right
after (1.4).

In formulating an association of a Hunt process with η, Carrillo Menendez
adopted a functional capacity theorem due to Ancona [2]. More specifically, denote
by O the family of all open sets A ⊂ E with LA = {u ∈ F :u ≥ 1 m-a.e. on A} 
=
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∅. Fix α > β0 and, for A ∈ O, let eA be the ηα-projection of 0 on LA in Stampac-
chia’s sense [21] (cf. [17], Theorem 2.6):

eA ∈ LA, ηα(eA,w) ≥ ηα(eA, eA) for any w ∈ LA.(4.2)

A set N ⊂ E is called η-polar if there exist decreasing An ∈ O containing N such
that eAn is ηα-convergent to 0 as n → ∞. A numerical function u on E is called η-
quasi-continuous if there exist decreasing An ∈ O such that eAn is ηα-convergent
to 0 as n → ∞ and u|E\An is continuous for each n.

The capacity Cap for the reference form E is defined by

Cap(A) = inf{E1(u,u) :u ∈ LA}, A ∈ O.

It then follows from (4.1) that

c1 Cap(A) ≤ ηα(eA, eA) ≤ c2K
2
α Cap(A), A ∈ O,

(4.3)
Kα = K + α

α − β0
,

because (4.2) and (B.2) imply ηα(eA, eA) ≤ K2
αηα(w,w),w ∈ LA. Equation (4.3)

means that a set N is η-polar iff it is E -polar in the sense that Cap(N) = 0, and a
function u is η-quasi-continuous iff it is E -quasi-continuous in the sense that there
exist decreasing An ∈ O with Cap(An) ↓ 0 as n → ∞ and u|E\An is continuous for
each n. Every element of F admits its η-quasi-continuous m-version. If {un} ⊂ F
is ηα-convergent to u ∈ F and if each un is η-quasi-continuous, then (4.1) implies
that a subsequence of {un} converges η-q.e., namely, outside some η-polar set, to
an η-quasi-continuous version of u. We shall occasionally drop η from the terms
η-polar, η-q.e. and η-quasi-continuity for simplicity.

Recall that the L2-resolvent {Gα;α > β0} associated with η determines the
resolvent {Gα;α > 0} on L∞(E;m) with ‖Gαf ‖∞ ≤ 1

α
‖f ‖∞, α > 0, f ∈

L∞(E;m).

LEMMA 4.1. Suppose Gβf admits a quasi-continuous m-version Rβf for a
fixed β > β0 and for every bounded Borel f ∈ L2(E;m). Then, for any α with
0 < α ≤ β0 and for any bounded Borel f ∈ L2(E;m),

Rαf (x) =
∞∑

k=1

(β − α)k−1Rk
βf (x)

converges q.e. and defines a quasi-continuous m-version of Gαf . Further the re-
solvent equation

Rαf − Rβf + (α − β)RαRβf = 0

holds q.e. for any bounded Borel f ∈ L2(E;m).
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PROOF. Choose a regular nest {F�} so that Rk
βf ∈ C({F�}) for k ≥ 1. Define

vn(x) = ∑n
k=1(β − α)k−1Rk

βf (x). By the resolvent equation for {Gα;α > 0}, we
have

Gαf = vn + (β − α)nGn
βGαf.

The L∞-norm of the second term of the right-hand side is dominated by
1
α
(
β−α

β
)n‖f ‖∞, which tends to 0 as n → ∞. Therefore, {vn} is convergent uni-

formly on each set F� to a quasi-continuous version of Gαf . The resolvent equa-
tion is clear. �

THEOREM 4.1. There exist a Borel η-polar set N0 ⊂ E and a Hunt process
X = (Xt ,Px) on E \ N0 which is properly associated with (η, F ) in the sense that
Rαf is a quasi continuous version of Gαf for any α > 0 and any bounded Borel
f ∈ L2(E;m). Here Rα is the resolvent of X and Gα is the resolvent associated
with η.

This theorem was proved in [8] first by assuming that β0 = 0 and then reduc-
ing the situation to this case. Actually the proof can be carried out without such
a reduction. Indeed, after constructing the kernel Ṽλ of [8], Proposition II.2.1, for
every rational λ > β0 ([8], Proposition II.2.2) can be shown first for every ratio-
nal λ > β0, and then for every 0 < λ ≤ β0 by using Lemma 4.1. The rest of the
arguments in [8] then works in getting to Theorem 4.1.

Our next concern will be exceptional sets and fine continuity for the Hunt
process X = (Xt ,Px) appearing in Theorem 4.1. Denote by B(E) the family of
all Borel sets of E. For B ∈ B(E), we let

σB = inf{t > 0 :Xt ∈ B}, σ̂B = inf{t > 0 :Xt− ∈ B}, inf ∅ = ∞.

A ∈ B(E) is called X-invariant if

Px(σE\A ∧ σ̂E\A < ∞) = 0 ∀x ∈ A.

N ∈ B(E) is called properly exceptional (with respect to X) if m(N) = 0 and
E \ N is X-invariant.

