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STRONG PATH CONVERGENCE FROM LOEWNER DRIVING
FUNCTION CONVERGENCE

BY SCOTT SHEFFIELD1 AND NIKE SUN2

Massachusetts Institute of Technology and Stanford University

We show that, under mild assumptions on the limiting curve, a se-
quence of simple chordal planar curves converges uniformly whenever cer-
tain Loewner driving functions converge. We extend this result to random
curves. The random version applies in particular to random lattice paths that
have chordal SLEκ as a scaling limit, with κ < 8 (nonspace-filling).

Existing SLEκ convergence proofs often begin by showing that the
Loewner driving functions of these paths (viewed from ∞) converge to
Brownian motion. Unfortunately, this is not sufficient, and additional argu-
ments are required to complete the proofs. We show that driving function
convergence is sufficient if it can be established for both parametrization di-
rections and a generic observation point.

1. Introduction. The Loewner differential equation, first described by
Loewner in 1923, relates a planar self-avoiding curve to a real-valued continu-
ous function (the “Loewner driving function”) via conformal mappings. It was
discovered by Schramm in [18] that if one takes the driving function to be

√
κWt

for W a standard Brownian motion, then the resulting random curves—called
the Schramm–Loewner evolution with parameter κ and denoted SLEκ—are con-
formally invariant in law and satisfy a certain Markovian property (the “domain
Markov property”). They are furthermore the only curves with these properties,
making them the “universal” candidate for the scaling limit of many discrete pla-
nar models in statistical physics. Indeed, since their introduction [18], a number of
discrete random paths have been shown to converge to SLEκ in the scaling limit: in
particular, loop-erased random walks and uniform spanning tree boundaries (SLE2
and SLE8) [14], Gaussian free field level lines and the harmonic explorer (SLE4)
[19, 20], percolation cluster boundaries (SLE6) [5, 22, 25] and Ising spin interfaces
and FK cluster boundaries (SLE3 and SLE16/3) [6, 7, 11, 23, 24, 26].

In each of the cases where convergence has been proved, a strong form of
convergence has been obtained: when the random lattice paths are conformally
mapped to continuous random paths on a fixed domain, one obtains, as the mesh
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size tends to zero, convergence in law with respect to the uniform or supremum-
norm metric (modulo reparametrization of the curves), which we denote by dU (see
Section 1.3).3 For random variables on a separable metric space, there are several
equivalent ways to define convergence in law (also referred to as convergence in
distribution or weak convergence): in our setting, a natural formulation is via the
Skorohod–Dudley theorem [9], which states that random variables converge in law
if and only if they can be defined on a joint probability space in which they con-
verge almost surely. When speaking of random curves, we will sometimes use the
phrase “uniform convergence” as a shorthand for “convergence in law with respect
to the uniform metric.”

Most existing SLE convergence proofs have shown a weaker form of conver-
gence first, that of convergence of the Loewner driving function, and have then
used additional estimates from the discrete model to deduce uniform convergence
[14, 19, 20]. (The arguments in [5, 22, 25] contend with these issues in a slightly
different way (see also [27] for a survey).) The goal of this article is to provide a
more general criterion for deducing uniform convergence which is less dependent
on specific features of the model at hand.

Specifically, we show that Loewner driving function convergence actually im-
plies uniform convergence provided it can be established for both parametrization
directions and with respect to a generic target:

THEOREM 1.1. Let D be a smooth bounded simply connected planar domain
with marked boundary points a and b (distinct), and let (γ j ) be a sequence of
random simple paths in D traveling from a to b. For each x ∈ D, let ψx be a
conformal map from D to the unit disc with ψx(x) = 0. Let dR

x be the metric on
paths avoiding x defined by

dR
x (γ1, γ2) := |T1 − T2| + ‖Wx,t∧T1(γ1) − Wx,t∧T2(γ2)‖∞,

where Wx,·(γi) is the radial Loewner driving function for ψx ◦ γi , and [0, Ti] is
the (necessarily finite) interval on which this function is defined (see Section 1.3).
Suppose that for all x in a countable dense subset of D, the γ j and their time
reversals γ j− converge in law with respect to dR

x to chordal SLEκ from a to b

and from b to a, respectively. Then the γ j converge in law to chordal SLEκ with
respect to dU .

This theorem follows from a series of more general results for deterministic and
random curves that we state formally in Section 1.4 (see Corollary 1.6; a stronger
result applies when κ ≤ 4; see Corollary 1.8). It tells us in particular that we do not
need to know a priori that the laws of the random paths have subsequential weak

3The metric dU is also sometimes called the “Fréchet distance” (see [3] for background). For
consistency, we will use only the term “uniform metric” here.
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limits with respect to the uniform metric. This kind of a priori pre-compactness
has been obtained for some models: for example, Kemppainen and Kemppainen
and Smirnov [10, 12] give a sufficient pre-compactness criterion based on crossing
probability estimates and the arguments in [2]. However, these estimates require
extra work and are nontrivial in general. The Loewner driving function conver-
gence that we do require can be derived (e.g., via the recipe used in [14, 19, 20])
as soon as one has sufficient control of an approximately conformally invariant
“martingale observable.” Establishing and properly estimating these observables
has been the most difficult step in the proofs obtained thus far, but at least we
can now say that (for models with a built-in time-reversal symmetry) this step is
sufficient.

As a somewhat less technical motivation for our work, we note that part of the
appeal of SLE theory is its supposed “universality”—the idea that SLE is somehow
the canonical scaling limit of the random self-avoiding paths that appear in critical
two-dimensional statistical physics. Although existing SLE convergence proofs
apply only in very specific contexts, one can argue that the more we replace the
model-specific arguments in these proofs by general ones, the more evidence we
have for (some sort of) universality.

In this section we will begin by reviewing the Loewner evolutions; we then
define some useful metrics on curves and state both deterministic and random ver-
sions of our main result. In Section 2 we present a series of counterexamples,
showing that the hypotheses in the deterministic version of our convergence the-
orem are in fact necessary. In Section 3 we state some known consequences of
driving function convergence and prove some auxiliary lemmas. In Section 4 we
prove our main result for deterministic curves, and in Section 5 we give the ex-
tension to random curves. Finally, in Section 6 we describe the application of our
result to the SLEκ processes for κ < 8.

1.1. Loewner evolutions. Let H be the upper half plane. We have chosen to use
H as our canonical domain (mapping all other paths into H) because it is the most
convenient domain in which to define chordal Loewner evolutions. However, we
will also consider radial Loewner evolutions which are most conveniently defined
on the unit disc D, and we will use the Cayley transform ϕ(z) := z−i

z+i
to easily go

back and forth between the two domains. To make the completion of H a compact
metric space, we will endow H with the metric it inherits from D via the map ϕ:
namely, we will let d∗(·, ·) denote the metric on H given by

d∗(z,w) := |ϕ(z) − ϕ(w)|
and write H for the completion of H with respect to d∗ (equivalently, its closure
in Ĉ). The map ϕ gives an isometry of H with D. If z ∈ H ∪ R, then d∗(zn, z) → 0
is equivalent to |zn − z| → 0, and d∗(zn,∞) → 0 is equivalent to |zn| → ∞.

We now briefly review the Loewner evolutions, beginning with the chordal ver-
sion (for a more detailed account see [1, 13, 15]). Suppose γ : [0,1] → H is a
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continuous simple path starting at γ (0) = 0 and traveling in H, with γ (t) ∈ H

for all t ∈ (0,1). For each t ∈ [0,1), there is a unique conformal equivalence
gt : H \ γ [0, t] → H satisfying the so-called hydrodynamic normalization at ∞,

lim
z→∞[gt (z) − z] = 0.

The quantity

1

2
lim

z→∞ z[gt (z) − z]
is called the half-plane capacity of γ [0, t] (w.r.t. ∞), denoted cap∞ γ [0, t]. It is
real and (strictly) monotone increasing in t . Schramm’s version of Loewner’s the-
orem states that if γ is reparametrized so that cap∞ γ [0, t] = t , then the maps gt

satisfy the chordal Loewner equation,

ġt (z) = 2

gt (z) − Wt

, g0(z) = z,(1)

where Wt = gt (γ (t)). Since γ (t) is not in the domain of gt it needs to be checked
that Wt can be defined as a limit; this is done, for example, in [13], Lemma 4.2.
The function Wt is continuous in t and defined for all finite t with t < cap∞ γ ,
and is referred to as the (chordal) driving function of γ . To avoid ambiguity we
will write from now on g∞,t := gt , W∞,t := Wt , and we continue to work with
the parametrization of γ defined on [0,1] (rather than with the Loewner capacity
parametrization). For clarity of exposition we will impose the technical condition
that cap∞ γ [0,1] ↑ ∞ as t ↑ 1.

We now describe the radial Loewner evolution, which is more conveniently de-
fined in the unit disc D. Again, suppose γ : [0,1] → D is a continuous simple path
starting at γ (0) = 1 and traveling in D, with γ (t) ∈ D \ {0} for all t ∈ (0,1). For
each t ∈ [0,1) we now choose gt to be the unique conformal map D \ γ [0, t] → D

with gt (0) = 0 and g′
t (0) > 0. The quantity logg′

t (0) is denoted capγ [0, t]; if
γ (1) = 0, then capγ [0, t] ↑ ∞ as t ↑ 1. Loewner’s theorem states in this case that
under the parametrization capγ [0, t] = t , the maps gt satisfy the radial Loewner
equation,

ġt (z) = gt (z)
eiWt + gt (z)

eiWt − gt (z)
, g0(z) = z,(2)

where eiWt = gt (γ (t)). Again this is continuous in t and defined for all finite t

with t < capγ , and we will refer to it as the (radial) driving function of γ .
We note that it can be shown (using Schwarz reflection, see [13], Section 4.1)

that the Loewner differential equations (1) and (2) extend to points on the boundary
of the domain minus the starting point of the curve.

We can also try to reverse the above procedure: given a continuous function
W∞,t , we can solve (1) to obtain the chordal Loewner maps g∞,t . For each z ∈ H,
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g∞,t (z) is well defined up to the time that it collides with W∞,t . Define the filling
process by

K∞,t = {z ∈ H :g∞,t (z) not defined at time t}
and set H∞,t = H \ K∞,t . The question then is whether there exists a curve γ

which generates this process, that is, such that for some parametrization of γ ,
H∞,t is the unique unbounded component of H \ γ [0, t] for all t . We can do the
same in the radial case (in the unit disc), where we will denote the fillings by Ct

and set Dt = D \ Ct . It is well known (see, e.g., [13]) that there exist continuous
driving functions which give rise to filling processes that are not generated by any
curve, and it is trivial to construct a curve which cannot arise from a continuous
driving function (e.g., a curve that retraces itself).

