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PERCOLATION ON A PRODUCT OF TWO TREES1

BY GADY KOZMA

Weizmann Institute of Science

We show that critical percolation on a product of two regular trees of
degree ≥ 3 satisfies the triangle condition. The proof does not examine the
degrees of vertices and is not “perturbative” in any sense. It relies on an un-
published lemma of Oded Schramm.

1. Introduction.

1.1. Schramm’s lemma. In 1998, while working on the exponential decay of
correlations problem (a problem which is still open), Oded Schramm proved a
lemma which solved the problem in an averaged sense. The lemma generated a
lot of excitement in the community of researchers of percolation on groups at the
time, and there was hope that it would lead to a full solution of the exponential
decay problem, the pc < pu problem and other related problems on nonamenable
Cayley graphs. That hope never materialized, Schramm never published the lemma
(you will see it mentioned here and there in papers of the period, e.g., in the last
paragraph of [5]) and moved on to other topics.

Let us describe the settings of Schramm’s lemma in its original formulation.
We are given a nonamenable Cayley graph2 G. Denote the identity element of the
group by 0 (by which I definitely do not insinuate that the group is Abelian) and
for any x ∈ G let |x| denote the graph distance between 0 and x (which is the
same as the distance in the word metric on the group with the given generators).
Let pc be the critical probability for percolation on G. The exponential decay
of correlations problem is the conjecture that at pc one has that the connection
probability P(0 ↔ x) decays exponentially in |x|. Schramm’s lemma states that
this is true in the following interesting averaged sense. Take random walk R on the
original Cayley graph G. Then

P
(
0 ↔ R(n)

) ≤ cn.(1)
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Let us stress again that the random walk is on the original graph G and is only
some way to average P(0 ↔ x). The probability in (1) is over both the walk and
the percolation.

We will now sketch Schramm’s argument. If the sketch is too dense do not
despair—a very close result, Lemma 5, will be presented below, page 1878, with
all details (perhaps too many details). For general background on percolation, see
the book [6]. For percolation, random walk and branching processes on transitive
graphs see the book [13], especially Chapters 7 and 8. Finally, note that all nota-
tions and conventions used in this paper are collected in Section 1.6, page 1871,
for convenience.

Proof sketch. Examine the following process on our graph G. Fix some m. We
start with m+ 1 “particles” at 0. Each particle does n steps of simple random walk
on G, independently of all other particles. After n steps, it divides into m particles,
and each one does n additional steps, divides and so on. In other words, a more-
or-less standard branching random walk. The particles can be mapped to the edges
of an m + 1 regular tree T. The original m + 1 particles are mapped to the edges
coming out of the root of T. Then for each of these particles, say it corresponds to
the edge (r,v) with r being the root of the tree and v one of its children, map the
m descendents of the particle to the m edges coming out of v not in the direction
of the root. Continue inductively.

We now throw the percolation into the mix as follows. We define a random
subgraph W of our tree T as follows. Examine an edge (v,w) of the tree. It cor-
responds to some particle in the branching process which started from some v,
walked n steps and landed on w. We declare that (v,w) ∈ W if and only if v ↔ w.
At the formal level, W is a random subgraph of T which is a deterministic function
of both the branching process and the percolation.

Note that W is, considered as a measure over subgraphs of T, invariant to the
automorphisms of T. Please reflect on this fact for a minute as it utilizes a number
of features of the construction, with a particular emphasis on automorphisms of T
which do not preserve the root r. First, notice that it is crucial to start with m + 1
particles at time 0, but split to only m particles at each subsequent time. Next, note
that we used the reversibility of random walk: let ϕ be an automorphism which
sends, say, some v which is a child of r into r. For W to be invariant to ϕ it is
necessary that getting from the child to the father has the same distribution as
getting from the father to the child. So our process must be time-reversible.

It is now time to fix m. We fix it such that the branching process is transient,
that is, such that with probability 1 only a finite number of particles ever return
to 0. With this definition of m, we get that the configuration W contains only finite
components. Indeed, by [5] the percolation clusters are all finite. Any cluster C of
W is (a subset of) all returns of the branching process to some percolation cluster,
that is, a finite collection of finite sets, so C is finite.
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At this point, we apply the mass transport principle to the tree T (which is
of course itself the Cayley graph of a nonamenable group) and we get that the
expected degree of r is equal to the expected average degree of the cluster of r.
But the cluster of r is a finite subgraph of T so it is a finite tree and for every finite
tree the average degree is <2! Hence, we get that the expected degree of r in the
configuration W is <2.

But what is the expected degree of r in W? It is exactly m · P(0 ↔ R(n))! We
get

P
(
0 ↔ R(n)

)
<

2

m

so Schramm’s argument terminates with the observation that if m < λ−n with λ

being the spectral radius of the random walk then the branching process is tran-
sient. We get that P(0 ↔ R(n)) < 2λn which decays exponentially as for any non-
amenable Cayley graph λ < 1.

Notes.

(1) In fact, the process is transient even when m = λ−n for λ being the spec-
tral radius. This property is called “λ-transience” and holds for all nonamenable
Cayley graphs. See [17], Section II/7B.

(2) FKG implies that the function f (n) = P(0 ↔ R(n)) is supermultiplicative,
that is, f (a + b) ≥ f (a)f (b). Therefore, if we know that f (n) < 2λn then we
actually know that f (n) ≤ λn, that is, the 2 may be dropped.

(3) A topic of some interest would be to generalize this argument from a Cayley
graph to a general transitive (nonamenable) graph. One obvious point in the proof
which would not apply to a general transitive graph is the application of [5]. We
remark that [5] holds in larger generality than Cayley graphs, it holds for any uni-
modular transitive graph. See [5] or [13], Section 8.2, for details on unimodularity.
Unimodularity or a similar requirement might also be necessary if one wants to
generalize the claim that W is invariant to the automorphisms of T.

1.2. The triangle condition. We say that a transitive graph (which may be
amenable) satisfies the triangle condition at some p if

∇p := ∑
x,y

Pp(0 ↔ x)Pp(x ↔ y)Pp(0 ↔ y) < ∞.

We will usually be interested in behavior at the critical p, and denote ∇ = ∇pc .
The triangle condition was suggested in 1984 by Aizenman and Newman [2] as
a marker for “mean-field behavior,” a term from statistical physics which in our
context means that various quantities behave at or near pc as they would on a
regular tree. In particular, Aizenman and Newman proved that under the triangle
condition ∇ < ∞ one has that Ep|C(0)| ≈ (pc − p)−1 as p tends to pc from
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below. Here, C(0) = {x : 0 ↔ x} is the cluster of 0, and |C(0)| is its size. See [4] for
a proof that (again under ∇ < ∞) Ppc(|C(0)| > n) ≈ n−1/2 and Pp(|C(0)| = ∞) ≈
(p − pc)

+. See [14] for gap exponents and [11] for intrinsic (a.k.a. “chemical”)
exponents and the behavior of random walk on large critical clusters. In short,
under the triangle condition we have a very fine picture of the behavior at and near
criticality.

It is conjectured that the triangle condition holds in great generality. A “folk”
conjecture suggests that it holds for every transitive graph for which the random
walk triangle condition

∑
G(0, x)G(x, y)G(0, y) < ∞ holds, where G is the ran-

dom walk Green function. I was not able to find a reference for this precise for-
mulation but a weaker one is in [15], Conjecture 1.2. Progress on this has been
slow. The most spectacular result is that the triangle condition holds for the Cayley
graph of Z

d with d > 6 if one takes sufficiently many generators; or with the stan-
dard generators ±ei if d is sufficiently large. This was achieved by Hara and Slade
[7] using a technology known as “lace expansion.” See [8] for generalizations to
long-range models. The lace expansion is a perturbative technique and generally
requires the number of generators be large. A different artifact of the perturbative
nature is that it seems that lace expansion is not suitable to show that ∇ < ∞ unless
in fact ∇ is quite close to 1 (∇ ≥ 1 always due to the term x = y = 0).

Going beyond Z
d there are two papers I am aware of that establish the triangle

condition. The first, [18], establishes it for T × Z where T is a regular tree with
degree ≥ 5. The proof, very roughly, utilizes the fact that for a tree of degree d ,
pc = 1/(d −1) but ∇p < ∞ for all p < 1/

√
d − 1. This allows to make a relatively

rough estimate of ∇ by path counting. A far more general result was achieved in
[15] which showed (among other things) that for any nonamenable group, if one
takes sufficiently many generators then the resulting Cayley graph satisfies the
triangle condition. Both results are significantly easier than using lace expansion.

We may now state our result.

THEOREM 1. Let T be a regular tree of degree ≥ 3. Then the product graph
T × T satisfies the triangle condition at pc.