A set N ⊂ E is called m-polar if there exists N1 ⊃ N,N1 ∈ B(E) such that
Pm(σN1 < ∞) = 0. Any properly exceptional set is m-polar.

THEOREM 4.2.

(i) For A ∈ O, the function pα
A defined by pα

A(x) = Ex[e−ασA], x ∈ E \ N0, is
a quasi-continuous version of eA,α > β0.

(ii) For any η-polar set B , there exists a Borel properly exceptional set N

containing N0 ∪ B .
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(iii) If u is η-quasi-continuous, then there exists a Borel properly exceptional
set N ⊃ N0 such that, for any x ∈ E \ N ,

Px

(
lim
t ′↓t

u(Xt ′) = u(Xt) ∀t ≥ 0 and lim
t ′↑t

u(Xt ′) = u(Xt−) ∀t ∈ (0, ζ )
)

= 1,(4.4)

where ζ is the lifetime of X. In particular, u is finely continuous with respect to the
restricted Hunt process X|E\N .

(iv) Any X-semi-polar set is η-polar.
(v) A set N ⊂ E is η-polar if and only if N is m-polar.

PROOF. (i) A function u ∈ L2(E;m) is said to be α-excessive if u ≥ 0,
βGα+βu ≤ u,β > 0. A function u ∈ F is α-excessive iff ηα(u, v) ≥ 0 for all non-
negative v ∈ F (cf. [16], Theorem 2.4). In particular, eA is α-excessive and fur-
ther v = eA ∧ pα

A is an α-excessive function in F (cf. [16], Theorem 2.6). Hence,
ηα(v, eA − v) ≥ 0. Since v ∈ LA, ηα(eA, eA − v) ≤ 0 so that v = eA and eA ≤ pα

A.
The converse inequality can be obtained as in the proof of Theorem 6.1 below by
using the optional sampling theorem for a supermartingale but with time parameter
set being a finite set.

Since the quasi-continuous function βRα+βpα
A converges to pα

A as β → ∞
pointwise and in ηα , we get the quasi-continuity of pα

A.
(ii) Choose a decreasing sets An ∈ O with An ⊃ B,Cap(An) → 0, n → ∞ and

put B1 = ⋂
n An. By (4.1) and (i), limn→∞ pα

An
= 0 q.e. so that

Px(σB1 ∧ σ̂B1 < ∞) = 0, x ∈ E \ N1,

for some polar set N1. Choose next a decreasing sets A′
n ∈ O containing B1 ∪

N1 ∪N0 with Cap(A′
n) → 0, n → ∞ and put B2 = ⋂

n A′
n. Then the above identity

holds for x ∈ E \ B2. Moreover, the above identity holds true for B2 in place of
B1 and for some polar set N2 in place of N1. Repeating this procedure, we get an
increasing sequence {Bk} of Gδ-sets which are polar sets such that

Px(σBk
∧ σ̂Bk

< ∞) = 0, x ∈ E \ Bk+1.

It then suffices to put N = ⋃
k Bk .

(iii) Choose decreasing An ∈ O such that Cap(An) → 0, n → 0, and u|E\An

is continuous for each n. Let N be a properly exceptional set constructed in (ii)
starting with this sequence {An}. Then, for any x ∈ E \ N , limn→∞ pα

An
(x) = 0

and consequently Px(limn→∞ σAn = ∞) = 1, which readily implies (4.4).
(iv) We reproduce a proof by Silverstein [20]. For B ∈ B(E), consider the en-

try time σ̇B = inf{t ≥ 0 :Xt ∈ B} and the function ṗα
B(x) = Ex[e−ασ̇B ], x ∈ E,

α > β0. Let K be a compact thin set: K admits no regular point relative to X. It
suffices to show that K is η-polar.

Choose relatively compact open sets {Gn} such that Gn ⊃ Gn+1 and
⋂

n Gn =
K . Due to the quasi-left continuity of X, pα

Gn
(x) = ṗα

Gn
(x) then decreases to
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ṗα
K(x) as n → ∞ for each x ∈ E. By (i) and (4.1) and (4.2), the sequence {ṗα

Gn
}

is E1-bounded so that the Cesàro mean sequence fn of its suitable subsequence is
E1-convergent. Since fn are quasi-continuous and converges to ṗα

K pointwise as
n → ∞, we conclude that ṗα

K is a quasi-continuous element of F . On the other
hand, the quasi-continuous function βRα+βṗα

K converges to pα
K as β → ∞ point-

wise and in ηα so that pα
K is also a quasi-continuous version of ṗα

K . Therefore,
pα

K = ṗα
K q.e. and in particular K is η-polar.

