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CROSSING RANDOM WALKS AND STRETCHED POLYMERS AT
WEAK DISORDER

BY DMITRY IOFFE1 AND YVAN VELENIK2

Technion and Université de Genève

We consider a model of a polymer in Z
d+1, constrained to join 0 and

a hyperplane at distance N . The polymer is subject to a quenched nonneg-
ative random environment. Alternatively, the model describes crossing ran-
dom walks in a random potential (see Zerner [Ann Appl. Probab. 8 (1998)
246–280] or Chapter 5 of Sznitman [Brownian Motion, Obstacles and Ran-
dom Media (1998) Springer] for the original Brownian motion formulation).
It was recently shown [Ann. Probab. 36 (2008) 1528–1583; Probab. The-
ory Related Fields 143 (2009) 615–642] that, in such a setting, the quenched
and annealed free energies coincide in the limit N → ∞, when d ≥ 3 and
the temperature is sufficiently high. We first strengthen this result by prov-
ing that, under somewhat weaker assumptions on the distribution of disorder
which, in particular, enable a small probability of traps, the ratio of quenched
and annealed partition functions actually converges. We then conclude that,
in this case, the polymer obeys a diffusive scaling, with the same diffusivity
constant as the annealed model.

1. Notation and results. For simplicity3 we shall consider stretched poly-
mers which are represented by nearest-neighbor paths on Z

d+1. Due to the pres-
ence of a preferred direction, it is convenient to decompose x ∈ Z

d+1 into trans-
verse and longitudinal parts: x = (x⊥, x‖) with x⊥ ∈ Z

d and x‖ ∈ Z. Given N ∈ N,
we define

H−
N

�= {x ∈ Z
d+1 : x‖ < N}

and its outer vertex boundary LN
�= ∂H−

N . We shall consider the family DN of
nearest-neighbor paths from the origin 0 to LN . The name stretched stipulates that
although the second endpoint of γ ∈ DN is constrained to lie on LN , there are no
other restrictions on the geometry of polymers, which can bend and self-intersect.
In the Brownian version of this problem [9], an alternative designation often used
in the literature is crossing Brownian motion.
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The weight Wω
λ,β(γ ) of a polymer γ = (γ (0), . . . , γ (n)) ∈ DN is given by

Wω
λ,β(γ )

�= exp

{
−λn − β

n∑
l=1

V ω(γ (l))

}
.(1.1)

Here λ > λ0
�= log(2d + 2), β > 0 and the random environment {V ω(x)}x∈Zd+1 ,

ω ∈ �, is assumed to be i.i.d., V ω(x)
d∼ V , and such that:

ASSUMPTION (A). 0 ∈ supp(V ) ⊆ [0,∞] and p
�= P(V = ∞) is sufficiently

small.

That the potential V be bounded below is essential, since it guarantees ballistic
behavior (spatial extension) of stretched polymers.

The condition on the smallness of p is also essential, since it guarantees that
we never meet situations when {x : V ω(x) < ∞} does not percolate. On the other
hand, the condition inf supp(V ) = 0 is just a normalization.

The corresponding quenched and annealed partition functions are defined as

Dω
N = Dω

N(λ,β)
�= ∑

γ∈DN

Wω
λ,β(γ ) and DN

�= EDω
N .

Note that the annealed potential is always attractive: For any pair of paths γ1 and
γ2,

E(Wω
λ,β(γ1)W

ω
λ,β(γ2)) ≥ E(Wω

λ,β(γ1))E(Wω
λ,β(γ2)).(1.2)

(This can be most easily deduced from the fact that decreasing functions on R are
always positively correlated.)

It has recently been proved by Flury [5] (under the additional assumption that
EV d+1 < ∞), and then reproved by Zygouras [11] [for arbitrary directions, un-
der the additional assumption that supp(V ) be bounded] that, in four and higher
dimensions (i.e., for d ≥ 3 in our notation) and for any λ > λ0, the annealed and
quenched free energies coincide when β is small enough. Namely, for all β suffi-
ciently small, there exists ξ = ξ(λ,β) > 0 such that

− lim
N→∞

1

N
logDω

N = ξ = − lim
N→∞

1

N
log DN.(1.3)

This is an important result: In sharp contrast with models of directed polymers, the
model of stretched polymers does not have an immediate underlying martingale
structure, and this makes it necessary to find different (and arguably more intrinsic)
approaches to its analysis. The condition EV d+1 < ∞, under which (1.3) was
derived, is inherited from [10], where it was shown to be sufficient to guarantee
the existence of the quenched free energy, that is, the left-most limit in (1.3).

In the sequel, we shall prove the following sharp version of (1.3): Let Cl∞(V )

be the (unique) infinite connected cluster of sites x with V (x) < ∞. Under As-
sumption (A), such a cluster P-a.s. exists and is unique.



716 D. IOFFE AND Y. VELENIK

THEOREM A. Let d ≥ 3. Then, for every λ > λ0, there exists β0 = β0(λ, d)

and p∞ > 0, such that, if Assumption (A) holds with p ≤ p∞, then, for every
β ∈ [0, β0), the limit

dω �= lim
N→∞

Dω
N

DN

(1.4)

exists P-a.s. and in L2(�). In particular, the quenched free energy − limN→∞ 1
N

×
logDω

N is well defined, and (1.3) holds. Furthermore, dω > 0 P-a.s. on the event
{0 ∈ Cl∞(V )}.

Our work was inspired by [5, 11]; however, our proof of Theorem A does not
rely on the results therein. In particular, in addition to strengthening their con-
clusion, Theorem A lifts some of the restrictions imposed on the potential V in
these works. In fact, under our assumptions, which do not impose any moment
conditions on the distribution of V and even enable a small probability of traps,
the existence of the quenched free energy needs a justification: as we have al-
ready mentioned, the corresponding existence results in [10], which is a reference
work for both [5] and [11], have been established under the additional assumption
EV d+1 < ∞.

Our second result confirms the prediction that stretched polymers should be
diffusive at weak disorder: On the event 0 ∈ Cl∞(V ), the random weights (1.1)
induce a (random) probability distribution μω

N on DN . For a polymer γ =
(γ (0), . . . , γ (n)) ∈ DN , we define π⊥(γ ) as the (Zd -valued) transverse com-
ponent of its endpoint, and π‖(γ ) = N as its longitudinal component, so that
γ (n) = (π⊥(γ ),π‖(γ )).

THEOREM B. Let d ≥ 3. Then, for every λ > λ0, there exist β̂0 = β̂0(λ, d)

and p̂∞ > 0 such that, if Assumption (A) holds with p ≤ p̂∞, then, for every
β ∈ [0, β̂0), the distribution of π⊥ displays diffusive scaling with a nonrandom
nondegenerate diffusivity matrix � and, accordingly, a positive diffusivity constant

σ 2 = σ 2(β,λ)
�= Tr(�) > 0. Namely, define P

∗(·) �= P(·|0 ∈ Cl∞(V )). Then,

P
∗- lim

N→∞ μω
N

( |π⊥(γ )|2
N

)
= σ 2,(1.5)

where P
∗- lim denotes convergence in P

∗-probability. Furthermore, for any
bounded continuous function f on R

d ,

P
∗- lim

N→∞
∑

x∈Zd

μω
N

(
π⊥(γ ) = x

)
f

(
x√
N

)
(1.6)

= 1√
det(2π�)

∫
Rd

f (x)e−1/2(�−1x,x) dx.

