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SPLIT INVARIANCE PRINCIPLES FOR STATIONARY PROCESSES
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The results of Komlós, Major and Tusnády give optimal Wiener approx-
imation of partial sums of i.i.d. random variables and provide an extremely
powerful tool in probability and statistical inference. Recently Wu [Ann.
Probab. 35 (2007) 2294–2320] obtained Wiener approximation of a class of
dependent stationary processes with finite pth moments, 2 < p ≤ 4, with er-
ror term o(n1/p(logn)γ ), γ > 0, and Liu and Lin [Stochastic Process. Appl.
119 (2009) 249–280] removed the logarithmic factor, reaching the Komlós–
Major–Tusnády bound o(n1/p). No similar results exist for p > 4, and in fact,
no existing method for dependent approximation yields an a.s. rate better than
o(n1/4). In this paper we show that allowing a second Wiener component in
the approximation, we can get rates near to o(n1/p) for arbitrary p > 2. This
extends the scope of applications of the results essentially, as we illustrate
it by proving new limit theorems for increments of stochastic processes and
statistical tests for short term (epidemic) changes in stationary processes. Our
method works under a general weak dependence condition covering wide
classes of linear and nonlinear time series models and classical dynamical
systems.

1. Introduction. Let X,X1,X2, . . . be i.i.d. random variables with mean 0
and variance 1, and let Sn = ∑

k≤n Xk . Komlós, Major and Tusnády [25, 26]
showed that if E(et |X|) < ∞ for some t > 0 then, after suitably enlarging the
probability space, there exists a Wiener process {W(t), t ≥ 0} such that

Sn = W(n) + O(logn) a.s.(1)

Also, if E|X|p < ∞ for some p > 2, they proved the approximation

Sn = W(n) + o(n1/p) a.s.(2)

The remainder terms in (1) and (2) are optimal. In the case when only EX = 0,
EX2 = 1 is assumed, Strassen [46] obtained

Sn = W(n) + o((n log logn)1/2) a.s.(3)
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Without additional moment assumptions the rate in (3) is also optimal (see Ma-
jor [29]). Relation (3) is a useful invariance principle for the law of the iterated
logarithm; on the other hand, it does not imply the CLT for {Xn}. This difficulty
was removed by Major [30] who showed that under EX = 0, EX2 = 1 there exists
a Wiener process W and a numerical sequence τn ∼ n such that

Sn = W(τn) + o(n1/2) a.s.(4)

Thus allowing a slight perturbation of the approximating Wiener process one can
reach the remainder term o(n1/p) also for p = 2, making the result applicable
for a wide class of CLT-type results. The case of strong approximation under the
moment condition EX2h(|X|) < ∞ where h(x) = o(xε), x → ∞, for any ε > 0,
has been cleared up completely by Einmahl [18].

The previous results, which settle the strong approximation problem for i.i.d.
random variables with finite variances, provide powerful tools in probability
and statistical inference (see, e.g., Shorack and Wellner [45]). Starting with
Strassen [47], a wide literature has dealt with extensions of the above results for
weakly dependent sequences, but the existing results are much weaker than in the
i.i.d. case. Recently, however, Wu [50] showed that for a large class of weakly de-
pendent stationary sequences {Xn} satisfying E|X1|p < ∞, 2 < p ≤ 4, we have
the approximation

Sn = W(n) + o(n1/p(logn)γ ) a.s.

for some γ > 0, and Liu and Lin [28] removed the logarithmic factor in the er-
ror term, reaching the optimal Komlós–Major–Tusnády bound. The proofs do not
work for p > 4, and in fact, no existing method for dependent approximation yields
an a.s. rate better than o(n1/4). On the other hand, many important limit theorems
in probability and statistics involve norming sequences smaller than n1/4, making
such results inaccessible by invariance methods. The purpose of the present paper
is to fill this gap and provide a new type of approximation theorem reaching nearly
the Komlós–Major–Tusnády rate for any p > 2.

As noted above, reaching the error term o(n1/2) for i.i.d. sequences with finite
variance requires a perturbation of the approximating Wiener process W . In the
case of dependent processes we will also need a similar perturbation, and, more
essentially, we will include a second Wiener process in the approximation, whose
scaling factor is smaller than that of W , and thus it will not affect the asymptotic
behavior of the main term. Specifically, for a large class of weakly dependent sta-
tionary processes {Yk} with finite pth moments, 2 < p < ∞, we will prove the
approximation

n∑
k=1

Yk = W1(s
2
n) + W2(t

2
n) + O

(
n(1+η)/p)

a.s.,(5)
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where {W1(t), t ≥ 0} and {W2(t), t ≥ 0} are standard Wiener processes, and sn, tn
are numerical sequences with

s2
n ∼ σ 2n, t2

n ∼ cnγ

for some 0 < γ < 1, σ 2 > 0, c > 0. The new element in (5) is the term W2(t
2
n)

which, by its smaller scaling, does not disturb the asymptotic properties of W1(s
2
n).

Note that the processes W1, W2 are not independent, but this will not present any
difficulties in applications. (See also Proposition 1 in the next section.) The number
η depends on the weak dependence rate of {Yk} (introduced below), and can be
made arbitrarily small under suitable rate conditions.

For p > 0 and a random variable Y , let ‖Y‖p = (E|Y |p)1/p . If A and B are
subsets of Z, we let d(A,B) = inf{|a − b| :a ∈ A,b ∈ B}.

DEFINITION 1. Let {Yk, k ∈ Z} be a stochastic process, let p ≥ 1 and let
δ(m) → 0. We say that {Yk, k ∈ Z} is weakly M-dependent in Lp with rate func-
tion δ(·) if:

(A) For any k ∈ Z, m ∈ N one can find a random variable Y
(m)
k with finite pth

moment such that ∥∥Yk − Y
(m)
k

∥∥
p ≤ δ(m).

(B) For any disjoint intervals I1, . . . , Ir (r ∈ N) of integers and any positive in-
tegers m1, . . . ,mr , the vectors {Y (m1)

j , j ∈ I1}, . . . , {Y (mr)
j , j ∈ Ir} are independent

provided d(Ik, Il) > max{mk,ml} for 1 ≤ k < l ≤ r .

We remark that our dependence condition is naturally preserved under smooth
transformations. For example, if {Yk} is weakly M-dependent in Lp with rate δ(·),
and h is a Lipschitz α function (0 < α ≤ 1) with Lipschitz constant K , then by the
monotonicity of ‖Yk − Y

(m)
k ‖p in p we have

∥∥h(Yk) − h
(
Y

(m)
k

)∥∥
p ≤ K

∥∥Yk − Y
(m)
k

∥∥α
αp ≤ K

∥∥Yk − Y
(m)
k

∥∥α
p,

and thus {h(Yk)} is also weakly M-dependent in Lp with rate function Kδ(·)α .
Note that (B) implies that for any fixed m the sequence {Y (m)

k , k ∈ Z} is an
m-dependent process. Hence, sequences satisfying conditions (A) and (B) are ap-
proximable, in the Lp sense, by m-dependent processes of any fixed order m ≥ 1
with termwise approximation error δ(m). In other words, sequences in Definition 1
are close to m-dependent sequences, the value of m depending on the required
closeness, explaining the terminology. Since ‖Yk‖p ≤ ‖Y (m)

k ‖p + ‖Yk − Y
(m)
k ‖p ,

condition (A) implies that E|Yk|p is finite. Using Lp-distance is convenient for
our theorems, but, depending on the application, other distances can be used in
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part (A) of Definition 1. For example, defining (as usual) the L0 norm of a random
variable X by

‖X‖0 = inf{ε > 0 :P(|X| ≥ ε) < ε},
condition (A) could be replaced by

∥∥Yk − Y
(m)
k

∥∥
0 ≤ δ(m).

Such a definition requires no moment assumptions and turns out to provide a useful
dependence measure for studying empirical processes (see [3]).

