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Let Sn be the permutation group on n elements, and consider a random
walk on Sn whose step distribution is uniform on k-cycles. We prove a well-
known conjecture that the mixing time of this process is (1/k)n logn, with
threshold of width linear in n. Our proofs are elementary and purely proba-
bilistic, and do not appeal to the representation theory of Sn.

1. Introduction.

1.1. Main result. Let Sn be the group of permutations of {1, . . . , n}. Any
permutation σ ∈ Sn has a unique cycle decomposition, which partitions the set
{1, . . . , n} into orbits under the natural action of σ . The cycle structure of σ is
the integer partition of n associated with this set partition, in other words, the or-
dered sizes of the cycles (blocks of the partition) ranked in decreasing size. It is
customary not to include the fixed points of σ in this structure. For instance, the
permutation

σ =
(

1 2 3 4 5 6 7
4 2 6 7 3 5 1

)

has 3 cycles, (1 4 7)(2)(3 6 5), so its cycle structure is (3,3) (and one fixed
point which does not appear in this structure). A conjugacy class � ⊂ Sn is the set
of permutations having a given cycle structure. Let |�| denote the support of �,
that is, the number of nonfixed-points of any permutation σ ∈ �. In what follows
we deal with the case where � consists of a single k-cycle, in which case |�| = k

(see, however, Remark 2). It is well known and easy to see that in this case, if k

is even, then � generates Sn, while if k > 2 is odd, then � generates the alternate
group An of even permutations. Let (πt , t ≥ 0) be the continuous-time random
walk associated with (Sn,�). That is, let γ1, γ2, . . . be a sequence of i.i.d. elements
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uniformly distributed on �, and let (Nt , t ≥ 0) be an independent Poisson process
with rate 1; then we take

πt = γ1 ◦ · · · ◦ γNt ,(1)

where γ ◦ γ ′ indicates the composition of the permutations γ and γ ′. (πt , t ≥ 0)

is a Markov chain on Sn which converges to the uniform distribution μ on Sn

when |�| is even, and to the uniform distribution on An when |�| > 2 is odd.
In any case we shall write μ for that limiting distribution. We shall be interested
in the mixing properties of this process as n → ∞, as measured in terms of the
total variation distance. Let pt(·) be the distribution of πt on Sn, and let μ be the
invariant distribution of the chain. Let

d(t) = ‖pt(·) − μ‖ = 1

2

∑
σ∈Sn

|pt(σ ) − μ(σ)|,

where d(t) is the total variation distance between the state of the chain at time t and
its limiting distribution μ. (Below, we will also use the notation ‖X −Y‖ where X

and Y are collections of random variables with laws pX,pY to mean ‖pX − pY ‖.)
The main goal of this paper is to prove that the chain exhibits a sharp cutoff, in

the sense that d(t) drops abruptly from its maximal value 1 to its minimal value 0
around a certain time tmix, called the mixing time of the chain. (See [6] or [11] for
a general introduction to mixing times.) Note that if � is a fixed conjugacy class of
Sn and m > n, � can also be considered a conjugacy class of Sm by simply adding
m−n fixed points to any permutation σ ∈ �. With this in mind, our theorem states
the following:

THEOREM 1. Let k ≥ 2 be an integer, and let �k be the conjugacy class of Sn

corresponding to k-cycles. The continuous time random walk (πt , t ≥ 0) associ-
ated with (Sn,�k) has a cutoff at time tmix := (1/k)n logn, in the sense that for
any ε > 0, there exist Nε,k,Cε,k > 0 large enough so that for all n ≥ Nε,k ,

d(tmix − Cε,kn) > 1 − ε,(2)

d(tmix + Cε,kn) < ε.(3)

As explained in Section 1.2 below, this result solves a well-known conjecture
formulated by several people over the course of the years.

REMARK 2. Theorem 1 can be extended, without a significant change in the
proofs, to cover the case of general fixed conjugacy classes �, with k = |�| > 2
independent of n. In order to alleviate notation, we present here only the proof for
k-cycles. A more delicate question, that we do not investigate, is what growth of
k = k(n) is allowed so that Theorem 1 would still be true in the form

d
(
tmix(1 − δ)

)
> 1 − ε,(4)

d
(
tmix(1 + δ)

)
< ε?(5)
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The lower bound in (4) is easy. For the upper bound in (5), due to the birthday
problem, the case k = o(

√
n) should be fairly similar to the arguments we develop

below, with adaptations in several places, for example, in the argument follow-
ing (32); we have not checked the details. Things are likely to become more deli-
cate when k is of order

√
n or larger. Yet, we conjecture that (5) holds as long as

k = o(n).

1.2. Background. This problem has a rather long history, which we now
sketch. Mixing times of Markov chains were studied independently by Aldous [1]
and by Diaconis and Shahshahani [7] at around the same time, in the early 1980s.
Diaconis and Shahshahani [7], in particular, establish the existence of what has
become known as the cutoff phenomenon for the composition of random transpo-
sitions. Random transpositions is perhaps the simplest example of a random walk
on Sn and is a particular case of the walks covered in this paper, arising when the
conjugacy class � contains exactly all transpositions. The authors of [7] obtained
a version of Theorem 1 for this particular case (with explicit choices of C2,ε for
a given ε). As is the case here, the hard part of the result is the upper-bound (3).
Remarkably, their solution involved a connection with the representation theory
of Sn, and uses rather delicate estimates on so-called character ratios.

Soon afterwards, a flurry of papers tried to generalize the results of [7] in the
direction we are taking in this paper, that is, when the step distribution is uniform
over a fixed conjugacy class �. However, the estimates on character ratios that are
needed become harder and harder as |�| increases. Flatto, Odlyzko and Wales [9],
building on earlier work of Vershik and Kerov [21], obtained finer estimates on
character ratios and were able to show that mixing must occur before (1/2)n logn

for |�| fixed, thus giving another proof of the Diaconis–Shahshahani result when
|�| = 2. (Although this does not appear explicitly in [9], it is recounted in Di-
aconis’s book [6], page 44.) Improving further the estimates on character ratios,
Roichman [14, 15] was able to prove a weak version of Theorem 1, where it is
shown that d(t) is small if t > Ctmix for some large enough C > 0. In his result,
|�| is allowed to grow to infinity as fast as (1 − δ)n for any δ > 0. To our knowl-
edge, it is in [15] that Theorem 1 first formally appears as a conjecture, although
we have no doubt that it had been privately made before. (The lower bound for ran-
dom transpositions, which is based on counting the number of fixed points in πt ,
works equally well in this context and provides the conjectured correct answer in
all cases.) Lulov [13] dedicated his Ph.D. thesis to the problem, and Lulov and Pak
[12] obtained a partial proof of the conjecture of Roichman, in the case where |�|
is very large, that is, greater than n/2. More recently, Roussel [16] and [17] made
some progress in the small |�| case, working out the character ratios estimates to
treat the case where |�| ≤ 6. Saloff-Coste, in his survey article ([18], Section 9.3)
discusses the sort of difficulties that arise in these computations and states the con-
jecture again. A summary of the results discussed above is also given. See also
[19], page 381, where work in progress of Schlage-Puchta that overlaps the result
in Theorem 1 is mentioned.
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1.3. Structure of the proof. To prove Theorem 1, it suffices to look at the cy-
cle structure of πt and check that if Nt(i) is the number of cycles of πt of size i

for every i ≥ 1, and if t ≥ tmix + Ck,εn then the total variation distance between
(Nt(i))1≤i≤n and (N(i))1≤i≤n is close to 0, where (N(i))1≤i≤n is the cycle distri-
bution of a random permutation sampled from μ. We thus study the dynamics of
the cycle distribution of πt , which we view as a certain coagulation–fragmentation
chain. Using ideas from Schramm [20], it can be shown that large cycles are at
equilibrium much before tmix, that is, at a time of order O(n). Very informally
speaking, the idea of the proof is the following. We focus for a moment on the
case k = 2 of random transpositions, which is the easiest to explain. The process
(πt , t ≥ 0) may be compared to an Erdős–Rényi random graph process (Gt , t ≥ 0)

where random edges are added to the graph at rate 1, in such a way that the cycles
of the permutation are subsets of the connected components of Gt . Schramm’s
result from [20] then says that, if t = cn with c > 1/2 (so that Gt has a giant com-
ponent), then the macroscopic cycles within the giant component have relaxed to
equilibrium. By an old result of Erdős and Rényi, it takes time t = tmix + Ck,εn

for Gt to be connected with probability greater than 1 − ε. By this point the giant
component encompasses every vertex and thus, extrapolating Schramm’s result to
this time, the macroscopic cycles of πt have the correct distribution at this point.
A separate and somewhat more technical argument is needed to deal with small
cycles.