One may of course wonder whether one can achieve this result from the “highly
nonamenable” condition of [15], but an inspection shows that this would require T

to have degree ≥ 7. Also, the approach taken here can be used also for “stretched”
trees, namely, suppose one replaces every edge with a path of length 100. Naturally
the resulting graph is no longer transitive (the degree of vertices in the product of
two stretched trees may be 2d , d + 2 or 4), but it is quasi-transitive, that is, its
group of automorphisms acts with finite orbits, and the argument presented be-
low will work, mutatis mutandis. Such a graph can have arbitrarily low Cheeger
constant. Similarly, it may have ∇ arbitrarily large. It is probably also worth com-
paring to [16], which shows for planar nonamenable transitive graphs, not quite
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the triangle condition, but many mean-field exponents. This result is also nonper-
turbative but relies critically on the planarity. It is easy to check that T × T is not
planar except when both have degree 2.

The important property of T × T which is used is the large number of symme-
tries. Examine the sphere {x ∈ T × T : |x| = r}. Clearly, P(0 ↔ x) depends only
on |x1| and |x2| where xi are the projections of x to the two trees. Thus, the sphere
breaks down into r + 1 of classes each of which has exponentially many vertices.
This is the crucial property. Thus, the argument works for a product of two trees
with different degrees, or for products of three trees or more. It is probably possi-
ble to formulate the result abstractly in terms of symmetries of the graph, but I did
not have a good formulation or a second interesting example, so we will restrict
ourselves to the simplest nontrivial example: T ×T . In addition, let us remark that
I could not make the argument work for T ×Z. Even though most vertices do have
many “clones,” some (namely, those on the same copy of Z as 0) have only one
clone, and this is enough to break the argument in its current form. We will return
to this topic in Section 1.5.

1.3. What has Schramm’s lemma to do with the triangle condition? Let us go
back to the proof of Schramm’s lemma. As already remarked, the random walk is
just some way to average the connection probability. One may take any averaging
method as long as it is time-reversible. Taking a 3-regular tree T as an example,
one may replace the random walk of length n in Schramm’s original argument with
simply choosing a random element of distance n from the root. One gets that

P(0 ↔ R) <
2

m
,

where R is a random element of distance n from the root, and m needs to satisfy
that the corresponding branching process is transient. Of course, by the symme-
tries of the tree all elements of distance n from the root have the same connection
probability so the “averaging” performed by taking a random element has no ef-
fect.

We will calculate the largest m one may take below (it is the claim in the proof
of Lemma 5), but we note for now that the number of particles which return to 0
after two steps of the branching process is m2/2n. Therefore, it is reasonable to
assume that m 
 √

2n is the threshold for the branching process to be transient, so
we should have P(0 ↔ x) � 2−|x|/2 and indeed a slightly more precise calculation
shows (still for the tree) that

P(0 ↔ x) < C|x|2−|x|/2.

This can now be summed explicitly to give∑
|x|,|y|≤r

P(0 ↔ x)P(x ↔ y)P(0 ↔ y) ≤ Cr8.(2)
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The 8 is of course not important—what is important is that the sum grows only
polynomially, even though the ball of radius r grows exponentially. In other words,
Schramm’s lemma “almost” gives the triangle condition. This is the crucial obser-
vation on which we rely.

1.4. Proof sketch. To show the triangle condition, it is enough to show that
P(0 ↔ x) ≤ C2−|x|(1/2+ε) as then one can sum these explicitly. By the symmetries
of our graph, if we show that

E({x : 0 ↔ x, |x| ≤ r}) ≤ C2r(1/2−ε)

we will be done. The set {x : 0 ↔ x, |x| ≤ r} is known as the “ball in the extrinsic
metric”—meaning that we measure the distance to x by the distance inherited from
the surrounding graph, |x|.

If there is anything metamathematical to be learned from comparing Section 3.2
in [11] to [12], it is that it is easier to work with the intrinsic distance. In other
words, rather than looking at |x|, we should look at dint(x, y), the length of the
shortest path of open edges between x and y. This idea has a checkered past—
in two dimensions the behavior of dint(x, y) is still wide open—but in mean-field
setting it has proved to be a useful tool. Denote x

r↔ y as a short for dint(x, y) ≤ r .
Denote by Bint(r) the ball in the intrinsic distance, that is, the random set defined
by Bint(r) = {x : 0

r↔ x}. Denote G(r) = E|Bint(r)|. This will be our main object
of study, and we will get better and better estimates for it. As before, assume for
the sake of this sketch that d = 3.

Step 1. In any transitive graph, G(r) = eo(r). This is due to Russo’s formula,
since the number of pivotal edges for the event 0

r↔ x is always ≤r—only edges
on the path can be pivotal! See Lemma 1, page 1873.

Step 2. We apply Schramm’s lemma to T ×T as explained in Section 1.3, and
get that P(0 ↔ x) ≤ C|x|22−|x|/2. See Lemma 5, page 1878.

Step 3. We now repeat the argument of [12], Theorem 1.2(i). The claim there
was that under the triangle condition G(r) ≤ Cr . The skeleton of the argument is
as follows. It is enough to prove that

G(2r) ≥ c
G(r)2

r
,(3)

because if G(r) > (2/c)r then it starts growing exponentially, contradicting the
information we gathered at step 1. Denote for the purpose of this sketch by w a
vertex of the graph quite close to 0. w is the “opening,” a standard step in any use
of the triangle condition. Examine the following quantity

E
∣∣{(x, y) : 0

r↔ x, xw
r↔ y, x � xw

}∣∣,
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where xw stands for the product in the relevant group. You should think about x as
being “roughly pivotal” for the event 0 ↔ y, with the measure of roughness related
to w. A calculation using the Aizenman and Newman “off method” which may be
found in [12], Lemma 3.2, or in Lemma 7, page 1882 below, gives

E
∣∣{(x, y) : 0

r↔ x, xw
r↔ y, x � xw

}∣∣
(4)

≥ G(r)2
(

1 − ∑
u,v

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
))

.

The sum inside the parenthesis is not quite the triangle sum because 0 �= w. This
expression (without the r’s) is known as the open triangle sum and it is known that
if the triangle condition holds (recall that we are still in the setting of [11] where
the triangle condition is assumed) then the open triangle sum tends to 0 as the
point w is sent to infinity ([4], Lemma 2.1 for Z

d and [10] for a general transitive
graphs). Taking it to be ≤ 1

2 gives

E
∣∣{(x, y) : 0

r↔ x, xw
r↔ y, x � xw

}∣∣ ≥ 1
2G(r)2.

At this point, a simple modification argument that allows to connect x and xw

while paying only a constant. The modification puts y into C(0) and also turns x

from “roughly pivotal” to being properly pivotal. This proves (3)—the modifica-
tion costs only a constant, but the counting over x costs another r which explains
the 1/r factor in (3). This finishes the proof in [11].

How does all this apply in our case? Schramm’s lemma gives only that the
triangle condition grows moderately, not that it is finite. This means simply that it is
necessary to open the triangle wider. A calculation (done in Lemma 6, page 1881)
shows that it is enough to take w in distance ≈ log r . This is good, but not as good
as it sounds because once one tries to apply the modification argument one loses
the exponent of the distance namely an rC factor and gets instead of (3)

G(2r) ≥ G(r)2

rC
,

which only shows that G(r) ≤ rC—a vast improvement over eo(r) but still not
what we want. See Lemmas 8 and 9, starting from page 1884, for the modification
argument.

Step 4. Because of the symmetries of the graph, our newly acquired knowledge
G(r) ≤ rC allows to get much better estimates for 0

r↔ x namely because x has
2|x| clones we get

P
(
0

r↔ x
) ≤ rC2−|x|,

which is better than the 2−|x|/2 given by Schramm’s lemma whenever |x| ≥
C log r . This allows to separate 0 and w by only ≈ log log r yielding a final
G(r) ≤ r(log r)C . See Lemmas 10 and 11, page 1886.
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Step 5. We now find ourselves in a rather ridiculous situation. We have a very
good estimate for the ball in the intrinsic distance—E|Bint(r)| ≤ r(log r)C—but
still absolutely no estimate for the extrinsic ball, for all we know we might have
E|{x : 0 ↔ x and |x| ≤ r}| 
 2r/2, which would of course imply that it intersects an
enormous intrinsic ball, all tightly curled up. We need to contradict this possibility
and we use the property that in a nonamenable graph, for any x, if one examines
the ball of radius r around x then the vast majority of it is further from 0 than x.
Using the fact that Bint(x, r) is quite small and the symmetries of the graph, we get
that we can show that the parts of Bint(x, r) that go “back,” that is, are closer to 0
than x are dominated by a subcritical process. We get that the process is “ballistic”
in the sense that points x with dint(0, x) = r have also |x| ≈ r . This shows that

E
∣∣{x : 0 ↔ x and |x| ≤ r

}∣∣ ≤ Cr3

(the 3 is just an artifact of sloppiness) and by the symmetries of the graph one last
time

P(0 ↔ x) ≤ C|x|32−|x|,

which shows the triangle condition by a direct calculation. See Lemmas 12 and 13,
starting page 1888.