Trivially the previous definition covers m-dependent processes for any fixed
m (see also Section 3.1), but, in contrast to the very restrictive condition of m-
dependence, weak M-dependence holds for a huge class of stationary sequences,
including those studied in Wu [49, 50] and Liu and Lin [28]. In the case when
{Yk, k ∈ Z} allows a Wiener–Rosenblatt representation

Yk = f (εk, εk−1, . . .), k ∈ Z,(6)

with an i.i.d. sequence {εk, k ∈ Z}, weak M-dependence is very close to Wu’s
physical dependence condition in [49], except that we allow a larger freedom in
choosing the approximating random variables Y

(m)
k , compared with the choice in

[49, 50] via coupling. (For sufficient criteria for the representation (6), see Rosen-
blatt [40–42].) Note that instead of (6) we may also assume a two-sided represen-
tation

Yk = f (. . . , εk−1, εk, εk+1, . . .), k ∈ Z,(7)

of {Yk}. In case when {Yk, k ∈ Z} allows the representation (7) with mixing {εk},
Definition 1 is a modified version of NED (see Section 3.2), a weak dependence
condition which appeared already in Ibragimov [22] and has been brought forward
in Billingsley [5] (see also [31, 32]). Later NED has been successfully used in the
econometrics literature to establish weak dependence of dynamic time series mod-
els (see, e.g., [35]). In Section 3 we will discuss further the connection between
weak M-dependence with known weak dependence conditions. We stress that the
definition of weak M-dependence does not assume the representation (6) or (7),
although it was motivated by this case. The reason for using our more general def-
inition is to illuminate the essential structural condition on {Yk} required for our
theorems. Extensions of our results for “classical” mixing conditions, like α, β , ρ

mixing and their variants will be given in a subsequent paper.
The main results of our paper are formulated in Section 2. In Section 3 we give

several examples. Applications of the theorems can be found in Sections 4 and 5,
while Section 6 contains the proofs of the main theorems.
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2. Main theorems. We write an 	 bn if limn→∞|an/bn| < ∞.

THEOREM 1. Let p > 2, η > 0 and let {Yk, k ∈ Z} be a centered stationary
sequence, weakly M-dependent in Lp with rate function

δ(m) 	 m−A,(8)

where

A >
p − 2

2η

(
1 − 1 + η

p

)
∨ 1, (1 + η)/p < 1/2.(9)

Then the series

σ 2 = ∑
k∈Z

EY0Yk(10)

is absolutely convergent, and {Yk, k ∈ Z} can be redefined on a new probability
space together with two Wiener processes {W1(t), t ≥ 0} and {W2(t), t ≥ 0} such
that

n∑
k=1

Yk = W1(s
2
n) + W2(t

2
n) + O

(
n(1+η)/p)

a.s.,(11)

where {sn} and {tn} are nondecreasing numerical sequences with

s2
n ∼ σ 2n, t2

n ∼ cnγ(12)

for some 0 < γ < 1, c > 0.

Note that for any fixed p > 2 and 0 < η < (p − 2)/2, condition (9) is satisfied
if A is large enough, and thus Theorem 1 provides an a.s. invariance principle with
remainder term close to the optimal remainder term o(n1/p) in the Komlós–Major–
Tusnády approximation.

It is natural to ask if W1(s
2
n) in (11) can be replaced by W1(σ

2n), a fact
that would simplify applications. The proof of the theorem yields an sn with
s2
n = σ 2n + O(n1−ε) for some 0 < ε < 1, but for A barely exceeding the lower

bound in (9), the explicit value of ε is very small. Thus replacing W1(s
2
n) by

W1(σ
2n) introduces an additional error term that ruins the error term O(n(1+η)/p)

in (11). The situation is similar to the Wiener approximation of partial sums of
i.i.d. random variables with mean 0 and variance 1 when we have (4) with a nu-
merical sequence τn ∼ n, but in general (4) does not hold with τn = n. (See Major
[29, 30].) Note, however, that in our case the large difference between s2

n and σ 2n

is a consequence of the method, and we do not claim that another construction
cannot yield the approximation (11) with s2

n = σ 2n. However, the presence of s2
n

in (11) does not limit the applicability of our strong invariance principle: s2
n and

t2
n are explicitly calculable nonrandom numbers and as we will see, applying limit

theorems for W1(s
2
n) is as easy as for W1(σ

2n).
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As the proof of Theorem 1 will show, the sequences {sn} and {tn} in (11) have a
complementary character. More precisely, there is a partition N = G1 ∪ G2 (pro-
vided by the long and short blocks in a traditional blocking argument) and a rep-
resentation

s2
n =

n∑
k=1

σ 2
k , t2

n =
n∑

k=1

τ 2
k (n = 1,2, . . .)

such that σ 2
k converges to σ 2 on G1 and equals 0 on G2, and τ 2

k converges to σ 2

on G2 and equals 0 on G1. In particular,

lim
n→∞(s2

n+1 − s2
n) = lim

n→∞(t2
n+1 − t2

n) = σ 2,(13)

and both liminf’s are equal to 0.
The numerical value of γ in (12) plays no role in the applications in this paper,

but for later applications we note that if

A >
p − 2

2η(1 − ε0)2

(
1 − 1 + η

p

)
∨ 1

for some 0 < ε0 < 1, then we can choose

γ = 1 − ε0
2η(1 − ε0)

p − 2(1 + ηε0)
.(14)

As we already mentioned in the Introduction, the processes W1 and W2 are
not independent. While for our applications this is not important, the following
proposition might be useful for possible further applications.

PROPOSITION 1. Under the assumptions of Theorem 1 we have

Corr(W1(sn),W2(tm)) → 0 as m,n → ∞.(15)

Our next theorem is the analogue of Theorem 1 in the case of an exponential
decay in the dependence condition.

THEOREM 2. Let p > 2 and let {Yk, k ∈ Z} be a centered stationary sequence,
weakly M-dependent in Lp with rate function

δ(m) 	 exp(−�m), � > 0.(16)

Then the series (10) is absolutely convergent, and {Yk, k ∈ Z} can be redefined on a
new probability space together with two standard Wiener processes {W1(t), t ≥ 0}
and {W2(t), t ≥ 0} such that

n∑
k=1

Yk = W1(s
2
n) + W2(t

2
n) + O(n1/p log2 n) a.s.,(17)

where {sn} and {tn} are nondecreasing numerical sequences such that s2
n ∼ σ 2n,

t2
n ∼ σ 2n/ logn and (13) holds.
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Like in Theorem 1, s2
n ∼ σ 2n can be sharpened to s2

n = σ 2n + O(n/ logn); see
the remarks after Theorem 1.

Using the law of the iterated logarithm for W2, relation (11) implies
n∑

k=1

Yk = W1(s
2
n) + O(n1/2−λ) a.s.(18)

for some λ > 0, which is the standard form of strong invariance principles. How-
ever, since γ in (12) is typically near to 1, the λ in (18) can be very small, and thus
the effect of the very strong error term O(n(1+η)/p) in (11) is lost.

The proof of the strong approximation theorems in Wu [50] depends on martin-
gale approximation, while Liu and Lin [28] use approximation of the partial sums
of {Yk} by partial sums of m-dependent r.v.’s. Our approach differs from both, us-
ing a direct approximation of separated block sums of {Yk} by independent r.v.’s,
an idea used earlier in [2–4, 21]. In this approach, the second Wiener process W2 is
provided by the sum of short block sums. The question if one can get a remainder
term near o(n1/p) in the simple (one-term) Wiener approximation for any p > 2
remains open.

3. Examples of weakly M-dependent processes. The classical approach to
weak dependence, developed in the seminal papers of Rosenblatt [39] and Ibrag-
imov [22], uses the strong mixing property and its variants like β , �, φ and ψ

mixing, combined with a blocking technique to connect the partial sum behavior
of {Yk} with that of independent random variables. This method yields very sharp
results (for a complete account of the classical theory see Bradley [7]), but veri-
fying mixing conditions of the above type is not easy and even when they apply
(e.g., for Markov processes), they typically require strong smoothness conditions
on the process. For example, for the AR(1) process

Yk = 1
2Yk−1 + εk

with Bernoulli innovations, strong mixing fails to hold (cf. Andrews [1]). Recog-
nizing this fact, an important line of research in probability theory in past years
has been to find weak dependence conditions which are strong enough to imply
satisfactory asymptotic results, but which are sufficiently general to be satisfied
in typical applications. Several conditions of this kind have been found, in partic-
ular by the French school (see [10–12, 16, 37, 38]). A different type of mixing
conditions, the so-called physical and predictive dependence measures, have been
introduced by Wu [49] for stationary processes {Yk} admitting the representation
(6) where {εk, k ∈ Z} is an i.i.d. sequence, and f : RN → R is a Borel-measurable
function. These conditions are particularly easy to handle, since they are defined
in terms of the algorithms which generate the process {Yk}. Weak M-dependence,
although formally not requiring a representation of the form (6), is closely related
to Wu’s mixing conditions and works best for processes {Yk} having a representa-
tion (6) or its two-sided version (7). The examples below will clear up the exact
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connection of our weak M-dependence condition with the mixing conditions in
Wu [49, 50] and Liu and Lin [28].