(v) “only if” part follows from (ii). To show “if” part, assume that K is a com-
pact m-polar set. Then pα

K = 0 m-a.e. Choose for K relatively compact open
sets {Gn} as in the proof of (iv) so that the Cesàro mean f� of a certain subse-
quence {pα

Gn�
} is E1-convergent to pα

K as � → ∞ which is now a zero element

of F 0. Since f� ≥ 1 m-a.e. on Gn�
, we have Cap(K) ≤ Cap(Gn�

) ≤ E1(f�, f�)

and we get Cap(K) = 0 by letting � → ∞. For any Borel m-polar set N , we have
Cap(N) = sup{Cap(K) :K ⊂ N,Kis compact} = 0. �

Clearly, the restriction of X outside its properly exceptional set is again a Hunt
process properly associated with η.

Our final task in this section is to relate the Hunt process of Theorem 4.1 to a
martingale problem.

We consider the case where η admits the expression

η(f, g) = −(Lf,g), f ∈ D(L), g ∈ F ,(4.5)

for a operator L with domain D(L) satisfying the following:

(L.1) D(L) is a linear subspace of F ∩ C0(E),
(L.2) L is a linear operator sending D(L) into L2(E;m) ∩ Cb(E),
(L.3) there exists a countable subfamily D0 of D(L) such that each f ∈ D(L)

admits fn ∈ D0 such that fn, Lfn are uniformly bounded and converge pointwise
to f, Lf , respectively, as n → ∞.

We also consider an additional condition that
(L.4) there exists fn ∈ D(L) such that fn, Lfn are uniformly bounded and con-

verge to 1,0, respectively, as n → ∞.

THEOREM 4.3. Assume that η admits the expression (4.5) with L satisfying
conditions (L.1), (L.2), (L.3).

(i) There exists then a Borel properly exceptional set N containing N0 such
that, for every f ∈ D(L),

M
[f ]
t = f (Xt) − f (X0) −

∫ t

0
(Lf )(Xs) ds, t ≥ 0,(4.6)

is a Px -martingale for each x ∈ E \ N .
(ii) If the additional condition (L.4) is satisfied, then the Hunt process X|E\N

is conservative.
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PROOF. (i) Take f ∈ D(L) and g ∈ L2(E;m). By (4.5) and (3.2), we have,
for α > β0,

(Gα Lf,g) = (Lf, Ĝαg) = −η(f, Ĝαg)

= −ηα(f, Ĝαg) + α(f, Ĝαg)

= −(f, g) + α(Gαf,g).

Thus, (Gα Lf,g) = (αGαf − f,g) holds for any g ∈ F and

1

α
Gα(Lf )(x) = Gαf (x) − f (x)

α
, m-a.e.

We denote by {Pt ; t ≥ 0} and {Rα;α > 0} the transition function and the resolvent
of X, respectively:

Pth(x) = Ex[h(Xt)], Rαh(x) =
∫ ∞

0
e−αtPth(x) dt.

Since X is properly associated with η by Theorem 4.1, we get

1

α
Rα(Lf )(x) = Rαf (x) − f (x)

α
, q.e.

Hence, by virtue of Theorem 4.2(ii), there exists a Borel properly exceptional set
N such that∫ ∞

0
e−αt

(∫ t

0
Ps(Lf )(x) ds

)
dt =

∫ ∞
0

e−αt (Ptf (x) − f (x)
)
dt, x ∈ E \ N,

holds for any α ∈ Q+ with α > β0 and for any f ∈ D0.
Since Pth(x) is a right continuous in t ≥ 0 for any h ∈ Cb(E), we get

Ptf (x) − f (x) =
∫ t

0
Ps(Lf )(x) ds, t ≥ 0, x ∈ E \ N,(4.7)

holding for any f ∈ D0. By virtue of condition (L.3), we conclude that the equation
(4.7) holds true for any f ∈ D(L). Equation (4.7) implies that, for any f ∈ D(L),
the functional M

[f ]
t , t ≥ 0, defined by (4.6) is a mean zero, square integrable ad-

ditive functional of the Hunt process X|E\N so that it is a Px -martingale for each
x ∈ E \ N .

(ii) Under the additional condition (L.4), we let n → ∞ in equation (4.7) with
fn in place of f arriving at Pt1 = 1, t ≥ 0. �

Theorem 4.3 will enable us in the next section to relate our Hunt process to the
solution of a martingale problem in a specific case.
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5. Stable-like process. In this section, we consider the case that E = Rd and
m(dx) = dx is the Lebesgue measure on Rd . For a positive measurable function
α(x) defined on Rd , Bass introduced the following integro-differential operator in
[5] (see also [4, 6]): for u ∈ C2

b(Rd),

Lu(x) = w(x)

∫
h 
=0

(
u(x + h) − u(x) − ∇u(x) · h1B(1)(h)

)|h|−d−α(x) dh,

x ∈ Rd,

where w(x) is a function chosen so that Leiux = −|u|α(x)eiux and C2
b(Rd) denotes

the set of twicely differentiable bounded functions. If α is Lipschitz continuous,
bounded below by a constant which is greater than 0, and bounded above by a
constant which is less than 2, then he constructed a unique strong Markov process
associated with L by solving the L-martingale problem for every starting point
x ∈ Rd . Using the theory of stochastic differential equation with jumps, Tsuchiya
[22] also succeeded in constructing the Markov process associated with L (see
also [18]). Note that the weight function w(x) is given by

w(x) = �((1 + α(x))/2)�((α(x) + d)/2) sin(πα(x)/2)

21−α(x)πd/2+1 , x ∈ Rd(5.1)

(see, e.g., [3]).
Put k(x, y) = w(x)|x − y|−d−α(x), x, y ∈ Rd with x 
= y. Then this falls into

our case when we consider the following conditions: there exist positive constants
α,α,M and δ so that for x, y ∈ Rd ,

0 < α ≤ α(x) ≤ α < 2, α < 1 + α

2
and

(5.2)

|α(x) − α(y)| ≤ M|x − y|δ for δ with 0 <
1

2
(2α − α) < δ ≤ 1.