1.5. The case of T × Z. Where does all this break for T × Z? We used the
existence of clones in every step. Hence, this argument cannot give any estimate
for P(0 ↔ (0, n)) where (0, n) stands for a vertex in the same copy of Z as 0. This
does not seem like a big deal because there are not many of those. But in fact,
it breaks the argument at step 4. In other words, you can get that G(r) ≤ rC but
cannot progress beyond that, which breaks the final step, the subcriticality of the
backward process.

There is a different way to view this. Let our percolation have different p in
the different coordinates. We get a two-parameter family of processes with a criti-
cal curve separating the regime of only finite clusters and the regime of infinite
clusters. See Figure 1. We immediately note the following difference between
the T × T and T × Z case. In the T × T case, ∇ is bounded uniformly on the
critical curve. On T × Z it diverges as you approach the point (0,1). Similarly,
P(0 ↔ (0, n)) is not bounded away from 1 uniformly on the critical curve, it con-
verges to 1 as you approach (0,1). I do not claim that this is a significant hurdle,
just note that all ideas in this paper (including Schramm’s lemma) work uniformly
on the entire critical line so perhaps a new idea is needed.

1.6. Notation and conventions. All graphs in this paper will have one vertex
denoted by 0. For Cayley graphs, 0 will be the identity element. We denote by
d(x, y) the graph distance of x from y, that is, the the number of edges in the
shortest path between x and y. Denote also |x| = d(x,0) and balls by B(x, r) =
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FIG. 1. The critical curves for T ×T and T ×Z. Values were calculated by an invasion percolation
algorithm run until cluster size reached 106.

{y :d(x, y) ≤ r} and B(r) = B(0, r). For a subset of vertices A, we denote by ∂A

the set of all edges with one vertex in A and one outside A.
For percolation, we denote by dint(x, y) the length of the shortest open path

between x and y, or ∞ if x � y. We denote by x
r↔ y the event dint(x, y) ≤ r . We

denote Bint(x, r) = {y :x
r↔ y} and Bint(r) = Bint(0, r). Be careful not to confuse

B(r) (which is a deterministic quantity) and Bint(r) which is a random variable.
We denote G(r) = E|Bint(r)|. Denote also the triangle sum

∇ = ∑
u,v

P(0 ↔ u)P(u ↔ v)P(0 ↔ v)

and the restricted open triangle sum with opening w and distance r

∇(w; r) = ∑
u,v

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
)
.

More standard percolation notations used are C(x) = {y :y ↔ x}, and A◦B for the
event that A and B “occur disjointly,” see [6], Section 2.3, for the notation and for
the van den Berg–Kesten inequality P(A ◦ B) ≤ P(A)P(B). We shall denote the
van den Berg–Kesten inequality by BK for short. Denote Harris’ inequality ([6],
Section 2.2) by FKG. For all these notations, unless p is specified explicitly it is
taken to be the pc of the relevant graph. When we want to examine a different p

we will use the notations Pp and Ep for the probability and the expectation with
respect to p.

We denote by T a regular tree of degree d ≥ 3. For a vertex x ∈ T × T , denote
by x1 and x2 its two coordinates. It is easy to verify that |x| = |x1| + |x2|. We
denote by � the group whose Cayley graph is T × T (see Lemma 4).

Bold letters will be used for the high-degree tree T that appears in the proof of
Schramm’s lemma (both the sketch in Section 1.1 above and the proof of Lem-
mas 3 and 5 below) and for vertices and subgraphs of it. Be careful not to con-
fuse T, which is a tree of degree m and is just an auxiliary object, with T which is
a tree of degree d and the principle object of investigation.
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By c and C, we will denote constants which depend only on our graph G (usu-
ally this is T × T so they only depend on the degree of T , but in Section 2 the
results are general). c will denote constants which are “small enough” and C con-
stants which are “big enough.” C and c may refer to different constants in different
formulas and even within the same formula. We will sometimes number them for
clarity. A notation like C187 is specific to the lemma in which it appears. When
a probability decays exponentially in some parameter n, will usually denote it by
<2e−cn.

The notation A ≈ B means that some constants c and C exist such that cB ≤
A ≤ CB . The notations 
 and � mean nothing in particular. We only use them
when we want to indicate that two quantities are heuristically similar, but do not
want to indicate in which sense exactly. The notation X ∼ Y for two random vari-
ables means that they have the same distribution. For a real number x, �x� will
denote the smallest integer ≥ x.

2. Preliminaries for transitive graphs.

THEOREM 2 (Aizenman and Barsky). For any vertex-transitive graph G and
any p < pc(G), we have Ep|C(0)| < ∞.

Aizenman and Barsky [1] formulated their result only for Z
d , but it is well

known that it holds for any transitive graph. For example, it is mentioned in passing
in [15]. A proof may be found in [3] or in [9], Appendix A.

LEMMA 1. For any vertex transitive graph G, G(r) = eo(r).

[Recall that G(r) = Epc |Bint(r)|.]

PROOF OF LEMMA 1. Fix some x ∈ B(r) and examine the event 0
r↔ x. By

Russo’s formula ([6], Section 2.4), for any 0 < p < 1,

d

dp
Pp

(
0

r↔ x
) = 1

p
Ep(|{open pivotal edges}|).

We are allowed to use Russo’s formula, since this event is determined by a finite
number edges, namely those of B(r). For any configuration where 0

r↔ x, the
number of pivotal edges is ≤r since clearly any edge off the path between 0 and x

is not pivotal. Hence, we get

d

dp
Pp

(
0

r↔ x
) ≤ r

p
Pp

(
0

r↔ x
)
.

Summing over x ∈ B(r), we get

d

dp
Ep|Bint(r)| ≤ r

p
Ep|Bint(r)|



1874 G. KOZMA

or
d

dp
log Ep|Bint(r)| ≤ r

p
.

Assume by contradiction that G(r) ≥ ecr for some c > 0 and infinitely many r’s.
We get for p < pc

log Ep|Bint(r)| ≥ cr − r

p
(pc − p)

so for p ∈ (pc/(1 + c),pc) we have Ep|Bint(r)| → ∞ as r → ∞. This contradicts
the theorem of Aizenman and Barsky. �

LEMMA 2. For any transitive graph, any r > 0 and any λ > 0,

P
(|Bint(r)| > λG(r)2) ≤ 2e−cλ,

where c is an absolute constant.

PROOF. This is a standard corollary of Aizenman and Newman’s diagram-
matic bounds. Refer to [6], Section 6.3, for a complete treatment. The classic pic-
ture is as follows. We wish to calculate the nth moment of |Bint(r)|. For this, we
note that if 0 ↔ xi for i = 1, . . . , n then there exist y1, . . . , yn−1 and a tree de-
scribing the connection scheme U with n+ 1 leaves (corresponding to the vertices
0, x1, . . . , xn) and n − 1 inner points (corresponding to the vertices y1, . . . , yn−1)
all of which are of degree 3 such that for every edge of U , the corresponding ver-
tices are connected by an open path, and all such paths are edge-disjoint. For con-
venience, denote (z1, . . . , z2n) = (0, x1, . . . , xn, y1, . . . , yn−1) and let the vertices
of the tree U be the numbers {1, . . . ,2n} correspondingly.

Now, in our case the paths from 0 to xi are constrained to be of length ≤ r and
this constraint is carried over to all internal paths of our tree. Hence,

E
∣∣{(x1, . . . , xn) : 0

r↔ xi ∀i
}∣∣

≤ ∑
U

∑
z2,...,z2n

P
(
zi

r↔ zj for all edges (i, j) of U , disjointly
)

By BK ≤ ∑
U

∑
z2,...,z2n

∏
(i,j)∈U

P
(
zi

r↔ zj

)

= ∑
U

G(r)2n−1 = 1 · 3 · 5 · · · (2n − 3) · G(r)2n−1

≤ (2nG(r)2)n.

The proof is now complete as

P
(|Bint(r)| > λG(r)2) = P

(|Bint(r)|n > λnG(r)2n)
≤ E(|Bint(r)|n)

λnG(r)2n
≤

(
2n

λ

)n
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and setting n = �λ/4� we are done. �

The last general claim we wish to demonstrate before moving on to the prod-
uct of two trees is the invariance step in Schramm’s lemma. Recall the sketch
of the lemma and also the discussion in Section 1.3. The claim there is that for
any branching process with a time-reversible step, the resulting W is invariant to
the automorphisms of the tree T. We will now prove this fact, and we formulate
it in sufficient generality so that it can be used both for the original version of
Schramm’s lemma and for our purposes.

This is the only place in the paper where it matters which Cayley graph we are
talking about, so let us fix that all Cayley graphs are right Cayley graphs, that is,
if � is a finitely generated group and S a set of generators then the edges of the
Cayley graphs are {(g, gs) :g ∈ �, s ∈ S}.