3.1. m-dependent processes. Definition 1 implies that {Yk, k ∈ Z} can be ap-
proximated, for every m ≥ 1, by an m-dependent process with termwise Lp

error δ(m). If {Yk, k ∈ Z} itself is m-dependent for some fixed m = m0 and
K := supk∈Z‖Yk‖p < ∞, then Definition 1 is satisfied with

δ(j) =
{

K, if j < m0,
0, if j ≥ m0,

and Y
(n)
k = 0 if n < m0 and Y

(n)
k = Yk if n ≥ m0. In other words, m-dependent

sequences with uniformly bounded Lp norms are weakly M-dependent with the
above parameters. It is worth mentioning that m-dependent processes in general
do not have the representation (7) (see, e.g., [8, 13]).

3.2. NED processes. Under (7) our condition can be directly compared to
NED. We recall:

DEFINITION 2 (NED). A sequence {Yk, k ∈ Z} having representation (7) is
called NED over {εk} under Lp-norm with rate function δ(·) if for any k ∈ Z,
m ≥ 1, ∥∥Yk − E[Yk|F k+m

k−m ]∥∥p ≤ δ(m),

where F k+m
k−m is the σ -algebra generated by εk−m, . . . , εk+m.

Clearly, if {εk} is an independent sequence, then Y
(m)
k = E[Yk|F k+m

k−m ] satisfies
(B) of Definition 1. Hence if {Yk} is NED over {εk} in Lp-norm with rate function
δ(·) where {εk} is an independent sequence, then {Yk} is weakly M-dependent
with the same p, δ(·).

As our examples below will show, for weakly M-dependent sequences the con-
struction for Y

(m)
k is not restricted to E[Yk|F k+m

k−m ], but is often more conveniently
established by truncation or coupling methods.

3.3. Linear processes. Let Yk = ∑∞
j=−∞ aj εk−j with the i.i.d. innovations

{εj , j ∈ Z}. If aj = 0 for j < 0, then the sequence {Yk, k ∈ Z} is causal. Liu
and Lin [28] and Wang, Lin and Gulati [48] studied strong approximations of the
partial sums with Gaussian processes (in the short- and long-memory cases).

We define Y
(m)
k as

Y
(m)
k =

�m/2∑
j=−�m/2

aj εk−j .
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This directly ensures that condition (B) holds. To verify condition (8) we will
assume that E|ε0|p < ∞ for some p > 2 as well as |aj | 	 |j |−(A+1) (j → ∞).
Then we get, using the Minkowski inequality,

∥∥Yk − Y
(m)
k

∥∥
p =

∥∥∥∥ ∑
|j |>m/2

aj εk−j

∥∥∥∥
p

≤ ∑
|j |>m/2

‖aj εk−j‖p

= (E|ε0|p)1/p
∑

|j |>m/2

|aj | 	 m−A.

Thus if A is large enough, Theorem 1 applies. Obviously if |aj | 	 ρ|j | with some
0 < ρ < 1, then (16) holds, and Theorem 2 applies.

3.4. Nonlinear time series. Let the time series {Yk, k ∈ Z} be defined by the
stochastic recurrence equation

Yk = G(Yk−1, εk),(19)

where G is a measurable function, and {εk, k ∈ Z} is an i.i.d. sequence. For ex-
ample, ARCH(1) processes (see, e.g., Engle [19]) which play an important role in
the econometrics literature, are included in this setting. Sufficient conditions for
the existence of a stationary solution of (19) can be found in Diaconis and Freed-
man [14]. Note that iterating (19) yields Yk = f (. . . , εk−1, εk) for some measur-
able function f . This suggests defining the approximating random variables Y

(m)
k

as Y
(m)
k = f (. . . ,0,0, εk−m, . . . , εk). Note, however, that this definition does not

guarantee the convergence and thus the existence of Y
(m)
k . The coupling used by

Wu [49], avoids this problem by defining

Y
(m)
k = f

(
. . . , ε

(k)
k−m−2, ε

(k)
k−m−1, εk−m, . . . , εk

)
,

where {ε(l)
k , k ∈ Z}, l = 1,2, . . . , are i.i.d. sequences with the same distribution

as {εk, k ∈ Z} which are independent of each other and of the {εk, k ∈ Z}. These
random variables satisfy condition (B). Results from Wu and Shao [52] show that
under some simple technical assumption on G,∥∥Yk − Y

(m)
k

∥∥
p 	 exp(−ρm)

holds with some p > 0 and ρ > 0. Thus for p > 2, Theorem 2 applies.

3.5. Augmented GARCH sequences. Augmented GARCH sequences were in-
troduced by Duan [17] and turned out to be very useful in applications in macroe-
conomics and finance. The model is quite general and many popular processes are
included in its framework. Among others the well-known GARCH [6], AGARCH
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[15] and EGARCH model [34] are covered. We consider the special case of aug-
mented GARCH(1,1) sequences, that is, sequences {Yk, k ∈ Z} defined by

Yk = σkεk,(20)

where the conditional variance σ 2
k is given by

�(σ 2
k ) = c(εk−1)�(σ 2

k−1) + g(εk−1).(21)

Here {εk, k ∈ Z} is a sequence of i.i.d. errors, and �(x), c(x) and g(x) are
real-valued measurable functions. To solve (21) for σ 2

k one usually assumes that
�−1(x) exists. Necessary and sufficient conditions for the existence of a strictly
stationary solution of (20) and (21) were given by Duan [17] and Aue, Berkes
and Horváth [2]. Under some technical conditions stated in Hörmann [21] (Lem-
mas 1, 2 and Remark 2) one can show that augmented GARCH sequences are
weakly M-dependent in Lp-norm with exponential rate.

Note that the above models have short memory; long memory models (see, e.g.,
[20]) have completely different properties.

3.6. Linear processes with dependent innovations. Linear processes Zk =∑∞
j=−∞ ajYk−j with dependent innovations {Yk} have obtained considerable in-

terest in the financial literature. A common example are autoregressive (AR) pro-
cesses with augmented GARCH innovations (see, e.g., [27]).

Assume that {Yk, k ∈ Z} is weakly M-dependent in Lp with rate function δ(·).
In combination with the results of Section 3.3 one can easily obtain conditions on
δ assuring that the linear process {Zk, k ∈ Z} defined above is also weakly M-
dependent in Lp-norm with a rate function δ∗ depending on (aj ) and δ.

Strong approximation results for linear processes with dependent errors were
also obtained by Wu and Min [51].

3.7. Ergodic sums. Let f be a real measurable function with period 1 such
that

∫ 1
0 f (ω)dω = 0 and

∫ 1
0 |f (ω)|p dω < ∞ for some p > 2. Set

Sn(ω) =
n∑

k=1

f (2kω), ω ∈ [0,1),

and B2
n = ∫ 1

0 S2
n(ω)dω. Then Sn defines a partial sum process on the probability

space ([0,1), B[0,1), λ[0,1)), where B[0,1) and λ[0,1) are the Borel σ -algebra and
Lebesgue measure on [0,1). The strong law of large numbers for f (2kω) is a con-
sequence of the ergodic theorem, for central and functional central limit theorems
see Kac [24], Ibragimov [23] and Billingsley [5].

Let Yk(ω) = f (2kω), and define the random variable εk(ω) to be equal to the
kth digit in the binary expansion of ω. Ambiguity can be avoided by the convention
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to take terminating expansions whenever possible. Then {εk} is an i.i.d. sequence,
and we have εk = ±1, each with probability 1/2. This gives the representation

Yk = f

( ∞∑
j=1

εk+j 2−j

)
= g(εk+1, εk+2, . . .).

We can now make use of the coupling method described in Section 3.4 and the
approximations

Y
(m)
k = g

(
εk+1, εk+2, . . . , εk+m, ε

(k)
k+m+1, ε

(k)
k+m+2, . . .

)
.

Changing for some ω ∈ [0,1) the digits εk(ω) for k > m will give an ω′ with
|ω − ω′| ≤ 2−m. If f is Lipschitz continuous of some order γ , then we have

∣∣Yk − Y
(m)
k

∣∣ = O(2−γm),

and thus for any p ≥ 1 {Yk} is weakly M-dependent in Lp-norm with an expo-
nentially decaying rate function.

4. Increments of stochastic processes. For arbitrary λ > 0, relation (18) has
many useful applications in probability and statistics. For example, it implies a
large class of limit theorems on CLT and LIL behavior and for various other func-
tionals of weakly dependent sequences. However, many refined limit theorems for
partial sums require a remainder term better than O(n1/4), and no existing method
for dependent sequences provides such a remainder term. The purpose of the next
two sections is to show how to deal with such limit theorems via our approximation
results in Section 2.

Let {Yk, k ∈ Z} be a stationary random sequence, and let 0 < an ≤ n be a non-
decreasing sequence of real numbers. In this section, we investigate the order of
magnitude of

max
1≤k≤n−an

max
1≤�≤an

∣∣∣∣∣
k+�∑

j=k+1

Yj

∣∣∣∣∣.
Such results have been obtained by Csörgő and Révész [9] for i.i.d. sequences and
the Wiener process. In particular, they obtained the following result ([9], Theo-
rem 1.2.1).