PROPOSITION 5.1. Assume (5.2) holds. Then conditions (2.1)–(2.4) are sat-
isfied by the function

k(x, y) = w(x)|x − y|−d−α(x), x, y ∈ Rd, x 
= y.(5.3)

PROOF. Note first that, from equation (5.1) defining the weight w(x), we eas-
ily see that there exist constants ci (i = 1,2,3) so that for x, y ∈ Rd ,

c1 ≤ w(x) ≤ c2, |w(x) − w(y)| ≤ c3|α(x) − α(y)|.
Then

ks(x, y) = 1
2

(
w(x)|x − y|−d−α(x) + w(y)|x − y|−d−α(y))

≤
{

M|x − y|−d−α, |x − y| ≤ 1,
M|x − y|−d−α, |x − y| > 1.
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This and the condition 0 < α ≤ α < 2 imply that condition (2.1) is fulfilled be-
cause the function Ms in it is bounded. Condition (2.2) is also valid as |ka(x, y)| ≤
ks(x, y).

On the other hand, since

ka(x, y) = w(x)|x − y|−d−α(x) − w(y)|x − y|−d−α(y)

= (
w(x) − w(y)

)|x − y|−d−α(x)

+ w(y)|x − y|−d(|x − y|−α(x) − |x − y|−α(y))
and

|x − y|−α(x) − |x − y|−α(y) =
∫ α(x)

α(y)
|x − y|−u 1

ln|x − y|−1 du,

we see that for |x − y| < 1,

|ka(x, y)| ≤ |w(x) − w(y)| · |x − y|−d−α(x)

+ w(y)|x − y|−d |α(x) − α(y)| · |x − y|−(α(x)∨α(y)) 1

ln|x − y|−1

≤ M

(
|x − y|−d−α+δ + |x − y|−d−α+δ 1

ln|x − y|−1

)

≤ M ′|x − y|−d−α+δ 1

ln|x − y|−1 .

So if γ satisfies

γ (d + α − δ) − (d − 1) < 1,

then condition (2.3) holds. As for condition (2.4), note that

ks(x, y) ≥ M ′|x − y|−d−α, |x − y| < 1.

So, (2.4) is valid when

(d + α − δ)(2 − γ ) < d + α.

Therefore, conditions (2.3) and (2.4) hold provided that γ satisfies

d + 2α − 2δ − α

d + α − δ
< γ <

d

d + α − δ
. �

Let (η, F 0) be the regular lower bounded semi-Dirichlet form on L2(Rd) as-
sociated with the kernel (5.3) satisfying (5.2) according to Theorem 2.1. Let
X = (Xt ,Px) be the Hunt process on Rd properly associated with (η, F ) by The-
orem 4.1.
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Define a linear operator L by⎧⎪⎪⎪⎨⎪⎪⎪⎩
D(L) = C2

0(Rd),

Lu(x) =
∫
h 
=0

(
u(x + h) − u(x) − ∇u(x) · h1B1(0)(h)

) w(x)dh

|h|d+α(x)
,

x ∈ Rd .

(5.4)

C2
0(Rd) is a linear subspace of F 0 ∩ C0(R

d) and, by condition (5.2), we can see
that L maps C2

0(Rd) into L2(Rd) ∩ Cb(R
d). As any continuously differentiable

function and its derivatives can be simultaneously approximated by polynomials
and their derivatives uniformly on each rectangles (cf. [9], Chapter II), conditions
(L.1), (L.2), (L.3) in the preceding section on L are fulfilled. We can easily verify
that the present L satisfies condition (L.4) as well.

Since the vector valued function hw(x)1B1(0)(h)|h|−d−α(x) is odd with respect
to the variable h for each x ∈ Rd , we get for u ∈ C2

0(Rd),

ηn(u, v) = −
∫ ∫

|x−y|>1/n

(
u(y) − u(x)

)
v(x)

w(x)

|x − y|d+α(x)
dx dy

= −
∫ ∫

|h|>1/n

(
u(x + h) − u(x)

)
v(x)

w(x)

|h|d+α(x)
dx dh

= −
∫ ∫

|h|>1/n

(
u(x + h) − u(x) − ∇u(x) · h1B1(0)(h)

)
v(x)

× w(x)

|h|d+α(x)
dx dh.