� and σ 2 above are precisely the diffusion matrix and the diffusivity constant of
the corresponding annealed polymer model; see (2.11) below.
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We expect both (1.5) and (1.6) to hold not only in P
∗-probability, but also in

L2(�) and P
∗-a.s.

1.1. Some open problems. In this subsection, we briefly discuss some points
that are left untouched in the present work.

Stronger modes of convergence. As already mentioned above, we expect our
diffusivity results to hold also a.s. in the environment and in L2(�). Such results
are known in the directed case, as a consequence of the much simpler martingale
structure [1]. Furthermore, we expect the P

∗-a.s. validity of a local CLT, or equiva-
lently, of a (random) Ornstein–Zernike-type formula for long-range quenched con-
nections; see the discussion at the end of Section 3.5.

Invariance principle. Once equipped with a local CLT and thanks to our good
control on the path geometry, it should be mostly straightforward to obtain a full
invariance principle for the path.

“Real” stretched polymer. In the present work, we have focused on ensembles
of paths of “point-to-plane” type (the set DN ). It would be physically quite inter-
esting to analyze also the case of fixed-length polymers, stretched by an external
force (notice that in the directed case there is no difference between “point-to-
plane” and “fixed-length” scenarios); in particular, it would be interesting to obtain
a local limit theorem for the free endpoint. Such questions have been investigated
in the annealed setting in our previous work [6]. In the quenched setting coinci-
dence of Lyapunov exponents (under the additional EV d+1 < ∞ assumption) has
been established in [5].

Nonperturbative proof. Our results are only valid at very high temperatures. It
would be quite interesting (and probably challenging) to push them to the full
weak-disorder regime. Results of that type have been obtained in the directed
case [4].

Strong disorder. We only consider the weak disorder case here. Obtaining
some information on the behavior of typical paths in the strong disorder regime
would also be quite interesting, and is the subject of some work in progress. See
[3] for such results, in the full strong disorder regime, in the directed case.

1.2. A remark on notational conventions. Given two sequences {an(w)} and
{bn(w)} of positive real numbers indexed by w from some set of parameters Wn,
we say that an(w) � bn(w), if

lim sup
n→∞

an(w)

bn(w)
< ∞,
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uniformly in w ∈ Wn.
Given z,w ∈ C

d+1, we use

(z,w)d+1
�=

d+1∑
i=1

ziw̄i and (z,w)d
�=

d∑
i=1

ziw̄i .

With a slight abuse of notation, we shall also write (z,w)d for the same expression
with z ∈ C

d .

2. Convergence of partition functions.

2.1. Irreducible decomposition of paths γ ∈ DN . Given δ > 0, we define a

positive cone along the e �= ed+1-direction by

Yδ
�= {x ∈ R

d+1 :‖x⊥‖ < δx‖},
where ‖ · ‖ denotes the Euclidean norm. We say that a trajectory γ = (γ (0), . . . ,

γ (n)) of length |γ | = n is cone-confined if

γ ⊆ (
γ (0) + Yδ

) ∩ (
γ (n) − Yδ

)
.

Although paths γ ∈ DN always satisfy 0 = (γ (0), e)d+1 < (γ (n), e)d+1, evidently
not all of them are cone-confined. For 1 ≤ k < n = |γ |, let us say that γ (k) is a
cone-point of γ if

(γ (0), e)d+1 < (γ (k), e)d+1 < (γ (n), e)d+1,

and, in addition, if

γ ⊆ (
γ (k) − Yδ

) ∪ (
γ (k) + Yδ

)
.

We say that a trajectory γ is irreducible if it contains less than two cone-points.
We say that it is strongly irreducible if it does not contain cone-points at all.

The following mass-separation property of irreducible trajectories, proved in
[6], is crucial to our analysis: There exists ν > 0 such that, for all N large enough,

1

DN

∑
γ∈DN

irreducible

EWω
λ,β(γ ) ≤ e−νN .(2.1)

On the other hand, reducible trajectories are unambiguously represented as con-
catenation of strongly irreducible pieces (as induced by the collection of all the
cone-points of γ ; see Figure 1),

γ = γl ∪ γ1 ∪ · · · ∪ γn ∪ γr .(2.2)

By construction, γ1, . . . , γn above are also cone-confined, and so is their concate-
nation γ1 ∪ · · · ∪ γn. Thus, (2.1) and (2.2) suggest that the asymptotics of DN
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FIG. 1. The decomposition of a path γ ∈ DN into a concatenation of strongly irreducible pieces.

and Dω
N should be closely related to the asymptotics of the corresponding cone-

confined quantities. This intuition turns out to be correct.
Let TN be the family of all cone-confined trajectories from 0 to LN . Set

Tω
N(λ,β)

�= ∑
γ∈TN

Wω
λ,β(γ ) and TN

�= ETω
N .

The following statement as well as the understanding one needs to develop for its
proof are crucial: In the notation and under the conditions of Theorem A, for every
β ∈ [0, β0), the limit

lim
N→∞

Tω
N

TN

(2.3)

exists P-a.s. and in L2(�). For a while we shall focus on the ensembles of cone-
confined trajectories and on proving (2.3). We shall return to DN and prove the
full statement (1.4) only in Section 2.7.

Notation for scaled quantities. Recall the definition of the Lyapunov exponent
ξ in (1.3). Given N ≥ 1 and γ ∈ TN , we define the scaled random path weights

wω
λ,β(γ )

�= eNξWω
λ,β(γ ).

For x ∈ LN , we define

tωx
�= ∑

γ :0→x
γ∈TN

wω
λ,β(γ ), qω

x
�= ∑

γ :0→x

γ∈T 0
N

wω
λ,β(γ ) and

(2.4)
tx

�= Etωx , qx
�= Eqω

x ,

where T 0
N denotes the set of all strongly irreducible γ ∈ TN . Similarly, we define

tωN
�= ∑

x∈LN

tωx , qω
N

�= ∑
x∈LN

qω
x and tN

�= EtωN, qN
�= Eqω

N.
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We also set tω0 = t0
�= 1.

2.2. Renewal analysis of annealed partition function TN . With the above no-
tation, the sequence {tN } satisfies the renewal relation

t0 = 1 and tN =
N−1∑
M=0

tMqN−M, N ≥ 1.(2.5)

We fix λ and β and set

μ = μ(λ,β)
�= ∑

M≥1

MqM.(2.6)

Note that the above series converges since, by our basic mass-separation estimate
for annealed quantities (2.1),

qM ≤ e−νMeMξ DM ≤ e−νM,(2.7)

where we used the fact that DM ≤ e−Mξ , which follows from subadditivity.

LEMMA 2.1. For any β ≥ 0 and λ > λ0,

lim
N→∞ eNξ TN = lim

N→∞ tN = 1

μ(λ,β)
.(2.8)

Moreover, the convergence in (2.8) is exponentially fast.