DEFINITION 1. Let � be a finitely generated group and let S be a set of gen-
erators. Let μ be some discrete measure on � with μ(x) = μ(x−1). Let m ≥ 1 be
some integer. Let 0 < p < 1.

• Define T to be a regular tree of degree m + 1. We will use T also to denote the
set of vertices of T, and the edges will be denoted by E(T). Fix one element
of T, call it the root and denote it by r.

• Define π : T → � which is a random map (“the locations of the particles”). For
r the root of the tree T, we define π(r) = 0 where 0 is the identity element
of �. We continue inductively. Assume π(v) is already defined. For every child
w of v, we define π(w) = π(v)Xv,w where Xv,w are i.i.d. random variables
distributed like μ.

• Finally, define Schramm’s process W = W(�,S,μ,m,p) to be a random subset
of the edges of T defined by

(u,v) ∈ W ⇐⇒ π(u) ↔ π(v) ∀(u,v) ∈ E(T),

where g ↔ h denotes that g and h are connected in a p-percolation process
independent of the Xu,v on the (right) Cayley graph of � with respect to the set
of generators S.

LEMMA 3. For any �, S, μ, m and p as above, Schramm’s process is invariant
to the automorphisms of T.

PROOF. Denote the root of T by r and its children by v1, . . . ,vm+1. Let
ϕ : T → T be the automorphism that takes v1 �→ r and r �→ vm+1 but otherwise
preserves the order among children: the m children of v1 are mapped to v1, . . . ,vm

in order, v2, . . . ,vm+1 are mapped to the m children of vm+1 in order etc. For every
permutation of m + 1 elements σ , let ψσ : T → T be the automorphism permuting
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the children of r according to σ but otherwise preserving the order. Let H be the
group of automorphisms of T generated by ϕ and all ψσ .

It is straightforward to verify that for any automorphism θ of T and every r

there exists an η ∈ H which is identical to θ on the entire ball of radius r in T.
In other words, H is dense in the compact-open topology. This implies that it
is enough to show that the distribution of W is invariant to the action of H and
hence it is enough to show that it is invariant to the action of ϕ and ψσ . Verifying
ψσ is immediate, so we are left with showing that ϕW ∼ W where we define
(ϕW)(e) = W(ϕ−1(e)). It will be more convenient to verify that ϕ−1W ∼ W and
we will do so.

Write our probability space as �1 ×�2 where �1 is the probability space of the
branching random walk and �2 is the probability space of the percolation. Further,
write �1 as �E(T) where E(T) is the set of edges of T, with the measure being the
product measure μE(T). Any automorphism ϕ of T induces a measure preserving
map α :�1 → �1 by

α(ω)(x,y) =
{

ω(ϕ(x), ϕ(y)), ϕ preserves the orientation of (x,y),
ω(ϕ(y), ϕ(x))−1, otherwise.

The −1 on the bottom clause stands for inversion in the group �. Also we need to
explain what does it mean that “ϕ preserves the orientation of (x,y)”—this means,
when x is the father of y, that ϕ(x) is the father of ϕ(y). Of course, our ϕ only
reverses the orientation of one edge, (r,v1). α is measure preserving because the
measure μ is invariant to the operation −1. Slightly abusing notations we consider
α also as a map �1 × �2 → �1 × �2 acting only on the first coordinate.

We now define a second measure preserving map β :�1 × �2 → �1 × �2 as
follows: for any ω ∈ �1 we let f (ω) be an automorphism of the Cayley graph of
� given by

f (ω)v = ω(r,vm+1)
−1v,

where the product is in the group �—again we consider ω as an element of �E(T)

so ω(r,vm+1) is simply the position of the (m + 1)st child of the original particle.
We also consider f as acting on �2 (which is just the product space {0,1}E(�)) by
f ω2(v,w) = ω2(f

−1(v), f −1(w)). We now define β(ω1,ω2) = (ω1, f (ω1)ω2).
Since f (ω1) is measure preserving for any ω1, we get that β is measure preserving
by Fubini’s theorem.

The lemma is now finished because applying the measure preserving transfor-
mation α ◦ β to the probability space is the same as applying ϕ−1 to W. Let us
verify this formally. We consider W as a function �1 × �2 → {0,1}E(T) defined
by “W(ω1,ω2)(x,y) = 1 if

∏
ω1(xi ,xi+1) is connected to

∏
ω1(yi ,yi+1) in the

configuration ω2,” where for an element x ∈ T we define x0,x1, . . . to be the ele-
ments of the tree on the branch from r = x0 to x, and where the

∏
is in the group

� and is taken left-to-right, that is, ω(x0,x1)ω(x1,x2) · · · . We wish to show that
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W(α(β(ω))) = ϕ−1W(ω). But W(α(β(ω))(x,y) = 1 if
∏

α(β(ω))1(xi ,xi+1) is
connected to

∏
α(β(ω))1(yi ,yi+1) in α(β(ω))2. Now,

α(β(ω))1(x,y)

=
{

β(ω)1(ϕ(x), ϕ(y)), ϕ preserves the orientation of (x,y),
β(ω)1(ϕ(y), ϕ(x))−1, otherwise,

=
{

ω1(ϕ(x), ϕ(y)), ϕ preserves the orientation of (x,y)

ω1(ϕ(y), ϕ(x))−1, otherwise,

so ∏
α(β(ω))1(xi ,xi+1)

=

⎧⎪⎪⎨
⎪⎪⎩

ω1(r,vm+1)
−1

∏
i=1

ω1(ϕ(xi ), ϕ(xi+1)), x1 = v1,∏
i=0

ω1(ϕ(xi ), ϕ(xi+1)), otherwise.

Comparing to the branch from r to ϕ(x), we get∏
α(β(ω))1(xi ,xi+1) = ω1(r,vm+1)

−1
∏

ω1(ϕ(x)i, ϕ(x)i+1)

in both cases.
For the percolation configuration we have a similar calculation,

α(β(ω))2(v,w) = β(ω)2(v,w) = (f (ω1)ω2)(v,w)

= ω2(f (ω1)
−1v,f (ω1)

−1w)

= ω2(ω1(r,vm+1)v,ω1(r,vm+1)w).

We put the formulas for �1 and �2 together and get that W(α(β(ω)))(x,y) = 1
if and only if ω1(r,vm+1)

−1 ∏
ω1(ϕ(x)i, ϕ(x)i+1) and ω1(r,vm+1)

−1 ∏
ω1(ϕ(y)i ,

ϕ(y)i+1) are connected in the configuration ω2(ω1(r,vm+1)v,ω1(r,vm+1)w). The
terms ω1(r,vm+1) now cancel (recall the a right Cayley graph is invariant to left
translations) and we get that this happens if and only if

∏
ω1(ϕ(x)i, ϕ(x)i+1) is

connected to
∏

ω1(ϕ(y)i, ϕ(y)i+1) in ω2 which is exactly W(ω)(ϕ(x), ϕ(y)). In
other words

W(α(β(ω))(x,y) = W(ω)(ϕ(x), ϕ(y)) for all x and y,

which is exactly W(α(β(ω))) = ϕ−1W(ω) which shows that the distribution of W
is invariant to ϕ−1 and hence to ϕ. As explained, this shows that W is invariant
to a group of automorphisms dense in the compact-open topology, hence to all
automorphisms, proving the lemma. �
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3. The product of two trees.

LEMMA 4. At pc there is no infinite cluster for T × T .

PROOF. By [5], every nonamenable Cayley graph satisfies this property.
Hence, we need only show that T × T is a nonamenable Cayley graph. This how-
ever is easy. Any tree of degree d is the Cayley graph of the free product

Gd := Z/2Z ∗ · · · ∗ Z/2Z︸ ︷︷ ︸
d times

with the natural generators (namely one from every copy of Z/2Z). Of course if d

is even then one can simply take a free group with 1
2d generators. The product is

thus the Cayley graph of the group Gd × Gd . The claim of nonamenability is just
as easy. We follow [5] and say that a graph is nonamenable if there exists some c

such that for all finite A, |∂A| ≥ c|A|. Let therefore A ⊂ T × T be any finite set.
For any x ∈ T , denote by Ax the slice {y : (y, x) ∈ A}. Then, when Ax �= ∅,

|∂Ax | = (d − 2)|Ax | + 2,(5)

where ∂ is the edge boundary in the tree T . Equation (5) is a well-known property
of regular trees and may be readily proved by induction on |Ax |. Summing over x,
we get

|∂A| ≥ ∑
x

|∂Ax | >
∑
x

(d − 2)|Ax | = (d − 2)|A|

as needed. �

DEFINITION 2. We denote by � the group whose Cayley graph is T × T ,
namely Gd × Gd from the previous lemma.

The next lemma is the adaptation of Schramm’s argument to our setting.