The definitions of cap, Ct , Dt , gt and Wt (and cap∞, K∞,t , H∞,t , g∞,t and
W∞,t ) above can be easily transferred to other (simply connected) domains via
conformal mapping. In particular, since we are interested in curves traveling in H,
we will define a capacity in H with respect to i by capi K = capϕK . We define a
filling process with respect to i by Ki,t (γ ) = ϕ−1Ct(ϕγ ), and we also write Hi,t =
H \ Ki,t . We define a driving function with respect to i by Wi,t (γ ) = Wt(ϕγ ),
and we define a radial Loewner chain (gi,t )t for γ with respect to i by gi,t =
ϕ−1 ◦ gt ◦ ϕ, where (gt ) is the standard radial Loewner chain corresponding to ϕγ

[i.e., (gt ) solves (2) with the driving function Wi,t ]. Similarly, for general x ∈ H,
we define capx , Kx,t , Hx,t , gx,t and Wx,t for γ via the unique automorphism ψx

of H with ψx(x) = i, ψ ′
x(x) > 0. In particular, Hx,t is the unique component of

H \ γ [0, t] (where capx γ [0, t] = t) containing x, and gx,t is the unique conformal
map Hx,t → H which fixes x and has g′

x,t (x) > 0.
We can make similar definitions for the chordal case: in what follows, we will

generally consider curves traveling in H between −1 and 1, so we will let

ψ1 : z �→ z + 1

z − 1
, ψ−1 : z �→ z − 1

z + 1
,

so ψ1 is a conformal automorphism of H taking 1 �→ ∞ and −1 �→ 0, and ψ−1
is a conformal automorphism of H taking −1 �→ ∞ and 1 �→ 0. (We will often
use −1 and 1 as endpoints—instead of 0 and ∞—because it makes the symmetry
between the two parametrization directions slightly more apparent.) For all other
x ∈ R we let ψx denote the unique conformal automorphism of H taking x �→ ∞
and fixing {±1}. Through the maps ψx and using the chordal Loewner evolution in
the upper half-plane we can define capx , Kx,t , Hx,t , gx,t and Wx,t for γ traveling
from −1 to 1 exactly as in the radial case.

1.2. Families of curves. We regard curves as continuous, nonlocally constant
functions f : [0,1] → C (with respect to d∗), taken modulo time reparametriza-
tion: if f1, f2 : [0,1] → C, we will say that the fi are the same up to repara-
metrization, denoted f1 ∼ f2, if there exists a continuously increasing bijection
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φ : [0,1] → [0,1] such that f2 = f1 ◦ φ. A (directed) curve γ is then defined to
be an equivalence class modulo ∼. We often abuse notation and write γ when we
mean a particular parametrization of γ ; to indicate the latter meaning we write
γ : [0,1] → C. We write γ − for the time reversal of γ . For any two curves η1, η2
such that the terminal point of η1 is the initial point of η2, we will let η1η2 denote
the concatenation of these two curves. We will also use the notation γ [0, t] to de-
note both the set γ ([0, t]) and the curve γ run up to time t ; the meaning should be
clear from context.

Now let γ : [0,1] → H be a curve traveling between −1 and 1 (in either direc-
tion), such that γ does not reach its terminal point before time t = 1. We will say
that γ is continuously driven with respect to x if it arises from a continuous driving
function with respect to x. (A curve γ will be continuously driven with respect to x

if its filling process Kx,t is continuously increasing; see [13], Section 4.1.) We will
say simply that γ is continuously driven if it is continuously driven with respect
to its terminal point: such a curve does not return into regions which are “cut off”
from the terminal point by γ . If γ is continuously driven, then for any x ∈ H which
does not lie on γ , γ can be parametrized according to capx up to time capx γ , that
is, up to the infimum of times t such that the point x and the terminal point of γ

no longer lie in the closure of the same component of H \ γ [0, t]. In this case the
reparametrized filling process of γ corresponds to the curve γ̃ which is the curve γ

stopped at time capx γ , and γ̃ is continuously driven with respect to x. Moreover,
γ̃ is precisely the entire portion of γ which is “harmonically visible from x”: after
γ̃ is traveled, a region containing x is cut off and γ does not re-enter this region.
Thus every closed initial segment of γ will be visible to some x ∈ H \ γ , which
does not necessarily hold if γ is not continuously driven. Finally, we will say that
a curve is bidirectionally continuously driven if both γ and its time reversal γ −
are continuously driven.

We restrict our consideration to continuously driven curves traveling be-
tween −1 to 1 in H (this includes curves with boundary intersections and self-
intersections). It will be useful to fix a countable dense subset � of H; we then
let 	R = 	R

� (resp., 	L = 	L
� ) denote the space of all directed, continuously

driven curves traveling from −1 to 1 (resp., 1 to −1) which avoid � . We let
	 = {γ ∈ 	R :γ − ∈ 	L} denote the space of bidirectionally continuously driven
curves traveling from −1 to 1.

If γ ∈ 	R , we will let Ht (γ ) := H1,t (γ ), Kt(γ ) := K1,t (γ ) and so on. For
x ∈ � , we will let τx = τx(γ ) denote the infimum of times t (under the cap1 para-
metrization) such that x does not lie in the closure of Ht (γ ); that is, τx is the first
time that x is cut off from 1 by γ . If two curves γ1, γ2 ∈ 	R agree for all times
up to τx(γ1) [in which case τx(γ1) = τx(γ2)], we will say that they are equivalent
viewed from x, and write γ1 ∼x γ2.

We let 	R
sim denote the subspace of curves γ traveling from −1 to 1 such that γ

is simple and boundary-avoiding. We likewise define 	L
sim and 	sim; clearly these



584 S. SHEFFIELD AND N. SUN

three spaces are equivalent. For γ ∈ 	R parametrized by cap1 (or γ ∈ 	L para-
metrized by cap−1), we will say that t is a disconnecting time if γ [0, t] ∩ γ [t,∞)

is totally disconnected, that is, has no nontrivial connected components. We say
that γ is time-separated if every time is a disconnecting time, and we let 	R

t.s. de-
note the subspace of curves γ ∈ 	R which are time-separated. (This definition will
be motivated later: see Example 2.3 and Figure 5. We remark that it is easy to see
that space-filling curves are not time-separated, although they may be continuously
driven.) Note the trivial inclusions 	R

sim ↪→ 	R
t.s. ↪→ 	R . We make all these defin-

itions symmetrically for γ ∈ 	L, and we let 	t.s. = {γ ∈ 	R
t.s. :γ − ∈ 	L

t.s.} denote
the space of time-separated curves which are bidirectionally continuously driven.

1.3. Metrics on the space of curves. In this section we introduce the distance
functions which we will consider on the space of curves. For two compact sets
A,B ⊂ C, we have the d∗-induced Hausdorff distance

dH∗ (A,B) := inf{ε > 0 :A ⊂ N (B, ε) and B ⊂ N (A, ε)},
where N (A, ε) denotes the open ε-neighborhood of A with respect to the met-
ric d∗, that is, N (A, ε) = ⋃

a∈A Bε(a), where Bε(a) := {z ∈ C :d∗(z, a) < ε}. For
example, for two curves traveling in a metric space, we can measure their proxim-
ity by the Hausdorff distance between their image sets. If H(H) denotes the set of
all nonempty compact subsets of H (with metric d∗), then dH∗ makes H(H) into a
compact metric space. However, most often we are interested in a finer notion of
proximity for curves which takes into account the order in which points are visited.
We therefore define a distance function on the space of curves by

dU (γ1, γ2) := inf
φ

[
sup

0≤t≤1
d∗

(
f1 ◦ φ(t), f2(t)

)]
,(3)

where fi is any function in the equivalence class γi , and the infimum is taken over
all reparametrizations φ which are continuously increasing bijections of [0,1]. It
can be checked that dU is well defined and gives a metric on the space of curves.
We will refer to dU as the uniform metric, and to the topology it generates as the
uniform topology.

Our goal is to deduce convergence in this uniform topology from driving func-
tion convergence. For x ∈ H, denote by dR

x the distance function on 	R which is
defined by

dR
x (γ1, γ2) := |T1 − T2| + ‖Wx,t∧T1(γ1) − Wx,t∧T2(γ2)‖∞,(4)

where Tj := capx γj . (For x ∈ H we use the radial driving functions; for x ∈ R

we use the chordal versions.) Observe that dR
x (γ1, γ2) = dR

i (ψxγ1,ψxγ2), and that
distinct paths γ1, γ2 ∈ 	R have dR

x (γ1, γ2) = 0 if and only if γ1 ∼x γ2. It follows
easily that dR

x is a metric on 	R/ ∼x ; in a slight abuse of language we will say that
γ j converges to γ with respect to dR

x in 	R if dR
x (γ j , γ ) → 0, that is, if conver-

gence holds in 	R/ ∼x . We define similarly, for each x, the distance function dL
x
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on 	L. Finally, if γ j , γ ∈ 	R , their driving functions W
j
t ,Wt with respect to the

terminal point 1 are defined for all t ≥ 0. We let dR be a metric on 	R such that
dR(γ j , γ ) → 0 if and only if W

j
t converges uniformly to Wt on bounded intervals;

we leave it to the reader to verify that such a metric can be constructed. We define
likewise dL on 	L.

1.4. Main result. We now describe the main results of this paper. Throughout
we will let (γ j ) denote a sequence in 	sim, as is the case in applications of interest.
Our main deterministic result is the following:

THEOREM 1.2. Let � be any countable dense subset of H, and let (γ j ) be a
sequence in 	sim such that for every x ∈ � , we have

lim
j→∞dR

x (γ j , ηx) = lim
j→∞dL

x (γ j−, ξx) = 0

for some fixed ηx ∈ 	R
t.s., ξx ∈ 	L

t.s.. Then there exists a curve γ ∈ 	t.s. such that
γ j → γ with respect to dU . Moreover each η̂x := ηx[0, τx(η

x)] is an initial seg-
ment of γ while each ξ̂ x := ξx[0, τx(ξ

x)] is a concluding segment (up to the in-
clusion of endpoints), and γ = ⋃

x η̂x = ⋃
x ξ̂ x (up to the inclusion of endpoints),

where
⋃

x η̂x means the minimal curve of which each η̂x is an initial segment.