PROOF. This is a standard renewal argument which we shall briefly sketch for
completeness. As a consequence of our scaling and the mass separation property
(2.1), the radius of convergence of the generating function

t̂(u)
�= ∑

N≥0

uN tN

is equal to 1 (see Section 3.3.6 in [6] for details). On the other hand, it follows
from (2.7) that the irreducible generating function

q̂(u)
�= ∑

N≥1

uNqN

has radius of convergence at least 1 + ν. This implies, via standard arguments
based on (2.5), that q̂(1) = 1. Of course, μ = q̂′(1). Fix ρ ∈ (0,1). By Cauchy’s
formula,

tN − 1

μ
= 1

2πi

∫
Sρ

{
du

uN+1(1 − q̂(u))
− du

uN+1(1 − u)μ

}

= 1

2πi

∫
Sρ

�(u)

uN+1 du,



CROSSING RANDOM WALKS AND STRETCHED POLYMERS 721

where Sρ = ∂Bρ and

�(u) = (q̂(u) − q̂(1)) − q̂′(1)(u − 1)

(q̂(u) − q̂(1))q̂′(1)(u − 1)
.(2.9)

Since � is analytic on B1+ν′ for some ν′ ∈ (0, ν), the result follows. �

2.3. Complex tilts and annealed diffusivity. For δ small enough, let Pd
2δ ⊂ C

d

be the complex polydisc with all d radii equal to 2δ. By the implicit function
theorem (see, e.g., [7]) and in view of the mass-gap estimate (2.7), the relations

ϕ[0] = 0 and
∑
M≥1

∑
x∈LM

qxe
−Mϕ[z]+(z,x)d �= ∑

M≥1

qM [z] = 1

define a holomorphic function ϕ : Pd
2δ → C. We shall assume that δ is so small that

|qM [z]| � e−νM/2,(2.10)

uniformly in M ≥ 1 and z ∈ Pd
2δ .

The analysis of the previous subsection can be readily extended to obtain the
asymptotic expansion of the moment generating functions

t0[z] �= 1 and for N ≥ 1, tN [z] �= ∑
x∈LN

txe
−Nϕ[z]+(z,x)d

for z ∈ Pd
2δ . Indeed, tN [z] satisfies the renewal relation

tN [z] =
N−1∑
M=0

tM [z]qN−M [z].

Furthermore, if δ is sufficiently small, then not only does (2.10) hold, but there also
exists ν′ > 0 such that, for all z ∈ Pd

2δ , u = 1 is the unique solution of the equation∑
M≥1

uMqM [z] �= q̂[z](u) = 1,

on B1+ν′ ⊂ C. We define μ[z] exactly as in (2.6) by

μ[z] �= ∑
N≥1

NqN [z].

Relying on (2.10), we can choose δ so small that μ[·] is analytic and nonzero on
Pd

2δ . It then follows that

lim
N→∞ tN [z] = 1

μ[z] ,

uniformly exponentially fast on Pd
2δ .
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The annealed diffusion matrix � and the corresponding diffusivity constant σ 2

in (1.5) are defined by

�
�= D2

dϕ[0] and σ 2 �= Tr(�),(2.11)

where D2
dϕ denotes the Hessian of ϕ. Now, since we have chosen δ sufficiently

small to ensure that μ[·] is analytic and does not vanish on Pd
2δ , the functions

log tN [·] + logμ[·] are analytic and exponentially small (in N ) on Pd
2δ . In particu-

lar,

Tr
(
D2

d(log tN [z]+ logμ[z]))
is also exponentially small. This shows that the leading contribution (in N ) to
the log-moment generating function log(tN [z]eNϕ[z]) of π⊥(γ ) under the induced
measure is given by Nϕ[z]. We have thus proved that

LEMMA 2.2. ∣∣∣∣ 1

N tN

∑
x∈LN

‖x⊥‖2tx − σ 2
∣∣∣∣ � 1

N
.

Furthermore, π⊥(γ )/
√

N ⇒ N (0,�) under the sequence of annealed polymer
measures μN .

2.4. Multi-dimensional renewal relation for quenched partition functions. We
continue to employ the notation introduced in (2.4). It is immediate to check that
the following analogs of (2.5) hold:

tωx = ∑
y

tωy q
θyω
x−y and tωN =

N−1∑
M=0

∑
x∈LM

tωx q
θxω
N−M(2.12)

for all x ∈ H+
0

�= {x ∈ Z
d+1 : x‖ > 0} and N ≥ 1. Set tω0

�= 1, and define the gener-
ating functions

t̂ω(u)
�=

∞∑
N=0

uN tωN

and

q̂ω(u)
�=

∞∑
N=1

uNqω
N.

Since |t̂ω(u)| ≤ t̂ω(|u|) and Et̂ω(ρ) = t̂(ρ), the random generating function t̂ω(u)

is P-a.s. defined and analytic in the interior of the unit disc B1 ⊂ C. Similarly, the
random generating function q̂ω(u) is P-a.s. analytic on B1+ν for some ν > 0.
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We can rewrite (2.12) in terms of the generating function as

t̂ω(u) = 1 +
∞∑

M=0

uM
∑

x∈LM

tωx q̂θxω(u)

= 1 + q̂(u)

∞∑
M=0

uM
∑

x∈LM

tωx

(2.13)

+
∞∑

M=0

uM
∑

x∈LM

tωx
(
q̂θxω(u) − q̂(u)

)
�= 1 + q̂(u)t̂ω(u) + �̂ω(u).

Since |q̂(u)| < 1 whenever |u| = ρ < 1, we can record the last computation as

t̂ω(u) = 1 + �̂ω(u)

1 − q̂(u)
.

Therefore,

tωN = 1

2πi

∫
Sρ

1 + �̂ω(u)

(1 − q̂(u))uN+1 du,(2.14)

P-a.s. for all ρ ∈ (0,1).

2.5. Recursion under L2-weak disorder. Equation (2.14) is the starting point
for proving Theorem A. In fact, we are going to develop a recursion for the limit
in (2.3) whenever the conditions of the latter theorem are satisfied.

Let us decompose

tωN = 1

μ
sω
N +

(
tωN − 1

μ
sω
N

)
,

where4

sω
N

�= 1

2πi

∫
Sρ

1 + �̂ω(u)

uN+1(1 − u)
du

and, accordingly,

tωN − 1

μ
sω
N = 1

2πi

∫
Sρ

(1 + �̂ω(u))�(u)

uN+1 du,(2.15)

with �(u) defined in (2.9).

4Note that the definition does not depend on the particular choice of ρ ∈ (0,1).
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After examining the definition of �̂ω in (2.13), we arrive at the following ex-
pression for sω

N :

sω
N =

[
1 + �̂ω(u)

1 − u

]
N

= 1 +
N−1∑
M=0

∑
x∈LM

tωx (q
θxω
1,N−M − q1,N−M)

(2.16)
= 1 + ∑

x∈H−
N ,y∈H−

N+1

tωx (q
θxω
y−x − qy−x),

where

qω
1,l

�=
l∑

k=1

qω
k and q1,l

�= Eqω
1,l

and we used the standard notation [∑k≥0 aku
k]N = aN for expansion coefficients.

The following theorem is proved in Sections 3.2 and 3.3.

THEOREM 2.3. For every λ > λ0, there exist β0 = β0(λ, d) and p∞ > 0, such
that if Assumption (A) holds with p ≤ p∞, then, for every β ∈ [0, β0):

(1) The sequence tωN − sω
N/μ converges to zero P-a.s. and in L2(�).

(2) The sequence sω
N converges P-a.s. and in L2(�) to

sω �= 1 + ∑
x∈H+

0

tωx (q
θxω
1,∞ − 1),(2.17)

the latter sum also converging in L2(�).

Theorem 2.3 implies that the limit in (2.3) indeed exists and, furthermore, that
it is equal to the random variable sω

lim
N→∞

Tω
N

TN

= lim
N→∞

tωN

tN
= lim

N→∞ sω
N = sω.

Note that if 0 /∈ Cl∞(V ), then tωN = 0 for all N sufficiently large, say N ≥ N0(ω).
Consequently, in this case sω is a difference of two convergent series,

sω = 1 + ∑
x,y∈H−

N0

tωx q
θxω
y−x − ∑

x∈H−
N0

tωx = 0.