By letting n → ∞, we have

η(u, v) = −(Lu, v),

that is, η is related to L by (4.5).
By virtue of Theorem 4.3, there exists a Borel properly exceptional set N ⊂ Rd

so that X|Rd\N is conservative and, for each x ∈ Rd \ N ,

M
[f ]
t = f (Xt) − f (X0) −

∫ t

0
(Lf )(Xs) ds, t ≥ 0,

is a martingale under Px for every f ∈ C2
0(Rd). Approximating f ∈ C2

b(Rd)

by a uniformly bounded sequence {fn} ⊂ C2
0(Rd) such that {Lfn} is uniformly

bounded and convergent to Lf , we see that (4.6) remains valid for f ∈ C2
b(Rd)

and M
[f ]
t is still a martingale under Px for x ∈ Rd \ N . For each x ∈ Rd \ N , the

measure Px is thus a solution to the martingale problem for the operator L of (5.4)
starting at x so that Px coincides with the law constructed by Bass [5] because of
the uniqueness also due to [5].
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REMARK 5.1. Let

k∗(x, y) = w(y)

|x − y|d+α(y)
, x,∈ Rd, x 
= y.(5.5)

Under condition (5.2), the form η∗ corresponding to the kernel k∗ is a regular
lower bounded semi-Dirichlet form on L2(Rd) by virtue of Proposition 5.1 and
Corollary 2.1. By Theorem 4.1, η∗ admits a properly associated Hunt process X∗
on Rd . Furthermore, we can have an explicit expression η∗(u, v) = −(L∗u, v) for
u ∈ C2

0(Rd) and v ∈ F 0 with

L∗u(x) =
∫
h 
=0

(
u(x + h) − u(x) − ∇u(x) · h1B1(0)(h)

)w(x + h)dh

|h|d+α(x+h)

+ 1

2

∫
0<|h|<1

∇u(x) · h
(

w(x + h)

|h|d+α(x+h)
− w(x − h)

|h|d+α(x−h)

)
dh, x ∈ Rd .

In a lower order case as is considered in Section 3, both L and L∗ admit simpler
expressions (3.7) and L∗ − K is a formal adjoint of L for a function K defined by
(3.9).

6. Associated Hunt processes on open subsets and on their closures. We
make the same assumptions on E,m,k as in Section 2. Let D be an arbitrary
open subset of E and D be the closure of D, mD is defined to be mD(B) =
m(B ∩ D),B ∈ B(E) and (u, v)D denotes the inner product of L2(D,mD)

(=L2(D,mD)). Consider the related function spaces C
lip
0 (D) and C

lip
0 (D) intro-

duced in Section 1. Define⎧⎪⎪⎪⎨⎪⎪⎪⎩
ED(u, v) :=

∫ ∫
D×D\diag

(
u(y) − u(x)

)(
v(y) − v(x)

)
× ks(x, y)mD(dx)mD(dy),

F r
D = {u ∈ L2(D;mD) :u is Borel measurable and ED(u,u) < ∞},

(6.1)

and let FD̄ and F 0
D be the ED,1-closures of C

lip
0 (D) and C

lip
0 (D) in F r

D , re-
spectively. (ED, FD̄) [resp., (E 0

D, F 0
D)] is a regular symmetric Dirichlet form

on L2(D;mD) [resp., L2(D;mD)] where E 0
D denotes the restriction of ED to

F 0
D × F 0

D . Furthermore, in view of [13], Theorem 4.4.3, we have the identity

F 0
D = {u ∈ FD̄ : ũ = 0, ED-q.e. on ∂D},(6.2)

where ũ denotes an ED-quasi continuous version of u ∈ FD̄ . We keep in mind that
a subset of D is polar for (ED, F 0

D) iff so it is for (ED, FD̄), and the restriction to
D of a quasi continuous function with respect to the latter is quasi-continuous with
respect to the former.

Now define for u ∈ C
lip
0 (D) and n ∈ N

Ln
Du(x) :=

∫
{y∈D : d(x,y)>1/n}

(
u(y) − u(x)

)
k(x, y)mD(dy), x ∈ D.(6.3)
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Then, just as in Proposition 2.1 and Theorem 2.1 of Section 2, we conclude that
the finite limit

ηD(u, v) = − lim
n→∞

∫
D

Ln
Du(x)v(x)mD(dx) for u, v ∈ C

lip
0 (D)(6.4)

exists, ηD extends to FD̄ × FD̄ and (ηD, FD̄) becomes a regular lower bounded
semi-Dirichlet form on L2(D;mD) possessing (ED, FD̄) as its reference symmet-
ric Dirichlet form. In parallel with (ηD, FD̄), the space (η0

D, F 0
D) becomes a regu-

lar lower bounded semi-Dirichlet form on L2(D;mD) possessing (E 0
D, F 0

D) as its
reference symmetric Dirichlet form. Here η0

D is the restriction of ηD to F 0
D × F 0

D .