More formally, the proof of Theorem 1 thus proceeds in two main steps. In
the first step, presented in Section 2 and culminating in Proposition 18, we show
that after time tmix + cε,kn, the distribution of small cycles is close (in variation
distance) to the invariant measure, where a small cycle means that it is smaller
than a suitably chosen threshold approximately equal to n7/8. This is achieved by
combining a queueing-system argument (whereby initial discrepancies are cleared
by time slightly larger than tmix and equilibrium is achieved) with a priori rough
estimates on the decay of mass in small cycles (Section 2.1). In the second step,
contained in Section 3, a variant of Schramm’s coupling from [20] is presented,
which allows us to couple the chain after time tmix + cε,kn to a chain started from
equilibrium, within time of order n5/8 logn, if all small cycles agree initially.

2. Small cycles. In this section we prove the following proposition. Let
(Ni(t))1≤i≤n be the number of cycles of size i of the permutation πt , where
(πt , t ≥ 0) evolves according to random k-cycles (where k ≥ 2), but does not nec-
essarily start at the identity permutation. Let (Zi)

n
i=1 denote independent Poisson

random variables with mean 1/i.
Fix 0 < χ < 1 and let K = K(n) be the closest dyadic integer to nχ . We think

of cycles smaller than K as being small, and big otherwise. Let Ij = {i ∈ Z : i ∈
[2j ,2j+1)}, Lj = |Ij | = 2j and

Mj(t) = ∑
i∈Ij

Ni(t).(6)
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Introduce the stopping time

τ = inf{t ≥ 0 :∃0 ≤ j ≤ log2 K + 1,Mj (t) > (logn)6/2}.(7)

Therefore, prior to τ , the total number of small cycles in each dyadic strip [2j ,
2j+1) (j ≤ 1 + log2 K) never exceeds (logn)6/2.

PROPOSITION 3. Suppose that

P(τ < n logn) −→ 0(8)

as n → ∞, and that initially,

Mj(0) ≤ D log(j + 2)(9)

for all 0 ≤ j ≤ log2 logn, for some D > 0 independent of j or n. Then for any
sequence t = t (n) such that t (n)/n → ∞ as n → ∞ and t (n) ≤ n logn,

‖(Ni(t))
K
i=1 − (Zi)

K
i=1‖ −→ 0.

In particular, under the assumptions of Proposition 3, for any ε > 0 there is a
cε,k > 0 such that for all n large,

‖(Ni(cε,kn))Ki=1 − (Zi)
K
i=1‖ < ε.

In Sections 2.1 and 2.4, Proposition 3 is applied to the chain after time roughly
tmix = (n logn)/k, at which point the initial conditions Mj(0) satisfy (9) (with
high probability).

PROOF OF PROPOSITION 3. The proof of this proposition relies on the analy-
sis of the dynamics of the small cycles, where each step of the dynamics corre-
sponds to an application of a k-cycle, by viewing it as a coagulation–fragmentation
process. To start with, note that every k-cycle may decomposed as a product of
k − 1 transpositions

c = (xk, . . . , x1) = (xk, xk−1) · · · (x2, x1).

Thus the application of a k-cycle may be decomposed into the application of k − 1
transpositions: namely, applying c is the same as first applying the transposition
(x1, x2) followed by (x2, x3) and so on until (xk−1, xk). Whenever one of those
transpositions is applied, say (a, b), this can yield either a fragmentation or a co-
agulation, depending on whether a and b are in the same cycle or not at this time.
If they are, say if b = σ i(a) (where i ≥ 1 and σ denotes the permutation at this
time), then the cycle C containing a and b splits into (a, . . . , σ i−1(a)) and every-
thing else, that is, (b, . . . , σ |C|−i(b)). If they are in different cycles C and C ′ then
the two cycles merge.

To track the evolution of cycles, we color the cycles with different colors (blue,
red or black) according (roughly) to the following rules. The blue cycles will be
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the large ones, and the small ones consist of red and black. Essentially, red cycles
are those which undergo a “normal” evolution, while the black ones are those
which have experienced some kind of error. By “normal evolution,” we mean the
following: in a given step, one small cycle is generated by fragmentation of a
blue cycle. It is the first small cycle that is involved in this step. In a later step
of the random walk, this cycle coagulates with a large cycle and thus becomes
large again. If at any point of this story, something unexpected happens (e.g., this
cycle gets fragmented instead of coagulating with a large cycle, or coagulates with
another small cycle) we will color it black. In addition, we introduce ghost cycles
to compensate for this sort of error.

We now describe this procedure more precisely. We start by coloring every cycle
of the permutation σ(t) which is larger than K blue. We denote by θ(t) the fraction
of mass contained in blue cycles, that is,

θ(t) = 1

n

n∑
i=K+1

iNi(t).(10)

Note that by definition of τ ,

1 − K

n
(logn)6 ≤ θ(t) ≤ 1(11)

for all t ≤ τ .
We now color the cycles which are smaller than K either red or black ac-

cording to the following dynamics. Suppose we are applying a certain k-cycle
c = (xk, . . . , x1), which we write as a product of k − 1 transpositions

c = (xk, . . . , x1) = (xk, xk−1) · · · (x2, x1)(12)

(note that we require that xi 
= xj for i 
= j ).

Red cycles. Assume that a blue cycle is fragmented and one of the pieces is
small, and that this transposition is the first one in the application of the k-cycle
(x1, . . . , xk) to involve a small cycle. In that case (and only in that case), we color
it red. Red cycles may depart through coagulation or fragmentation. A coagulation
with a blue cycle, if it is the first in the step and no small cycles were created in this
step prior to it, will be called lawful. Any other departure will be called unlawful.
If a blue cycle breaks up in a way that would create a red cycle and both cycles
created are small (which may happen if the size of the cycle is between K and
2K), then we color the smaller one red and the larger one black, with a random
rule in the case of ties.

Black cycles. Black cycles are created in one of two ways. First, any red cycle
that departs in an unlawful fashion and stays small becomes black. Further, if the
transposition (a, b) is not the first transposition in this step to create a small cycle
from a blue cycle, or if it is but a previous transposition in the step involved a



MIXING TIMES FOR RANDOM k-CYCLESS 1821

small cycle, then the small cycle(s) created is colored black. Now, assume that
(a, b) involves only cycles which are smaller than K : this may be a fragmentation
producing two new cycles, or a merging of two cycles producing one new cycle.
In this case, we color the new cycle(s) black, no matter what the initial color of
the cycles, except if this operation is a coagulation and the size of this new cycle
exceeds K , in which case it is colored blue again. Thus, black cycles are created
through either coagulations of small parts or fragmentation of either small or large
parts, but black cycles disappear only through coagulation.

We aim to analyze the dynamics of the red and black system, and the idea is that
the dynamics of this system are essentially dominated by that of the red cycles,
where the occurrence of black cycles is an error that we aim to control.

Ghosts. Let Ri(t),Bi(t) be the number of red and black cycles, respectively, of
size i at time t . It will be helpful to introduce another type of cycle, called ghost
cycles, which are nonexisting cycles which we add for counting purposes: the point
is that we do not want to touch more than one red cycle in any given step. Thus, for
any red cycle departing in an unlawful way, we compensate it by creating a ghost
cycle of the same size. For instance, suppose two red cycles C1 and C2 coagulate
(this could form a blue or a black cycle). Then we leave in the place of C1 and C2
two ghost cycles C′

1 and C′
2 of sizes identical to C1 and C2.

An exception to this rule is that if, during a step, a transposition creates a small
red cycle by fragmentation of a blue cycle, and later within the same step this red
cycle either is immediately fragmented again in the next transposition or coagu-
lates with another red or black cycle and remains small, then it becomes black as
above but we do not leave a ghost in its place.

Finally, we also declare that every ghost cycle of size i is killed independently
of anything else at an instantaneous rate which is precisely given by iμ(t), where
μ(t) is a random nonnegative number (depending on the state of the system at
time t) which will be defined below in (17) and corresponds to the rate of lawful
departures of red cycles.

To summarize, we begin at time 0 with all large cycles colored blue and all
small cycles colored red. For every step consisting of k transpositions, we run the
following algorithm for the coloring of small cycles and creation of ghost cycles
(see Table 1).