REMARK 1.3. In the theorem above, no a priori compatibility of the ηx, ξx

is assumed. Note that according to our definitions of 	R
t.s. and 	L

t.s., ηx and ξx

travel between −1 and 1, but are uniquely specified only up to ∼x (and thus are
represented by their initial segments η̂x, ξ̂ x stopped at the swallowing time of x).

A substantially simpler criterion can be applied in the case when the limiting
curve is simple:

PROPOSITION 1.4. Let (γ j ) be a sequence in 	sim such that dR(γ j , η) → 0
and dL(γ j , ξ) → 0 for η ∈ 	R

sim, ξ ∈ 	L
sim. Then η = ξ− =: γ and γ j → γ with

respect to dU .

For the general (nonsimple) case, Section 2 contains a list of examples which
show that the hypotheses in Theorem 1.2 are necessary. We will exhibit the fol-
lowing:

Example 2.1. γ ∈ 	sim, dR
x (γ j , γ ) → 0 for all x ∈ � , but (γ j ) not dU -Cauchy.

Example 2.2. γ ∈ 	t.s., dR(γ j , γ ) → 0 and dL(γ j−, γ −) → 0, but (γ j ) not
dU -Cauchy.

Example 2.3. γ ∈ 	, dR
x (γ j , γ ) → 0 and dL

x (γ j−, γ −) → 0 for all x ∈ � , but
(γ j ) not dU -Cauchy.

Example 2.5. γ1 ∈ 	R , γ2 ∈ 	L, γ1 �= γ2, but dR
x (γ j , γ1) → 0 and dL

x (γ j−,
γ −

2 ) → 0 for all x ∈ � .
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Example 2.1 is a well-known example (essentially the same as [13], Example 4.49)
which shows that even in the case that γ is simple without boundary intersections,
one cannot replace the dR

x and dL
x convergence (for all x ∈ �) required in The-

orem 1.2 with dR
x convergence alone. The other examples are new to this paper.

Example 2.2 shows that in the first half of Theorem 1.2, for γ with boundary
intersections and self-intersections permitted, one cannot replace dR

x and dL
x con-

vergence (for all x ∈ �) with dR and dL convergence. It is indeed necessary to
consider points x other than the two endpoints of the path. (We remark, however,
that dR

x convergence to ηx automatically implies dR
x′ convergence to ηx whenever

x and x′ lie in the same component of H \ ηx ; thus it is enough for � to include
one x in each component of H minus the Hausdorff limit of the γ j , provided that
the union of these components is dense.) Example 2.3 shows that, in the first half
of Theorem 1.2, one cannot replace 	R

t.s. and 	L
t.s. with 	R and 	L; that is, one can-

not remove the time-separation condition. Finally, Example 2.5 shows that without
the time-separation condition in Theorem 1.2, it is possible for the dR

x limits to be
incompatible with the dL

x limits. This indicates that some care will be required to
show that the ηx and ξx in Theorem 1.2 are compatible with one another, and that
they uniquely determine γ in the sense described.

Readers with a fondness for puzzles may attempt to construct these examples
themselves before reading Section 2. Readers with limited time or patience for
examples may proceed directly to Section 3; the remainder of the paper is logi-
cally independent of Section 2. Using standard topological arguments, we extend
Theorem 1.2 to random curves in Section 5.

THEOREM 1.5. Let (γ j ) be a sequence of random curves in 	sim such that
for every x ∈ � , the γ j (resp., γ j−) converge in law with respect to dR

x (resp.,
dL
x ) to a random curve ηx ∈ 	R

t.s. (resp., ξx ∈ 	L
t.s.). Then the γ j converge in law

to a random curve γ ∈ 	t.s. with respect to dU . This γ can be coupled with the
curves η̂x := ηx[0, τx(η

x)] and ξ̂ x := ξx[0, τx(ξ
x)] in such a way that each η̂x is

an initial segment of γ , each ξ̂ x is a concluding segment, and γ = ⋃
x η̂x = ⋃

x ξ̂ x

up to the inclusion of endpoints.

In Section 6 we will see that this result applies in particular to the case that γ is
a (chordal) SLEκ for some κ < 8.

COROLLARY 1.6. Let (γ j ) be a sequence of random curves in 	sim such that
for every x ∈ � , the γ j (resp., γ j−) converge in law with respect to dR

x (resp.,
dL
x ) to SLEκ (for κ < 8) traveling from −1 to 1 (resp., from 1 to −1) in H. Then

the γ j converge in law to SLEκ with respect to dU . Furthermore, this implies that
SLEκ is time reversible (for this particular value of κ), that is, that the law of the
time-reversal of an SLEκ from −1 to 1 is an SLEκ from 1 to −1.



PATH CONVERGENCE FROM LOEWNER DRIVING CONVERGENCE 587

Our results indicate a general method for proving uniform convergence of dis-
crete curves to SLE: if one can establish dR

x0
convergence for a sequence of random

paths with respect to an arbitrary fixed interior point x0, this immediately implies
dR
x convergence with respect to a countable dense collection of fixed interior points

x ∈ �; if one also proves dL
x0

convergence (again for x0 generic), then Corollary 1.6
yields the desired convergence in law with respect to dU . It was proven in [28] that
the time reversal of SLEκ is again SLEκ for κ ≤ 4, and the same is believed true
for 4 < κ < 8 but is not known. Nevertheless, we expect Corollary 1.6 to apply in
cases where the symmetry of the γ j and γ j− is intrinsic to the model. (Examples
include the Ising model spin interfaces, the FK cluster boundaries, the percolation
interfaces and the level lines of the Gaussian free field.) If a discrete model did not
have such a time-reversal symmetry—and one only had direct access to the driving
functions for one parametrization direction (as is the case, e.g., for the harmonic
explorer [19])—one could in principle use Theorem 1.5 to prove convergence to
SLEκ without first proving (or in the process establishing) a reversibility result:

COROLLARY 1.7. Let (γ j ) be a sequence of random curves in 	sim such that
for every x ∈ � , the γ j converge in law with respect to dR

x to SLEκ (for κ < 8)
traveling from −1 to 1 in H, and the γ j− have subsequential limits in law with
respect to dL

x which lie in 	L
t.s.. Then the γ j converge in law to SLEκ with respect

to dU .

Finally, Proposition 1.4 gives the following simplified criterion for convergence
to SLEκ when κ ≤ 4 (i.e., when the curve is a.s. in 	sim):

COROLLARY 1.8. Let (γ j ) be a sequence of simple random curves in 	. Let
κ ≤ 4, and suppose that the γ j , γ j− converge in law (with respect to the dR and
dL metrics, resp.) to SLEκ . Then the γ j converge in law to SLEκ with respect
to dU .

1.5. Outline of argument. In this section we sketch the proof of Theorem 1.2.
For convenience, in what follows we let all curves started from −1 (resp., 1) be
parametrized by cap1 (resp., cap−1).

Step 1: Construction of forward and reverse limiting curves η, ξ . Since no a
priori compatibility among the ηx or ξx was assumed, the first step is to show that
if we consider, say, the forward direction, all the ηx are consistent with one another
and with a single limiting curve which is their union in some sense. In Section 3,
we will review the notion of Carathéodory convergence, a known consequence of
Loewner driving convergence. Roughly speaking this will tell us that whenever
dR
x (γ j , γ ) → 0, the filling processes of the γ j with respect to x converge to the

filling process of γ with respect to x. It follows from this that for any x, x′, ηx and
ηx′

must agree at least up to the first time t that one of them is cut off from the
terminal point. Thus there is a unique half-open curve η : [0,1) → H with η ∼x ηx
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for all x, and furthermore one can show that initial segments of the γ j converge in
the Hausdorff sense to initial segments of η (see Section 4.1). Symmetrically we
construct ξ : [0,1) → H from the ξx .

For simplicity we now restrict to the case where η and ξ can be extended by
continuity to closed curves which are simple and boundary-avoiding.

Step 2: Compatibility: ξ is the time reversal of η. Let z1 = η(t1) and z2 = η(t2)

for t1 < t2; we must show that ξ visits z2 before z1. The key is that the driving
function not only gives information about the shape of the filling, but also about
the location of the “tip” γ (t): for γ a continuously driven curve and z ∈ H, we
can use the driving function up to time t to deduce the probability that a Brownian
motion started at z and stopping upon hitting γ ∪ R will be stopped to the left or
right of γ (t). We will show (Section 3.2) that driving function convergence implies
convergence of these Brownian hitting probabilities.

Let t1 < t∗ < t2, and write η∗ = η[0, t∗], ηj∗ = γ j [0, t∗], η̄∗ = η[t∗,∞) and η̄
j∗ =

ηj [t∗,∞). Let ε > 0 be such that η does not re-enter Bε(z1) after time t∗. Then
there exists 0 < ε′ < ε sufficiently small so that for any z ∈ Bε′(z1)\η, a Brownian
motion started at z and stopped upon hitting R ∪ η has probability less than δ (for
δ > 0 small) of being stopped on η̄∗. It then follows from the results of Section 3.2
that for large enough j a Brownian motion started at z and stopped upon hitting
R ∪ γ j has probability less than 2δ of being stopped on η̄

j∗ .
On the other hand, the η̄

j∗ are initial segments of the γ j−, and so must converge
in the Hausdorff sense (at least along a subsequence) to an initial segment of ξ

containing z2. Thus if ξ visits z1 before z2, the η̄
j∗ must get arbitrarily close to z1.

This contradicts the observation above that a Brownian motion started anywhere
in Bε(z1) and stopped upon hitting R ∪ γ j has a very low probability of being
stopped on η̄

j∗ . It follows that η = ξ− =: γ .
Step 3: Uniform convergence. It remains to show that the γ j converge uniformly

to γ . With z1, z2 as above, let γ j [z1, z2] denote the portion of γ j between its near-
est approach to z1 and its nearest approach to z2, with ties broken, for example,
by choosing the earlier time. It follows from the above that for large enough j ,
the nearest approach to z1 occurs before the nearest approach to z2. Thus, if we
break up the curve γ into (finitely many) segments γ [ti , ti+1] of small diame-
ter, for large enough j we obtain a corresponding partition of γ j into segments
γ j [γ (ti), γ (ti+1)]. It then suffices to show that any subsequential dH∗ limit B of
γ j [z1, z2] is contained in γ [t1, t2]. By symmetry it suffices to show that B contains
no point of γ [t2,∞), and this follows from the arguments of Step 2, proving the
result.