Let XD̄ = (Xt ,Px) be a Hunt process on D properly associated with the form
(ηD, FD̄) on L2(D;mD). Denote by XD,0 = (X

D,0
t , Px) the part process of XD̄

on D, namely, X
D,0
t is obtained from Xt by killing upon hitting the boundary ∂D:

X
D,0
t = Xt, t < σ∂D; X

D,0
t = �, t ≥ σ∂D,

XD,0 is a Hunt process with state space D.

THEOREM 6.1. The part process XD,0 of XD̄ on D is properly associated
with the regular lower bounded semi-Dirichlet form (η0

D, F 0
D) on L2(D;mD).

PROOF. Let {Rα;α > 0} be the resolvent of XD̄ . σ will denote the hitting time
of ∂D by XD̄ :σ = σ∂D . Put, for α > 0 and x ∈ D,

RD,0
α f (x) = Ex

[∫ σ

0
e−αtf (Xt) dt

]
,

H∂D
α u(x) = Ex[e−ασu(Xσ )], x ∈ D.

{RD,0
α |D;α > 0} is the resolvent of the part process XD,0 of XD̄ on D.
We need to prove that, for any α > β0 and any f ∈ B(D) ∩ L2(D,mD),

RD,0
α f is η0

D-quasi-continuous,
(6.5)

RD,0
α f ∈ F 0

D, η0
D,α(RD,0

α f, v) = (f, v)D for any v ∈ F 0
D.

We denote by G the space appearing in the right-hand side of (6.2). Notice
that ED-q.e. (resp., ED-quasi-continuity) is now a synonym of ηD-q.e. (resp., ηD-
quasi-continuity). As the set of points of ∂D that are irregular for ∂D is known to
be semi-polar, we have Px(σ = 0) = 1 and so RD,0

α f (x) = 0 for ηD-q.e. x ∈ ∂D

owing to Theorem 4.2(iv). Since

Rαf is ηD-quasi-continuous,

Rαf ∈ FD̄, ηD,α(Rαf, v) = (f, v)D for any v ∈ FD̄
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and

Rαf (x) = RD,0
α f (x) + H∂D

α Rαf (x), x ∈ D,(6.6)

we see that, for the proof of (6.5), it is enough to show that

H∂D
α Rαf is ηD-quasi-continuous,

(6.7)
H∂D

α Rαf ∈ FD̄, ηD,α(H∂D
α Rαf, v) = 0 for any v ∈ G.

To this end, we fix α > β0, f ∈ B+(D) ∩ L2(D;mD) and put u = Rαf . Con-
sider a closed convex subset of FD̄ defined by

Lu,∂D = {v ∈ FD̄, ṽ ≥ ũ q.e. on ∂D}.
Let uα be the ηD,α-projection of 0 on Lu,∂D :

uα ∈ Lu,∂D, ηD,α(uα, v − uα) ≥ 0, for any v ∈ Lu,∂D.

Both u and uα are α-excessive elements of FD̄ . By making use of the function
v = uα ∧ u as in the proof of Proposition 3.1(i), we readily get

ũα = u q.e. on ∂D, ηD,α(uα, v) = 0 for any v ∈ G.(6.8)

Finally, we prove that

H∂D
α u is ηD-quasi continuous, H∂D

α u = uα,(6.9)

which leads us to the desired property (6.7). By (6.6), H∂D
α u is an α-excessive

function dominated by u ∈ FD̄ so that H∂D
α u is a quasi-continuous element of

FD̄ . Further H∂D
α u = u q.e. on ∂D by (6.6) and an observation made preceding it.

Let v = H∂D
α u ∧ uα . Then ṽ = H∂D

α u ∧ ũα = u q.e. on ∂D so that ηD,α(uα,uα −
v) = 0 by (6.8). On the other hand, v is α-excessive and so ηD,α(v,uα − v) ≥ 0.
Consequently, ηα(uα − v,uα − v) ≤ 0 and we get the inequality uα ≤ H∂D

α u.
To get the converse inequality, consider a bounded nonnegative Borel function

h on D with
∫
D hdm = 1. Denote by {pt ; t ≥ 0} the transition function of XD̄ .

We choose a Borel measurable quasi-continuous version ũα of uα ∈ FD̄ . We set

ũα(�) = 0 for the cemetery � of XD̄ . Since uα is α-excessive, e−αtpt ũα ≤ ũα

m-a.e., and we can see that the process {Yt = e−αt ũα(Xt); t ≥ 0} is a right con-
tinuous positive supermartingale under Ph·m in view of Theorem 4.2(iii). For any
compact set K ⊂ ∂D, we get from the optional sampling theorem and (6.8),

Eh·m[YσK
] = Eh·m[e−ασK ũα(XσK

)]
= Eh·m[e−ασK u(XσK

)] ≤ Eh·m[Y0]
= (h,uα)D.