Let Gi(t) denote the number of ghost cycles of size i at time t , and let Yi =
Ri + Gi , which counts the number of red and ghost cycles of size i. Our goal is
twofold. First, we want to show that (Yi(t))

K
i=1 is close in total variation distance

to (Zi)
K
i=1 and second, that at time t = t (n) the probability that there is any black

cycle or a ghost cycle converges to 0 as n → ∞.

REMARK 4. Note that with our definitions, at each step at most one red cycle
can be created, and at most one red cycle can disappear without being compensated
by the creation of a ghost. Furthermore these two events cannot occur in the same
step.
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TABLE 1
Coloring algorithm for small cycles, and creation of ghost cycles

• (I) If the transposition is a fragmentation, go to (F); otherwise, go to (C).
• (F) If the fragmentation is of a small cycle c of length �, go to (FS); otherwise, go to (FL).
• (FS) Color the resulting small cycles black. Create a ghost cycle of length �, except if c was created

in the previous transposition of the current step and is red. Finish.
• (FL) If the fragmentation creates one or two small cycles, and this transposition is the first in the

step to either create or involve a small cycle, color the smallest small cycle created red. All other
small cycles created are colored black. Do not create ghost cycles. Finish.

• (C) If the coagulation involves a blue cycle, go to (CL); otherwise, go to (CS).
• (CL) If the blue cycle coagulates with a red cycle, and this is not the first transposition in the step

that involves a small cycle, then create a ghost cycle; otherwise, do not create a ghost cycle. Finish.
• (CS) If a small cycle remains after the coagulation, it is colored black. If the coagulation involved

two red cycles of size � and �′, create two ghost cycles of sizes � and �′, unless one of these two
red cycles (say of size �′) was created in the current step, in which case create only one ghost cycle
of size �. Finish.

In addition to this description, all ghost cycles are killed instantaneously at rate μ(t) defined in (17).

LEMMA 5. Assume (8) as well as (9), and let t = t (n) be as in Proposition 3.
Then

‖(Yi(t))
K
i=1 − (Zi)

K
i=1‖ −→ 0.

PROOF. The idea is to observe that Yi has approximately the following dy-
namics: {

rate: (x → x + 1) = λ, if x ≥ 0,
rate: (x → x − 1) = ixμ, if x ≥ 1,

and that λ = μ = k/n+o(1/n), so that (Yi) is approximately a system of M/M/∞
queues where the arrival rate is k/n and the departure rate of every customer is
ik/n. The equilibrium distribution of (Yi) is thus approximately Poisson with pa-
rameter the ratio of the two rates, that is, 1/i. The number of initial customers in
the queues is, by assumption (8), small enough so that by time t (n) they are all
gone, and thus the queue has reached equilibrium.

We now make this heuristics precise. To increase Yi by 1, that is, to create a red
cycle, one needs to specify the j th transposition, 1 ≤ j ≤ k − 1, of the k-cycle at
which it is created. The first point x1 of the k-cycle must fall somewhere in a blue
cycle (which has probability θ ). Say that x1 ∈ C1, with C1 a blue cycle. In order to
create a cycle of size exactly i at this transposition, the second point x2 must fall
at either of exactly two places within C1: either σ i(x1) or σ−i (x1). However, note
that if x2 = σ−i (x1) and |c| = k ≥ 3, then the next transposition is guaranteed to
involve the newly formed cycle, either to reabsorb it in the blue cycles, or to turn
into a black cycle through coalescence with another small cycle or fragmentation.
Either way, this newly formed cycle does not eventually lead to an increase in Yi
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since by our conventions, we do not leave a ghost in its place. On the other hand, if
x2 = σ i(x1) then the newly formed red cycle will stay on as a red or a ghost cycle
in the next transpositions of the application of the cycle c. Whether it stays as a
ghost or a red cycle does not change the value of Yi , and therefore, this event leads
to a net increase of Yi by 1. This is true for all of the first k −2 transpositions of the
k-cycle c, but not for the last one, where both xk = σ i(xk−1) and xk = σ−i (xk−1)

will create a red cycle of size i. It follows from this analysis that the total rate λ(t)

at which Yi increases by 1 satisfies

λ(t) ≤ λ+ = k − 2

n − k + 1
+ 2

n − k + 1
= k

n − k + 1
.(13)

To get a lower bound, observe that for t ≤ τ , θ(t) ≥ 1 − K(logn)6/n at the be-
ginning of the step. When a k-cycle is applied and we decompose it into k − 1
elementary transpositions, the value θ(t) for each of the transpositions may take
different successive values which we denote by θ(t, j), j = 1, . . . , k−1. However,
note that at each such transposition, θ can only change by at most ±2K/n. Thus
it is also the case that for all 1 ≤ j ≤ k − 1, θ(t, j) ≥ 1 − 2(k − 1)K(logn)6/n.
Therefore, the probability that a fragmentation of a blue cycle does not create any
small cycle is also bounded below by

1 − 2(k − 1)K(logn)6/n − 2K(logn)6/n = 1 − 2kK(logn)6/n =: θ−(t).

It thus follows that the total rate λ(t) is bounded below by

λ(t) ≥ θk−1−
(

2

n
+ k − 2

n

)
≥ k

n

(
1 − 8k

K(logn)6

n

)
=: λ−.(14)

Of course, by this we mean that the Yi(t) are nonnegative jump processes whose
jumps are of size ±1, and that if Ft is the filtration generated by the entire process
up to time t , then

lim
h→0+

P(Yi(t + h) = x + 1|Ft , Yi(t) = x)

h
= λ(t) and λ− ≤ λ(t) ≤ λ+(15)

almost surely on the event {t ≤ τ }. As for negative jumps, we have that for x ≥ 1,

lim
h→0+

P(Yi(t + h) = x − 1|Ft , Yi(t) = x)

h
= ixμ(t),(16)

where μ(t) depends on the partition and satisfies the estimates

μ− ≤ μ(t) ≤ μ+,(17)

where

μ− := k

n

(
1 − 8k

K(logn)6

n

)
and μ+ = k

n − k
.(18)

The reason for this is as follows. To decrease Yi by 1 by decreasing Ri , note that
the only way to get rid of a red cycle without creating a ghost is to coagulate it with
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a blue cycle at the j th transposition, 1 ≤ j ≤ k − 1, with no other transpositions
creating small cycles. The probability of this event is bounded above by ik/(n−k)

and, with θ− as above, bounded below by

iθ

n
θk−2− + θ

i

n − 1
θk−2− + θθ−

i

n − 2
θk−3− + · · · + θθk−2−

i

n − k + 1
≥ ik

n
θk−1− .

Therefore, if in addition ghosts are each killed independently with rate μ(t) as
above, then (16) holds. More generally, if 1 ≤ m ≤ K and i1 < · · · < im ≤ K are
pairwise distinct integers, then we may consider the vector (Yi1(t), . . . , Yim(t)).
If its current state is x = (x1, . . . , xm), then it may make transitions to x′ =
(x′

1, . . . , x
′
m) where the two vectors x and x′ differ by exactly one coordinate

(say the j th one) and xj − x′
j = ±1 (since only one queue Yi can change at

any time step, thanks to our coloring rules). Also, writing Y(t) for the vector
(Yi1(t), . . . , Yim(t)), we find

lim
h→0+

P(Y (t + h) = x′|Ft , Y = x)

h
=

{
λ(t), if x′

j = xj + 1,
ij xjμ(t), if x′

j = xj − 1.