2. Counterexamples. In the examples of this section, we consider families
of curves traveling in a domain D between distinct boundary points a, b, where
(D;a, b) is not necessarily (H;−1,1). Clearly, all definitions (of spaces, metrics,
etc.) in Section 1 can be made analogously for these families via a conformal
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FIG. 1. Example 2.1: beginning of curve γ .

mapping D → H taking a �→ −1 and b �→ 1. We continue to use the notation
introduced above to refer to these newly defined objects.

EXAMPLE 2.1. We consider curves traveling between 0 and ∞ in H. For
n ∈ N, let zn = (−1)n + in, and let wn = in/2. We will let γ denote the curve
which is a linear interpolation of the points

0, z1,w1, z2,w2, . . . .

See Figure 1. Since zn → ∞ and wn → ∞, we see that γ is indeed a continuous
simple curve from 0 to ∞. We then let γ j = 2−j γ : it is easy to see that as ε → 0,
the rescaled curves γ j converge, both with respect to dH∗ and with respect to dR

x

for any x ∈ H off the imaginary axis, to the simple path that traces the imaginary
axis. However, it is clear that the γ j have no dU limit.

EXAMPLE 2.2. We consider curves traveling chordally in D between −1
and 1. Let ηi : [0,1] → C (1 ≤ i ≤ 3) be defined by

η1(t) := −1 + (1 + i)t,

η2(t) := i − 2it,

η3(t) := −i + (1 + i)t

and let γ = η1η2η3 [Figure 2(c)]; note that γ ∈ 	t.s.. We can easily find a sequence
(γ

j
1 ) in 	sim converging uniformly to γ [Figure 2(a)]. We can likewise find a se-

quence (γ
j
2 ) in 	sim converging uniformly to γ̃ := η1η2η

−
2 η2η3 [Figure 2(b)]. But

both the γ
j
1 and the γ

j
2 converge with respect to dR to γ , and with respect to dL
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FIG. 2. Example 2.2: dR limit with boundary intersections.

to γ −. Letting (γ j ) be the sequence obtained by interweaving (γ
j
1 ) and (γ

j
2 ), we

have

lim
j→∞dR(γ j , γ ) = lim

j→∞dL(γ j−, γ −) = 0,

but clearly (γ j ) is not dU -Cauchy. Figure 3 illustrates essentially the same example
when the dR and dL limiting curves are allowed to have self-intersections but not
boundary intersections.

EXAMPLE 2.3. A useful construction for us is the curve P which is formed by
taking the straight path from 0 to 1 and adding increasingly small, mutually disjoint
loops at the dyadic points; these loops are traveled in the clockwise direction. To
be more precise, begin with the straight path P0 from 0 to 1. For each k ∈ N, let
tk,j = 2−k+1j + 2−k for 0 ≤ j ≤ 2k−1. Given Pk−1, for each j define a small
clockwise loop �k,j which begins and ends at tk,j and otherwise is contained in H;
the size of the �k,j should tend to zero in k. Set Pk to be Pk−1 with the �k,j added,
so that the time Pk−1 spends on each (tk,j − 2−k, tk,j + 2−k) is divided in thirds
between (tk,j − 2−k, tk,j ), the loop �k,j , and (tk,j , tk,j + 2−k). Figure 4 shows the

FIG. 3. Example 2.2: dR limit with self-intersections.
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FIG. 4. Construction of dyadic loops curve.

first few iterations of this construction. We will refer to the limiting curve P as
the “dyadic loops curve based on [0,1]”; it is clear that we can construct a dyadic
loops curve based on any simple curve. If a curve first traces [0,1] and then traces
backwards the path of diadic loops, then all of the points on [0,1] will be double
points, but there will be a dense collection of times mapping to nondouble points.

Consider the simple curve shown in Figure 5: first it travels the left part of the
curve from −1 to −1 + 3i, with loops to the left and U -shaped “hooks” to the
right; each “hook” is a path that passes below the dotted line, then returns upward
to approximately the place it started, then approximately retraces itself. The curve
then goes right to 1+3i and travels the right part of the curve from 1+3i to 1, with
loops to the right and hooks to the left; again, all hooks are bent to pass below the
dotted line. The hooks on the two sides are interlocking: thus, for the curve traveled
in either direction, each successive hook is mostly “harmonically enclosed” within
previous hooks.

FIG. 5. Example 2.3.
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FIG. 6. Example 2.4: incompatible forward and reverse limits.

We define a sequence of curves γ j ∈ 	sim which are versions of this curve,
so the hooks and loops become more numerous, and the distance between the
two vertical sides decreases to zero, as j → ∞. One then sees that for all x in a
countable dense set, γ j converges with respect to both dR

x and dL
x to the dyadic

loops curve γ which travels clockwise around the boundary of the line segment
between 0 and 3i. But it is clear that the γ j do not converge uniformly to γ .

Before giving Example 2.5, we present here a simplified version:

EXAMPLE 2.4. Let (γ
j
1 ) be a sequence of simple curves such as the one

shown in Figure 6(a), converging uniformly to the curve γ shown in Figure 6(b).
Write γ := η1η2η3η4η5η6 where the numbering is as in the figure. Now define
γ̃ := η1η2η4η3η5η6, and let (γ

j
2 ) be a sequence of simple curves converging uni-

formly to γ̃ . Let (γ j ) be the sequence obtained by interweaving the γ
j
1 and γ

j
2 . It

can be checked that the γ j are Cauchy with respect to dR
x and dL

x for every x ∈ � ,
but they clearly are not dU -Cauchy. In this example the γ j do not converge with
respect to every x ∈ � to continuously driven curves (i.e., to limits in 	R or 	L).
For example, if x lies inside the uppermost inner loop η4, then the γ j converge in
driving function to the curve η1η2η4, which does not lie in 	R . (Nevertheless, this
curve can be generated by a continuous driving function with respect to x.)

EXAMPLE 2.5. We now present a modification of Example 2.4 in which all
dR
x and dL

x limits lie in 	R and 	L, respectively.
The main construction we will use is the “fractal tree,” the beginning iterations

of which are shown in Figure 7(a). We leave it to the reader to verify that this
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FIG. 7. Example 2.4: incompatible forward and reverse limits.

tree can be constructed so that the curve which traces its boundary clockwise (i.e.,
traces the conformal boundary of the complement of the tree) has a dense set of
times mapping to double points and avoids a countable dense subset of H. More-
over, if we then traverse the boundary counterclockwise and add small loops begin-
ning and ending at the same prime end of the conformal boundary [Figure 7(b)], in
the limit we will obtain a curve which is continuously driven in the forward but not
the reverse direction. We will refer to the counterclockwise portion of the curve as
the “dyadic loops curve based on the fractal tree.” From now on, we will use the
diagram in Figure 7(b) to indicate this limiting curve.

Consider now the curve γ which is shown in Figure 8. It is the concatenation of
ηi (1 ≤ i ≤ 6), where:

1. η1 is the linear interpolation of the points −1, −1 + 3i, 3i;
2. η2 is the clockwise dyadic loops curve based on the upper fractal tree;
3. η3 travels the lower fractal tree clockwise beginning and ending at 3i;
4. η4 travels the upper fractal tree counterclockwise beginning and ending at 3i;
5. η5 is the counterclockwise dyadic loops curve based on the lower fractal tree;
6. η6 is the interpolation of the points 3i, 1 + 3i, 1.

Let � be a countable dense subset of H avoiding γ ; we leave it to the reader to
verify that one exists. We then define γ̃ := η1η2η4η3η5η6.

We can find simple curves γ
j
1 , γ

j
2 converging uniformly to γ, γ̃ , respectively;

by interweaving the sequences we obtain a sequence (γ j ) which fails to converge
uniformly. But we can check that for all x ∈ � , we have dR

x (γ j , γ1) → 0 where
γ1 := η1η2η3η5η6, and dL

x (γ j−, γ −
2 ) → 0 where γ2 := η1η2η4η5η6. We have γ1 ∈

	R and γ2 ∈ 	L, but γ2 �= γ −
1 so the forward and reverse limits are incompatible.

3. Driving function convergence. In this section we present (along with a
few related facts) a known implication of dR

x convergence, namely Carathéodory
convergence.

REMARK 3.1. All of the results in this section continue to hold if � is re-
placed with some � ′ which is the union of � with a countable dense subset of
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FIG. 8. Example 2.5: dU limit γ .

R \ {−1,1}, and the path spaces 	R , 	L, etc. are redefined accordingly. When
x ∈ R, the metrics dL

x and dR
x correspond to chordal rather than radial Loewner

driving functions.

We let 	R
init denote the space of all curves which can arise as closed initial seg-

ments of curves in 	R ; we define 	L
init similarly. All the definitions of Section 1

(filling processes, distance functions, etc.) can be made for these spaces in exactly
the same way. In particular, if γ j , γ ∈ 	R with dR

x (γ j , γ ) → 0, then, under the
capx parametrization, we have dR

x (γ j [0, t], γ [0, t]) → 0 as well for any t . The
distance dR

x is a metric on 	R
init/ ∼x .

PROPOSITION 3.2. For each x ∈ � , the spaces 	R/ ∼x and 	L/ ∼x are sep-
arable with respect to the topology generated by dR

x and dL
x , respectively; likewise

	R/ ∼1 and 	L/ ∼−1 are separable with respect to the topology generated by dR

and dL, respectively. Also, 	 is separable with respect to the topology generated
by dU .
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PROOF. For the separability of 	R/ ∼x it suffices to prove separability of
a larger metric space: for metric spaces separability is equivalent to second-
countability, and second-countability is inherited in the subspace topology (see,
e.g., [16]).

It is easy to see that the space of all pairs (W,T ) where T > 0 and W : [0, T ] →
R is continuous, is separable under the metric (4): a countable dense set can be
constructed by taking W continuous and linear (with rational derivative) on each
of a finite set of rational-length intervals which partition [0, T ], for T rational. Sep-
arability immediately follows for 	R/ ∼x and 	L/ ∼x , and it follows for 	R/ ∼1,
and 	R/ ∼−1 by a similar argument. For the metric dU a countable dense subset
of 	 can similarly be given using functions which are piecewise linear as maps
into H. �

3.1. Carathéodory convergence. We begin by recording some preliminary
consequences of dR

x convergence for a fixed x ∈ � . Extending our previous no-
tation, if x ∈ � and γ in 	R

init or 	L
init is parametrized according to capx , then

Hx,t = Hx,t (γ ) denotes the unique component of H \ γ [0, t] containing x, and
Kx,t = Kx,t (γ ) = H \ Hx,t denotes the filling with respect to x at time t . If
T = capx γ then we will generally drop the time subscript and simply write
Hx = Hx(γ ),Kx = Kx(γ ). We let Hx,t denote the closure of Hx,t in H under
the d∗ metric.