LEMMA 5. For any x ∈ T × T ,

P(0 ↔ x) ≤ C|x|2(d − 1)−|x|/2.

PROOF. Let x = (x1, x2) and let ki = |xi | be the distances of the coordinates
of x from the root in the two trees. For any y = (y1, y2) ∈ T × T denote

L(y) = {(z1, z2) :d(z1, y1) = k1, d(z2, y2) = k2}.
Clearly |L(y)| = (d − 1)|x|. Recall the definition of Schramm’s process (Defini-
tion 1 on page 1875). First, we need a group and we take the group to be our �,
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the group whose Cayley graph is T × T . The next element in Schramm’s process
is a branching process with a time-reversible step μ. We take

μ(y) =
⎧⎨
⎩

1

|L(0)| , y ∈ L(0),

0, otherwise.

Clearly, μ(y) = μ(y−1), that is, is time-reversible. Finally, we need two parame-
ters, m the branching number (which we leave unspecified for a while) and p,
which we take to be pc(T × T ). Schramm’s process is now a random subset W of
the edges of a regular tree of degree m + 1 which we denote by T. The statement
of Lemma 3 now says

W is invariant to the automorphisms of T.

Examine now the parameter m—recall that Schramm’s process involves a branch-
ing random walk on T ×T where each particle splits into m children and then each
child makes one step of μ. For every m for which the branching process is transient
(i.e., with probability 1 only a finite number of particles return to any given point),
then the configuration W contains no infinite component. This is due to Lemma 4,
since the cluster of 0 is finite (with probability 1) and only a finite number of par-
ticles return to each of its points (again with probability 1). Let W be a subset of
edges of T, and denote by C(x) = C(x;W) the cluster of some x ∈ T in W, that is,
all y connected to x by a path of edges in W. Denote also deg x = |{y : (x,y) ∈ W}|,
the degree of x in W. We now define

M(x,y;W) =
⎧⎨
⎩

deg x
|C(x)| , y ∈ C(x) and |C(x)| < ∞,

0, otherwise.

Clearly, M is invariant to the automorphisms of T in the sense that M(x,y;W) =
M(ϕx, ϕy;ϕW) for any automorphism ϕ of T. A simple change of variables
known as the “mass transport principle,” see [5], equation (2.1), shows that∑

y∈T

EM(x,y;W) = ∑
y∈T

EM(y,x;W) ∀x ∈ T

(E here is with respect to W and we use the invariance of W too). Now, the left-
hand side is obviously just E(deg x · 1|C(x)|<∞) (the sum and the expectation may
be exchanged since M is positive). Since our clusters are finite a.s., the left-hand
side is simply E(deg x). The right-hand side, on the other hand, is the expected
average degree of C(x). However, T is a tree, and therefore C(x) is a finite tree
and it is well known (and easy to prove inductively) that the average degree of any
finite tree is <2. Hence, we get

E(deg x) < 2.
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What is the meaning of E deg x? Since our branching process consists of sending
m + 1 particles to random points in L(0), and all particles are identical, it means
that for a random point y ∈ L(0)

P(0 ↔ y) ≤ 2

m + 1
.(6)

However, the symmetries of the two trees show that for the y ∈ L(0), the probabil-
ities P(0 ↔ y) are all equal. Hence, we get (6) for any y ∈ L(0). This is the crux of
Schramm’s argument, and we need only to calculate an m for which the branching
process is still transient (ideally one might want to find the maximal such m, but
the following argument is not precise).

CLAIM. With the definitions above, for m = c
|x|2 (d − 1)|x|/2 the branching

process is transient.

PROOF. Examine some y = (y1, y2). Let z = (z1, z2) be a random point
in L(y). We wish to understand the distribution of |zi |. Clearly, z1 and z2 are
independent. Let us therefore examine z1. Going to distance k1 from y1 is equiva-
lent to making a nonbacktracking walk of distance k1. With probability 1

d
, the first

step is in the direction of 0. If this happens, then at each step we have probability
1

d−1 to step in the direction of 0. Once we did one step away from 0, we can never
go back. Therefore, the number of steps taken in the direction of 0 is dominated
by a geometric variable with expectation 1

d−2 . We get that for a given point u ∈ T
with |u| = l, the probability that the corresponding particle is in 0 can be bounded
by

P
(
ϕ(u)1 = 0

) ≤ P

(
l∑

i=1

Geomi ≥ lk1

2

)
= P

(�lk1/2�+l−1∑
i=1

Bini < l

)

≤ (d − 1)−�lk1/2�
l−1∑
i=0

( �lk1/2� + l − 1
i

)
≤ (

Ck1(d − 1)−k1/2)l
,

where Geomi are independent geometric variables with expectation 1
d−2 and Bini

are independent Bernoulli trials which give 0 with probability 1
d−1 and 1 with

probability 1 − 1
d−1 . The same calculation for the other tree gives

P
(
ϕ(u)2 = 0

) ≤ (
Ck2(d − 1)−k2/2)l

and since the two trees are independent we get

P
(
ϕ(u) = 0

) ≤ (
Ck1k2(d − 1)−|x|/2)l ≤ (

C1|x|2(d − 1)−|x|/2)l
.

Taking m with m · C1|x|2(d − 1)−|x|/2 < 1, we see that

E
(|{u ∈ T s.t. ϕ(u) = 0}|) ≤

∞∑
l=0

(
m · C1|x|2(d − 1)−|x|/2)l

< ∞.



PERCOLATION ON A PRODUCT OF TWO TREES 1881

Thus, the process is transient, proving the claim. With (6), this also finishes the
proof of Lemma 5. �

As explained in the Introduction, Lemma 5 shows that the triangle sum grows
only polynomially, and the next step is to show an “open triangle condition” [re-
call (4), page 1870] with “logarithmic opening.” Here is the precise formulation.

LEMMA 6. There exists some C1 such that for any r ≥ 2 and any w ∈ T × T

with |w| > C1 log r , ∇(w; r) ≤ 1
2 .

Recall that ∇(w; r) = ∑
u,v P(0

r↔ u)P(u ↔ v)P(v
r↔ w).

PROOF OF LEMMA 6. It will be convenient to replace the restriction that the
path between 0 and u is of length ≤ r with simply |ui | ≤ r (as before, u1 and u2
are the two coordinates and |ui | is their distance from the root of T ), and similarly
|vi | ≤ r + |w|. Denote s = r + |w|. Applying Lemma 5, we get

∇(w; r) = ∑
u,v

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
)

≤ C
∑

|u|,|v|≤s

|u|2(d − 1)−|u|/2|u − v|2(d − 1)−d(u,v)/2

(7)
× |v − w|2(d − 1)−d(v,w)/2

≤ Cs6
∑

|u1|,|u2|,|v1|,|v2|≤s

(d − 1)−(|u|+d(u,v)+d(v,w))/2

and at this point the sum decomposes into a product of one term for each tree.
Totally we get

∇(w; r) = Cs6
( ∑

|u1|,|v1|≤s

(d − 1)−(|u1|+d(u1,v1)+d(v1,w1))/2
)2

.

Estimating the terms in the last expression is straightforward. The subtree gen-
erated by 0, u1, v1 and w1 may take one of the 3 shapes in Figure 2. Take
the first (leftmost) case as an example. Denote the two branch points by a and

FIG. 2. 3 ways 0, u, v and w may be connected in the tree.
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b so that |u1| = |a| + d(u1, a), d(u1, v1) = d(u1, a) + d(a, b) + d(b, v1) and
d(v1,w1) = d(v1, b) + d(b,w1). We get

1
2

(|u1| + d(u1, v1) + d(v1,w1)
) = d(a,u1) + d(b, v1) + 1

2 |w1|
(in the second case of Figure 2 you get a ≥ rather than an =). Fixing a and sum-
ming over all u1 gives ∑

u1 in the subtree
of a,|u1−a|≤s

(d − 1)−d(a,u1) = s.

Similarly, fixing b and summing over v1 gives another factor of s. Finally, a and b

have ≤s possibilities each. Hence, we get∑
u1,v1 connected as
in the first diagram

(d − 1)−(|u1|+d(u1,v1)+d(v1,w1))/2 ≤ s4(d − 1)−|w1|/2.

A similar calculation works for the other 2 diagrams and we get∑
|u1|,|v1|≤s

(d − 1)−(|u1|+d(u1,v1)+d(v1,w1))/2 ≤ 3s4(d − 1)−|w1|/2.