These observations show that we can compare {(Yi(t ∧ τ)1≤i≤K, t ≥ 0} to a sys-
tem of independent Markov queues {(Y+

i (t ∧ τ))1≤i≤K, t ≥ 0} with respect to a
common filtration Ft , with no simultaneous jumps almost surely, and such that
the arrival rate of each Yi is λ+, and the departure rate of each client in Yi

is iμ−. We may also define a system of queues (Y−
i )1≤i≤K by accepting every

new client of Y+
i with probability λ−/λ+ and rejecting it otherwise. Subsequently,

each accepted client tries to depart at a rate μ+ − μ−, or when it departs in Y+
i ,

whichever comes first. Then one can construct all three processes (Y−
i )1≤i≤K ,

(Yi)1≤i≤K and (Y+
i )1≤i≤K on a common probability space in such a way that

Y−
i (t) ≤ Yi(t) ≤ Y+

i (t) for all t ≤ τ .
Note that if (Z+

i )1≤i≤K denote independent Poisson random variables with
mean λ+/(iμ−), then (Z+

i )1≤i≤K forms an invariant distribution for the
system (Y+

i (t), t ≥ 0)1≤i≤K . Let (Z+
i (t), t ≥ 0)1≤i≤K denote the system of

Markov queues Y+
i started from its equilibrium distribution (Z+

i )1≤i≤K .
Then (Y+

i (t))1≤i≤K and (Z+
i (t))1≤i≤K can be coupled as usual by taking each

coordinate to be equal after the first time that they coincide. In particular, once all
the initial customers of Y+

i and of Z+
i (t) have departed (let us call τ ′ this time),

then the two processes (Y+
i )1≤i≤K and (Z+

i )1≤i≤K are identical.
We now check that this happens before t = t (n) with high probability. It is an

easy exercise to check this for Z+
i (t) so we focus on Y+

i (t). To see this, note that
by (9), there are no more than D log(j + 2) customers in every strip [2j ,2j+1) ini-
tially if j ≤ log2 logn. Moreover, each customer departs with rate at least 2j−1/n

when in this strip. Thus the time τ ′
j it takes for all initial customers of Y+ in

strip [2j ,2j+1) to depart is dominated by (n/2j−1)max1≤q≤D log(j+2) Eq , where
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(Eq)q≥1 is a collection of i.i.d. standard exponential random variables. Hence

E(τ ′
j ) ≤ n

2j−2

(
log2 D + log log(j + 4)

)
.

For larger strips we use the crude and obvious bound Mj(0) ≤ n if j ≥ log2 logn.
Moreover, each customer departs at rate 2j−1/n with j ≥ �log2 logn�. Thus, in
distribution,

τ ′
j � n

2j−2 max
1≤q≤n

Eq

so that E(τ ′
j ) ≤ n logn/2j−1 [we are using here that E(max1≤q≤m Eq) ≤ 2 logm

for all m large enough]. Since we obviously have τ ′ ≤ ∑log2 K+1
j=0 τ ′

j , we conclude

E(τ ′) ≤
log2 logn∑

j=0

n

2j−2

(
logD + log log(j + 4)

) + ∑
j≥log2 logn

n logn

2j−1 ≤ a(D)n,

where a(D) < ∞ depends solely on D. By Markov’s inequality and since
t (n)/n → ∞, we conclude that τ ′ ≤ t with high probability. We now claim that
(Y−

i (t))1≤i≤K = (Y+
i (t))1≤i≤K with high probability. To see this, we note that at

equilibrium E(Z+
i ) = λ+/(iμ−) ≤ 2/i. Therefore,

P
(
Y+

i (t) 
= Y−
i (t) for some 1 ≤ i ≤ K

)

≤ E

(
K∑

i=1

Y+
i (t) − Y−

i (t); τ ′ < t

)
+ P(τ ′ > t)

≤
K∑

i=1

2

i

{(
1 − λ−

λ+
)

+
(

1 − μ−

μ+
)}

+ P(τ ′ > t)

≤ 16(k − 1)
K(logn)7

n
+ P(τ ′ > t).

Since we have already checked that P(τ ′ > t) → 0 as n → ∞, this shows that
on the event {τ ′ ≤ t ≤ τ } and {Y+

i (t) = Y−
i (t) for all 1 ≤ i ≤ K} (an event of

probability asymptotically one), (Yi(t))1≤i≤K can be coupled to (Z+
i (t))1≤i≤K

which has the same law as (Z+
i )1≤i≤K . Thus

‖(Yi)
K
i=1 − (Z+

i )Ki=1‖ −→ 0(19)

as n → ∞. On the other hand, we claim that

‖(Zi)
K
i=1 − (Z+

i )Ki=1‖ −→ 0

also. Indeed, it is easy to see and well known that for α,β > 0

‖Po(α) − Po(β)‖ ≤ 1 − exp(−|α − β|) ≤ |α − β|.
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Since the coordinates of Zi and Z+
i are both independent Poisson random variables

but with different parameters, we find that

‖(Zi)
K
i=1 − (Z+

i )Ki=1‖ ≤
K∑

i=1

λ+

iμ− − 1

i

≤
K∑

i=1

1

i

(
1

1 − 2(k − 1)K(logn)6/n
− 1

)

≤ 4(k − 1)K(logn)7

n
−→ 0

as N → ∞. By the triangle inequality and (19), this completes the proof of Lem-
ma 5. �

LEMMA 6. Let t = t (n) be as in Proposition 3. Then, with probability tending
to 1 as n → ∞, Bi(t) = 0 for all 1 ≤ i ≤ K .

PROOF. Let us consider black cycles in scale j , that is, those whose size i

satisfies 2j ≤ i < 2j+1 with j ≤ log2 K . By assumption (8), before time t the total
mass of small cycles never exceeds 2K(logn)6 with high probability. Thus the rate
at which a black cycle in scale j is generated by fragmentation of a red cycle (or
from another black cycle) is at most

λ
B,1
j = k

2K(logn)6

n

2j+1

n
.

Black cycles can also be generated directly by fragmenting a blue cycle and sub-
sequently fragmenting either the small cycle thus created or some other blue cycle
in the rest of the step. The rate at which a black fragment in scale j occurs in this
fashion is thus smaller than

λ
B,2
j = k2 K

n

2j+1

n
.

Finally, one needs to deal with black cycles that arise through the fragmentation
of a blue cycle whose size at the time of the fragmentation is between K and
2K (thus potentially leaving two small cycles instead of one). Let j ′ = log2 K .
We know that, while s ≤ τ , Mj ′(s) ≤ (logn)6/2. In between steps, the number of
cycles in scale j ′ cannot ever increase by more than 2k. Thus the rate at which
black cycles occur in this fashion at scale j is at most

λ
(B,3)
j =

⎧⎨
⎩

0, if j < j ′ − 1,

k
K(logn)6

n

2j+1

n
, if j = j ′ − 1.



MIXING TIMES FOR RANDOM k-CYCLESS 1827

This combined rate is therefore smaller than λB
j = 3λ

B,1
j . Note that it may be the

case that several black cycles are produced in one step, although this number may
not exceed 2k. On the other hand, every black cycle departs at a rate which is at
least

μB
j = θ

n
2j ≥ 2j−1

n

since θ ≥ 1/2 for t ≤ τ , say. (Note that when two back cycles coalesce, the new
black cycle has an even greater departure rate than either piece before the coales-
cence, so ignoring these events can only increase stochastically the total number
of black cycles.) Thus we see that the number of black cycles in this scale is dom-
inated by a Markov chain (βj (s), s ≥ 0) where the rate of jumps from x to x + 2k

is λB
j and the rate of jumps from x to x − 1 is μB

j , and βj (0) = 0. Speeding up

time by n/2j−1, βj becomes a Markov chain β ′
j whose rates are, respectively,

λ′B
j = 6kK(logn)6/n and 1, and where β ′

j (0) = 0. We are interested in

P
(
βj (t) > 0

) = P
(
β ′

j (t
′) > 0

)
where t ′ = t2j−1/n.

Note that when there is a jump of size 2k (i.e., when 2k individuals are born) the
time it takes for them to all die in this new time-scale is a random variable E which
has the same distribution as E = max1≤j≤2k Ej where (Ej )1≤j are i.i.d. standard
exponential random variables. Decomposing on possible birth times of individuals,
and noting that P(E > x) ≤ 2ke−x by a simple union bound, we see that

P
(
β ′

j (t
′) > 0

) =
∫ t ′

0
λ′B

j P(E > t ′ − s) ds

≤ 6kK(logn)6

n

∫ ∞
0

P(E > x)dx ≤ 12k2K(logn)6

n
.

There are log2 K possible scales to sum on, so by a union bound the probability
that there is any black cycle at time t is, for large n, smaller than or equal to
k2K(logn)8/n →n→∞ 0. �

The case of ghost particles is treated as follows.

LEMMA 7. Let t = t (n) be as in Proposition 3. Then, with probability tending
to 1 as n → ∞, Gi(t) = 0 for all 1 ≤ i ≤ K .

PROOF. Suppose a red cycle is created, and consider what happens to it the
next time it is touched. With probability at least θk−2 this will be to coagulate with
a blue cycle with no other small cycle being touched in that step, in which case
this cycle is not transformed into a ghost. However, in other cases it might become
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a ghost. It follows that any given cycle in Yi is in fact a ghost with probability at
most

1 − θk−2

θk−2 ≤ (k − 2)
K(logn)6

n
.