THEOREM 3. Let {aT , T ≥ 0} be a positive nondecreasing function satisfy-
ing:

(a) 0 < aT ≤ T ;
(b) T/aT is nondecreasing.
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Set

βT =
(

2aT

[
log

T

aT

+ log logT

])−1/2

.(22)

Then

lim
T →∞ max

0≤t≤T −aT

max
0≤s≤aT

βT |W(t + s) − W(t)| = 1.

Using strong invariance, a similar result can be obtained for partial sums of i.i.d.
random variables under suitable moment conditions (see [9], pages 115–118). For
slowly growing aT , this requires a very good remainder term in the Wiener ap-
proximation of partial sums, using the full power of the Komlós–Major–Tusnády
theorems. As an application of our main theorems in Section 2, we now extend
Theorem 3 for dependent stationary processes. To simplify the formulation and
to clarify the connection between the remainder term in our approximation theo-
rems in Section 2 and the increment problem, we introduce the following assump-
tion.

ASSUMPTION 1. Let {Yk} be a random sequence which can be redefined on a
new probability space together with two standard Wiener processes {W1(t), t ≥ 0}
and {W2(t), t ≥ 0} such that

n∑
k=1

Yk = W1(s
2
n) + W2(t

2
n) + O(En) a.s.,(23)

where {En} is some given sequence and {s2
n} and {t2

n} are nondecreasing sequences
satisfying

s2
n ∼ σ 2n, t2

n = o(n), lim
k→∞(s2

k+1 − s2
k ) = lim

k→∞(t2
k+1 − t2

k ) = σ 2.(24)

We will prove the following result.

THEOREM 4. Let {Yk} be a sequence of random variables satisfying Assump-
tion 1 and put Sn = ∑n

k=1 Yk . Let aT be a positive nondecreasing function such
that:

(a) 0 < aT ≤ T ;
(b) T/aT is nondecreasing;
(c) aT is regularly varying at ∞ with index � ∈ (0,1].

Let βT be defined by (22). Then under the condition

βT ET = o(1)(25)

we have

lim
n→∞ max

1≤k≤n−an

max
1≤�≤an

βn|Sk+� − Sk| = σ 2.(26)
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Given a function aT and a weakly M-dependent sequence {Yk} with parameters
p, δ(·), we can compute, using Theorem 4, a rate of decrease for δ(·) and a value
for p > 2 such that the fluctuation result (26) holds. For example, if aT = T α ,
0 < α < 1, then (26) holds if p > 4/α and δ(m) 	 m−p/2.

We note that for i.i.d. observations only assumptions (a) and (b) are required. It
remains open whether a more general version of our Theorem 4 which does not
require assumption (c) can be proved.

Recently Zholud [53] obtained a distributional version of Theorem 3 by show-
ing that the functional

max
0≤t≤T −aT

max
0≤s≤aT

(
W(t + s) − W(t)

)
converges weakly, suitably centered and normalized, to the extremal distribution
with distribution function e−e−x

. Using this fact and our a.s. invariance principles,
a distributional version of Theorem 4 can be obtained easily. Since the argument
is similar to that for (26), we omit the details.

Let |A| be the cardinality of a set A. For the proof of Theorem 4 we need the
following simple lemma.

LEMMA 1. Assume that {dk, k ≥ 1} is a nonincreasing sequence of positive
numbers such that

∑∞
k=1 dk = ∞. Let A ⊂ N have positive density, that is,

lim inf
n→∞ |A ∩ {1, . . . , n}|/n > 0.

Then
∑∞

k=1 dkI {k ∈ A} = ∞.

PROOF. First note that by our assumption we have
∑n

k=1 I {k ∈ A} ≥ μn for
some μ > 0 as long as n ≥ n0. Using Abel summation we can write

n∑
k=1

dk = ndn +
n−1∑
k=1

k(dk − dk+1).

Hence, by our assumptions

ndn +
n−1∑
k=n0

k(dk − dk+1) → ∞ (n → ∞).

From dk − dk+1 ≥ 0 it follows (again using the Abel summation) that for n ≥ n0
n∑

k=1

dkI {k ∈ A}

= dn

n∑
k=1

I {k ∈ A} +
n−1∑
k=1

(dk − dk+1)

k∑
j=1

I {j ∈ A}

≥ μ

(
ndn +

n−1∑
k=n0

k(dk − dk+1)

)
→ ∞ (n → ∞). �
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PROOF OF THEOREM 4. For the sake of simplicity we carry out the proof for
σ = 1. From (23) and the triangular inequality we infer that

lim
n→∞ max

1≤k≤n−an

max
1≤�≤an

βn|Sk+� − Sk|

≤ lim
n→∞ max

1≤k≤n−an

max
1≤�≤an

βn|W1(s
2
k+�) − W1(s

2
k )|

+ lim
n→∞ max

1≤k≤n−an

max
1≤�≤an

βn|W2(t
2
k+�) − W2(t

2
k )|

+ lim
n→∞βnO(En)

= A1 + A2 + A3.

By (25) A3 = 0. Since an → ∞ [this is implicit in (c)], we conclude from (24) that
for any ε > 0 some n0 exists, such that for all n ≥ n0

sup
k≥1

{s2
k+an

− s2
k } ≤ (1 + ε)an and s2

n ≤ (1 + ε)n.

Set T = (1 + ε)n, and define aT,ε = (1 + ε)aT/(1+ε). Then aT,ε satisfies (a) and
(b) and for n ≥ n0 we have

max
1≤k≤n−an

max
1≤�≤an

βn|W1(s
2
k+�) − W1(s

2
k )|

≤ sup
0≤t≤s2

n−an

sup
0≤s≤(1+ε)an

βn|W1(t + s) − W1(t)|

≤ sup
0≤t≤T −aT,ε

sup
0≤s≤aT,ε

βT/(1+ε)|W1(t + s) − W1(t)|.

Let

βT,ε =
(

2aT,ε

[
log

T

aT,ε

+ log logT

])−1/2

.

By application of Theorem 1.2.1 in Csörgő and Révész [9] [which requires (a) and
(b)] we get

lim
T →∞ sup

0≤t≤T −aT,ε

sup
0≤s≤aT,ε

βT ,ε|W1(t + s) − W1(t)| = 1 a.s.

Since limT →∞βT/(1+ε)/βT,ε = (1 + ε)1/2, and ε can be chosen arbitrarily small,
we have shown that A1 ≤ 1 a.s.

It is not surprising that due to (24) similar arguments will lead to A2 = 0 a.s.
The proof will be completed if we show that A1 ≥ 1. Let {nk} be a nonde-

creasing sequence of integers with nk → ∞. By (23), the triangular inequality and
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A2 = A3 = 0 we obtain

lim
n→∞ max

1≤k≤n−an

max
1≤�≤an

βn|Sk+� − Sk|

≥ lim
n→∞ max

1≤k≤n−an

max
1≤�≤an

βn|W1(s
2
k+�) − W1(s

2
k )|

≥ lim
k→∞βnk

|W1(s
2
nk

) − W1(s
2
nk−ank

)|.
We now proceed similarly as in Csörgő and Révész [9] for the proof of Step 2 of
their Theorem 1.2.1. We will distinguish between the cases limaT /T = ρ with
ρ < 1 and ρ = 1. Since both times we can use the same conceptual idea, we shall
treat here only ρ < 1.

Set n1 = 1. Given nk , define nk+1 such that nk+1 − ank+1 = nk . This equation
will, in general, have no integer solutions, but for the sake of simplicity we assume
that (nk) and (ank

) are Z-valued. Since (s2
n) is nondecreasing, we conclude that the

increments �(k) = W1(s
2
nk

) − W1(s
2
nk−1

) are independent. By the second Borel–
Cantelli lemma it suffices to show now that

∞∑
k=1

P
(
βnk

|�(k)| ≥ 1 − ε
) = ∞ for all ε > 0.(27)

For all large enough k ∈ N for which s2
nk

− s2
nk−1

≥ (1 − ε/2)ank
, the estimates in

[9] give

P
(
βnk

|�(k)| ≥ 1 − ε
) ≥

(
ank

nk lognk

)1−ε

.

It is also shown in [9] that
∑∞

k=1(
ank

nk lognk
)1−ε = ∞. Thus, in view of Lemma 1 it

remains to show that A = {k ≥ 1|s2
nk

− s2
nk−1

≥ (1−ε/2)ank
} has a positive density.