The sum over u2, v2 and w2 is the same, and multiplying we get∑
|u|,|v|≤s

(d − 1)−(|u|+d(u,v)+d(v,w))/2 ≤ 9s8(d − 1)−|w|/2(8)

(we remark this partial step in the computation as it will be needed below in
Lemma 10. Note that it works for an arbitrary s and not just for s = r + |w|).
Inserting into (7), we end up with

∇(w; r) ≤ C(r + |w|)14(d − 1)−|w|/2

and the lemma is finished: with a choice of C1 sufficiently large we get ∇(w; r) ≤
1
2 . �

LEMMA 7. Let C1 be as in Lemma 6. Then for any r ≥ 2 and any w with
|w| ≥ C1 log r ,

E
(∣∣{(x, y) : 0

r↔ x, xw
r↔ y,0 � y

}∣∣) ≥ 1
2G(r)2,

where xw stands for the product in the group � whose Cayley graph is T × T .

Note that in the restriction 0 � y we do not require anything from the length of
the path. The restrictions that the path is ≤r apply only to the paths from 0 to x

and from xw to y.
The proof is identical to that of [11], Lemma 3.2, and we include it mainly for

completeness.
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PROOF OF LEMMA 7. By multiplying with x−1 from the left and then doing
the change of variables x−1y �→ y, x−1 �→ x, we see that it is enough to show

E
(∣∣{(x, y) : 0

r↔ x,w
r↔ y,0 � w

}∣∣) ≥ 1
2G(r)2.

Fix some x and y. Now let us condition on the cluster of 0, C(0). We get

P
(
0

r↔ x,w
r↔ y,0 � w

)
= ∑

admissable A,w/∈A

P
(

C(0) = A
)
P

(
w

r↔ y | C(0) = A
)
,

where “A admissible” means that A is a connected subgraph of T × T containing
0, x, and a path of length ≤ r between 0 and x. Note that for admissible A with
w /∈ A we have P(w

r↔ y | C(0) = A) = P(w
r↔ y off A) where the event {w r↔ y

off A} means that there exists an open path of length at most r connecting w to y

which avoids the vertices of A. At this point, we can remove the condition w /∈ A

since in this case the event {w r↔ y off A} is empty. We get

P
(
0

r↔ x,w
r↔ y,0 � w

) = ∑
admissable A

P
(

C(0) = A
)
P

(
w

r↔ y off A
)
.

Now, obviously

P
(
0

r↔ x
)
P

(
w

r↔ y
) = ∑

admissable A

P
(

C(0) = A
)
P

(
w

r↔ y
)
,

and we subtract these two equalities and get

P
(
0

r↔ x,w
r↔ y,0 � w

)
= P

(
0

r↔ x
)
P

(
w

r↔ y
)

(9)

− ∑
admissable A

P
(

C(0) = A
)
P

(
w

r↔ y only on A
)
,

where the event {w r↔ y only on A} means that there exists an open path between
w and y of length at most r and any such path must have a vertex in A. Denoting
such a vertex by v we get that {w r↔ v} ◦ {v r↔ y}. Hence, for any subgraph A of
T × T we have

P
(
w

r↔ y only on A
) ≤ ∑

v∈A

P
({

w
r↔ v

} ◦ {
v

r↔ y
})

.

Putting this into the second term of the right-hand side of (9) and changing the
order of summation gives that we can bound this term from above by

The 2nd term in (9) ≤ ∑
v∈T ×T

P
({

v
r↔ w

} ◦ {
v

r↔ y
}) ∑

A admissible,v∈A

P
(

C(0) = A
)

= ∑
v∈T ×T

P
({

v
r↔ w

} ◦ {
v

r↔ y
})

P
(
0

r↔ x,0 ↔ v
)
.
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Now, if 0
r↔ x and 0 ↔ v then there exists u such that the events 0

r↔ u, u ↔ v

and u
r↔ x occur disjointly. We use the BK inequality and get

≤ ∑
u,v∈T ×T

P
(
v

r↔ w
)
P

(
v

r↔ y
)
P

(
0

r↔ u
)
P(u ↔ v)P

(
u

r↔ x
)
.

Let us now sum (9) over x and y and use the estimate above for the second term
on its right-hand side. We get∑

x,y∈T ×T

P
(
0

r↔ x,w
r↔ y,0 � w

)
(10)

≥ G(r)2 − G(r)2
∑
u,v

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
)

(please record this inequality in this form as we will need it later in Lemma 10).
With Lemma 6, we are done. �

LEMMA 8. There exists some constant C1 such that G(2r) ≥ r−C1G(r)2 for
all r ≥ 2.

PROOF. Fix w as in Lemma 7—to be more precise, let w be of minimal dis-
tance from 0 satisfying the conclusion of Lemma 7. The proof uses a modification
argument, namely we show that by a modification that “costs” no more than rC ,

one gets from the event of Lemma 7 to the event {0 2r+|w|←→ y}, summing over the
probabilities of which would allow to lower bound G(2r + |w|). This is enough
because, clearly,

Bint(2r + |w|) ⊂ ⋃
x∈Bint(2r)

B(x, |w|)

[note that the ball on the right, B(x, |w|), is in the original graph and not in the
intrinsic metric] and hence G(2r + |w|) ≤ G(2r) · |B(|w|)| ≤ G(2r) · 2d |w| and
since |w| ≤ C log r ,

G(2r) ≥ r−CG(2r + |w|)
so it is enough to lower bound G(2r + |w|). Returning to the modification, the
process would be to take the clusters containing the path from 0 to x and from xw

to y and connect them by the shortest possible path. Formally, we do as follows.
Let A be the collection of all triplets (π, x, y) such that x, y ∈ T × T and π is
some configuration on T × T such that in π we have 0

r↔ x, xw
r↔ y and 0 � y.

Let B be the collection of all couples (π, y) where π is some configuration such

that 0
2r+|w|←→ y. We shall construct a ϕ :A → B with the following two properties:
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FIG. 3. The construction of the modification ϕ.

• ϕ is no more than rC to 1.
• The Radon–Nikodym derivative of ϕ is bounded below by r−C (we consider A

and B as measure spaces with the counting measure for x and y and the usual
product measure for π ).

Clearly, once ϕ is constructed, we would get

G(2r + |w|) = |B| ≥ r−C |A| ≥ r−C · 1
2G(r)2,

where the last inequality is by Lemma 7 and where |A| and |B| stand for the total
measure of A and B , respectively. So we need only construct ϕ.

The construction is as follows. Let (π, x, y) ∈ A. Let γ be a shortest path from x

to xw (choose γ arbitrarily, e.g., first walk on the first tree and then on the second).
Let e be the last point on γ which is in C(x). Let f be the first point on γ after e

which is in C(xw). Let π ′ be the configuration one gets by opening every edge of
π on the piece of γ between e and f . See Figure 3. Define ϕ(π, x, y) = (π ′, y).
Clearly, the Radon–Nikodym derivative is equal to

(
p

1 − p

)#closed edges in (e,f )

≥
(

p

1 − p

)|γ |
≥

(
p

1 − p

)C log r

= r−C,

where p = pc(T ×T ). Recall that |γ | ≤ C log r by Lemma 7. To show that ϕ is no
more than rC to 1, examine one couple (π ′, y) ∈ B . If ϕ(x, y,π) = (π ′, y), then all
edges between e and f must be pivotal for the connection 0 ↔ y. Since there can

be no more than 2r +|w| edges which are pivotal for the connection 0
2r+|w|←→ y, we

see that e has no more than 2r + |w| possibilities. Since |e − x| ≤ |w|, we see that
x has no more than (d − 1)|w| ≤ (d − 1)C log r = rC possibilities. Once x is fixed
so is γ . The original configuration on γ has 2|w| ≤ rC possibilities. The shows that
ϕ is no more than rC to 1 and finishes the lemma. �

LEMMA 9. G(r) ≤ CrC .

PROOF. This is a more-or-less direct corollary of Lemmas 1 and 8. Let C1

be the constant from Lemma 8. Assume by contradiction that for some r , G(r) >
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(4r)C1 . Then by applying Lemma 8 repeatedly,

G(2r) ≥ r−C1G(r)2 > (24r)C1,

G(4r) ≥ (2r)−C1G(2r)2 > (28−1r)C1,

...

G(2k+1r) ≥ (2kr)−C1G(2kr)2 > (22k+2−∑k
l=1 l2k−l

r)C1 > (22k+1
r)C1,

which means that G(s) increases exponentially in s, contradicting Lemma 1. �

We now repeat the arguments of Lemmas 7–9, but use Lemma 9 as an input to
get better results.

LEMMA 10. There exists some constant C1 such that for any r ≥ 3 and any w

with |w| ≥ C1 log log r ,

E
(∣∣{(x, y) : 0

r↔ x, xw
r↔ y,0 � y

}∣∣) ≥ 1
2G(r)2.

PROOF. We start the calculation from (10), which, we recall, stated that∑
x,y∈T ×T

P
(
0

r↔ x,w
r↔ y,0 � w

)

≥ G(r)2 − G(r)2
∑
u,v

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
)
.