It follows that (using the notation from Lemma 5)

P
(
Gi(t) > 0 for some i

) ≤
K∑

i=1

E
(
Gi(t); τ ′ < t

) + P(τ ′ > t)

≤ P(τ ′ > t) +
K∑

i=1

2

i

(k − 2)K(logn)6

n

≤ P(τ ′ > t) + 2(k − 2)
K(logn)7

n
,

which tends to 0 as n → ∞. This completes the proof of Lemma 7. �

Completion of the proof of Proposition 3: Since Ni(t) = Yi − Gi + Bi , we get
the proposition by combining Lemmas 5, 6 and 7. �

2.1. Verification of (8) and (9). In order for Proposition 3 to be useful, we need
to show that assumptions (8) and (9) indeed hold with large enough probability.
This will be accomplished in Propositions 11 and 16 below.

Recall the variable Mj [see (6)], and let

As
j =

{
max

t∈[sn log logn,n logn]Mj(t) < n2−j /(logn)3
}
.

Recall that K is the dyadic integer closest to �nχ�.
We begin with the following lemma. Its proof is a warm-up to the subsequent

analysis.

LEMMA 8. Let

Aχ =
log2 K+1⋂

j=0

A6
j .

Then,

P(A�
χ) −→

n→∞ 0.

PROOF. It is convenient to reformulate the cycle chain as a chain that at in-
dependent exponential times (with parameter k), makes a random transposition,
where the �th transposition is chosen uniformly at random (if � − 1 is an integer
multiple of k), or uniformly among those transpositions that involve the ending
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point of the previous transposition and that would result with a legitimate k-cycle
(i.e., no repetitions are allowed) if � − 1 is not an integer multiple of k.

We begin with j = 0. Note that M0(0) ≤ n and that M0(t) decreases by 1 with
rate at least kM0(t)n

−1 and increases, at most by 2, with rate bounded above by
k(1−M0(t)/n)n−1. In particular, by time n logn, the number of increase events is
dominated by twice a Poisson variable of parameter k logn. Thus, with probability
bounded below by 1 − e−(logn)2

, at most 2(logn)2 parts of size 1 have been born.
On this event, M0(t) ≤ 2(logn)2 +M̃0(t) where M̃0(t) is a process with death only
at rate kM̃0(t)/n. In particular, the time of the n − n/2(logn)3th death in M̃0(t) is
distributed like the random variable

Z0 :=
n−n/2(logn)3∑

i=0

Ei ,

where the Ei are independent exponential random variables of parameter k(n −
i)/n. It follows that E(Z0) ∼ 3n log logn/k and the Chebyshev bound gives, with
ζ > 0,

P
(
Z0 > 2E(Z0)

) ≤ E(eζZ0)e−2ζEZ0

≤ e−∑n−n/2(logn)3

i=0 log(1−ζn/k(n−i))e−6ζn log logn/k

≤ c−1e−cn/(logn)3

for an appropriate constant c, by choosing ζ = k/2(logn)3. We thus conclude that

P((A6/k
0 )�) ≤ 2e−(logn)2

.

We continue on the event A6/k
0 . We consider the process M̄1(t) = M1(t +

6n log logn/k). By definition M̄1(0) ≤ n/2. The difference in the analysis of
M̄1(t) and M0(t) lies in the fact that now, M̄1(t) may increase due to a merging of
two parts of size 1, and the departure rate is now bounded below by 2kM̄1(t)n

−1.
Note that by time n logn, the total number of arrivals due to a merging of parts of
size 1 has mean bounded by n logn · k(1/(logn)3)2 < kn/(logn)6. Repeating the
analysis concerning M0, we conclude similarly that

P((A6/k+3/k
1 )�|A6/k

0 ) ≤ 2e−(logn)2
.

The analysis concerning Mj(t) proceeds with one important difference. Let

sj = 6
∑j

i=0 2−i/k, Tj = sjn log logn, and set M̄j (t) = Mj(t + Tj−1). Now,
M̄j (t) can increase due to the merging of a part of size [2j−1n,2jn) with a part of

size smaller than 2jn. On
⋂j−1

i=0 Asi
i , this has rate bounded above by

k
1

(logn)3 · j

(logn)3 ≤ k
1

(logn)5 .
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One can bound brutally the total number of such arrivals, but such a bound is
not useful. Instead, we use the definition of the events Asi

i , that allow one to
control the number of arrivals “from below.” Indeed, note that the rate of depar-
tures Dt is bounded below by k2j [M̄j (t) − 1]+(1 − 1/(logn)2)/n (because the

total mass below 2j at times t ∈ [Tj , n logn] is, on
⋂j−1

i=0 Asi
i , bounded above by

jn/(logn)3 < n/(logn)2). Thus, when M̄j (t) > n2−j−1/(logn)3, the rate of de-
parture Dt � k 1

(logn)5 . Analyzing this simple birth–death chain, one concludes
that

P

(
(Asj

j )�
∣∣∣ j−1⋂
i=0

Asi
i

)
≤ 2e−(logn)2

.

Since Tj < 12n log logn/k ≤ 6n log logn, this completes the proof. �

An important corollary is the following control on the total mass of large parts.

COROLLARY 9. Let mχ(t) = ∑
i>nχ Ni(t). Then,

lim
n→∞ P

(
min

t∈[6n log logn,n logn]mχ(t) < n

(
1 − 1

(logn)2

))
= 0.

The next step is the following.

LEMMA 10. Set Bj = {maxt∈[k−1n(logn−log logn−1),n logn) Mj (t) ≤ (logn)6/2}.
Then,

lim
n→∞ P

(2 log2(logn)⋃
j=0

B�
j

)
= 0.

The proof of Lemma 10, while conceptually simple, requires the introduction of
some machinery and thus is deferred to the end of this subsection. Equipped with
Lemma 10, we can complete the proof of the following proposition.

PROPOSITION 11. With notation as above,

lim
n→∞P

(
max

t∈[k−1n(logn−log logn),n logn]
log2 K+1

max
j=0

Mj(t) > (logn)6/2
)

= 0.

PROOF. Let R = R(n) = 2 log2(logn). Because of Lemma 10, it is enough to
consider Mj(t) for j > R.

We begin by considering MR+1(t). Let BR denote the intersection of
⋂R

j=0 Bj

with the complement of the event inside the probability in Corollary 9. On the
event BR , for t > k−1n[logn − log logn − 1] := TR , the rate of arrivals due to
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merging of parts smaller than 2R is bounded above by k(2R(log(n))6/n)2. The rate
of arrivals due to parts larger than 2R is bounded above by k(2R/n), and the jump
is no more than 2. Thus, the total rate of arrival is bounded above by k2R+1/n.
The rate of departure on the other hand is, due to Corollary 9, bounded below by
kMR+1(t)2R/n · (1−1/(logn)2). Thus, for MR+1(t) > logn/2, the difference be-
tween the departure rate and the arrival rate is bounded below by kMR+1(t)2R/2n.
By definition, MR+1(TR) ≤ n2−R . Define TR+1 = TR + n logn2−R . Let CR+1 =
{maxt∈[TR+1,n logn] MR+1(t) < logn}. Then, reasoning as in the proof of Lemma 8,
we find that

P(C�
R+1|BR) ≤ e−(logn)2

.

Let BR+1 = BR ∩ CR+1.
One proceeds by induction. Letting TR+j = TR+j−1 +n logn2−R−j+1, CR+j =

{maxt∈[TR+j ,n logn] MR+j (t) < logn} and BR+j = BR+j−1 ∩ CR+j , we obtain
from the same analysis that for j = 1, . . . , log(K) + 1,

P(C�
R+j+1|BR+j ) ≤ e−(logn)2

.

Thus, P(B�
R+log(K)+1) ≤ P(B�

R)+(logn)e−(logn)2 →n→∞ 0, while TR+log(K)+1 ≤
k−1n[logn− log logn− 1 + 2−R logn

∑
j≥1 2−j ]. This completes the proof, since

2R = (logn)2. �

2.2. Proof of Lemma 10. While a proof could be given in the spirit of the
proof of Lemma 8, we prefer to present a conceptually simple proof based on
comparison with the random k-regular hypergraph. This coupling is analog to the
usual coupling with an Erdős–Rényi random graph (see, e.g., [5] and [20]). Toward
this end, we need the following definitions.

DEFINITION 12. A k-regular hypergraph is a pair G = (V ,H) where V is
a (finite) collection of vertices, and H is a collection of subsets of V of size k.
The random hypergraph Gk(n,p) is defined as the hypergraph consisting of V =
{1, . . . , n}, with each subset h of V with |h| = k taken independently to belong to
Gk(n,p) with probability p.