DEFINITION 3.3. Let gj = (g
j
t )0≤t≤T , g = (gt )0≤t≤T be (radial or chordal)

Loewner chains with respect to x, defined on H. We say that gj converges to g in

the Carathéodory sense with respect to x, denoted gj Cara−→x g, if for all ε > 0 and
t ≤ T , gj → g uniformly on

[0, t] × H
(ε)
x,t where H

(ε)
x,t := {z ∈ H :d∗(z,Kx,t ) ≥ ε}.

In particular, this implies that g
j
t → gt pointwise on Hx,t for each t . Also, Img

j
t (z)

has a nonzero limit as j → ∞ if and only if z ∈ Hx,t .

The following proposition relates driving function convergence to Carathéodory
convergence. The result for chordal Loewner chains is proved in [13]; the proof for
radial Loewner chains is entirely similar and we omit it here.

PROPOSITION 3.4. Let gj = (g
j
t )0≤t≤T , g = (gt )0≤t≤T be Loewner chains

corresponding to the driving functions W
j
t ,Wt , all with respect to x. If W

j
t → Wt

uniformly on [0, T ], then gj Cara−→x g.

COROLLARY 3.5. Let γ j , γ ∈ 	R
init with T j = capx γ j , T = capx γ and let

gj , g denote the Loewner chains with respect to x corresponding to γ j , γ , respec-

tively. Suppose dR
x (γ j , γ ) → 0. Then (g

j
s )0≤s≤t

Cara−→x (gs)0≤s≤t for all t < T . We

also have g
j
Tj

→ gT uniformly on H
(ε)
x := H

(ε)
x,T .
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PROOF. The first statement follows directly from Proposition 3.4. For the sec-
ond statement, fix δ > 0, and note that if we replace gj , g by the Loewner chains
hj ,h corresponding to the driving functions Wx,t∧T j ,Wx,t∧T , respectively, then

h
j
t , ht are defined for all t ≥ 0 (with ht = gt for t ≤ T and h

j
t = g

j
t for t ≤ T j ). By

Proposition 3.4, for all ε > 0 and for all t < ∞, we will have ‖hj − h‖∞ < δ

on [0, t] × H
(ε)
x,t for j sufficiently large. Also, by uniform continuity of h on

[0, t] × H
(ε)
x,t , we will have |hT j (z) − hT (z)| < δ for all z ∈ H

(ε)

x,T ∨T j for j suf-
ficiently large. Therefore

|gj

T j (z)−gT (z)| = |hj

T j (z)−hT (z)| ≤ |hj

T j (z)−hT j (z)|+ |hT j (z)−hT (z)| < 2δ

for all z ∈ H
(ε)

x,T ∨T j and j sufficiently large. The result follows by noting that for

any ε > 0, we can find ε′ > 0 small enough so that H
(ε)
x,T ⊆ H

(ε′)
x,s for s sufficiently

close to T .4 �

REMARK 3.6. Given a Loewner chain g = (gt )0≤t≤T corresponding to γ ∈
	R

init, for any s < T we can also consider the maps g(s) = (g
(s)
t )0≤t≤T −s which

satisfy gs+t = g
(s)
t ◦ gs . These correspond to the curve γ (s)(t) := gs(γ (s + t))

defined for 0 ≤ t ≤ T − s, and it is easily seen that g(s) is simply a Loewner chain
with driving function W

(s)
t := Ws+t . Thus, if we have dR

x (γ j , γ ) → 0 as in the
corollary above, then also dR

x (γ j,(s), γ (s)) → 0 for any s < T .5

The following corollary will be useful for determining the uniform limit of a
sequence of curves from their Carathéodory convergence.

COROLLARY 3.7. Let x ∈ � , and let γ j , γ ∈ 	R
init with dR

x (γ j , γ ) → 0.
Then:

(a) For any ε > 0, H
(ε)
x (γ ) is a subset of Hx(γ

j ) for sufficiently large j .
(b) If U is a connected open subset of H with x ∈ U , and U ⊆ Hx(γ

j ) for
large j , then U ⊆ Hx(γ ).

(c) If K† is any dH∗ subsequential limit of the Kx(γ
j ), and H† is the unique

component of H \ K† whose closure contains x, then H† = Hx(γ ).

PROOF. Let (gx,t ) and (g
j
x,t ) denote the Loewner chains corresponding to γ j

and γ , respectively. Throughout this proof we will use the notation g = gx,T and
gj = g

j
x,T , where T = capx γ and T j = capx γ j .

4This can be checked directly, for example, by similar methods as are used to prove Proposition 3.4.
5This is a slight abuse of notation since the curves γ j,(s) and γ (s) do not necessarily start at the

same point; however γ j,(s)(0) clearly converges to γ (s)(0).
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(a) By Corollary 3.5, gj must be defined on H
(ε)
x (γ ) for sufficiently large j .

(b) Suppose for sake of contradiction that U ∩ Kx(γ ) �= ∅. By the condi-
tions on U , for any k > 0 we can find z ∈ Hx(γ ) such that for some δ > 0,
d∗(z,Kx(γ )) < δ and Bkδ(z) ⊆ U . Then z ∈ Hx(γ

j ) for large j , and by
Carathéodory convergence, the conformal radius of Hx(γ

j ) with respect to z con-
verges to the conformal radius of Hx(γ ) with respect to z. But by the Koebe
distortion theorem, the inradius of a domain with respect to an interior point is
within a constant factor of its conformal radius: by choosing k large enough we
can guarantee that Kx(γ

j ) will intersect Bkδ(z) for large j , which gives the desired
contradiction.

(c) By (a) it is clear that H† ⊇ Hx(γ ). Conversely, if U is a connected open
subset of H† with x ∈ U and U ⊂ H†, then U ⊂ H\Kx(γ

j ) = Hx(γ
j ) for large j ,

and so by (b) we have U ⊆ Hx(γ ). Since H† is a union of such U we find H† ⊆
Hx(γ ), hence they are equal. �

3.2. Hitting probabilities of Brownian motion. Informally, the above corollary
says that dR

x convergence gives convergence of the “shape” of the fillings Kx(γ
j ).

To identify the location of the “tip” γ (T ) on Kx(γ ), we next consider hitting
probabilities of Brownian motion (i.e., harmonic measure) for segments of the
(conformal) boundary of Hx(γ ).

For γ ∈ 	R
init with T = capx γ , if x is not swallowed by γ then we define the left

boundary (with respect to x) of γ to be the maximal (closed) clockwise segment
of the conformal boundary of Hx(γ ) which begins at γ (T ) and whose intersection
with R has empty interior; we define the right boundary symmetrically. If x is
swallowed by γ at some time τx ≤ T , the left boundary is defined to be the set of
points (more precisely, prime ends) on the conformal boundary of Hx(γ ) which lie
on the left boundary of γ [0, t] for any t < τx . We let αz

x(γ ) denote the probability
that a Brownian motion, started at z ∈ Hx(γ ) and stopped upon hitting γ ∪ R, will
hit the left boundary of γ .

PROPOSITION 3.8. Fix x ∈ � , and let γ j , γ ∈ 	R
init with dR

x (γ j , γ ) → 0.
Then αz

x(γ
j ) → αz

x(γ ).

We begin by proving an easier result. First suppose x is not swallowed by γ .
Fix a “reference point” P ∈ R with P < inf(γ ∩ R), and consider the event that
the Brownian motion started at z ∈ Hx(γ ) will hit either the left boundary of γ or
the segment [P, inf(γ ∩ R)]. If this occurs we say that the Brownian motion hits
to the left of the tip with respect to P , and we denote the probability of this event
by αz

x(γ,P ).

LEMMA 3.9. Fix x ∈ � , and let γ j , γ ∈ 	R
init with dR

x (γ j , γ ) → 0 such that
x is not swallowed by γ . Then, for any reference point P as above,

αz
x(γ

j ,P ) → αz
x(γ,P ).
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PROOF. By the conformal invariance of Brownian motion we consider the
problem in D, with x = 0, z ∈ D and P ∈ ∂D. Let gt ,Wt denote the (radial)
Loewner chain and driving function corresponding to γ , and similarly g

j
t ,W

j
t .

We write g = gT and gj = g
j
Tj

for the terminal Loewner maps. By the conformal
invariance of Brownian motion, αz

x(γ,P ) is exactly the probability that a Brown-
ian motion started at g(z) and stopped upon hitting ∂D will land on the arc going
counterclockwise from g(P ) to WT . Likewise αz

x(γ
j ,P ) is the probability that a

Brownian motion started at gj (z) and stopped upon hitting ∂D will land on the
arc going counterclockwise from gj (P ) to W

j

T j . But W
j

T j → WT by assumption,

and gj → g pointwise on D \ DT (γ ) by Carathéodory convergence, so the result
follows. �

PROOF OF PROPOSITION 3.8. First suppose x is not swallowed by γ . Write
z0 = inf(γ ∩ R) and z

j
0 = inf(γ j ∩ R). We can choose P < z0 to make the differ-

ence αz
x(γ,P ) − αz

x(γ ) arbitrarily small. On the other hand αz
x(γ

j ,P ) − αz
x(γ

j )

is the probability that a Brownian motion started at z and stopping upon hit-
ting γ j ∪ R will land on the segment [P, z

j
0]. By Corollary 3.7 we must have

lim inf zj
0 ≥ P . If lim sup z

j
0 ≤ P then clearly αz

x(γ
j ,P ) − αz

x(γ
j ) → 0, so the re-

sult follows from Lemma 3.9. Therefore suppose lim sup z
j
0 > P , so that the curves

γ j must come close to z0 without touching. Then the hitting probability of [z0, z
j
0]

must tend to zero (e.g., using the Beurling estimate), so Lemma 3.9 again gives the
result.