Recall also that the sum on the right-hand side is denoted by ∇(w; r). We now
separate the sum into two parts, according to whether max{|u|, |v|} ≤ log2 r or
not. The first case is calculated exactly as in Lemma 7, as follows∑

|u|,|v|≤log2 r

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
)

By Lemma 5 ≤ ∑
|u|,|v|≤log2 r

|u|2d(u, v)2d(v,w)2(d − 1)−(|u|+d(u,v)+d(v,w))/2

≤ C|w|2 log12 r
∑

|u|,|v|≤log2 r

(d − 1)−(|u|+d(u,v)+d(v,w))/2

By (8) ≤ C|w|2 log12 r · 9(log2 r)8(d − 1)−|w|/2

= C|w|2(d − 1)−|w|/2 log28 r

and this is ≤ 1
4 if only C1 is sufficiently large. Now assume max{|u|, |v|} > log2 r .

As u and v are symmetric, we may assume |u| > log2 r . Let L be the level of T ×T
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which contains u, namely L = {z : z1 = u1, z2 = u2}. Clearly, |L| = (d − 1)|u|. By
Lemma 9, ∑

z∈L

P
(
0

r↔ z
) ≤ G(r) ≤ CrC.

But L is completely symmetric, so for any z ∈ L, P(0
r↔ z) = P(0

r↔ u). We get

P
(
0

r↔ u
) = 1

|L|
∑
z∈L

P
(
0

r↔ z
) ≤ CrC

(d − 1)|u| .

We need to compare this estimate to the estimate of (8) from Lemma 7 which we
also used above, namely to (d − 1)−|u|/2. So we write this as

P
(
0

r↔ u
) ≤ (d − 1)−|u|/2 · CrC

(d − 1)(log2 r)/2
≤ (d − 1)−|u|/2 · Cr−15.

This allows us to write∑
u,v

|u|>log2 r

P
(
0

r↔ u
)
P(u ↔ v)P

(
v

r↔ w
)

≤ Cr−15 · Cr4
∑

|u|,|v|≤r

(d − 1)−(|u|+d(u,v)+d(v,w))/2

(8)≤ Cr−11 · Cr8(d − 1)−|w|/2

and we see that this part of the sum is in fact negligible (if r is sufficiently large or
if C1 is chosen sufficiently large). This shows that ∇(w; r) ≤ 1

2 and concludes the
lemma. �

LEMMA 11. G(r) ≤ Cr(log r)C .

PROOF. This is nothing more than repeating the arguments of Lemmas 8
and 9. Let us verify some of the details. We first show

G(2r) ≥ G(r)2

r logC r
,(11)

that is, the analog of Lemma 8. We again construct a ϕ :A → B (A and B being
exactly as in Lemma 8) which is no more than r logC r to 1, and with the Radon–
Nikodym derivative bounded below by log−C r . The construction of ϕ is identical,
that is, we take the shortest path γ from x to xw, let e be the last point of C(x) on
γ and f be the first point of C(xw) on γ after e. This time, though, because |w| ≈
log log r , the Radon–Nikodym derivative of ϕ will be ≥ (p/(1 −p))|w| ≥ log−C r .
To invert ϕ, we need to find e, x and ω. e still has 2r + |w| possibilities, but
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given e, x has only (d − 1)|w| ≤ logC r possibilities, and ω has only 2|w| ≤ logC r

possibilities. This shows (11).
Concluding from (11) the lemma is identical to the proof of Lemma 9—if

G(r) > r(4 log r)C for some r then it starts growing exponentially—and we will
omit it. �

LEMMA 12. In the extrinsic metric,

E
(

C(0) ∩ B(r)
) ≤ Cr3.

The idea is quite simple. We consider C(0) as a branching process embedded
into T × T and show that it escapes from 0 with “positive speed.” Our “time”
for the branching process is the intrinsic distance dint(0, x) so escaping in positive
speed mean simply that dint(0, x) ≈ |x| (this is step 5 of the sketch on page 1871).
Here, are the details. It is enough to prove:

LEMMA 13. E((Bint(4r2) \ Bint(r
2)) ∩ B(r)) ≤ Cr−2.

PROOF OF LEMMA 12 GIVEN LEMMA 13. We apply Lemma 13 with the
parameter rLemma 13 = r2k and get

E
((

Bint(4
k+1r2) \ Bint(4

kr2)
) ∩ B(r)

)
≤ E

((
Bint(4

k+1r2) \ Bint(4
kr2)

) ∩ B(r2k)
) ≤ C

r24k
,

which we sum over k to get

E
((

C(0) \ Bint(r
2)

) ∩ B(r)
) ≤ C

r2 .

For the interior part, we just use Lemma 11 and get

E
(
Bint(r

2) ∩ B(r)
) ≤ E(Bint(r

2)) ≤ Cr2 logC r

proving the claim. �

PROOF OF LEMMA 13. Clearly, we may assume r is sufficiently large. We
shall define a sequence of subsets of C(0), {∂m}∞m=1 (here ∂m is just a notation).
Intuitively, you should consider ∂m simply as ∂Bint(mr)—I could not make the
proof work with this definition of ∂m so a somewhat more complicated, inductive
definition will be used [formally also ∂m is a set of vertices while ∂Bint(mr) is a
set of edges]. It will preserve some of the feeling of ∂Bint(mr) as every v ∈ ∂m will
satisfy 1

2mr ≤ dint(0, v) ≤ mr , and since for any x ∈ C(0) there will be a path from
0 to x visiting each ∂m in turn and spending ≈r steps between any two levels. This
path will not be a geodesic in C(0) (i.e., a shortest possible path), but this is not
important.
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During the induction process, we shall expose parts of C(0). We shall denote the
exposed part by Em [which is formally a collection of edges of C(0) and of ∂C(0),
though we shall say about a vertex v that it is “in Em” if there exists some path of
open edges in Em from 0 to v]. ∂m will be the “boundary of Em” in the sense that
any vertex of ∂m is in Em, and any vertex in Em \ ∂m is fully exposed, that is, all
edges coming out of it (whether open or closed) are in Em. We start with ∂0 = {0}
and E0 having no edges. Note that saying about Em that it is “exposed” is not just
a name, it carries some meaning, namely that for any m and any set of edges A,
one can infer whether Em = A or not merely by examining the states of the edges
of A. We will keep this property through the induction.

1. The construction of ∂m. Assume Em has already been calculated. Let y ∈ ∂m.
We will now construct the “children of y” which will belong to ∂m+1. For this
purpose, let Q = Q(y) be the set of all vertices q satisfying that q is connected to
y by an open path of length ≤ r off Em (we are making the exception that y is in
Em, but no other vertex of the path can be in Em, this is the precise meaning of
“off” here). Clearly, E(Q) ≤ G(r) and by Lemma 11 we get

E(Q) ≤ C1r(log r)C.(12)

We make at this point the convention that every formula involving Q is in fact con-
ditioned over Em. For example, (12) should be read as E(Q|Em) ≤ C1r(log r)C .
We need to examine two special parts of Q—the vertices “close to y” and the
vertices “beyond y.” For the first part, let � be defined by

|B(�)| ≤ √
r

and � being the maximal with this property (note that this is the usual ball in our
original graph T × T , and we have � ≈ log r). Clearly,

E
(|Q ∩ B(y, �)|) ≤ |B(y, �)| ≤ √

r.(13)

For the second part, fix some k1 and k2, and let L be the corresponding level, that
is,

L = {z :d(zi, yi) = ki, i = 1,2}.
A straightforward calculation shows that∣∣{z ∈ L : |z| < |y|}∣∣ ≤ |L|e−c|k|.

However, L is completely symmetric with respect to y. Therefore,

E
∣∣{z ∈ L : z

r↔ y and |z| < |y|}∣∣ ≤ G(r)
|{z ∈ L : |z| < |y|}|

|L| ≤ G(r)e−c|k|.

Requiring that the connection is off Em only makes things worse, so

E
∣∣{z ∈ Q ∩ L : |z| < |y|}∣∣ ≤ G(r)e−c|k|.(14)
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Summing this over all |k| > � gives

E
∣∣{z ∈ Q \ B(y, �) : |z| < |y|}∣∣ ≤ ∑

|k|>�

G(r)e−c|k| ≤ Ce−c�G(r) ≤ Cr1−c.(15)

We may sum up (13) and (15) as

E
∣∣{z ∈ Q : |z| < |y| + �}∣∣ ≤ C2r

1−c.(16)

Equipped with the estimates (12) and (16) we may now proceed to define an im-
portant element of the construction, the parameter s. Define Qs = Qs(y) similarly
to Q but with the requirement that the shortest open path (off Em) has length
exactly s [below we will denote this by “doff Em(y, z) = s” for short]. We get
Q = ⋃· r

s=1 Qs . This means that for at least 2
3 of the s between 1

2r and r we must
have

E|Qs | ≤ 6C1(log r)C(17)

and similarly,

E
∣∣{z ∈ Qs : |z| < |y| + �}∣∣ ≤ 6C2r

−c.(18)

Of course, the set of s which satisfy (17) may be different than the set of s which
satisfy (18), but they intersect and we choose one s which satisfies both [sometimes
we will denote it by s(y) for clarity]. We note that the set of such “good” s is a
random set which depends on Em and on y, and this is exactly why we cannot
define ∂m = ∂Bint(0,mr).