By (24) we have

(s2
nk

− s2
n1

)/nk =
k∑

j=2

(s2
nj

− s2
nj−1

)/nk

≤ C0
∑

2≤j≤k

j∈A

(nj − nj−1)/nk + ∑
2≤j≤k

j∈Ac

(1 − ε/2)(nj − nj−1)/nk

≤ C0
∑

2≤j≤k

j∈A

(nj − nj−1)/nk + (1 − n1/nk)(1 − ε/2)

for some C0 > 0 which is independent of k. Now if A had density zero, the limsup
of the right-hand side of the last relation would be 1 − ε/2. This can be easily
proved, using that (nj − nj−1) is regularly varying by assumption (c). The liminf
of the left-hand side above is 1. Thus A must have positive density and the proof
is complete. �
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5. Change-point tests with an epidemic alternative. In this section we ap-
ply our invariance principles to a change-point problem. Let {Yk, k ∈ Z} be a zero
mean process. Further let Xk = Yk +μk , where μk , k ∈ Z, are unknown constants.
We want to test the hypothesis

μ1 = μ2 = · · · = μn = μ(H0)

against the “epidemic alternative”

There exist 1 ≤ m1 < m2 ≤ n such that μk = μ for
k ∈ {1, . . . , n} \ {m1 + 1, . . . ,m2} and μk = μ + �

if k ∈ {m1 + 1, . . . ,m2}.
(HA)

It should be noted that the variables m1, m2 and � may depend on the sample
size n. As it is common in the change-point literature, this dependence is sup-
pressed in the notation.

Without loss of generality we assume that σ = 1. To detect a possible epidemic
change it is natural to compare the increments of the process to a proportion of
the total sum. More specifically, assume for the moment that Xk are independent
and that we know when the epidemic starts and ends. Set Sk = X1 + · · · + Xk .
Then by the law of large numbers I (m1,m2) = |Sm2 − Sm1 − (m2 − m1)Sn/n| �
m2 − m1. If no change occurs, however, by the central limit theorem I (m1,m2) =
OP (

√
m2 − m1). In general we do not know m1 and m2. Thus, a natural test statis-

tic is

max
1≤i<j≤n

|Sj − Si − (j − i)Sn/n|.

Clearly we are required to normalize the above test statistic appropriately. Follow-
ing Rac̆kauskas and Suquet [36] we define

UI (n,α) = n−1/2 max
1≤i<j≤n

|Sj − Si − (j − i)Sn/n|
[((j − i)/n)(1 − (j − i)/n)]α

with 0 < α < 1/2. As we will see below, the parameter α plays an important role.
The closer α is to 1/2, the “shorter” epidemics can be detected with this test. The
price, however, is that in order to obtain the limiting law under (H0) with “large”
α (close to 1/2) requires a.s. invariance principles with error nε , ε close to zero.
Choosing α ≥ 1/2 would result in a degenerate limiting distribution under (H0).

PROPOSITION 2 [Asymptotics under (H0)]. If the stationary sequence {Yk ,
k ∈ Z} satisfies Assumption 1 with En = o(n1/2−α) and (H0) holds, then

σ−1UI (n,α)
D−→ sup

0<s<t<1

|B(t) − B(s)|
[(t − s)(1 − (t − s))]α ,

where {B(t), t ∈ [0,1]} is a Brownian bridge.
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PROOF. Using (23) and assuming for simplicity that σ = 1, we obtain

UI (n,α) ≤ n−1/2 max
1≤i<j≤n

|W1(s
2
j ) − W1(s

2
i ) − (j − i)W1(s

2
n)/n|

[((j − i)/n)(1 − (j − i)/n)]α

+ n−1/2 max
1≤i<j≤n

|W2(t
2
j ) − W2(t

2
i ) − (j − i)W2(t

2
n)/n|

[((j − i)/n)(1 − (j − i)/n)]α
+ O(n−1/2+αEn)

= n−1/2 max
1≤i<j≤n

T
(1)
i,j + n−1/2 max

1≤i<j≤n
T

(2)
i,j + o(1).

It is easy to see that n−1/2 max1≤i<j≤n T
(2)
i,j tends to zero. Since we can get a

similar lower bound for UI (n,α), we have

UI (n,α) = n−1/2 max
(i,j)∈Mn

T
(1)
i,j + oP (1),

where Mn = {(i, j)|1 ≤ i < j ≤ n}. Let us partition Mn into

M1,n = {(i, j)|1 ≤ i < j ≤ n;nγn < j − i < n(1 − γn)},
M2,n = {(i, j)|1 ≤ i < j ≤ n;nγn ≥ j − i}

and

M3,n = {(i, j)|1 ≤ i < j ≤ n; j − i ≥ n(1 − γn)},
where γn → 0 will be defined later. By our assumptions on the sequence {s2

j } there

exists a τ > 0 such that s2
j −s2

i ≤ τ(j −i) for all 1 ≤ i ≤ j and that s2
n ≤ (2−τγn)n

if n ≥ n0. We have for large enough n

n−1/2 max
(i,j)∈M2,n

T
(1)
i,j

≤ 2nα−1/2 max
(i,j)∈M2,n

{ |W1(s
2
j ) − W1(s

2
i )|

(j − i)α

}
+ 2n−1/2γ 1−α

n |W1(s
2
n)|

≤ 2nα−1/2 max
1≤h≤nγn

sup
0≤t≤(2−τγn)n

sup
0≤s≤τh

{ |W1(t + s) − W1(t)|
hα

}
+ oP (1).

For arbitrary ε > 0 we get by Lemma 1.2.1 in Csörgő and Révész [9] that there is
a constant C which is independent of n and ε such that

P

(
max

1≤h≤nγn

sup
0≤t≤(2−τγn)n

sup
0≤s≤τh

{ |W1(t + s) − W1(t)|
hα

}
> εn1/2−α

)

≤
nδn∑
h=1

P
(

sup
0≤t≤2n−τh

sup
0≤s≤τh

|W1(t + s) − W1(t)| > εh1/2(n/h)1/2−α
)

≤
nδn∑
h=1

Cn

h
e−(ε2/3)(n/h)1−2α → 0 (n → ∞).
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Hence n−1/2 max(i,j)∈M2,n
T

(1)
i,j = oP (1). In the same fashion one can show that

n−1/2 max(i,j)∈M3,n
T

(1)
i,j = oP (1). Therefore

UI (n,α) = n−1/2 max
(i,j)∈M1,n

T
(1)
i,j + oP (1).

Some further basic estimates give

n−1/2 max
(i,j)∈M1,n

T
(1)
i,j

= n−1/2 max
(i,j)∈M1,n

|W1(j) − W1(i) − (j − i)W1(n)/n|
[((j − i)/n)(1 − (j − i)/n)]α

+ O

(
n−1/2

γ α
n

max
1≤i≤n

|W1(i) − W1(s
2
i )|

)
.

Since s2
n ∼ n there is a null sequence {εn} such that max1≤i≤n |i−s2

i | ≤ εnn. Hence

max
1≤i≤n

|W1(i) − W1(s
2
i )| ≤ sup

0≤t≤n

sup
0≤s≤2εnn

|W1(t + s) − W1(t)|.

Setting γn = εn and applying again Lemma 1.2.1 in [9] it can be seen that

sup
0≤t≤n

sup
0≤s≤2εnn

|W1(t + s) − W1(t)| = oP (n1/2γ α
n ).

Consequently

UI (n,α) = n−1/2 max
(i,j)∈M1,n

|W1(j) − W1(i) − (j − i)W1(n)/n|
[((j − i)/n)(1 − (j − i)/n)]α

(28)
+ oP (1).

Since the line of argumentation is very similar to what we have shown before, we
note now without proof that M1,n in the right-hand side of (28) can be replaced
by Mn. The rest of the proof of Proposition 2 is standard. �

The next proposition shows that this test is consistent. Let � = m2 − m1 denote
the length of the epidemic.

PROPOSITION 3 [Asymptotics under (HA)]. Let {Yk, k ∈ Z} be a mean zero
process, weakly M-dependent in Lp with p ≥ 2 and δ(·) satisfying∑

m≥1

δ(m) < ∞.

Let Xk = Yk + μk , k ∈ Z. Assume that (HA) holds and that

lim
n→∞

(�(n − �))1−α

n3/2−2α
|�| = ∞.(29)

Then UI (n,α)
P−→ ∞.
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PROOF. Under the alternative hypothesis (HA) we have Xk = Yk + μ for k ∈
{1, . . . , n} \ {m1 + 1, . . . ,m2} and Xk = Yk + μ + � for k ∈ {m1 + 1, . . . ,m2}.
To find a lower bound for UI (n,α) we study the numerator of the test statistic
corresponding to the true epidemic. Thus we look at

Sm2 − Sm1 − Sn(m2/n − m1/n)

= (1 − �/n)(Sm2 − Sm1) − (�/n)
(
Sn − (Sm2 − Sm1)

)
= �(n − �)

n
� + (1 − �/n)

m2∑
j=m1+1

Yj − (�/n)

(
m1∑
j=1

Yj +
n∑

j=m2+1

Yj

)

= �(n − �)

n
� + Rn.