Positivity of sω [or rather of the full limit dω in (1.4)] on the event {0 ∈ Cl∞(V )}
is established in the concluding Section 4.5 of the paper.
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2.6. Relation with Sinai’s representation. Our representation (2.16) can be
seen as an effective random walk version of the high-temperature expansion em-
ployed by Sinai in [8]. Indeed, let x ∈ LN . Then

tωx = ∑
n≥0

∑
x1,...,xn

n∏
k=0

qω
xk,xk+1

= ∑
n≥0

∑
x1,...,xn

n∏
k=0

qxk,xk+1�
ω(x0, . . . , xn+1),

where we have set x0 = 0, xn+1 = x, and

�ω(x0, . . . , xn+1)
�=

n∏
k=0

qω
xk,xk+1

qxk,xk+1

�=
n∏

k=0

(
1 + φω(xk, xk+1)

)
.

Using the expansion

�ω(x0, . . . , xn+1) = ∑
A⊂{0,...,n}

∏
k∈A

φω(xk, xk+1),

we obtain the representation

tωx = ∑
n≥0

∑
x1,...,xn

n∏
k=0

qxk,xk+1

∑
A⊂{0,...,n}

∏
�∈A

φω(x�, x�+1).

Given n, x1, . . . , xn and ∅ �= A ⊂ {0, . . . , n}, let us say that (xk∗, xk∗+1) is the
last perturbed segment if k∗ = max{k :k ∈ A}. Keeping the last perturbed segment
fixed and resumming all the rest, we arrive at

tωx = tx + ∑
y,z

tωy (q
θyω
z−y − qz−y)tx−z.(2.18)

Similarly, keeping the first perturbed segment fixed and resumming all the rest, we
arrive at

tωx = tx + ∑
y,z

ty(q
θyω
z−y − qz−y)t

θzω
x−z.(2.19)

It would have been possible to work directly with the above representations of
t-quantities. In fact, Theorem 2.3(1) can be considered as the first step along these
lines: it enables us to substitute and control the t-quantities by the more tractable
s-quantities, as appears in (2.16).

Notice though that it is not clear how to prove the almost-sure convergence
in Theorem A without having recourse to martingale arguments as developed in
Section 3.1.
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2.7. Extension to the full DN -ensemble. Let us go back to Theorem A. In
view of (2.1), there is no loss in redefining DN as the set of all reducible paths
from 0 to LN . Thus, any γ ∈ DN automatically satisfies (2.2). By construction
(decomposition with respect to all cone-points), none of the paths γl, γ1, . . . , γn, γr

in (2.2) has cone-points. Recall that we use the notation T 0 for cone-confined paths
without cone-points. Thus, γ1, . . . , γn ∈ T 0.

Paths γl = (γl(0), . . . , γl(m)) satisfy γl ⊆ γl(m)− Yδ , and, similarly, paths γr =
(γr(0), . . . , γr(k)) satisfy γr ⊆ γr(0) + Yδ . We denote by T 0

l and T 0
r the sets of

such paths; in this way, T 0 = T 0
l ∩ T 0

r .
Following (2.4), define

lωx
�= ∑

γ :0�→x

γ∈T 0
l

wω
λ,β(γ ) and rωx

�= ∑
γ :0�→x

γ∈T 0
r

wω
λ,β(γ ).

As usual, we denote the corresponding annealed quantities by lx and rx. The scaled
full DN partition function satisfies

dω
N

�= eNξDω
N = ∑

x∈LN

∑
γ :0�→x
γ∈DN

wω
λ,β(γ ) = ∑

0≤Ml<Mr≤N

∑
x∈LMl

y∈LMr

lωx t
θxω
y−xr

θyω

N−Mr

= ∑
0≤Ml<Mr≤N

∑
x∈LMl

lωx t
θxω
Mr−Ml

rN−Mr(2.20)

+ ∑
0≤Ml<Mr≤N

∑
x∈LMl

y∈LMr

lωx t
θxω
y−x(r

θyω

N−Mr
− rN−Mr ).

By the mass separation property (2.1), the annealed point-to-plane functions lM
and rM have exponentially decaying tails, and in particular both are summable.

Define cr
�= ∑

M rM < ∞. The following theorem is proved in Section 3.4.

THEOREM 2.4. For every λ > λ0, there exist β0 = β0(λ, d) and p∞ > 0 such
that, if Assumption (A) holds with p ≤ p∞, then, for every β ∈ [0, β0):

(1) The second term on the right-hand side of (2.20) converges to zero P-a.s.
and in L2(�).

(2) The first term on the right-hand side of (2.20) converges to

cr

μ

∑
x

lωx sθxω,(2.21)

P-a.s. and in L2(�).
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Consequently, (1.4) of Theorem A follows with

dω = lim
N→∞

Dω
N

Dω
N

= cr

∑
x

lωx sθxω.

Positivity of dω on the event {0 ∈ Cl∞(V )} is established in the concluding Sec-
tion 4.5.

3. Proofs.

3.1. The key computation. Below, we formulate the key statement, essential
for all our results in this paper. It heavily relies on the assumptions of weak disor-
der. We relegate the proof of Proposition 3.1 to the concluding Section 4.

PROPOSITION 3.1. For every λ > λ0, there exist β0 = β0(λ, d) and p∞ > 0
such that, if Assumption (A) holds with p ≤ p∞, then, for every β ∈ [0, β0),

sup
N≥1

E

[ ∑
x∈H−

N

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)g(y)

]2

� (K + 1)1−d/2‖g‖2∞,(3.1)

uniformly in K ≥ 0 and in bounded functions g on Z
d+1.

Furthermore,

E

[ ∑
x∈H−

K

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)g(y)

]2

� (K + 1)−d/2‖g‖2∞,(3.2)

uniformly in K ≥ 0 and in bounded functions g on Z
d+1. Similarly,

E

[ ∑
x,y∈H−

K

∑
z∈H+

K

lωx t
θxω
y−x(r

θyω
z−y − rz−y)g(z)

]2

� (K + 1)−d/2‖g‖2∞(3.3)

also uniformly in K ≥ 0 and in bounded functions g on Z
d+1.

3.2. Proof of Theorem 2.3(1). Recall that

tωN − 1

μ
sω
N = 1

2πi

∫
Sρ

(1 + �̂ω(u))�(u)

uN+1 du(3.4)

for each ρ ∈ (0,1). We are going to show that

LEMMA 3.2. (3.4) still holds at ρ = 1 and �̂ω(eiθ ) ∈ L2(� × [0,2π ]).
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In particular, �̂ω(eiθ ) ∈ L2([0,2π ]) P-a.s. Consequently, the right-hand side
of (2.15) is P-a.s. equal to the N th Fourier coefficient of (1 + �̂ω(eiθ ))�(eiθ ).
Therefore, by Parseval’s theorem,

E
∑
N

(
tωN − 1

μ
sω
N

)2

= 1

2π
E

∫ 2π

0

∣∣(1 + �̂ω(eiθ )
)
�(eiθ )

∣∣2 dθ < ∞.

It thus follows from Fubini’s theorem that

lim
N→∞

(
tωN − 1

μ
sω
N

)
= 0,

P-a.s. and in L2(�).
It remains to prove Lemma 3.2. First of all, �̂ω(eiθ ) can be rewritten as

�̂ω(eiθ ) = ∑
x,y

tωx (q
θxω
y−x − qy−x)e

iθy‖
.