Let Gt denote the random k-hypergraph obtained by taking V = {1, . . . , n} and
taking H to consist of the k-hyperedges corresponding to the k-cycles γ1, . . . , γNt

of the random walk πt . It is immediate to check that Gt is distributed like Gk(n,pt )

with

pt = 1 − exp
(
− t(n

k

))
∼ k!t

nk
.

DEFINITION 13. A k-hypertree with h hyperedges in a k-regular hypergraph
G is a connected component of G with i = (k − 1)h + 1 vertices.
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(Pictorially, a k-hypertree corresponds to a standard tree with hyperedges, where
any two hyperedges have at most one vertex in common.) k-hypertrees can be
easily enumerated, as in the following, which is Lemma 1 of [10].

LEMMA 14. The number of k-hypertrees with i (labeled) vertices is

[(k − 1)h]!ih−1

h!((k − 1)!)h , h ≥ 0,(20)

where h is the number of hyperedges and thus i = (k − 1)h + 1.

The next lemma controls the number of k-hypertrees with a prescribed number
of edges in Gt .

LEMMA 15. Let

Dt,h = {# of k-hypertrees with ≤h hyperedges in Gt

is not larger than (logn)1.1}.
Then,

P

( ⋂
t>(n/k)[logn−log logn−1]

Dt,(logn)2

)
−→
n→∞ 1.(21)

PROOF. Let t0 = k−1n[logn− log logn−1] and h0 = (logn)2. By monotonic-
ity, it is enough to check that

P(Dt0,h0) −→
n→∞ 1.(22)

Note that, with i = (k − 1)h + 1, and adopting as a convention h logh = 0 when
h = 0,

P(D�
t0,h0

) ≤
(logn)2∑
h=0

E(# of k-hypertrees with h hyperedges in Gt0)

(logn)1.1

≤ 1

(logn)1.1

(logn)2∑
h=0

(
n

i

)
((k − 1)h)!ih−1

h!((k − 1)!)h ph
t0
(1 − pt0)

(i
k)−h+i(n−i

k−1)(23)

≤ Ck

(logn)2∑
h=0

(logn)i+h−1.1e−(k−1)h(logn−logh(k−1)) −→
n→∞ 0.

[Indeed recall that if T is a subset of {1, . . . , n} comprising i elements, then discon-
necting T from the rest of {1, . . . , n} requires closing exactly

(i
1

)(n−i
k−1

)+ (i
2

)(n−i
k−2

)+
· · · + ( i

k−1

)(n−i
1

) ≥ i
(n−i
k−1

)
hyperedges, while

(i
k

) − h is the number of hyperedges
that need to be closed inside T for it to be a hypertree.] �
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We can now provide the following proof:

PROOF OF LEMMA 10. At time t , Ni(t) consists of cycles that have been
obtained from the coagulation of cycles that have never fragmented during the
evolution by time t , denoted Nc

i (t), and of cycles that have been obtained from
cycles that have fragmented and created a part of size less than or equal to i,
denoted N

f
i (t). Note that Nc

i (t) is dominated above by the number of k-hypertrees
with h edges in Gt , where i = (k − 1)h + 1. By Lemma 15, this is bounded above
by (logn)1.1 with high probability for all i ≤ (logn)2. On the other hand, the rate of
creation by fragmentation of cycles of size i is bounded above by 4k/n, and hence
by time n logn, with probability approaching 1 no more than (logn)1.1 cycles of
size i have been created, for all i ≤ (logn)2. We thus conclude that with probability
tending to 1, we have, with t0 = k−1n[logn − log logn − 1],

max
i≤(logn)2

max
t∈[t0,n logn]N

f
i (t) ≤ (logn)3.1.

This yields the lemma, since for j ≤ 2 log2(logn),

Mj(t) ≤ (logn)2 max
i≤(logn)2

Ni(t). �

2.3. Proof of (9). We now prove that at time tmix = (1/k)n logn, the assump-
tion (9) [with Mj(0) replaced by Mj(tmix)] is satisfied, with high probability.

PROPOSITION 16. For every ε > 0 there exist D = D(ε) > 0 and n0 = n0(ε)

such that for n > n0,

P
(
Mj(tmix) ≤ D log(2 + j), j = 0,1, . . . , log2 logn + 1

) ≥ (1 − ε).

PROOF. Consider first the time u = 1
k
(n logn − n log logn).

LEMMA 17. With probability approaching 1 as n → ∞, we have Mj(u) ≤
2j+4 logn for all 0 ≤ j ≤ log2 n.

PROOF. As in the proof of Lemma 10, split Mj(t) into two components

M
f
j (t) and Mc

j (t). Note that the rate at which a fragment of size less than 2j+1

is produced is smaller than 2j+2k/n, so for any w ≤ (1/k)n logn, M
f
j (w) ≤

Poisson(2j+2 logn). The probability that such a Poisson random variable is more
than twice its expectation is (by standard large deviation bounds) smaller than n−α

for some α > 0, so summing over log2 logn values of j we easily obtain that with
high probability, M

f
j (u) ≤ 2j+3 logn for all 0 ≤ j ≤ log2 logn.

It remains to show that Mc
j (u) ≤ logn for all 0 ≤ j ≤ log2 logn with high prob-

ability. To deal with this part, note that if Th denotes the number of hypertrees
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with h hyperedges in Gu, then Nc
i (u) ≤ Th where i = 1 + h(k − 1) is the number

of vertices. Reasoning as in (23), we compute after simplifications [recalling that
u = (1/k)(n logn − n log logn) and i = 1 + h(k − 1)], for h ≥ 0

E(Th) =
(

n

i

)
(i − 1)!ih−1

h!((k − 1)!)h ph
u(1 − pu)

(i
k)−h+i(n−i

k−1)

(24)

≤ n(logn)h

h!i (1 − pu)
i(n−i

k−1) ≤ n1−i (logn)1+hk

h!i .

Thus summing over i = 2 to i = �logn�, we conclude by Markov’s inequality that
Mc

j (u) = 0 for all 1 ≤ j ≤ log2 logn with high probability. For i = 1 or h = 0, we
get from (24)

E(T0) ≤ logn.

Computing the variance is easy: writing T0 = ∑
v∈V 1{v is isolated}, we get

var(T0) ≤ E(T0) + ∑
v 
=w

cov
(
1{v is isolated},1{w is isolated}

)
.

But note that

P(v is isolated,w is isolated) = P(v is isolated)2

1 − pu

,

so

var(T0) ≤ E(T0) + E(T0)
2
(

1

1 − pu

− 1
)

≤ E(Th) + o(1).

Thus by Chebyshev’s inequality, P(Mc
0(u) > 2 logn) → 0 as n → ∞. This proves

the lemma. �

With this lemma we now complete the proof of Proposition 16. We compare
(Mj(t), t ≥ u) to independent queues as follows. By Proposition 11, on an event of
high probability, during the interval [u, tmix] the rate at which some two cycles of
size smaller than logn coagulate is smaller than O(((logn)7/n)2), so the probabil-
ity that this happens during this interval of time is o(1). Likewise, the rate at which
some cluster smaller than logn will fragment is at most k(logn)14/n2, so the prob-
ability that this happens during the interval [u, tmix] is o(1). Now, aside from re-
jecting any k-cycle that would create such a transition, the only possible transition
for Mj are increases by 1 (through the fragmentation of a component larger than
2 logn) and decreases by 1 (through coagulation with cycle larger than logn). The
respective rates of these transitions is, as in (13), at most 2jλ+ = 2j k/(n − k),
and at least ν = 2j (k/n)(1 − (logn)3/n)) as in (18). This can be compared to
a queue where both the departure rate and the arrival rate are equal to λ+, say
M̄j (t). The difference between Mj(t) and M̄j (t) is that some of the customers
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having left in M̄j (t) might not have left yet in Mj(t). Excluding the initial cus-
tomers, a total of Poisson(2j log logn) customers arrive in the queue M̄j (t) during
the interval [u, tmix], so the probability that any one of those customers has not
yet left by time tmix in Mj(t) given that it did leave in M̄j (t) is no more than
λ+/ν − 1 = O((logn)3/n), where the constants implicit in O(·) do not depend on
j or n. Thus with probability greater than 1 − O(2j log logn(logn)3/n), there is
no difference between Mj(tmix) and M̄j (tmix). Moreover,

M̄j (tmix) � Poisson(1) + Rj ,(25)

where Rj is the total number of initial customers customers that have not departed
yet by time tmix. Using Lemma 17,

{Rj > 0} ⊂
{

1

λ+ max
1≤q≤2j+4 log2 n

Eq < tmix

}
,(26)

where (Eq, q ≥ 1) is a collection of i.i.d. standard exponential random variables.
Using the independence of the queues M̄j (t), in combination with (25) and (26)
as well as standard large deviations for Poisson random variables, the proposition
follows immediately. �

2.4. Conclusion: Small cycles. Combining Propositions 3 and 11, and using
the notation introduced in the beginning of this section, we have proved the follow-
ing. Fix ε > 0. Then there is a cε,k > 0 such that with t = t (n) = k−1n logn+cε,kn,
and all large n,

‖(Ni(t))
K
i=1 − (Zi)

K
i=1‖ < ε.(27)

We now deduce the following:

PROPOSITION 18. Fix ε > 0. Then there is a cε,k > 0 such that with t =
t (n) = k−1n logn + cε,kn, and all large n,

‖(Ni(t))
K
i=1 − (Ni)

K
i=1‖ < ε,(28)

where (Ni)1≤i≤n is the cycle distribution of a random permutation sampled ac-
cording to the invariant distribution μ.