It remains to check the case of when x is swallowed by γ , that is, τx(γ ) ≤ T .
We again work in the unit disc, with x = 0 and z ∈ D. Suppose c = α0(γ ) and
c̃ = limj α0(γ

j ) with |c− c̃| > ε. We have limt↑τ0 α0(γ [0, t]) = c, so for any δ > 0
we can choose t < τ0 such that τ0 − t < δ and |α0(γ [0, t ′]) − c| < δ for all t ′ ≥ t ;
by the above result we also have for large j that α0(γ

j [0, t]) is within δ of c but
α0(γ

j [0, τ0]) is within δ of c̃. Recalling Remark 3.6, we now consider the systems
under the maps g

j
t : the curves γ j,(t)(s) := g

j
t (γ (t + s)) must travel in such a way

that α0(γ
j,(t)[0, s]) changes by more than ε−2δ within (capacity) time τ0 − t < δ.

Taking δ → 0 we see that this must contradict the hypothesis that γ is the initial
segment of a continuously driven curve. �

Given γ ∈ 	R
init, for any closed subset S of γ ∪ R we will let pz

x(S;γ ) denote
the probability that Brownian motion started at z and stopped upon hitting γ ∪ R

will be stopped on S (regardless of whether it stops on the left or right boundary
of γ ).

COROLLARY 3.10. Fix x ∈ � , and let γ j , γ ∈ 	R
init with dR

x (γ j , γ ) → 0. Let
T = capx γ and T j = capx γ j . Then, for any t < T ,

lim
j→∞pz

x(γ
j [t, T j ];γ j ) = pz

x(γ [t, T ];γ ).
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It follows that for s < t < T , pz
x(γ

j [s, t];γ j ) → pz
x(γ [s, t];γ ).

PROOF. The first claim follows from Remark 3.6 by applying Proposition 3.8
to the curves γ j,(t)[0, T j − t] and γ (t)[0, T − t]. The second claim is an immediate
consequence, since pz

x(γ [s, t];γ ) = pz
x(γ [s, T ];γ ) − pz

x(γ [t, T ];γ ). �

For our purposes it will suffice to consider only px
x (·; ·), which we will denote

from now on by px(·; ·). [Note, however, that when � is replaced by Q or {±1} it
will still be useful to consider pz

x(·; ·) for general z ∈ Hx(γ ).]

4. Convergence of deterministic curves. In this section we will prove The-
orem 1.2.

4.1. Hausdorff convergence and compatibility.

LEMMA 4.1. Let γ j , γ ∈ 	R
init with dR

x (γ j , γ ) → 0 for all x ∈ � . Then
dH∗ (γ j , γ ) → 0.

PROOF. For any ε > 0 it is possible to choose finitely many points x1, . . . , xn ∈
� such that Q := ⋃n

i=1 H
(ε)
x (γ ) contains every point z ∈ H with d∗(z, γ ) ≥ ε. Ap-

plying Corollary 3.7(a) to each component separately shows that γ j ∩ Q = ∅ for
sufficiently large j , hence γ j is contained in an ε-neighborhood of γ for suffi-
ciently large j .

For the other direction, let y ∈ γ , and let U = Bε(y). Then dR
x (γ j , γ ) → 0

for some x ∈ U ∩ � , and so by Corollary 3.7(b) it must be that U intersects
γ j for large j . Since γ is compact, it follows that it will be contained in an ε-
neighborhood of γ j for large j , which concludes the proof. �

The next lemma tells us that even if we are not given a single curve to which the
γ j converge in all the dR

x metrics, we can almost construct it from knowing the dR
x

limits for each x ∈ �:

LEMMA 4.2. Let (γ j ) be a sequence in 	R
init, and suppose that for each x ∈ �

there exists γ x ∈ 	R with dR
x (γ j , γ x) → 0. Then there exists a unique half-open

path η : [0,1) → H such that each γ̂ x := γ x[0, τx(γ
x)] is an initial segment of η

and η = ⋃
x γ̂ x (up to the inclusion of endpoints).

PROOF. Let x1, x2 be two distinct points in � . For i = 1,2 we let γ xi be
parametrized by cap1, and set

τ i
j = inf{t ≥ 0 :xj /∈ Ht (γ

xi )}.
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Set σ i = τ i
1 ∧τ i

2; this is the first time t such that either the xi lie in different compo-
nents of H\γ xi [0, t], or that they both no longer lie in Ht (γ

xi ), the unique compo-
nent of H\γ xi [0, t] whose closure contains 1. Then set σ = σ 1 ∧σ 2; we claim that
the γ xi must agree up to time σ . To see this, let t < σ : by definition of σ we must
have Ht (γ

xi ) = Hx1,t (γ
xi ) = Hx2,t (γ

xi ) for i = 1,2. Let U be a connected open
subset of H with U ⊂ Hx1,t (γ

x1) and x1, x2 ∈ U . Then by Corollary 3.7(a) we have
for large j that U ⊂ Hx1,t (γ

j ) and U ⊂ Hx2,t (γ
j ), hence Hx1,t (γ

j ) = Hx2,t (γ
j ).

By Corollary 3.7(b) we have U ⊆ Hx2,t (γ
x2), and Hx1,t (γ

x1) is a union of sets of
the form U which proves Hx1,t (γ

x1) ⊆ Hx2,t (γ
x2), and so by symmetry they are

equal. Since the curves are uniquely determined by their filling processes, the γ xi

must agree up to time σ = σ 1 = σ 2.
It follows that one of the γ̂ xi is an initial segment of the other: σ = τ 1

j = τ 2
j

for some j , and then the curve γ̂ xj must end at time σ . Therefore we can let η

be the union of all γ̂ x for x ∈ �; if there is one γ̂ x of which all other γ̂ x′
are

initial segments, then η = γ̂ x is a curve going from −1 to 1. If not, we view η as a
half-open path that does not contain its terminal endpoint. �

If η is a half-open curve as constructed in Lemma 4.2, we will write dR
x (γ j ,

η) → 0 if dR
x (γ j , η′) → 0 for some (all) η′ ∈ 	R with η′[0, τx(η

′)] = η̂x . The
following is an example showing that this η need not extend to a closed continuous
curve which contains its terminal endpoint:

EXAMPLE 4.3. We consider curves traveling between 0 and ∞ within the
closure of the infinite half-strip D = {|Re z| < 1} ∩ H, with the countable dense
subset � = (Q ∩ D) \ (iR). We will adapt the curve of Example 2.1 as follows:
for n ∈ N, let zn = (−1)n + in as before, but now let wn = i(1 − 2−n). We will let
ηk denote the closed curve which is a linear interpolation of the points

0, z1,w1, . . . , zk−1,wk−1, zk.

See Figure 9(a) and (b). If we let η denote the union over all ηk , then η travels
below the line {Im z = 1} infinitely many times, and so it does not extend to a
continuous closed curve from 0 to ∞. Nevertheless it is easy to find a sequence
(γ j ) in 	sim such that dR

x (γ j , η) → 0 for all x ∈ � .

In the next section we will describe how to use bidirectional driving conver-
gence to obtain the desired continuous extension.

4.2. Uniform convergence from bidirectional driving convergence. We begin
by proving some useful consequences of the time-separated assumption. From now
on we assume that (γ j ) is a sequence in 	R

sim. Since these curves extend continu-
ously to their endpoint, if we use the cap1 parametrization we will write γ j [t,∞]
for the closure of γ j [t,∞).



PATH CONVERGENCE FROM LOEWNER DRIVING CONVERGENCE 601

FIG. 9. Example 4.3: η does not extend continuously to closed curve.

DEFINITION 4.4. Let η be a half-open curve such as constructed by Lem-
ma 4.2, parametrized by cap1. We say that a time t0 is nondouble if y0 := η(t0) is
a nondouble point of η. We say that t0 is strongly nondouble if in addition y0 does
not lie in the closure of η[t,∞) for any t > t0. We make the symmetric definitions
for ξ parametrized by cap−1.

LEMMA 4.5. Let (γ j ) be a sequence in 	sim, and suppose that for each x ∈ �

there exists γ x ∈ 	R
t.s. with dR

x (γ j , γ x) → 0. Then the half-open curve η con-
structed by Lemma 4.2 has a dense collection of nondouble times (under the cap1
parametrization).

PROOF. For 0 < t1 < t2 < t3, we say that z is a (t1, t2, t3)-double point if
η(s) = η(s′) = z for some s ∈ [0, t1], s ′ ∈ [t2, t3]. Let Dt1,t2,t3 denote the set of
times mapping to (t1, t2, t3)-double points. Then Dt1,t2,t3 is a closed subset of R≥0,
and since η[0, t3] is time-separated, it must be that Dt1,t2,t3 has dense complement
in R≥0: if Dt1,t2,t3 contained a nontrivial time interval, the interval would map to
a nontrivial connected component of η[0, t1] ∩ η[t2, t3] since η is assumed to be
continuously driven (hence not locally constant).

The set D of all times mapping to double points can be expressed as the union of
Dt1,t2,t3 over all rational triples 0 < t1 < t2 < t3. The countable intersection of open
dense sets is dense by the Baire category theorem, so D has dense complement as
desired. �

We now assume the notation and hypotheses of Theorem 1.2, and let η := ⋃
x η̂x

and ξ := ⋃
x ξ̂ x be the half-open curves given by Lemma 4.2. At this point we
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have not yet shown that either curve extends continuously to its terminal endpoint
or that one curve is the time reversal of the other. However, we know that if there
exists an x ∈ � that is not swallowed by η before its terminal time, then η = η̂x

and hence η extends continuously to its endpoint. We also know that Hx(η) =
Hx(η

x) = Hx(ξ
x) = Hx(ξ) for every x ∈ � , since these sets are components of

the complement of the Hausdorff limit of the γ j (see Lemma 4.1). Thus, as sets,
both η and ξ contain ⋃

x∈�

∂Hx,∞(η) \ R,

and both are contained in the closure of this union.

LEMMA 4.6. Let η and ξ be defined as above, parametrized by cap1 and
cap−1, respectively. Under this parametrization, each curve has a dense collection
of strongly nondouble times.

PROOF. Suppose for the sake of contradiction that there is a time interval
[t1, t2] (with t1 < t2) in which every time fails to be a strongly nondouble time
for η. By Lemma 4.5, this time interval does contain a dense set of nondouble
times t0, so it must be that each corresponding y0 := η(t0) arises as the subse-
quential limit of η(t) for large t . Therefore S := η[t1, t2] must lie in the closure
of η[t,∞) for any t > t2. We claim that for such t , any subsequential dH∗ limit
of the sets γ j [t,∞] must contain S. Indeed, by Lemma 4.1 the limit must con-
tain η[t,∞) \ η[0, t]. Since η is continuously driven, η[t,∞) \ η[0, t] is dense in
η[t,∞). Since any dH∗ limit is closed, this proves the claim.