Applying Proposition 3.1 with K = 0, N = ∞ and g(y) = eiθ(ed+1,y)d+1 , we con-
clude that

sup
θ

E(�̂ω(eiθ ))2 � 1,

and hence �ω(eiθ ) ∈ L2(� × [0,2π ]) indeed.
In a completely similar fashion, one concludes from Proposition 3.1 that

lim
K→∞ sup

|u|≤1
E

( ∞∑
M=K

uMψω
M

)2

= 0,(3.5)

where {ψω
N } are the expansion coefficients of �̂ω(u) = ∑

M uMψω
M , that is, explic-

itly,

ψω
M = ∑

y∈LM

∑
x

tωx (q
θxω
y−x − qy−x).

Obviously, for each K fixed,

lim
ρ→1

K∑
N=1

(ρeiθ )Nψω
N =

K∑
N=1

(eiθ )Nψω
N

in L2(� × [0,2π ]). In view of (3.5), the latter implies that

lim
ρ→1

E

∫ 2π

0

(
�̂ω(ρeiθ ) − �̂ω(eiθ )

)2
dθ = 0.

As a result one can indeed pass to the limit ρ → 1 in (3.4).
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3.3. Proof of Theorem 2.3(2). Let FN be the σ -algebra generated by
{Vx}x∈H−

N+1
, and let us introduce

Aω
N

�= 1 +
N−1∑
M=0

∑
x∈LM

tωx (q
θxω
1,∞ − 1),

Bω
N

�=
N−1∑
M=0

∑
x∈LM

tωx (q
θxω
N−M+1,∞ − qN−M+1,∞),

Cω
N

�= E(Aω
N |FN).

We can then express sω
N as

sω
N = Cω

N + (Aω
N − Cω

N) − Bω
N.

The P-a.s. and L2(�) convergence in (2.17) follows from the next two lemmas,
since they imply that, P-a.s. and in L2(�), Bω

N and Aω
N − Cω

N tend to 0, while Cω
N

converges to sω.

LEMMA 3.3. For every λ > λ0, there exist β0 > 0 and p̂∞ > 0 such that, if
Assumption (A) holds with p ≤ p̂∞, then, for each β ∈ [0, β0], the sequence {CN }
is an L2-bounded martingale.

LEMMA 3.4. For every λ > λ0, there exist β0 > 0 and p̂∞ > 0 such that, if
Assumption (A) holds with p ≤ p̂∞, then∑

N

E(Bω
N)2 < ∞ and

∑
N

E(Aω
N − Cω

N)2 < ∞

for each β ∈ [0, β0].

PROOF OF LEMMA 3.3. The fact that Cω
N is a martingale is straightforward:

for any N and each x ∈ LN ,

E(Cω
N+1|FN) = E(Aω

N |FN) + ∑
x∈LN

E
(
tωx (q

θxω
1,∞ − 1)|FN

)
,

and

E
(
tωx (q

θxω
1,∞ − 1)|FN

) = tωx E(q
θxω
1,∞ − 1) = 0,

since x ∈ LN .
It remains to check that Cω

N is L2(�)-bounded. We first deduce from Jensen’s
inequality that E(Cω

N)2 ≤ E(Aω
N)2. However, uniform L2(�)-boundedness of the

latter quantities follows immediately from Proposition 3.1 by taking K = 0 and
g ≡ 1. �
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PROOF OF LEMMA 3.4. Note that

Aω
N − Cω

N = ∑
x∈H−

N

∑
y∈H+

N

tωx
(
q
θxω
y−x − E(q

θxω
y−x|FN)

)
and

Bω
N = ∑

x∈H−
N

∑
y∈H+

N

tωx (q
θxω
y−x − qy−x).

Thus, Aω
N − Cω

N and Bω
N have very similar forms. In fact,

E(Aω
N − Cω

N)2 ≤ 4E(Bω
N)2.

On the other hand, taking g ≡ 1 in the second of the statements of Proposition 3.1,
we readily conclude that

∑
N E(Bω

N)2 < ∞. �

3.4. Proof of Theorem 2.4. The claim (2) of the theorem follows from the
P-a.s. and L2(�) convergence to sω in (2.17) and from the fact that

Elωx = lx ≤ e−ν|x|1{x∈Yδ}.

The first claim (1) follows by an application of (3.3) with K = N and g(z) =
1{z∈LN }.

3.5. Proof of Theorem B. Let f be a bounded continuous function on R
d .

Using (2.18), we can write, for any K ≥ 0,

∑
z∈LN

tωz f

(
z⊥
√

N

)
= ∑

x∈H−
N

∑
y

tωx (q
θxω
y−x − qy−x)

∑
z∈LN

tz−yf

(
z⊥
√

N

)

= ∑
x∈H−

N

∑
y∈H−

K

tωx (q
θxω
y−x − qy−x)

∑
z∈LN

tz−yf

(
z⊥
√

N

)
(3.6)

+ ∑
x∈H−

N

∑
y∈H+

K−1

tωx (q
θxω
y−x − qy−x)

∑
z∈LN

tz−yf

(
z⊥
√

N

)
.

Choosing K = K(N) = Nε for some ε < 1/2 and setting

g(y) = gN(y) = ∑
z∈LN

tz−yf

(
z⊥
√

N

)
,

we can infer from Proposition 3.1 that the second sum on the right-hand side of
(3.6) converges to zero in L2(�). As for the first sum on the right-hand side of
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(3.6), it follows from the annealed central limit theorem (and the continuity of f )
that

lim
N→∞ max

y∈H−
Nε∩Yδ

∣∣∣∣ ∑
z∈LN

tz−yf

(
z⊥
√

N

)

− 1

μ

1√
det(2π�)

∫
Rd

f (x)e−1/2(�−1x,x) dx

∣∣∣∣ = 0.

By another application of Proposition 3.1, this time with K = 0 and

g(y) =
( ∑

z∈LN

tz−yf

(
z⊥
√

N

)
− 1

μ

1√
det(2π�)

∫
Rd

f (x)e−1/2(�−1x,x) dx
)

× 1{y∈H−
Nε∩Yδ},

we conclude, in view of Theorem 2.3, that the first sum in (3.6) converges in L2(�)

to
sω

μ

1√
det(2π�)

∫
Rd

f (x)e−1/2(�−1x,x) dx = tω√
det(2π�)

∫
Rd

f (x)e−1/2(�−1x,x) dx.

Extension to the full DN -ensemble. Proceeding as in Section 2.7, we conclude
that, for any bounded continuous f , the series∑

z∈LN

dω
z f

(
z⊥
√

N

)
converges in L2(�) to

cr

∑
x lωx sθxω

μ
√

det(2π�)

∫
Rd

f (x)e−1/2(�−1x,x) dx.

Together with (2.21), this implies (1.6).

Local limit description. As in [8], equations (2.18) and (2.19) suggest the fol-
lowing quenched Ornstein–Zernike asymptotics for tωx (as inherited from the an-
nealed OZ-asymptotics of tx in [6]): Given x ∈ Z

d+1, let θ̂xω be the reflection with
respect to the hyperplane LN of the shifted environment θxω. In other words, θ̂xω

is the environment as seen backwards from x. Of course, the reflected environment
has the very same averaged polymer connectivity functions. We conjecture that

tωx

tx
= (1 + sω)(1 + sθ̂xω)

(
1 + o(1)

)
.(3.7)

Clearly, the strength of the above conjecture depends on what is meant by o(1)

in (3.7). A P-a.s. statement would be a refinement of a P-a.s. CLT, which is, as
we already mentioned, an open problem by itself. Weaker statements, on the other
hand, are feasible via an appropriate refinement of Proposition 3.1.
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4. L2(�) estimates at weak disorder.