PROOF. By (27) and the triangle inequality, all that is needed is to show that

‖(Zi)
K
i=1 − (Ni)

K
i=1‖ → 0.(29)

Whenever k is even, and thus μ is uniform on Sn, (29) is a classical result of
Diaconis–Pitman and of Barbour, with explicit upper bound of 4K/n (see [4] or
the discussions around [3], Theorem 2, and [2], Theorem 4.18).

In case k is odd, μ is uniform on An. A sample γ from μ can be obtained from
a sample γ ′ of the uniform measure on Sn using the following procedure. If γ ′ is
even, take γ = γ ′, otherwise let γ = π ◦ γ ′ where π is some fixed transposition
[say (12)]. The probability that the collection of small cycles in γ differs from the
corresponding one in γ ′ is bounded above by 4K/n → 0, which completes the
proof. �
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3. Large cycles and Schramm’s coupling. Fix ε > 0 and χ ∈ (7/8,1). Re-
call that K is the closest dyadic integer to �nχ� and that a cycle is called small if
its size is smaller than K . For n large, let t = t (n) = k−1n logn + cε,kn. We know
by the previous section (see Proposition 18) that at this time, for n large, the dis-
tribution of the small cycles of the permutation πt is arbitrarily close (variational
distance smaller than ε) to that of a (uniformly chosen) random permutation π ′.
Therefore we can find a coupling of π := πt and π ′ in such a way that

P(the small cycles of π and π ′ are identical) ≥ 1 − ε.(30)

We can now provide the following proof:

PROOF OF THEOREM 1. We will construct an evolution of π ′, denoted π ′
s , that

follows the random k-cycle dynamic (and hence, π ′
s has cycle structure whose law

coincides with the law of the cycle structure of a uniformly chosen permutation, at
all times). The idea is that with small cycles being the hardest to mix, coupling πt+s

and π ′
s will now take very little time. To prove this, we describe a modified version

of the Schramm coupling introduced in [20], which has the additional property that
it is difficult to create small unmatched pieces.

To describe this coupling, we will need some notation from [20]. Let �n be the
set of discrete partitions of unity

�n =
{
(x1 ≥ · · · ≥ xn) :xi ∈ {0/n, . . . , n/n} for all 1 ≤ i ≤ n, and

n∑
i=1

xi = 1

}
.

We identify the cycle count of πt with a vector Yt ∈ �n. We thus want to de-
scribe a coupling between two processes Yt and Zt taking their values in �n and
started from some arbitrary initial states. The coupling will be described by a joint
Markovian evolution of (Yt ,Zt ).

We now begin by describing the construction of a random transposition. For x ∈
(0,1), let {x}n denote the smallest element of {1/n, . . . , n/n} not smaller than x.
Let ũ, ṽ be two random points uniformly distributed in (0,1), set u = {ũ}n, v =
{ṽ}n and condition them so that u 
= v. Note that u, v are both uniformly distributed
on {1/n, . . . , n/n}. If we focus for one moment on the marginal evolution of (Yt ),
then applying one transposition to Yt can be realized by associating to Yt ∈ �n

a tiling of the semi-open interval (0,1] where each tile is equally semi-open and
there is exactly one tile for each nonzero coordinate of Yt . (The order in which
those tiles are put down may be chosen arbitrarily and does not matter for the
moment.) If u and v fall in different tiles then we merge the two tiles together and
get a new element of �n by sorting in decreasing order the size of the tiles. If u

and v fall in the same tile then we use the location of v to split that tile into two
parts: one that is to the left of v, and one that is to its right (we keep the same
semi-open convention for every tile). This procedure works because, conditionally
on falling in the same tile C as u, then v is equally likely to be on any point of C ∩
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{1/n, . . . , n/n} distinct from v, which is the same fragmenting rule as explained
at the beginning of the proof of Proposition 3.

We now explain how to construct one step of the joint evolution. If Y,Z ∈ �n

are two unit discrete partitions, then we can differentiate between the entries that
are matched and those that are unmatched; two entries from Y and Z are matched
if they are of identical size. Our goal will be to create as many matched parts as
possible. Let Q be the total mass of the unmatched parts. When putting down the
tilings associated with Y and Z we will do so in such a way that all matched parts
are at the right of the interval (0,1] and the unmatched parts occupy the left part of
the interval, as in Figure 1. If u falls into the matched parts, we do not change the
coupling beyond that described in [20]; that is, if v falls in the same component as
u we make the same fragmentation in both copies, while otherwise we make the
corresponding coalescence. The difference occurs if u falls in the unmatched parts.
Let y and z be the respective components of Y and Z where u falls, and let Ŷ , Ẑ be
the reordering of Y,Z in which these components have been put to the left of the
interval (0,1]. Let a = |y| and let b = |z| be the respective lengths of the pieces se-
lected with u, and assume without loss of generality that a < b. Further rearrange,
if needed, y and z so that after the rearrangement, |u| = 1/n. Because v 
= u, nec-
essarily v > 1/n (and is uniformly distributed on the set {2/n, . . . , n/n}). The

FIG. 1. First step of the coupling. A point ũ is uniformly chosen on (0,1) and picks a part in Y

and Z, which are then rearranged into Ŷ , Ẑ.
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FIG. 2. A second point ṽ is chosen uniformly in (0,1) and serves as a second size-biased pick for Ŷ .
ṽ is mapped to ṽ′ = �(ṽ) which gives a second size-biased pick for Ẑ.

point v designates a size-biased sample from the partition Ŷ and we will construct
another point v′, which will also be uniformly distributed on {2/n, . . . , n/n}, to
similarly select a size-biased sample from Ẑ. However, while in the coupling of
[20] one takes v = v′, here we do not take them equal and apply to v a measure-
preserving map �, defined as follows. Define the function

�(x) =
⎧⎨
⎩

x, if x > b or if 1/n ≤ x ≤ γn + 1/n,
x − γn, if a < x ≤ b,
x + b − a, if γn + 1/n < x ≤ a,

(31)

where γn := {(a − 1/n)/2}n. See Figure 2 for description of �. Note that � is a
measure-preserving map and hence ṽ′ := �(ṽ) is uniformly distributed on (0,1).
Define v′ = {ṽ′}n. With u, v and v′ selected, the rest of the algorithm is unchanged,
that is, we make the corresponding coagulations and fragmentations.

This coupling has a number of remarkable properties which we summarize be-
low. Essentially, the total number of unmatched entries can only decrease, and
furthermore it is very difficult to create small unmatched entries, as the smallest
unmatched entry can only become smaller by a factor of at most 2.

In what follows, we often speak of the “unmatched entries” between two per-
mutations, meaning that we associate to these permutations elements of �n and
identify matched parts in �n with matched cycles in the permutations. The trans-
lation between the two involves a factor n concerning the size of the parts, and in
all places it should be clear from the context whether we discuss parts in �n or
cycles of partitions.

LEMMA 19. Let U be the size of the smallest unmatched entry in two par-
titions Y,Z ∈ �n, let Y ′,Z′ be the corresponding partitions after one transpo-
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sition of the coupling and let U ′ be the size of the smallest unmatched entry in
Y ′,Z′. Assume that 2j ≤ U < 2j+1 for some j ≥ 0. Then it is always the case that
U ′ ≥ U − {U/2}n, and moreover,

P(U ′ ≤ 2j ) ≤ 2j+2/n.

Finally, the number of unmatched parts may only decrease.

REMARK 20. Since U ′ ≥ U − {U/2}n, it holds in particular that U ′ ≥ 2j−1.