With the help of the moment inequality stated in Proposition 4 below we get

Var(n−1/2Rn) = O
(
(1 − �/n)2(�/n) + (�/n)2(1 − �/n)

+ 2(�/n)3/2(1 − �/n)3/2)
= O

(
(�/n)(1 − �/n)

)
,

and thus n−1/2Rn = OP ((�/n)1/2(1 − �/n)1/2). Thus we have shown that

UI (n,α) ≥ n1/2(
(�/n)(1 − �/n)

)1−α|�|
− OP

((
(�/n)(1 − �/n)

)1/2−α)
(30)

= (�(n − �))1−α

n3/2−2α
|�|

− OP

((
(�/n)(1 − �/n)

)1/2−α)
.

To conclude the proof we note that limn→∞((�/n)(1− �/n))1/2−α = 0 if � = o(n)

[or n − � = o(n), resp.] and ((�/n)(1 − �/n))1/2−α ≤ 1 in general. Consequently
condition (29) together with relation (30) finishes the proof. �

For example, if � is independent of n, then condition (29) will hold for � ∼ cn,
c ∈ (0,1). In case that nν 	 � 	 n − nν , ν > 0, condition (29) holds provided
that (1 − 2α)/(1 − α) < 2ν. That is, choosing α close to 1/2 allows us to detect
relatively “short” (“long”) epidemics.

6. Proof of the main theorems.

6.1. A moment inequality. In the proofs of our theorems we will use the fol-
lowing moment inequality which may be of separate interest.
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PROPOSITION 4. Let {Yk, k ∈ Z} be a centered stationary sequence, weakly
M-dependent in Lp with p ≥ 2 and a rate function δ(·) satisfying

Dp :=
∞∑

m=0

δ(m) < ∞.

Then for any n ∈ N, b ∈ Z we have

E

∣∣∣∣∣
b+n∑

k=b+1

Yk

∣∣∣∣∣
p

≤ Cpnp/2,(31)

where Cp is a constant depending on p and the sequence {Yk}.

PROOF. By stationarity, we can assume b = 0. Let first p = 2. We use below
that supm≥0 ‖Y (m)

k ‖p ≤ ‖Y1‖p + Dp . Without loss of generality we assume that

EY
(m)
k = 0 for all k ∈ Z and m ∈ N. Since

YkYk+j = (
Yk − Y

(j−1)
k

)
Yk+j + Y

(j−1)
k

(
Yk+j − Y

(j−1)
k+j

)
+ Y

(j−1)
k Y

(j−1)
k+j ,

we get by assumption (B) that for j ≥ 1

|EYkYk+j | ≤ ∣∣E[(
Yk − Y

(j−1)
k

)
Yk+j

]∣∣ + ∣∣E[
Y

(j−1)
k

(
Yk+j − Y

(j−1)
k+j

)]∣∣
≤ ‖Yk+j‖2

∥∥Yk − Y
(j−1)
k

∥∥
2 + ∥∥Y (j−1)

k

∥∥
2

∥∥Yk+j − Y
(j−1)
k+j

∥∥
2

(32)
≤ (‖Yk+j‖2 + ∥∥Y (j−1)

k

∥∥
2

)
δ(j − 1)

≤ (2‖Y1‖2 + D2)δ(j − 1).

From relation (32) we infer, letting Sn = ∑n
k=1 Yk ,

ES2
n =

n∑
k=1

EY 2
k + 2

∑
1≤k<l≤n

EYkYl

≤ n‖Y1‖2
2 + 2

[ ∑
1≤k≤n−1

|EYkYk+1| + · · · + ∑
1≤k≤2

|EYkYk+n−2| + E|Y1Yn|
]

≤ n‖Y1‖2
2 + 2(2‖Y1‖2 + D2)[(n − 1)δ(0) + · · · + 2δ(n − 3) + δ(n − 2)]

≤ n
(‖Y1‖2

2 + 2D2(2‖Y1‖2 + D2)
) =: C2n.

This shows (31) for p = 2.
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Once (31) is established for p, it holds for all 0 < q ≤ p. Indeed, by Lyapunov’s
inequality, relation (31) implies

E

∣∣∣∣∣
b+n∑

k=b+1

Yk

∣∣∣∣∣
q

≤ Cq/p
p nq/2(33)

for any 0 < q ≤ p. In particular, (31) holds with p = 1.
Next we prove (31) for all integers p > 2. Clearly, if Cp ≥ ‖Y1‖p

p , then the
inequality

E|Sn|p ≤ Cpnp/2(34)

holds for n = 1. Using a double induction argument, we show now that for some
constant Cp , relation (34) holds for all n ∈ N. More precisely, we show that if (34)
holds for p − 1 and all n ∈ N and also for p and n ≤ n0, then it will also hold for
p and n ≤ 2n0.

For k ≤ n put Sn
k = Yk + Yk+1 + · · · + Yn. We have

E|S2n|p = E|Sn + S2n
n+1|p

= E

∣∣∣∣∣
n∑

k=1

(
Yk − Y

(n−k)
k

) +
n∑

k=1

(
Yn+k − Y

(k−1)
n+k

)

+
n∑

k=1

Y
(n−k)
k +

n∑
k=1

Y
(k−1)
n+k

∣∣∣∣∣
p

≤
(

n∑
k=1

∥∥Yk − Y
(n−k)
k

∥∥
p +

n∑
k=1

∥∥Yn+k − Y
(k−1)
n+k

∥∥
p(35)

+
∥∥∥∥∥

n∑
k=1

Y
(n−k)
k +

n∑
k=1

Y
(k−1)
n+k

∥∥∥∥∥
p

)p

≤
(

2Dp +
∥∥∥∥∥

n∑
k=1

Y
(n−k)
k +

n∑
k=1

Y
(k−1)
n+k

∥∥∥∥∥
p

)p

=: (2Dp + ‖Zn + Wn‖p)p.(36)

For some positive constants ψp that will be specified later, we choose Cp so that

C
1/p
p > Dp/ψp . Then if n ≤ n0

E|Zn|p ≤ (‖Sn‖p + ‖Sn − Zn‖p)p

≤ (‖Sn‖p + Dp)p

≤ (1 + ψp)pCpnp/2.
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By the induction assumption, this relation holds with arbitrary n for all integer
moments of order ≤ p − 1. The same estimate applies for E|Wn|p . Due to as-
sumption (B) in Definition 1, the random variables Zn and Wn are independent.
Thus

E|Zn + Wn|p

≤ E|Zn|p + E|Wn|p +
p−1∑
m=1

(
p

m

)
E|Zn|mE|Wn|p−m

(37)

≤ np/2

[
2(1 + ψp)pCp +

p−1∑
m=1

(
p

m

)
(1 + ψm)m(1 + ψp−m)p−mCmCp−m

]

=: np/2[2(1 + ψp)pCp + Rp].
Hence (36) and (37) and our assumptions on Cp imply that

E|S2n|p ≤ (
2ψpC1/p

p + n1/2[2(1 + ψp)pCp + Rp]1/p)p
(38)

≤ Cpnp/2(
2ψp + [2(1 + ψp)p + Rp/Cp]1/p)p

.

Choosing ψp small enough, and then choosing Cp large enough, we can always
achieve that the term in brackets of (38) is ≤ √

2, provided that p > 2, and that the
inequality C

1/p
p > Dp/ψp mentioned before is satisfied. Hence we have for every

n ≤ n0 that E|S2n|p ≤ Cp(2n)p/2, proving (34) for all even numbers n ≤ 2n0. The
case of odd n is similar. The proof of Proposition 4 is finished for integer p.

For general p > 2 we have by the result shown before that (31) holds for �p.
(As usual, �p denotes the integer part of the real number p.) To finish the proof
we need the following inequality which will be proven below:

|a + b|p ≤ |a|p + |b|p
(39)

+
�p∑
k=1

(
p

k

)
(|a|k|b|p−k + |b|k|a|p−k), p ∈ [1,∞).

Using (39) we get a similar estimate for E|Zn + Wn|p as in (37) and the proof can
be finished along the same lines as for integer p.