4.1. Preliminaries. Our proof of Proposition 3.1 is based on a comparison
with weakly interacting random walks on Z

d . The bottom line is that, under As-
sumption (A), transience wins over attraction. From a technical point of view the
approach is similar to [2].

Since, in all the estimates below, only the supremum norm of g in Proposi-
tion 3.1 would matter, we can assume, without loss of generality, that g ≡ 1. It is
convenient to use the alternative notation

qω
x,u

�= ∑
γ∈T 0

x,u

Wω
λ,β(γ ) = ∑

γ∈T 0
u−x

W
θxω
λ,β (γ ),

and qx,u = qu−x
�= Eqω

x,u. Above, T 0
u is the set of irreducible cone-confined paths

from 0 to u and T 0
x,u

�= x + T 0
u−x.

Given x and u, we define the diamond shape

D(x,u)
�= (x + Yδ) ∩ (u − Yδ).

By construction, any path γ ∈ Tx,u satisfies γ ⊂ D(x,u). Hence, qω
x,u only depends

on the environment inside D(x,u).
Here is a useful observation (see Figure 2): If D(x,u) ∩ D(y, v) = ∅, then

E{tωx (qω
x,u − qx,u)t

ω
y (qω

y,v − qy,v)} = 0.

Indeed, unless x = y, it is always true that either D(x,u) ∩ (y − Yδ) = ∅ or
D(y, v) ∩ (x − Yδ) = ∅. If, in addition, the diamond shapes do not intersect, then
in the former case (qω

x,u − qx,u) is independent of tωx tωy (qω
y,v − qy,v), and similarly

for the latter case.

FIG. 2. With x, y,u, v as in the picture, the paths contributing to tωx tωy (qω
y,v − qy,v) lie inside the

blue region, while the paths contributing to qω
x,u − qx,u lie inside the red region. These two quantities

are thus independent (w.r.t. the disorder).
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Consequently, neglecting nonpositive terms, we obtain

E

{ ∑
x∈H−

N

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)

}2

≤ ∑
x,y∈H−

N

u,v∈H+
K

E{tωx qω
x,ut

ω
y qω

y,v + tωx qx,ut
ω
y qy,v}1{D(x,u)∩D(y,v) �=∅}.

Now, it follows from the attractiveness (1.2) of the interaction that

E{tωx qω
x,ut

ω
y qω

y,v} ≥ E{tωx qx,ut
ω
y qy,v},

and thus

E

{ ∑
x∈H−

N

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)

}2

(4.1)
≤ 2

∑
x,y∈H−

N

u,v∈H+
K

E{tωx qω
x,ut

ω
y qω

y,v}1{D(x,u)∩D(y,v) �=∅}.

The latter expression sets up the stage for an analysis in terms of weakly interacting
random walks.

4.2. Weakly interacting random walks. Let PRW be the path measure of a ran-
dom walk on Z

d+1 whose independent steps are distributed according to {q�}.
We shall use notation X = (X0,X1, . . .) for the path of this random walk. Let us
say that (x,u) ∈ X if there exists n such that Xn = x and Xn+1 = u. In this way,
PRW((x,u) ∈ X) = txqx,u. Let also P⊗

RW be the product measure for a couple of
such random walks.

Given a path x = (0 = x0, x1, x2, . . .), we define the random functionals

Qω
n (x)

�=
n∏

i=1

qω
xi−1,xi

.

Note that EQω
n (x) = PRW(Xn = x), where the event {Xn = x} means that the first n

steps of X are given by the corresponding steps of x.
Consider now two admissible trajectories x and y. For any n ∈ N, we define the

diamond sausage D(xn) around the first n steps of x by

D(xn)
�=

n⋃
1

D(xi−1, xi).

By definition, D(x)
�= D(x∞). If D(xn) ∩ D(y

m
) = ∅, then

EQω
n (x)Qω

m(y) = P⊗
RW(Xn = x;Ym = y).
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If, however, the above diamond sausages intersect, then, by the positive association
(1.2) of one-dimensional random variables,

EQω
n (x)Qω

m(y) ≥ P⊗
RW(Xn = x;Ym = y),(4.2)

which means that the random weights Qω produce attraction between the two
paths. In particular, all terms which contribute to the right-hand side of (4.1) satisfy

E{tωx qω
x,ut

ω
y qω

y,v} ≥ P⊗
RW

(
(x,u) ∈ X; (y, v) ∈ Y

)
.

Let now x and y be two infinite admissible paths. We define the corresponding
diamond intersection number

#(x, y)
�= #{(k, �) :D(xk−1, xk) ∩ D(y�−1, y�) �= ∅}.

Let also E be the event that there exist k, � such that D(xk−1, xk) ∩ D(y�−1, y�) �=
∅, xk−1, y�−1 ∈ H−

N and xk, y� ∈ H+
K . Expanding tωx and tωy as in the first line of

(2.18), we infer that the sum on the right-hand side of (4.1) is bounded above by∑
x,y

EQω(x)Qω(y)#(x, y)1E (x, y)

(4.3)
�= lim

m→∞ lim
n→∞

∑
x,y

EQω
m(x)Qω

n (y)#(x, y)1E (x, y).

Existence of the above limit follows by monotonicity from (4.2). We thus obtain

E

{ ∑
x∈H−

N

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)

}2

≤ 2
∑
x,y

E{Qω(x)Qω(y)#(x, y)1E }.(4.4)

Of course, in order to apply the latter upper bound one needs to control the statistics
of #(x, y). The point is that, under Assumption (A), the Qω-induced interaction
between the paths X and Y is so weak that it does not destroy transient behavior.
This phenomenon is stated in Lemma 4.1 below, in a form which happens to be
particularly convenient for the latter use.

Given t , u0, v0 ∈ L0 and u1, v1 ∈ Lt consider two pieces xn and y
m

of of admis-
sible trajectories (assuming that they exist): x = (u0 = x0, . . . , xn = u1, . . .) from
u0 to u1, and y = (v0 = y0, . . . , ym = v1, . . .) from v0 to v1.

LEMMA 4.1. Once λ > λ0 is fixed, for every η > 0 there exists β0 > 0 and
p∞ > 0 such that

EQω
n (x)Qω

m(y) ≤ exp
{1

2ηt1{D(xn)∩D(y
m

) �=∅}
}
P⊗

RW(Xn = x,Ym = y),(4.5)

uniformly in β ∈ [0, β0), provided that Assumption (A) is satisfied with p < p∞.
The inequality (4.5) holds simultaneously for all t , u0, v0 ∈ L0 and u1, v1 ∈ Lt and
the corresponding admissible trajectories x, y.
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PROOF. The left-hand side of (4.5) equals to P⊗
RW(Xn = x,Ym = y) whenever

D(xn) ∩ D(y
m
) = ∅. Indeed, in such a situation, Qω

n (x) and Qω
m(y) are indepen-

dent.
We proceed to consider the case when D(xn) ∩ D(y

m
) �= ∅. Let us say that

a path γ ∈ Tu0,u1 is compatible with xn; γ ∼ xn, if xn \ {x0, xn} is precisely the
collection of all the cone points of γ . Similarly for γ ′ ∼ y

m
. The left-hand side in

(4.5) is

e2tξ
∑

γ∼xn

γ ′∼y
n

EWω
λ,β(γ )Wω

λ,β(γ ′) = ∑
γ∼xn

γ ′∼y
m

exp{2tξ − λ(|γ | + |γ ′|) − �β(γ, γ ′)},

where the annealed interaction potential �β(γ, γ ′) is given by

�β(γ, γ ′) = ∑
w∈Zd+1

φβ(�γ∪γ ′(w)) with φβ(�)
�= − log Ee−�V ω

.