PROOF OF LEMMA 19. That the number of unmatched entries can only de-
crease is similar to the proof of Lemma 3.1 in [20]. (In fact it is simpler here,
since that lemma requires looking at the total number of unmatched entries of size
greater than ε. Since in our discrete setup no entry can be smaller than ε = 1/n we
do not have to take this precaution.) We continue to denote by Mj the total number
of parts in the range [2j ,2j+1)/n. The only case that U can decrease is if there
is a fragmentation of an unmatched entry, since matched entries must fragment in
exactly the same way. Now, note that the coupling is such that when an unmatched
entry is selected and is fragmented, then all subsequent pieces are either greater
or equal to a − {a/2}n (where a is the size of the smaller of the two selected un-
matched entries), or are matched. Moreover, for such a fragmentation to occur, one
must select the lowest unmatched entry (this has probability at most Mj 2j+1/n,
since there may be several unmatched entries with size U ), and then fragment it,
which has probability at most 2j+1/n, and thus P(U ′ < U) ≤ 4Mj 4j /n2. Since
Mj 2j ≤ n, this completes the proof. �

We have described the basic step of a (random) transposition in the coupling.
The step corresponding to a random k-cycle γ = (γ1, γ2, . . . , γk) is obtained by
taking u1 = γ1, generating v, v′ as in the coupling above (corresponding to the
choice of γ2), rearranging and taking u2 to correspond to the location of v, v′ after
the rearrangement, drawing new v, v′ (corresponding to γ3) and so on. In doing so,
we are disregarding the constraint that no repetitions are present in γ . However, as
it turns out, we will be interested in an evolution lasting at most

� := n5/8 logn,(32)

and the expected number of times that a violation of this constraint occurs during
this time is bounded by 2�k2/n, which converges to 0 as n → ∞. Hence, we can
in what follows disregard this violation of the constraint.

Now, start with two configurations Y0,Z0 such that Z0 is the element of �n as-
sociated with a random uniform permutation. Assume also that initially, the small
parts of Y0 and Z0 (i.e., those that are smaller than K , the closest dyadic integer
to �nχ�), are exactly identical, and that they have the same parity. As we will now
see, at time �, πt+� and π ′

� will be coupled, with high probability. Note also that,



1840 N. BERESTYCKI, O. SCHRAMM AND O. ZEITOUNI

since initially all the parts that are smaller than K are matched, the initial number
of unmatched entries cannot exceed n/K ≤ n1/8, and this may only decrease with
time by Lemma 19.

LEMMA 21. In the next � units of time, the random permutation π ′
s never has

more than a fraction n−1/8(logn)6 of the total mass in parts smaller than n7/8,
with high probability.

PROOF. The proof is the same as that of Proposition 11, only simpler because
the initial number of small clusters is within the required range. We omit further
details. [This can also be seen by computing the probability that a given uniform
permutation π ′ has more than a fraction n−1/8(logn)6 of the total mass in parts
smaller than n7/8, and summing over Poisson(�) steps.] �

LEMMA 22. In the next � units of time, every unmatched part of the permu-
tations is greater than or equal to n3/4/2, with high probability.

PROOF. Recall that the total number of unmatched parts can never increase.
Suppose the smallest unmatched part at time s is of scale j (i.e., of size in
[2j ,2j+1)), and let j = U(s) be this scale. Then, when touching this part, the
smallest scale it could go to is j − 1, by the properties of the coupling (see Lem-
ma 19). This happens with probability at most 2j+2/n. On the other hand, with
the complementary probability, this part experiences a coagulation. And with rea-
sonable probability, what it coagulates with is larger than itself, so that it will
jump to scale j + 1 or larger. To compute this probability, note that since this is
the smallest unmatched part, all smaller parts are matched and thus have a total
mass controlled by Lemma 21. In particular, on an event of high probability, this
fraction of the total mass is at most q := n−1/8(logn)6. It follows that with prob-
ability at least 1 − q , the part jumps to scale at least j + 1, and with probability
at most rj := 2j+1/n, to scale j − 1. Now, when this part jumps to scale at least
j +1, this does not necessarily mean that the smallest unmatched part is in scale at
least j + 1, since there may be several small unmatched parts in scale j . However,
there can never be more than 2n1/8 such parts. If an unmatched piece in scale j is
touched, we declare it a success if it moves to scale j + 1 (which has probability
at least 1 − q , given that it is touched) and a failure if it goes to scale j − 1 (which
has probability at most rj ). If 2n1/8 successes occur before any failure occurs at
scale j , we say that a good success has occurred, and then we know that no un-
matched cycle can exist at scale smaller than j . Call the complement of a good
success a potential failure (which thus includes the cases of both a real failure and
a success which is not good). The probability of a potential failure at scale j is at
most 2n1/8rj /(1 − q + rj ), which is bounded above by pj = 6n1/82j /n.

Let {si}i≥0 be the times at which the smallest unmatched part changes scale,
with s0 being the first time the smallest unmatched part is of scale j0 where
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2j0 = n5/6. Let {Ui} denote the scale of the smallest unmatched part at time si ,
and let j1 be such that 2j1 = n3/4/2. Introduce a birth–death chain on the integers,
denoted vn, such that v0 = j0 and

P(vn+1 = j − 1|vn = j) =
⎧⎨
⎩

1, if j = j0,
0, if j = j1,
pj , otherwise,

(33)

and

P(vn+1 = j + 1|vn = j) =
{

1 − P(vn+1 = j − 1|vn = j), j > j1,
0, j = j1.

(34)

Set τj = min{n > 0 :vn = j}, and an analysis of the birth–death chain defined by
(33) and (34) gives that

P
j0(τj1 < τj0) = 1∑j0

j=j1+1
∏j0−1

m=j ((1 − pm)/pm)
≤

j0−1∏
j=j1+1

pj

1 − pj

(see, e.g., Theorem (3.7) in Chapter 5 of [8]). Thus P
j0(τj1 < τj0) decays as an

exponential in (logn)2. Therefore, since P(v2k� = j1) ≤ 2k�P
j0(τj1 < τj0), it fol-

lows that P(v2k� = j1) → 0 as n → ∞. On the other hand, between times t and
t +�, the process {Ui}i≥1 may have made at most 2k� moves with overwhelming
probability. This implies that Ui ≥ j1 with high probability throughout [t, t + �].

�

End of the proof of Theorem 1. We now are going to prove that, after � =
n5/8 logn steps, there are no more unmatched parts with high probability. The basic
idea is that, on the one hand, the number of unmatched parts may never increase,
and on the other hand, it does decrease frequently enough. Since each unmatched
part is greater than n3/4/2 during this time, any given pair of unmatched parts is
merging at rate roughly n−1/2. There are initially no more than 2n1/8 unmatched
parts, so after n5/8 logn = � steps, no more unmatched part remains with high
probability.

To be precise, assume that there are L unmatched parts. Let TL be the time to
decrease the number of unmatched parts from L to L − 2. Observe that, for parity
reasons (π and π ′ must have the same parity of number of parts at all times), L

is always even. Note also that L = 2 is impossible, so L is at least 4. Assume to
start with that both copies have at least 2 unmatched parts. Then, at rate greater
than n−1/4/2 we pick an unmatched part in the first point u1 for the k-cycle. Since
there are at least 2 unmatched parts in each copy, let R be the interval of (0,1)

corresponding to a second unmatched part in the copy that contains the larger of
the two selected ones. Then |R| > n−1/4/2, and moreover when v falls in R, we
are guaranteed that a coagulation is going to occur in both copies. We interpret
this event as a success, and declare every other possibility a failure. Hence if G
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is a geometric random variable with success probability n−1/4/2, and (Xj )
∞
j=1

are i.i.d. exponentials with mean 2n1/4, the total amount of time before a success
occurs is dominated by

∑G
j=1 Xj .

If, however, one copy (say π ) has only one unmatched part, then one first has
to break that component, which takes at most an exponential random variable with
rate n−1/2/4. Note that the other copy must have had at least 3 unmatched parts,
so after breaking the big one, both copies have now at least two unmatched copies
and we are back to the preceding case. It follows from this analysis that in any
case, TL is dominated by

TL � Y +
G∑

j=1

Xj

and so E(TL) ≤ 4n1/2 + 4n1/2 = 8n1/2. Now, let

τL = TL + TL−2 + · · · + T4

and let T = τ2n1/8 . Then T is the time to get rid of all unmatched parts. We
obtain from the above E(T ) ≤ 16n5/8. By Markov’s inequality, it follows that
T < n5/8 logn = � with high probability. This concludes the proof of Theorem 1.

�
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