By choosing K such that σK ↓ σ Ph·m-a.e., we obtain (h,H∂D
α u)D ≤ (h,uα)D and

H∂D
α u ≤ uα . �
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As a preparation for the next lemma, we take any open set G ⊂ D and denote
by mG the restriction of m to G. Let F 0

G be the ED,1-closure of C
lip
0 (G) in F r

D and
η0

G be the restriction of ηD to F 0
G × F 0

G. Then, just as above,

F 0
G = {u ∈ FD̄ : ũ = 0 ED q.e. on D \ G}

and (η0
G, F 0

G) becomes a regular lower bounded semi-Dirichlet form on L2(G;

mG) with which the part process XG,0 of XD̄ on G is properly associated. The
resolvent of XG,0 will be denoted by RG,0

α .
Define

HD̄\G
α u(x) = Ex[e−ασD̄\Gu(XσD̄\G)], x ∈ D.

As (6.7), we have, for u = Rαf,f ∈ B(D) ∩ L2(D;mD),α > β0,

HD̄\G
α u is ηD-quasi-continuous,

(6.10)
HD̄\G

α u ∈ FD̄, ηD,α(HD̄\G
α u, v) = 0 for any v ∈ F 0

G,

and the bound ηD,α(H
D̄\G
α u,H

D̄\G
α u) ≤ ηD,α(u,u). We can easily see that (6.10)

holds true for any u ∈ F D̄ ∩ C0(D) where C0(D) denotes the restrictions to D

of functions in C0(E). In fact, by the resolvent equation, (6.10) is true for Rβu,
β > β0, in place of u. Since {βnRβnu} converges to u pointwise as well as in ηD,α-

metric as βn → ∞, so does the sequence {βnH
D̄\G
α Rβnu}, arriving at the validity

of (6.10) for such u.

LEMMA 6.1. Let G be a relatively compact open set with G ⊂ D. Then for
any v ∈ F D̄ ∩ C0(D) with supp[v] ⊂ D \ G, it follows for α > β0 that

Ex[e−ατGv(XτG
)] = RG,0

α gv(x) for q.e. x ∈ G,(6.11)

where τG = σD̄\G ∧ ζ is the first leaving time from G and gv is a function given by

gv(x) = 1G(x)

∫
D\Ḡ

k(x, y)v(y)mD(dy), x ∈ D.(6.12)

PROOF. Take any u ∈ F D̄ ∩ C0(D) such that supp[u] ⊂ G. From (6.3) and
(6.4), we then have

ηD(u, v) = −
∫
G×(D̄\Ḡ)

u(y)v(x)k(x, y)mD(dx)mD(dy).(6.13)

We can now proceed as in [13], page 163. The function gv defined by (6.12) be-
longs to L2(G;mG) on account of condition (2.1) on the kernel k. Therefore, we
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obtain from (6.13)

η0
G,α(RG,0

α gv, u) =
∫
G

gv(x)u(x)mG(dx)

=
∫
G×(D̄\Ḡ)

u(x)v(y)k(x, y)mD(dx)mD(dy)

= −ηD(v,u) = −ηD,α(v,u)

= −η0
G,α(v − HD̄\G

α v,u), α > β0,

the last identity being a consequence of (6.10). Since F D̄ ∩ C0(G) is η0
G,α-dense

in F 0
G, we get

HD̄\G
α v(x) = HD̄\G

α v(x) − v(x) = RG,0
α gv(x) for mG-a.e. on G.

We then obtain (6.11) because H
D̄\G
α v and RG,0

α gv are η0
G-quasi-continuous by

(6.10). �

THEOREM 6.2.

(i) XD̄ = (Xt ,Px) admits no jump from D to ∂D:

Px(Xt− ∈ D,Xt ∈ ∂D for some t > 0) = 0 for q.e. x ∈ D.(6.14)

(ii) If D is relatively compact, then XD̄ is conservative: denoting by ζ the
lifetime of XD̄ ,

Px(ζ = ∞) = 1 for q.e. x ∈ D.(6.15)

(iii) If D is relatively compact, then XD,0 = (X
D,0
t , Px) admits no killing in-

side D: denoting by ζ 0 the lifetime of XD,0,

Px(X
D,0
ζ 0− ∈ D,ζ 0 < ∞) = 0 for q.e. x ∈ D.(6.16)

PROOF. (i) For any open set G as Lemma 6.1 and any compact subset F of
∂D, we can find a uniformly bounded sequence {vn} ⊂ F D̄ ∩ C0(D) with support
being contained in a common compact subset of D \G and limn→∞ vn = 1F . Then
gvn(x) are uniformly bounded and converge to g1F

(x) = 0 as n → ∞. Therefore,
by letting n → ∞ in (6.11) with vn in place of v, we get Px(XτG

∈ F) = 0 for q.e.
x ∈ G. Since G and F are arbitrary with the stated properties, we have (6.14).

(ii) When D is relatively compact, 1 ∈ C
lip
0 (D) so that we see from (6.3) and

(6.4) that 1 ∈ F D̄ and ηD(1, v) = 0 for any v ∈ F D̄ . We have therefore, for any
α > β0 and f ∈ L2(D,mD),

0 = ηD(1, Ĝαf ) = (1, f )D − α(1, Ĝαf )D = (1 − αRα1, f )D,
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where Ĝα is the dual resolvent. This implies that αRα1 = 1 mD-a.e. for α > β0

and consequently q.e. on D because Rα1 is quasi-continuous. Equation (6.15) is
proven.