It is clear that we can assume that t2 is a nondouble time. We therefore consider
the following two cases:

Case 1. Suppose that after time t2, η first hits (η[0, t2] ∪ R) \ {η(t2)} at some
time t3 > t2. Let x ∈ � be such that x is swallowed at this time, and such that some
nontrivial connected subset S′ of ∂S is contained in the boundary of Ux := Hx(η).
(That such x exists is easy to see from the definition of t3, for example, by a
simple compactness argument.) By re-labeling we now suppose that the times ti
(1 ≤ i ≤ 3) are all with respect to the capx parametrization.

Now, in the reverse direction, let t́
j
i (1 ≤ i ≤ 3) be defined by γ j (ti) = γ j−(t́

j
i )

(again, with respect to capx). By passing to a subsequence we may suppose that
t́
j
i converges to some t́i for each i. By hypothesis, γ j−[0, t́

j
3 ] converges to ξ [0, t́3]

with respect to dL
x for all x ∈ � , and by Lemma 4.1 it converges in dH∗ as well,

so by the first claim above ξ [0, t́3] ⊇ S. Since ξ is time-separated, during the time
interval [t́3, t́1] it can only hit a (closed) totally disconnected subset of S. Therefore,
we can find a point y in the interior of S ′ (in the subspace topology on S′) such that
a small neighborhood V of y is not hit by ξ [t́3, t́1]. We can then choose z ∈ Ux close
enough to y such that with probability at least 1 − ε (for small ε > 0), a Brownian
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motion started at z and stopped upon hitting ∂Ux will stop on V ∩ S′, so that
pz

x(ξ [t́2, t́1]; ξ) ≤ ε. But on the other hand S′ ⊆ η[t1, t2], so pz
x(η[t1, t2];η) ≥ 1−ε.

The contradiction follows from noting that by Corollary 3.10,

pz
x(η[t1, t2];η) = lim

j→∞pz
x(γ

j [t1, t2];γ j ) = lim
j→∞pz

x(γ
j−[t́ j2 , t́

j
1 ];γ j−)

= pz
x(ξ [t́2, t́1]; ξ).

Case 2. Now suppose η never hits (η[0, t2] ∪ R) \ {η(t2)} after time t2, and let
z be any point of � that is swallowed by η after time t2, say at time t3. Note
that η(t2) forms a cut point of η[0, t3]. Now, η must swallow every point of �

eventually: if some x ∈ � does not get swallowed then we would have ηx = η, but
by hypothesis the ηx lie in 	t.s., and hence extend continuously to their endpoints,
while η does not. Consider those points x ∈ � which lie in a neighborhood of
the cut point η(t2) and which have not been swallowed by time t2: since all of
these points must eventually be swallowed (but they cannot all be swallowed at
once since η never hits (η[0, t2] ∪ R) \ {η(t2)}), we see that the closure of η[t3,∞)

must surround z, and thus the dH∗ limits of both γ j [t2, t3] and γ j [t3,∞], which
we denote B and B ′, must surround z. B and B ′ are connected sets, and neither is
contained in the other since η and ξ are continuously driven, but by construction B

will be “nested” inside B ′. This contradicts the assumption that the γ j− converge
with respect to dR

z to a continuously driven curve. �

Note that it follows immediately that there is a dense collection of strongly
nondouble times mapping to points not in R, since for continuously driven curves
the set of times mapping into R is closed and totally disconnected.

LEMMA 4.7. Assume the notation and hypotheses of Theorem 1.2, and let
η := ⋃

x η̂x and ξ := ⋃
x ξ̂ x be the half-open curves given by Lemma 4.2, parame-

trized by cap1 and cap−1, respectively. Let z0 = η(t0) be a strongly nondouble point

of η with z0 /∈ R. Fix t∗ > t0, and let η
j∗ denote the curve γ j stopped at time t∗. Let

η̄
j∗ denote the remaining curve γ j \ η

j∗ . Then, if X is any (subsequential) dH∗ limit

of the η̄
j∗ , we will have z0 /∈ X.

PROOF. Since z0 is a strongly nondouble point, we can find ε > 0 small
enough so that η does not enter Bε(z0) after time t∗. We further require
Bε(z0) ⊂ H. By the Beurling estimate, for any δ > 0 we may choose 0 < ε′ < ε

small enough so that for any curve P crossing the annulus {ε′ < |z − z0| < ε},
a Brownian motion started inside Bε′(z0) has probability less than δ of exiting
Bε(z0) without hitting P . Thus for x ∈ Bε′(z0)∩� we will have px(η[t∗,∞);η) <

δ and px(R;η) < δ, and so by Corollary 3.10

lim
j→∞px(η̄

j∗;γ j ) < δ and lim
j→∞px(R;γ j ) < δ.(5)
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We now consider the reverse direction. Let 0 < ε′′ < ε′ and

s1 := inf{t ≥ 0 : ξ(t) ∈ Bε′′(z0)},
and note that since γ j−[0, s1] has dH∗ limit ξ [0, s1] not containing z0, a fortiori we
have γ j−[0, s1] ⊂ η̄

j∗ for large j . Now, making use of Lemma 4.6, let s0 < s1 be a
strongly nondouble time of ξ such that ź0 = ξ(s0) lies in {ε′′ < |z − z0| < ε′}, and
let ε̃ > 0 be small enough so that ξ does not enter Bε̃(ź0) after time s1. Applying
the Beurling estimate again we choose 0 < ε̃′ < ε̃ small enough so that for any
curve P crossing {ε̃′ < |z− ź0| < ε̃}, a Brownian motion started inside Bε̃′(ź0) has
probability less than δ of exiting Bε̃(ź0) without hitting P . Then for x ∈ Bε̃(ź0)∩�

we have px(ξ [s1,∞); ξ) < δ, and so by our observation above

lim
j→∞px(η

j∗;γ j ) ≤ lim
j→∞px(γ

j−[s1,∞];γ j−) < δ.(6)

Combining (5) and (6) gives

lim
j→∞[px(η

j∗;γ j ) + px(η̄
j∗;γ j ) + px(R;γ j )] < 3δ

and setting δ ≤ 1/3 we obtain a contradiction, since a Brownian motion started at
x and stopped upon hitting η ∪ R must clearly be stopped at one of η

j∗ , η̄
j∗ or R.

�

COROLLARY 4.8. Assume the notation and hypotheses of Theorem 1.2 and
Lemma 4.7. The paths η, ξ extend continuously to their endpoints and η =
ξ− =: γ .

PROOF. First, notice that if z1, z2 are strongly nondouble points of η not in R

such that η hits z1 before z2, then ξ hits both these points, and will hit z2 before z1.
Indeed, writing ti = η−1(zi), let t∗ ∈ (t1, t2): by Lemma 4.7, any subsequential
dH∗ limit X of the curves η̄

j∗ = γ j [t∗,∞] will be a closed initial segment of ξ

containing η \ η[0, t∗] (hence the point z2) but not z1.
Suppose now that η(t) has multiple limit points as t → ∞, that is, that there

exist sequences ti,k (for i = 1,2) such that zi = limk η(ti,k) with z1 �= z2. We may
assume that all the ti,k map to strongly nondouble points of η not in R, by the
continuity of η and the density of such times. But then we claim that for any ε > 0
the curve ξ must travel between Bε(z1) and Bε(z2) infinitely many times before
time s for some s > 0, which contradicts the continuity of ξ . Therefore η extends
continuously to its endpoint, and it follows from the above that η = ξ as sets.

It remains to show that ξ = η−. We know that there is a dense set of times
tk which map to strongly nondouble points of η not in R, and that ξ hits these
points in reverse order. Under the cap−1 parametrization of ξ , let T = {t : ξ(t) =
η(tk) for some k}. If T is a dense set of times for ξ then we are done, so sup-
pose that there is an interval of time I not contained in T . But ξ(T ) = η[0,∞) =
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ξ [0,∞), and so I is an interval of times mapping to double points, which gives
the contradiction. �

PROOF OF THEOREM 1.2. Let η := ⋃
x η̂x and ξ := ⋃

x ξ̂ x be the half-open
curves given by Lemma 4.2. Thanks to Corollary 4.8 we finally know that the
(strongly) nondouble points of η and ξ are the same, as γ = η = ξ−. Let z1 =
γ (t1), z2 = γ (t2) be nondouble points of γ with t1 < t2, and let γ [z1, z2] denote
the portion of γ between these two hitting points, viewed as a closed set. We then
let γ j [z1, z2] denote the portion of γ j between its nearest approach to z1 and its
nearest approach to z2. (If there is a tie, we choose the earliest one, say.) To show
uniform convergence, it suffices to prove that for any such z1 and z2, we have
γ j [z1, z2] converging along subsequences in the dH∗ metric to subsets of γ [z1, z2].

Let X denote any subsequential dH∗ limit of the γ j [z1, z2], and let z0 = γ (t0) /∈
R be a nondouble point of γ with t0 /∈ [t1, t2]. We claim that z0 /∈ X: without
loss of generality we assume t0 > t2; then, by Lemma 4.7 applied to the reverse
path γ −, it suffices to show that for some t ∈ (t2, t0), the γ j [z1, z2] are stopped
before time t for sufficiently large j . But if such a t does not exist, it means that
for any t ∈ (t2, t0), as j → ∞, we can find subsequences along which the nearest
approach of γ j to z2 occurs after time t . But since z2 is in the dH∗ limit of γ j [0, t2],
this shows that it will be in the dH∗ limit of γ j [t,∞] as well, which is a violation
of Lemma 4.7 applied to the forward path γ .

It follows that X is a connected subset of γ contained in

C = γ [0, t2] ∩ γ [t1,∞) = γ [t1, t2] ∪ (
γ [0, t1] ∩ γ [t2,∞)

) ∪ (γ ∩ R).

Since γ is continuously driven and time-separated, γ [0, t1] ∩ γ [t2,∞) and γ ∩ R

are both totally disconnected closed sets, hence their union is as well. Any point of
C not contained in γ [t1, t2] therefore forms a trivial connected component of C,
so we must have X ⊆ γ [t1, t2], and the statement of the theorem follows. �

PROOF OF PROPOSITION 1.4. This result is essentially a restatement of the
remarks following the list of examples in Section 1.4: if γ is a simple curve, then
dR(γ j , γ ) → 0 and dL(γ j−, γ −) → 0 together suffice to guarantee dR

x and dL
x

convergence with respect to all x in a dense subset of H. �

4.3. Alternate proof of uniform convergence. In this section we sketch an al-
ternative proof of Theorem 1.2 that does not use the lemmas of the previous
section. Instead of showing the existence of nondouble and strongly nondouble
times—and considering segments of the path between these times—we begin by
constructing a parametrization of η and ξ that behaves well under time-reversal.