Above, �γ∪γ ′(w) is the total combined local time of the couple (γ, γ ′) in w. There-
fore, ignoring the interaction, one derives the following upper bound:

EQω
n (x)Qω

m(y) ≤ ∑
γ∼xn

γ ′∼y
n

exp{2tξ − λ(|γ | + |γ ′|)},

that is, in terms of the corresponding expression for the simple symmetric random
walk on Z

d+1 with the constant killing rate λ − λ0 = λ − log(2d) > 0.
Similarly,

P⊗
RW(Xn = x,Ym = y) = ∑

γ∼xn

γ ′∼y
m

exp{2tξ − λ(|γ | + |γ ′|) − �β(γ ) − �β(γ ′)}.

The function φβ is subadditive [5, 6]. Consequently φβ(�) ≤ �φβ(1). We conclude
that the following lower bound on P⊗

RW(Xn = x,Ym = y) holds for any c > 0:

e−ctφβ(1)
∑

γ∼xn

γ ′∼y
m

exp{2tξ − λ(|γ | + |γ ′|)}1{|γ |+|γ ′|≤ct}.

Recall that t is the horizontal span of both γ and γ ′ and that λ > λ0 = log(2d) is
fixed. Thus, as directly follows from the properties of the simple random walk on
Z

d+1 subject to a constant killing potential λ − λ0, there exists ε = ε(c), tending
to zero as c → ∞, such that∑

γ∼xn

γ ′∼y
m

exp{−λ(|γ | + |γ ′|)}1{|γ |+|γ ′|≤ct} ≥ (
1 − ε(c)

) ∑
γ∼xn

γ ′∼y
m

exp{−λ(|γ | + |γ ′|)}.
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Altogether, we conclude that, for any c > 0,

EQω
n (x)Qω

m(y)

P⊗
RW(Xn = x,Ym = y)

≤ exp
{
ctφβ(1) − log

(
1 − ε(c)

)}
.

In its turn, the smallness of φβ(1) is controlled through

lim
β→0

φβ(1) = − log(1 − p).

Consequently, the claim of the Lemma follows first by taking c sufficiently large
and then by choosing β and p appropriately small. �

4.3. Upper bounds in terms of synchronized random walks. Let us explain
how Lemma 4.1 is put to work in order to control (4.3). At this stage, it happens
to be convenient to synchronize the two trajectories X and Y, by expressing all the
above quantities in terms of another induced Z × Z

d × Z
d -valued random walk

(U,V): Let x and y be realizations of X and Y. Let us label all the Ln-hyperplanes
which are simultaneously hit by both the x and y trajectories as n1, n2, . . . , with
u1,u2, . . . and v1, v2, . . . the corresponding hitting points (see Figure 3). Then the
induced trajectory of (U,V) is (u, v). We denote by t1, t2, . . . the horizontal spans
of the steps of (u, v). We shall use P̂ for the path measure of (U,V). The distribution
of a single step under P̂ is given by

P̂(u, v) = P̂(t, u, v)

=
t∑

n=1
m=1

∑
0<t1<...<tn=t

0<s1<...<sm=t

∑
xi∈Lti

yj∈Lsj

n∏
1

qxi−xi−1

m∏
1

qyi−yi−1

∏
0<i<n
0<j<m

1{ti �=sj },

where we have set x0 = y0 = 0 and xn = u, ym = v. Alternatively,

P̂(u, v) = P̂(t, u, v) = P⊗
RW

(
T (X,Y) = t;u ∈ Range(X); v ∈ Range(Y)

)
,

where

T (X,Y)
�= inf{n : Range(X) ∩ Ln �= ∅ and Range(Y) ∩ Ln �= ∅}

is the (random) horizontal span of a step of the (U,V)-random walk. In view of the
uniform exponential tails of {qN }, there exists κ = κ(λ) > 0 such that

P̂(T > �) � e−κ�,(4.6)

uniformly in l and in β ≥ 0.
Let us go back to (4.3). The i.i.d. horizontal spans of (U,V)-steps will be de-

noted by T1, T2, . . . . To ease notation, set Dk(u)
�= D(uk,uk+1) and similarly for

Dk(v). Obviously, if a pair (x, y) of (X,Y)-paths is compatible with a synchronized
(U,V)-path (u, v); (x, y) ∼ (u, v), then

#(x, y) ≤ ∑
k

Tk1{Dk(u)∩Dk(v) �=∅}.
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FIG. 3. The X, Y and (U,V) random walks.

By Lemma 4.1, once λ > λ0 is fixed, for every η > 0 there exist β0 > 0 and p∞ > 0
such that5 ∑

(x,y)∼(u,v)

EQω(x)Qω(y) ≤ exp
{

1

2
η

∑
k

Tk1{Dk(u)∩Dk(v) �=∅}
}

P̂(u, v).

Therefore, since xex ≤ e2x for all x ≥ 0, (4.4) implies that

E

{ ∑
x∈H−

N

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)

}2

≤ 2

η
Ê exp

{
η

∑
k

Tk1{Dk(U)∩Dk(V) �=∅}
}

1Ê ,(4.7)

where Ê is the analog of E for the synchronized random walks, that is,

Ê �= {∃k :Dk(U) ∩ Dk(V) �= ∅;Uk,Vk ∈ H−
N and Uk+1,Vk+1 ∈ H+

K}.
Of course E ⊂ Ê , in the sense that if E holds for (x, y), then Ê also holds for the
synchronized (u, v) path.

Let us now bound the expectation in the right-hand side of (4.7), uniformly

in η sufficiently small. Let Zk
�= Uk − Vk , and notice that there exists a constant

α = α(d, δ) such that

exp
{
ηTk1{Dk(U)∩Dk(V) �=∅}

} ≤ exp
{
ηTk1{Tk>α‖Z⊥

k−1‖}
}
.

Writing exp{ηTk1{Tk>α‖Z⊥
k−1‖}} = ((eηTk − 1)1{Tk>α‖Z⊥

k−1‖} + 1) and expanding, we
obtain

exp

{
M∑

k=1

ηTk1{Tk>α‖Z⊥
k−1‖}

}
= ∑

A⊂{1,...,M}

∏
k∈A

(eηTk − 1)1{Tk>α‖Z⊥
k−1‖}.

5Strictly speaking, the inequality makes sense for restrictions to any finite number of steps of the
(u, v)-trajectory.
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Since (eηTk − 1)/(eη − 1) ≤ Tke
ηTk , we can bound the right-hand side from above

by ∑
n≥0

(eη − 1)n
∑

A⊂{1,...,M}
|A|=n

∏
k∈A

Tke
ηTk 1{Tk>α‖Z⊥

k−1‖}1Ê .(4.8)

Let us write A = {a1, a2, . . . , an}, with a1 < a2 < · · · < an, and let us set a0 =
0. We are going to split the trajectories into n “bubbles,” the ith bubble being
composed of the steps Zai−1+1, . . . ,Zai

. The horizontal span Bi of the ith bubble
is thus

Bi
�=

ai∑
k=ai−1+1

Tk, 1 ≤ i ≤ n.