We may now complete the description of the construction. We define Em+1 to
be the set of all edges (z, x) for all z satisfying that there exists a y ∈ ∂m such that
doff Em(y, z) < s(y); and all x which are a neighbor of z. We define ∂m+1 to be the
boundary of Em+1 in the sense above. We get that for any z ∈ ∂m+1 there exists
some y ∈ ∂m such that the doff Em(y, z) = s(y) (but not vice versa—see Figure 4).

FIG. 4. The point z has distance exactly s(y) from y but is not included in ∂m+1 because its
distance from y′ is less than s(y′).
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It will be convenient to note at this point that

Bint
(1

2mr
) ⊂ Em ⊂ Bint(mr)(19)

(here Em is considered as a set of vertices). This is a simple consequence of the
fact that all s(y) for all y are in [1

2r, r]. Therefore the direction Em ⊂ Bint(mr) is
immediate. For the other direction let x satisfy that dint(x,Em) ≤ 1

2r . Let y ∈ ∂m be
the closest point in Em to x. Then there exists an open path of length ≤ 1

2r < s(y)

off Em from y to x. Hence, x ∈ Em+1 by definition. Hence,

Bint
(1

2(m + 1)r
) = {

x :dint
(
x,Bint

(1
2mr

)) ≤ 1
2r

}
inductively ⊂ {

x :dint(x,Em) ≤ 1
2r

}
by the argument above ⊂ Em+1

showing (19).

2. The number of bad paths. Let x ∈ ∂m be some vertex. Then there exists a
sequence 0 = x0, . . . , xm = x with xi ∈ ∂i and such that for each i = 0, . . . ,m − 1
we have that doff Ei

(xi, xi+1) = s(xi). This sequence might not be unique but this
is not important. We call such sequences “∂-paths.”

DEFINITION 3. We say that a given ∂-path x0, . . . , xm is bad if there are >

m/
√

log r values of i ∈ {0, . . . ,m − 1} such that |xi+1| < |xi | + �.

Let us estimate the expected number of bad ∂-paths. Let I ⊂ {0, . . . ,m − 1} be
some set of indices with |I | > m/

√
log r . Let E(I ;m) be the expected number of

∂-paths such that |xi+1| < |xi |+ � for every i ∈ I . We get, directly from the choice
of s above,

E(I ;m) ≤
{

E(I ;m − 1) · C(log r)C, m − 1 /∈ I ,
E(I \ {m − 1};m − 1) · Cr−c, m − 1 ∈ I ,

(20)

[seeing (20) is a standard exercise in the “off method”—one conditions on Em−1
and examines each path individually. Because being connected off Em−1 does not
examine the edges of Em−1 at all, the estimates (17) and (18) hold after the con-
ditioning. Here is where we need the property that Em is “exposed,” i.e., that con-
ditioning over Em = A gives no information on edges not in A]. We apply (20)
recursively and get

E(I ;m) ≤ (C(log r)C)m−|I |(Cr−c)|I |

and since |I | > m/
√

log r ,

≤ exp
(
m

(
C log log r − c

√
log r

))
.
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Summing over all I can be bounded roughly by multiplying this by 2m, and we
end with

E|{bad ∂-paths}| ≤ exp
(
m

(
C − c

√
log r

))
(21)

and in particular we get the same estimate for the probability that even one bad
∂-path exists.

3. The contribution of the bad part. Examine a good path x0, . . . , xm. We know it
contains < m/

√
log r “bad” i for which |xi+1| < |xi |+ �. We still need to estimate

how much “damage” can each such bad i cause, that is, upper bound |xi | − |xi+1|.
For this purpose, we return to (14), which shows that

E
∣∣{z ∈ Q : |z| < |y| − j}∣∣ ≤ ∑

|k|>j

G(r)e−c|k| ≤ G(r)e−cj ∀y ∈ ∂i ∀i

and in particular there exists some constant C3 such that

E
∣∣{z ∈ Q : |z| < |y| − C3 log r}∣∣ ≤ r−10 ∀y ∈ ∂i ∀i.(22)

We now wish to sum over all v, so denote by BE (for “bad edges”) the set of all
(y, z) with y ∈ ∂i , i = 0, . . . ,m−1, and z ∈ Qs(y)(y) such that |z| < |y|−C3 log r .
So we want to estimate P(BE �= ∅). Recall that ∂i ⊂ Bint(ir) (19). Recall also our
convention about Q which stated that (22) in fact holds also after conditioning
over Ei . We write

P(BE �= ∅) ≤ E(|BE|) ≤
m−1∑
i=0

∑
y,z

EP
(
(y, z) ∈ BE|Ei

)

≤
m−1∑
i=0

∑
y

E
(
r−10

P(y ∈ ∂i |Ei)
)

= r−10
m−1∑
i=0

E|∂i | ≤ r−10G(mr)

≤ mr−9(logmr)C.

4. Wrapping it all up. Let m ∈ {r, . . . ,8r}. Our analysis of bad ∂-paths con-
cluded with (21) which states that

P(∃ bad ∂-path for some m ∈ {r, . . . ,8r})
≤ (7r + 1) exp

(
r
(
C − c

√
log r

)) ≤ Cr−7.

Denote this event by B1. From part 3 of the proof, we have that, with probability
≤Cr−7, there exists some ∂-path and some i such that |xi+1| ≤ |xi | − C3 log r .
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Denote this event by B2 and B = B1 ∪ B2. If ¬B happened (the “good” case), then
for every x ∈ ∂m we have

|x| ≥ �m − m√
log r

· C3 log r ≥ cr log r

for r sufficiently large.
We now move from x ∈ ∂m to some arbitrary x ∈ Bint(4r2) \ Bint(r

2). Let m0
be the first m such that x ∈ Em+1, and let y ∈ ∂m be the closest point to x, so that
dint(y, x) ≤ r . Recall (19) which stated that Bint(

1
2mr) ⊂ Em ⊂ Bint(mr). We get

that m0 ∈ {r, . . . ,8r}, and therefore (still assuming ¬B) |y| ≥ cr log r so

|x| > |y| − d(y, x) ≥ cr log r − r.

This finishes the lemma, as we see that (Bint(4r2) \ Bint(r
2)) ∩ B(r) can be non-

empty only if the bad event B happened. On the one hand, by Lemma 2 we see
that

E
(|Bint(4r2)| · 1{|Bint(4r2)| > C(log r)G(4r2)2}) ≤ Cr−2

and by Lemma 11 C(log r)G(4r2)2 ≤ C(log r)Cr4 ≤ Cr5. We get

E
((

Bint(4r2) \ Bint(r
2)

) ∩ B(r)
)

≤ E
(|Bint(4r2) · 1{|Bint(4r2)| > Cr5}) + Cr5 · P(B)

≤ Cr−2,

which proves Lemma 13 and hence Lemma 12. �

PROOF OF THEOREM 1. By Lemma 12 and the fact that every u has (d −1)|u|
clones,

P(0 ↔ u) ≤ C|u|3(d − 1)|u|.(23)

With this we write

∇ = ∑
u,v

P(0 ↔ u)P(u ↔ v)P(v ↔ 0)

by (23) ≤ ∑
u,v

|u|3d(u, v)3|v|3(d − 1)−|u|−d(u,v)−|v|

as in Lemma 6 ≤
(
C

∑
u1,v1

|u1|3d(u1, v1)
3|v1|3(d − 1)−|u1|−d(u1,v1)−|v1|

)2

,

where the last sum is over u1 and v1 in the tree T (and not in T × T ). Denote
by a the point where the paths from 0 to u1 and from 0 to v1 split. Then |u1| =
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|a| + d(a,u1), d(u1, v1) = d(u1, a) + d(a, v1) and |v1| = |a| + d(a, v1) so all in
all ∑

u1,v1

(|u1|d(u1, v1)|v1|)3(d − 1)−|u1|−d(u1,v1)−|v1|

≤ ∑
u1,v1

(|u1|d(u1, v1)|v1|)3(d − 1)−2|a|−2d(a,v1)−2d(a,v1)

≤ C
∑
u1,v1

(|a|d(a,u1)d(a, v1))
6(d − 1)−2|a|−2d(a,v1)−2d(a,v1).

Fixing a we may sum over v1 in the subtree of a and get
∑

d(a, v1)
6(d −

1)−2d(a,v1) which is finite and independent of a. The sum over the u1 in the sub-
tree of a gives an identical contribution. Finally, we sum over a and get a third
contribution identical to the previous two. Hence, this sum is finite and so is ∇ .

�
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