Suppose first that η is parametrized by capacity time t . For any x ∈ � , observe
that fx := g−1

x,∞ ◦ ϕ−1 is a conformal map from the unit disc D to Hx(η) that
extends continuously to D. Thus, for any t ,

Ax(t) ≡ Aη
x(t) = {θ ∈ [0,1] :fx(e

2πiθ ) ∈ η[0, t] ∩ H}
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is a closed subset of [0,1]. Let sx(t) ≡ s
η
x (t) be the (Lebesgue) measure of the

interior of Ax(t), divided by the measure of Ax(∞). Using topological arguments,
it is not hard to see that this interior contains at most one interval of [0,1] (viewed
topologically as a circle, by identifying endpoints). Thus sx(t) is proportional to
the length of this interval. Informally, sx(t) represents the portion (in terms of
harmonic measure from x) of ∂Hx(η) \ R that has been traced by time t . Because
η is continuous, sx(t) is a continuously increasing function of t .

Now fix a map a :� → (0,∞) with
∑

x∈� a(x) = 1 and write s(t) =∑
x∈� a(x)sx(t). We claim that s is strictly increasing function of t . This follows

from the time-separation assumption and arguments in the proof of Lemma 4.6,
which show that an open dense subset of ∂(H \ η[0, t]) \ R will remain on the
boundary of ∂(H \ η[0,∞)) \ R.

We therefore take s ∈ [0,1) to be our new parametrization of η, and we can
assume that ξ is analogously parametrized by [0,1). The proof now proceeds with
the following observations:

1. If t j is any sequence of times then the sets γ j [0, tj ] and γ j [tj ,∞] must con-
verge (subsequentially) in dH∗ to η[0, s] and ξ [0,1 − s] for some s. Indeed,
using Lemma 4.1 we already have Hausdorff convergence to some η[0, s] and
ξ [0, s ′], and need only check that s′ = 1 − s. This involves checking for each x

that the Hausdorff limits of γ j [0, tj ] and γ j [tj ,∞] cannot contain overlapping
intervals of ∂Hx(η), even though the union of these two limits and R includes
all of ∂Hx(η). This is done with the same arguments as those used in the previ-
ous section: if the intervals overlapped, then either γ j or its time reversal would
fail to converge with respect to x to a continuously driven limit.

2. The curve η extends continuously to [0,1] : lims→1 dH∗ (ξ [0,1−s], {1}) = 0, but
ξ [0,1− s] is the Hausdorff limit of γ j [tj ,1] (for some sequence tj ), and by the
above this must contain η \ η[0, s), a dense subset of η[s,1]. Since ξ [0,1 − s]
is closed it must contain η[s,1] which gives the claim.

3. The above imply that η(s) = ξ(1 − s) for all s ∈ [0,1].
4. For any pair of sequences of times t

j
1 and t

j
2 such that γ j [0, t

j
1 ] tends to η[0, a]

and γ j [tj2 ,1] tends to η[b,1], we have Hausdorff convergence of γ j [tj1 , t
j
2 ] to

a closed subset of η[0, a] ∩ η[b,1], which by time-separation must be simply
η[a, b].

The latter item implies convergence in dU .

5. Extension to random curves. Now we use Proposition 3.2 and Theo-
rem 1.2 to prove Theorem 1.5:

PROOF OF THEOREM 1.5. Each γ j can be viewed as a random variable taking
values in

�� = ∏
x∈�

	R
x × 	L

x ,
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where 	R
x is the Polish (complete separable metric) space defined by the comple-

tion of 	R/ ∼x with respect to dR
x , and similarly 	L

x .
Prohorov’s criterion (see, e.g., [4]) states that a family � of probability mea-

sures on a complete separable metric space is relatively compact (in the topology
of weak convergence) if and only if for every ε there is a compact set K such that
μ(K) ≥ 1 − ε for all μ ∈ �. By hypothesis the marginal laws of the γ j on each
	R

x (or 	L
x ) form a relatively compact family, so for each ε we can find compact

sets KR
x ⊂ 	R

x , KL
x ⊂ 	L

x such that∑
x∈�

[P(γ j /∈ KR
x ) + P(γ j /∈ KL

x )] ≤ ε.

By Tychonoff’s theorem, the product K = ∏
x∈�(KR

x × KL
x ) is also compact and

has probability at least 1 − ε. Applying Prohorov’s criterion again, we see that the
laws of the γ j form a relatively compact family of measures on �� .

Take a subsequence of the γ j which converges in law (as �� -valued random
variables) to a random element γ ∈ �� . Recall the Skorohod–Dudley theorem [9],
which states that random variables on a complete separable metric space converge
in law to a limit if and only if there is a coupling in which they converge almost
surely. Thus we can define the γ j of this subsequence on the same probability
space so that γ j → γ̃ a.s. in �� . By the hypothesis of the theorem, γ̃ has the
marginal law of ηx in each 	R

x , and of ξx in each 	L
x , and so we can further couple

the sequence with ηx and ξx so that dR
x (γ j , ηx) → 0 and dL

x (γ j , ξx) → 0 a.s. for
each x ∈ � . Thus, applying Theorem 1.2 we have dU (γ j , γ ) → 0 for some random
curve γ ∈ 	, which depends a priori on the particular subsequence. However, we
have a.s. that for each x ∈ � , ηx is an initial segment of γ while ξx is a concluding
segment. The marginal laws of the ηx, ξx are uniquely specified by the hypothesis
of the theorem, and by taking x arbitrarily close to the endpoints of γ we conclude
that the law of γ as a 	-valued random variable is uniquely specified also.

The above shows that every subsequence of the γ j has a further subsequence
that converges in law to γ with respect to dU ; this of course implies that the entire
sequence γ j converges in law to γ with respect to dU . �

6. Application to SLE curves. SLEκ (κ < 8) misses � a.s. Thus, to apply
our result to SLE curves, we need only show that the curves are a.s. time-separated:

LEMMA 6.1. Let γ be a (random) SLEκ curve traveling from −1 to 1. For
κ < 8, γ ∈ 	R

t.s. a.s.

PROOF. For κ ≤ 4 this holds trivially since SLEκ is a.s. simple. It is also not
hard to show that when κ ∈ (4,8), the path SLEκ is almost surely time-separated.
A much stronger set of results is proved for the so-called SLEκ;κ−4,κ−4 process
in [8], Section 3. The set X of cut point times of an SLEκ;κ−4,κ−4 curve γ0 is
shown to have the same law as the range of a stable subordinator with index 2−κ/4
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(and in particular is totally disconnected) ([8], Corollary 13), and the path γ0 a.s.
never revisits a cut point, so that γ is injective on X. Given the cut point times,
the driving function restricted to each interval of [0,∞) \X (modulo additive con-
stant) is independent of the driving function (modulo additive constant) restricted
to the other intervals (see [8], Section 3, Lemma 12 and Corollary 13). In other
words, the increments corresponding to the various intervals are independent of
one another. Each increment describes the “bead” traced by γ0 in between the two
cut points, and it is easy to see that each bead has at least a positive probability
of having its left and right boundaries both be nontrivial; thus there will almost
certainly be countably many such beads between each pair of cut points, and this
implies that γ0(X) is a.s. totally disconnected, or equivalently, that the intersec-
tion of the left and right boundaries of γ0 is totally disconnected. In between visits
to R, the trace of an SLEκ has a law which is absolutely continuous with that of
SLEκ;κ−4,κ−4 [21]. From this one may deduce that if γ is an SLEκ and t is any
fixed time, then the intersection of the left and right boundaries Lt and Rt of Kt is
also a.s. totally disconnected.

Now, γ [0, t]∩γ [t,∞) must lie in Lt ∪Rt . Also, Lt \Rt and Rt \Lt are mapped
injectively into R by g1,t . Since the intersection of SLEκ (κ < 8) with R is to-
tally disconnected a.s. (see, e.g., [17], Theorem 6.4), any connected component
of γ [0, t] ∩ γ [t,∞) must lie in Lt ∩ Rt . But as we saw above this set is totally
disconnected, and so we have a contradiction. �

PROOF OF COROLLARY 1.6. Lemma 6.1 implies that the dR
x and dL

x limits
of the γ j are a.s. in 	R

t.s. and 	L
t.s., respectively, so the result follows from Theo-

rem 1.5. �

PROOF OF COROLLARY 1.7. Lemma 6.1 implies that the dR
x limits of the γ j

are a.s. in 	R
t.s., and by hypothesis the dL

x subsequential limits are in 	L
t.s., so the

result follows from Theorem 1.5. �

Now that we have proved Corollary 1.7, it is worth remarking that Schramm and
Wilson [21] have given a complete characterization of driving functions for the
forward direction of SLE viewed from different points, which we briefly describe
in our current context: let κ ≥ 0 and ρ ∈ R, and consider the solution of the system

dWt = √
κ dWt + i

ρ

2

(
eiWt + Vt

eiWt − Vt

)
dt, dVt = −Vt

Vt + eiWt

Vt − eiWt
(7)

with initial condition (W0;V0) = (w0;v0) ∈ ∂D. The radial Loewner chain ob-
tained from the driving function Wt is a radial SLEκ;ρ in D started at (w0;v0); v0
is thought of as a “force point” which adds some drift to the usual SLEκ driving
function. The conformal image of this random curve under ϕ−1 is called a radial
SLEκ;ρ in H started at (ϕ−1(w0);ϕ−1(v0)). It was shown in [21] that if γ is a stan-
dard chordal SLEκ traveling in the upper half-plane between two boundary points



PATH CONVERGENCE FROM LOEWNER DRIVING CONVERGENCE 609

a, b, and x = x1 + ix2 is any point in H, then ψxγ is a radial SLEκ;κ−6 in H started
at (w0;v0) = (ψx(a);ψx(b)), and so the driving function Wx,t is given by the so-
lution to (7) with ρ = κ − 6 and initial condition (W0;V0) = (ϕψx(a);ϕψx(b)).
(For κ = 6, Wx,t is simply a standard Brownian motion.)

PROOF OF COROLLARY 1.8. Follows from Theorem 1.2 by (a simplified ver-
sion of) the proof of Theorem 1.5. �
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