Verification of (39): Let x ∈ [0,1]. We recall that (1 + x)p can be expanded in
the binomial series

(1 + x)p = ∑
k≥0

(
p

k

)
xk

with (
p

k

)
= p(p − 1) · · · (p − k + 1)

k! .(40)
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From (40) it is clear that for k ≥ �p + 2 we have sign{(p
k

)} = (−1)k−�p+1. This
immediately yields for k = �p + 2� with � ≥ 1,(

p

k

)
xk +

(
p

k + 1

)
xk+1 ≤

(
p

k

)
xk +

(
p

k + 1

)
xk =

(
p + 1
k + 1

)
xk < 0.

Consequently

∑
k≥�p+2

(
p

k

)
xk < 0

and

(1 + x)p ≤
�p+1∑
k=0

(
p

k

)
xk.(41)

Now consider |a + b|p . If |a| ≥ |b|, then we infer from (41) that

|a + b|p ≤ |a|p
(

1 +
∣∣∣∣ba

∣∣∣∣
)p

≤ |a|p
�p+1∑
k=0

(
p

k

) ∣∣∣∣ba
∣∣∣∣
k

= |a|p +
�p∑
k=1

(
p

k

)
|b|k|a|p−k

+
(

p

�p + 1

)
|b|p

∣∣∣∣ba
∣∣∣∣
�p+1−p

.

Thus (39) follows from
( p
�p+1

)| b
a
|�p+1−p ≤ 1. Interchanging the roles of a and b

completes the proof. �

Using Móricz [33], Theorem 1, we get:

COROLLARY 1. Under the assumptions of Proposition 4 with p > 2, we have
for any 2 < q ≤ p and any n ∈ N, b ∈ Z

E max
1≤k≤n

∣∣∣∣∣
b+k∑

j=b+1

Yj

∣∣∣∣∣
q

≤ C′
p,qn

q/2,

where the constants C′
p,q only depend on p,q and the sequence {Yk}.

A slightly weaker result can also be derived from Proposition 4 for the case of
0 < q ≤ 2.
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6.2. Proofs of Theorems 1 and 2. We give the proof of Theorem 1. Note first
of all that δ(m) = ‖Yk − Y

(m)
k ‖p ≥ ‖Yk − Y

(m)
k ‖2, and consequently (32) holds

when the L2-norm is replaced by the Lp-norm. Since A > 1 in (9), we infer that
the series in (10) is absolutely convergent.

Let us specify some constants that will be used for the proof. By our assumption
on A it is possible to find a constant 0 < ε0 < 1/2 such that

A >
p − 2

2η(1 − ε0)2

(
1 − 1 + η

p

)
.

Then we set

δ = β

1 + α
with α = 2η(1 − ε0)

p − 2(1 + η)
,

(42)
β = (1 − ε0)α.

For some ε1 > 0 (which will be specified later) we now define mk = �ε1k
δ. The

first step in the proof of (11) is to show that it is sufficient to provide the strong
approximation for the perturbed sequence Y ′

k = Y
(mk)
k . We notice that our main

assumption (8) yields ‖Yk − Y ′
k‖p 	 k−Aδ . If Aδ < 1, then

P

(
max

2n≤k≤2n+1

∣∣∣∣∣
k∑

j=1

(Yj − Y ′
j )

∣∣∣∣∣ >
1

n
2(n/p)(1+η)

)

≤ P

(2n+1∑
j=1

|Yj − Y ′
j | >

1

n
2(n/p)(1+η)

)

≤ 2−n(1+η)np

(2n+1∑
j=1

‖Yj − Y ′
j‖p

)p

	 2−c1nnp,

where c1 = (1 + η) − (1 − Aδ)p > 0. Thus by the Borel–Cantelli lemma we have
almost surely

k∑
j=1

Yj =
k∑

j=1

Y ′
j + o

(
k(1+η)/p)

a.s.

If Aδ ≥ 1 we get an (even better) error term of order o(k1/p).
The main part of the proof of Theorem 1 is based on a blocking argument. We

partition N into disjoint blocks

N = J1 ∪ I1 ∪ J2 ∪ I2 ∪ · · · ,
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where |Ik| = �kα and |Jk| = �kβ with α, β as in (42). Let us further set

Ik = {i k, . . . , ik} and Jk = {j
k
, . . . , j k}

and

ξk = ∑
j∈Ik

Y ′
j and ηk = ∑

j∈Jk

Y ′
j .

Note that ik = O(k1+α). Provided that ε1 in the definition of mk is chosen small
enough, this will imply that

|Jk| = �kβ > �ε1i
δ
k = mi k

,

and hence by assumption (B) it follows that {ξk} and {ηk} each define a sequence
of independent random variables.

The following lemma by Sakhanenko [43] (cf. also Shao [44]) is our crucial
ingredient for the construction of the approximating processes.

LEMMA 2. Let {ξk} be a sequence of centered independent random variables
with finite pth moments, p > 2. Then we can redefine {ξk} on a suitable probability
space, together with a sequence {ξ∗

k } of independent normal random variables with
Eξ∗

k = 0, E(ξ∗
k )2 = Eξ2

k such that for any x > 0, m ≥ 1

P

(
max

1≤k≤m

∣∣∣∣∣
k∑

j=1

ξj −
k∑

j=1

ξ∗
j

∣∣∣∣∣ > x

)
≤ C

1

xp

m∑
j=1

E|ξj |p,

where C is an absolute constant.

We shall now apply Lemma 2 to the sequences {ξk} and {ηk}. For this purpose
we need estimates of the moments E|ξk|p , E|ηk|p . By Minkowski’s inequality and
Proposition 4 we get

E|ξk|p ≤
(∥∥∥∥∑

j∈Ik

Yk

∥∥∥∥
p

+ ∑
j∈Ik

‖Yj − Y ′
j‖p

)p

= O
(
(|Ik|1/2 + |Ik| · i−Aδ

k )p
)
.

Some easy algebra shows that the restrictions on the parameters A, δ, α and ε0
imply

|Ik| · i−Aδ
k 	 kα · k−Aδ(1+α) 	 kα/2 	 |Ik|1/2.

A similar estimate holds for E|ηk|p . Hence we can find constants Fp such that

E|ξk|p ≤ Fp|Ik|p/2



2466 I. BERKES, S. HÖRMANN AND J. SCHAUER

and

E|ηk|p ≤ Fp|Jk|p/2,

where Fp does not depend on k.
Let Ln = ∑n

k=1 |Ik|. Then Ln = O(n(1+α)). By our previous estimates and by
Lemma 2 we infer that, after enlarging the probability space, we have

P

(
max

2n≤k≤2n+1

∣∣∣∣∣
k∑

j=1

ξj −
k∑

j=1

ξ∗
j

∣∣∣∣∣ > L
(1+η)/p
2n

)

≤ L
−(1+η)
2n

2n+1∑
k=1

E|ξk|p(43)

= O
(
2[−(1+α)(1+η)+αp/2+1]n)

,

where ξ∗
k is a sequence of independent and centered normal random variables with

E(ξ∗
k )2 = Eξ2

k . The exponent in (43) will be negative if (1 + α)(1 + η) >
αp
2 + 1.

This is equivalent to α <
2η

p−2(1+η)
, which follows by (42). Thus, by the Borel–

Cantelli lemma we obtain

k∑
j=1

ξj =
k∑

j=1

ξ∗
j + O

(
L

(1+η)/p
k

)
a.s.

By further enlarging the probability space we can write

k∑
j=1

ξj = W1

(
k∑

j=1

Var(ξj )

)
+ O

(
L

(1+η)/p
k

)
a.s.,

where {W1(t), t ≥ 0} is a standard Wiener process. The same arguments show that

k∑
j=1

ηj = W2

(
k∑

j=1

Var(ηj )

)
+ O

(
M

(1+η)/p
k

)
a.s.,

where {W2(t), t ≥ 0} is another standard Wiener process on the same probability
space and Mn = ∑n

k=1|Jk|.
We define

b2
k = Var

(∑
j∈Ik

Y ′
j

)/
|Ik|

and

h2
k = Var

( ∑
j∈Jk

Y ′
j

)/
|Jk|.
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For � ∈ Ik we set σ 2
� = b2

k and for � ∈ Jk we set σ 2
� = 0. Similarly define τ 2

� = h2
k

if � ∈ Jk and τ 2
� = 0 if � ∈ Ik . Put

s2
n =

n∑
k=1

σ 2
k , t2

n =
n∑

k=1

τ 2
k (n = 1,2, . . .).

Summarizing our results so far we can write

in∑
k=1

Yk = W1

(
in∑

k=1

σ 2
k

)
+ W2

(
in∑

k=1

τ 2
k

)
+ O

(
i
(1+η)/p

n

)
a.s.