4.4. Proof of Proposition 3.1. We only prove (3.1) and (3.2), the third claim,
(3.3), being a variant of the latter.

We first prove (3.1). In this case, we only retain from the event Ê the constraint
that

∑
i Bi > K . More precisely, we bound above the Ê-expectation of the sum in

(4.8) by

Ê
∑
n≥1

(eη − 1)n−1
∑

|A|=n

1{∑i Bi>K}
∏
k∈A

Tke
ηTk 1{Tk>α‖Z⊥

k−1‖}.(4.9)

Therefore, by the Markov property, (4.7) implies

sup
N

E

{ ∑
x∈H−

N

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)

}2

(4.10)

≤ 2

η

∑
n≥1

(eη − 1)n−1
∑

B1,...,Bn∑
i Bi>K

n∏
i=1

I (Bi),

where, for B ∈ N,

I (B)
�= sup

z∈Zd

B∑
m=1

Ê

(
TmeηTm;

m∑
k=1

Tk = B,Tm > α‖Z⊥
m−1‖|Z⊥

0 = z

)
.

We need a reasonable upper bound on the latter quantities. Recall that we can
choose η as small as we wish. Observe first that (4.6) and a standard large deviation
estimate imply the existence of ε > 0 and c > 0 such that, uniformly in B ∈ N,

sup
z∈Zd

εB∑
m=1

Ê

(
TmeηTm;

m∑
k=1

Tk = B
∣∣∣Z⊥

0 = z

)
� e−cB.
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On the other hand, relying again on (4.6) and using the local limit theorem for i.i.d.
random variables with exponential tails, we obtain that

sup
z∈Zd

B∑
m=εB

Ê

(
TmeηTm;

m∑
k=1

Tk = B,Tm > α‖Z⊥
m−1‖|Z⊥

0 = z

)

�
∑
t≥1

te−(ν−η)t sup
z∈Zd

B∑
m=εB

P̂(‖Z⊥
m−1‖ < t/α|Z⊥

0 = z)

(4.11)

�
∑
t≥1

e−(ν−η)t td+1

Bd/2

� B−d/2.

We therefore conclude that, for any B ∈ N,

I (B) � B−d/2.

Let us now use this bound to control the right-hand side of (4.10). For fixed n,
let L = ∑n

i=1 Bi ; then there must be an index j such that
∏n

i=1 I (Bi) �
(n/L)d/2 ∏

i �=j I (Bi). Therefore, choosing η small enough, we have

∑
n≥1

(eη − 1)n−1
∑

B1,...,Bn∑
i Bi>K

n∏
i=1

I (Bi)

�
∑
L>K

L−d/2
∑
n≥0

n1+d/2

(
(eη − 1)

∑
B≥1

I (B)

)n

(4.12)

�
∑
L>K

L−d/2 � (1 + K)1−d/2.

Let us now turn to the proof of (3.2).
We proceed to bound the right-hand side of (3.2) in terms of the synchronized

random walks U and V. As before, Zk = Uk − Vk . Let j0 be such that Zj0−1 ∈ H−
K

and Zj0 ∈ H+
K . We need to derive a bound on

Ê exp
{∑

k

ηTk1{Tk>α‖Z⊥
k−1‖}

}
1{Dj0−1(U)∩Dj0−1(V) �=∅}.

Expanding as in (4.9), we may restrict attention to sets A which contain an el-
ement ai0 such that ai0 = j0. This implies that, if

∑i0
i=1 Bi = K + t , the excess t

must be entirely due to the j0th step of Z. In particular, this quantity has exponen-
tial tails, and, following the derivation of (4.11),

I (Bi0) � e−(ν−η)tB
−d/2
i0

.
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We can thus write, proceeding as in (4.12),

E

{ ∑
x∈H−

K

∑
y∈H+

K

tωx (q
θxω
y−x − qy−x)

}2

≤ 2

η

∑
t≥1

∑
i0≥1

∑
n≥0

(eη − 1)n+i0−1
∑

B1,...,Bn+i0∑i0
i=1 Bi=K+t

n+i0∏
i=1

I (Bi)

�
∑
t≥1

e−(ν−η)t
∑
i0≥1

(eη − 1)i0
∑

B1,...,Bi0∑i0
i=1 Bi=K+t

i0∏
i=1

B
−d/2
i

�
∑
t≥1

e−(ν−η)t (K + t)−d/2

� (1 + K)−d/2.

REMARK 4.2. The above computations readily imply the following: Let
u, v ∈ L0 and let P̂u,v be the distribution of the synchronized (U,V) random walk
starting from (u, v). Then, under Assumption (A),

Êu,v exp
{
η

∑
k

Tk1{Dk(U)∩Dk(V) �=∅}
}

� 1,(4.13)

uniformly in u, v and in all η sufficiently small.

4.5. Positivity of dω on the event {0 ∈ Cl∞(V )}. Let 0 ∈ Cl∞(V ). Then
dω > 0 if there exists x = (x, t) such that dθxω > 0. Indeed, such x should nec-
essarily satisfy x ∈ Cl∞(V ). Hence, there exists a nearest-neighbor finite path
γ = (γ (0), . . . , γ (n)) from 0 to x such that γ (l) ∈ Cl∞(V ) for all l = 0, . . . , n

and, consequently, such that Wω
λ,β(γ ) > 0. However,

Dω
N ≥ Wω

λ,β(γ )D
θxω
N−t .

It follows that

lim inf
N→∞ eNξDω

N � etξWω
λ,β(γ )sθxω.

It remains to show that

P(∃x : sθxω > 0) = 1.

In fact, an ostensibly stronger claim holds:
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LEMMA 4.3. Under conditions of Theorem 2.3,

P(∃x ∈ L0 : sθxω > 0) = 1.

PROOF. The proof is by the second moment method, and based on L2-esti-
mates at weak disorder as developed in the preceding subsection. Let Bn ⊂ L0 be
the d-dimensional lattice box of side-length n,

Bn
�= {

x = (x1, . . . , xd,0) :xl ∈ {0, . . . , n − 1} for l = 1, . . . , d
}
.

By Theorem 2.3, Esθxω ≡ 1. We claim that the variance

Var
(

1

nd

∑
x∈Bn

(sθxω − 1)

)
� 1

nd/2−1 .(4.14)

The conclusion of the lemma would then follow by Chebyshev’s estimate and a
Borel–Cantelli argument. Now, the estimates developed in the preceding subsec-
tions imply that, under Assumption (A), the extra attraction stemming from inte-
gration of the factors Qω over intersecting diamonds does not alter the statistical
properties of the effective d-dimensional random walks (X,Y), or, equivalently, of
the synchronized random walks (U,V). In particular, for any x, y ∈ Bn,

|E(sθxω − 1)(sθyω − 1)| � P̂x,y
(
D(U) ∩ D(V) �= ∅

)
� 1

|x − y|d/2−1 .(4.15)

Indeed, the second inequality above is straightforward. As for the first inequality
in (4.15), proceeding as in the proof of (4.7), we infer that

|E(sθxω − 1)(sθyω − 1)| � Ê exp
{
η

∑
k

Tk1{Dk(U)∩Dk(V) �=∅}
}

1{D(U)∩D(V) �=∅}.

By the strong Markov property and in view of (4.13),

Ê exp
{
η

∑
k

Tk1{Dk(U)∩Dk(V) �=∅}
}

1{D(U)∩D(V) �=∅} � P̂x,y
(
D(U) ∩ D(V) �= ∅

)
,

and (4.15) follows.
The variance decay estimate (4.14) is a direct consequence of (4.15)

Var
(

1

nd

∑
x∈Bn

(sθxω − 1)

)
� 1

n2d
· nd ·

n∑
k=1

kd−1

kd/2−1 .
�
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