(iii) This is an immediate consequence of (i), (ii) as XD,0 is the part process of
XD̄ on D. �

We conjecture that the property (6.16) for XD,0 holds true without the assump-
tion of the relative compactness of D and especially for the minimal process X0

on E.
Finally, we consider the case where E is Rd and m is the Lebesgue measure

on it. For α ∈ (0,2) and an arbitrary open set D ⊂ Rd , we make use of the Lévy
kernel

k[α](x, y) = α2α−1�((α + d)/2)

πd/2�(1 − α/2)

1

|x − y|d+α
, x, y ∈ Rd,

of the symmetric α-stable process to introduce the Dirichlet form⎧⎪⎨⎪⎩
E [α]

D (u, v) :=
∫ ∫

D×D\diag

(
u(y) − u(x)

)(
v(y) − v(x)

)
k[α](x, y) dx dy,

F [α],r
D = {

u ∈ L2(D) :u is Borel measurable and E [α]
D (u,u) < ∞}

,

(6.17)

on L2(D) based on the Lebesgue measure on D. Denote by F [α]
D̄

the E [α]
D,1-closure

of C
lip
0 (D) in F [α],r

D . For s ∈ (0, d], a Borel subset � of Rd is said to be an s-
set if there exist positive constants c1, c2 such that for all x ∈ � and r ∈ (0,1],
c1r

s ≤ Hs(� ∩ B(x, r)) ≤ c2r
s , where Hs denotes the s-dimensional Hausdorff

measure on Rd and B(x, r) is the ball of radius r centered at x ∈ Rd .
If the open set D is a d-set, then, by making use of Jonsson–Wallin’s trace

theorem [14] as in [7], one can show that F [α]
D̄

= F [α],r
D and moreover that a subset

of D is E [α]
D -polar iff it is polar with respect to the symmetric α-stable process

on Rd .
Let us consider the kernel k(1) of (1.9) for w(x) given by (5.1) and α(x) satis-

fying condition (5.2). In particular, it is assumed that

0 < α ≤ α(x) ≤ α < 2

for some constant α,α. k(1) satisfies conditions (2.1)–(2.4) by Proposition 5.1 and
one can associate with it the regular lower bounded semi-Dirichlet form ηD (resp.,
η0

D) on L2(D;1D dx) [resp., L2(D)] possessing as its reference form ED (resp.,
E 0

D) defined right after (6.1) for k(1) and the Lebesgue measure in place of k and m.
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Suppose D is bounded, then there exist positive constants c3, c4 with

c3k
[α](x, y) ≤ k(1)

s (x, y) ≤ c4k
[α](x, y), x, y ∈ D,

so that

c3E [α]
D (u,u) ≤ ED(u,u) ≤ c4E [α]

D (u,u), u ∈ C
lip
0 (D).(6.18)

For the kernel k(1), the Hunt process XD̄ on D associated with (ηD, FD̄) is
called a modified reflecting stable-like process, while its part process XD,0 on D,
which is associated with (η0

D, F 0
D), is called a censored stable-like process.

PROPOSITION 6.1. Assume that D is a bounded open d-set.

(i) If ∂D is polar with respect to the symmetric α-stable process on Rd , then
the censored stable-like process XD,0 = (X

D,0
t , Px, ζ

0) is conservative and it does
not approach to ∂D in finite time:

Px(ζ
0 = ∞) = 1, Px(X

D,0
t− ∈ ∂D for some t > 0) = 0.(6.19)

(ii) If ∂D is nonpolar with respect to the symmetric α-stable process on Rd ,
then the censored stable-like process XD,0 satisfies∫

D
Px(X

D,0
ζ 0− ∈ ∂D, ζ 0 < ∞)h(x) dx =

∫
D

Px(ζ
0 < ∞)h(x) dx > 0(6.20)

for any strictly positive Borel function h on D with
∫
D h(x) dx = 1.

PROOF. (i) Since ED is a reference form of (ηD, FD̄), we see that ∂D is ηD-
polar by (6.18) and the stated observation in [7]. The assertions of (i) then follows
from Theorem 4.2(ii) and Theorem 6(ii).

(ii) ∂D is not ηD-polar by (6.18) and accordingly not m-polar with respect to the
process XD̄ by Theorem 4.2(v), where m is the Lebesgue measure on D. Taking
Theorem 6.2(i), (iii) into account, we then get (6.20). �

The polarity of a set N ⊂ Rd with respect to the symmetric α-stable process is
equivalent to Cα/2,2(N) = 0 for the Bessel capacity Cα/2,2 (cf. Section 2.4 of the
second edition of [13]). The latter has been well studied in [1] in relation to the
Hausdorff measure and the Hausdorff content. For instance, when α ≤ d and ∂D

is a s-set, ∂D is polar in this sense if and only if α + s ≤ d . Of course, we get the
same results as above for the second kernel k(1)∗ in (1.9).
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