It is a basic result that our stationarity and dependence assumptions imply

Var
(∑

j∈Ik

Yj

)/
|Ik| = σ 2 + O(k−ξ ) and

(44)

Var
( ∑

j∈Jk

Yj

)/
|Jk| = σ 2 + O(k−ξ )

as k → ∞, for some small enough ξ > 0. It can be easily shown that (44) remains
true if the Yj are replaced with Y ′

j . Indeed, by the Minkowski inequality we infer
that

Var1/2
(∑

j∈Ik

Y ′
j

)
≤ Var1/2

(∑
j∈Ik

Yj

)
+ Var1/2

(∑
j∈Ik

(Yj − Y ′
j )

)

≤ Var1/2
(∑

j∈Ik

Yj

)
+ |Ik|max

j∈Ik

‖Yj − Y ′
j‖2.

Furthermore, using the definitions of the introduced constants we obtain

max
j∈Ik

‖Yj − Y ′
j‖2 	 i−Aδ

k 	 k−(α+1)Aδ

≤ k−β = k−(1−ε0)α with ε0 < 1/2.

Since by definition |Ik| 	 kα , we conclude that

Var1/2
(∑

j∈Ik

Y ′
j

)/
|Ik|1/2 ≤ Var1/2

(∑
j∈Ik

Yj

)/
|Ik|1/2 + O

(
kα(ε0−1/2))

as k → ∞. In the same manner a lower bound for Var1/2(
∑

j∈Ik
Y ′

j )/|Ik|1/2 can be
obtained. Proving the analogue of the second part of (44) for the Y ′

j is similar.

In other words, we have shown (11) along the subsequence {in} with values of
s2
n and t2

n that satisfy (12) and (13). The relation |s2
n − σ 2n| = O(n1−ε), ε > 0,

follows by simple calculations.
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To finish the proof we have to show that the fluctuations of the partial sums and
the Wiener processes W1 and W2 within the blocks Ik are small enough. Since fluc-
tuation properties of Wiener processes are easy to handle using standard deviation
inequalities (see, e.g., [9]), we only investigate the partial sums. By Corollary 1 we
have

P

(
sup

i k≤�≤ik

∣∣∣∣∣
�∑

j=i k

Yj

∣∣∣∣∣ > i
(1+η)/p
k

)
≤ i

−(1+η)
k E

(
sup

i k≤�≤ik

∣∣∣∣∣
�∑

j=i k

Yj

∣∣∣∣∣
p)

	 i
−(1+η)
k |Ik|p/2

	 k−(1+η)(1+α)+αp/2

= O
(
k−(1+ε2)

)
,

if ε2 > 0 is chosen sufficiently small. The Borel–Cantelli lemma shows that we
can also control the fluctuation within the blocks. Thus (11) is proven.

The proof of Theorem 2 is similar to the proof of Theorem 1 and will be there-
fore omitted. We only remark that under the exponential mixing rate logarithmic
block sizes are required in the blocking argument.

6.3. Proof of Proposition 1. We use the notation introduced in the proof of
Theorem 1. Further we let I = I1 ∪ I2 ∪ · · · and J = J1 ∪ J2 ∪ · · · and Mn =
{1, . . . , n}. By looking at the proof of Theorem 1, it readily follows that

1

sn

∑
i∈I∩Mn

Yi = W1(s
2
n)/sn − Xn,

1

tm

∑
j∈J∩Mn

Yj = W2(t
2
m)/tm − Zm,

where

Xn = o
(
(s2

n)(1+η)/p−1/2) = o(1) a.s. and
(45)

Zm = o
(
(t2

m)(1+η)/p−1/2) = o(1) a.s.

Hence

Corr(W1(s
2
n),W2(t

2
m))

= Corr
(

1

sn
W1(s

2
n),

1

tm
W2(t

2
m)

)

= Corr
(

1

sn

∑
i∈I∩Mn

Yj + Xn,
1

tm

∑
j∈J∩Mn

Yj + Zm

)
.

In order to calculate this correlation we need a couple of estimates.
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First we note that by the definition of s2
n and t2

n

s2
n ∼ σ 2|I ∩ Mn| and t2

m ∼ σ 2|J ∩ Mm|.(46)

It readily follows from Proposition 4 that∥∥∥∥ 1

sn

∑
i∈I∩Mn

Yi

∥∥∥∥
p

≤ Cp,(47)

where Cp does not depend on n. Thus

sup
n≥1

‖Xn‖p = sup
n≥1

∥∥∥∥ 1

sn

∑
i∈I∩Mn

Yi − W1(s
2
n)/sn

∥∥∥∥
p

≤ sup
n≥1

∥∥∥∥ 1

sn

∑
i∈I∩Mn

Yi

∥∥∥∥
p

+ ‖W1(1)‖p < ∞,

and hence {X2
n} is uniformly integrable. This and (45) show that Var(Xn) → 0; by

the same arguments Var(Zm) → 0. By (44)∥∥∥∥ 1

sn

∑
i∈I∩Mn

Yi

∥∥∥∥
2
∼ σ 2.(48)

Thus by (47) and (48)

c1(m,n) := Cov
(
Zm,

1

sn

∑
i∈I∩Mn

Yi

)

≤ Var1/2(Zm)Var1/2
(

1

sn

∑
i∈I∩Mm

Yi

)

= o(1) for m,n → ∞,

and similarly

c2(m,n) := Cov
(
Xn,

1

tm

∑
j∈J∩Mm

Yj

)
= o(1) for m,n → ∞.

Furthermore we have

B1(n) := Var1/2
(

1

sn

∑
i∈I∩Mn

Yi + Xn

)

≥ Var1/2
(

1

sn

∑
i∈I∩Mn

Yi

)
− Var1/2(Xn)

= σ + o(1) for n → ∞
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and

B2(m) := Var1/2
(

1

tm

∑
j∈J∩Mm

Yj + Zm

)

≥ σ + o(1) for m → ∞.

Finally we introduce the term

c0(m,n) = 1

sntm

∑
i∈I∩Mn

∑
j∈J∩Mm

Cov(Yi, Yj ).

We choose r ≥ 0 such that n ∈ Ir+1 ∪ Jr+1, and we choose v ≥ 0 such that m ∈
Iv+1 ∪Jv+1 and recall that by Theorem 1 we have

∑
i∈Z|Cov(Y0, Yi)| < ∞. Hence

if v ≤ 2r we have

c0(m,n) ≤ s−1
ir

t−1
iv

∑
i∈I1∪···∪Ir+1

∑
j∈J1∪···∪Jv+1

|Cov(Yi, Yj )|

≤ s−1
ir

t−1
iv

∑
j∈J1∪···∪Jv+1

∑
i∈Z

|Cov(Yi, Yj )|

= s−1
ir

t−1
iv

∑
j∈J1∪···∪Jv+1

∑
i∈Z

|Cov(Yi, Y0)|

	 s−1
ir

t−1
iv

(|J1| + · · · + |Jv+1|)
	 s−1

ir
t−1
iv

t2
iv+1

= o(1) as m,n → ∞.

If v > 2r , we have to additionally show that

s−1
ir

t−1
iv

∑
i∈I1∪···∪Ir+1

∑
j∈J2r+1∪···∪Jv+1

|Cov(Yi, Yj )| → 0.

Now we have by (32) and assumptions (8), (9) that

s−1
ir

t−1
iv

∑
i∈I1∪···∪Ir+1

∑
j∈J2r+1∪···∪Jv+1

|Cov(Yi, Yj )|

≤ s−1
ir

t−1
iv

∑
π≥2r+1

|Jπ |
r+1∑
�=1

|I�|(d(I�, Jπ))−1

	 s−1
ir

t−1
iv

∑
π≥2r+1

πβ
r+1∑
�=1

�α(d(I�, Jπ))−1.

For � ∈ {1, . . . , r + 1} and π ≥ 2r + 1 we have constants k0 and k1 independent of
r and π such that

d(I�, Jπ) ≥ k0(π
α+1 − rα+1) ≥ k1π

α+1
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and thus

s−1
ir

t−1
iv

∑
π≥2r+1

πβ
r+1∑
�=1

�α(d(I�, Jπ))−1

	 s−1
ir

t−1
iv

rα+1
∑

π≥2r+1

πβ−α−1 	 s−1
ir

t−1
iv

r1+β

	 r−(α−β)/2 = o(1) as r → ∞.

Using the definitions of c0, c1, c2 and B1 and B2 we see that

Corr(W1(s
2
n),W2(t

2
m)) = c0(m,n) + c1(m,n) + c2(m,n) + cov(Xn,Zm)

B1(n)B2(m)
.(49)

We have shown c0(m,n)+ c1(m,n)+ c2(m,n)+ cov(Xn,Zm) → 0 as m,n → ∞
while the denominator in (49) is bounded away from zero. This finishes the proof
of Proposition 1.
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