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APPROXIMATING THE MOMENTS OF MARGINALS OF
HIGH-DIMENSIONAL DISTRIBUTIONS1

BY ROMAN VERSHYNIN

University of Michigan

For probability distributions on R
n, we study the optimal sample size

N = N(n,p) that suffices to uniformly approximate the pth moments of all
one-dimensional marginals. Under the assumption that the marginals have
bounded 4p moments, we obtain the optimal bound N = O(np/2) for p > 2.
This bound goes in the direction of bridging the two recent results: a theorem
of Guedon and Rudelson [Adv. Math. 208 (2007) 798–823] which has an
extra logarithmic factor in the sample size, and a result of Adamczak et al. [J.
Amer. Math. Soc. 23 (2010) 535–561] which requires stronger subexponential
moment assumptions.

1. Introduction.

1.1. The estimation problem. We study the following problem: how well can
one approximate one-dimensional marginals of a distribution on R

n by sampling?
Consider a random vector X in R

n, and suppose we would like to compute the
pth moments of the marginals 〈X,x〉 for all x ∈ R

n. To this end, we sample N

independent copies X1, . . . ,XN of X, compute the empirical moment from that
sample and we hope that it gives a good approximation of the actual moment,

sup
x∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

|〈Xi, x〉|p − E|〈X,x〉|p
∣∣∣∣∣ ≤ ε.(1.1)

Indeed, by the law of large numbers this quantity converges to zero as N → ∞. To
understand the quantitative nature of this convergence one would like to estimate
the optimal sample complexity N = N(n,p, ε) for which (1.1) holds with high
probability. For p = 2 this problem is equivalent to approximating the covariance
matrix of X by a sample covariance matrix, and it was studied in [1, 3, 4, 8, 13,
16]. For p �= 2, the problem was also studied in [1, 5–7, 12].

A well-known lower bound for the sample complexity is N � n for 1 ≤ p ≤ 2
and N � np/2 for p ≥ 2. Guedon and Rudelson [7] prove the upper bound N =
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O(np/2 logn) for p ≥ 2 under quite weak moment assumptions2

‖X‖2 = O
(√

n
)

a.s.,
(1.2)

(E|〈X,x〉|p)1/p = O(1) for all x ∈ Sn−1.

The logarithmic term cannot, in general, be removed from the sample complexity;
this can be seen by considering a random vector X uniformly distributed in a set
of n orthogonal vectors of Euclidean norm

√
n. On the other hand, Adamczak

et al. [1] recently managed to remove the logarithmic term for random vectors
X uniformly distributed in an isotropic convex body K in R

n, showing that for
such distributions one has N = O(n) for 1 ≤ p ≤ 2 and N = O(np/2) for p ≥ 2.
Their result actually holds for all random vectors X that satisfy the sub-exponential
moment assumptions

‖X‖2 = O
(√

n
)

a.s.,
(1.3)

(E|〈X,x〉|q)1/q = O(q) for all q ≥ 1 and x ∈ Sn−1.

A program aiming at understanding general empirical processes with sub-
exponential tails is put forward by Mendelson [11, 12].

1.2. Distributions with finite moments: Main result. At this moment there is
no complete understanding of which distributions on R

n require logarithmic over-
sampling and which do not. Clearly there is a gap between the minimal moment as-
sumptions (1.2) of [7] and the subexponential assumptions (1.3) of [1]. The present
note makes a step toward closing this gap.

Distributions with tails heavier than exponential frequently arise in statistics,
economics, engineering and other exact sciences like geophysics and environmen-
tal science. Heavy-tailed distributions are frequently used to model data that ex-
hibit large fluctuations (see, e.g., [2, 9, 10] and the references therein). A very ba-
sic theoretical example of a heavy-tailed random vector in R

n is X = (ξ1, . . . , ξn)

where ξj are independent random variables with mean zero, unit variance and
power-law tails P{|ξj | > t} ∼ t−q for some fixed exponent q > 2 (e.g., normalized
Pareto distrbution to mention a specific example). Such random vectors clearly
satisfy E‖X‖2

2 = n, thus ‖X‖2 = O(
√

n) with high probability. Moreover, the
marginals have moments (E|〈X,x〉|q ′

)1/q ′ = O(1) for all q ′ < q , but the higher
moments (for q ′ > q) are infinite.

We shall show that a version of the result of Adamczak et al. [1] holds under
finite moment assumptions for p �= 2; specifically, the logarithmic oversampling is
not needed if we replace p by 4p in the minimal moment assumptions (1.2). We
shall first consider independent random vectors Xi in R

n that satisfy

‖Xi‖2 ≤ K
√

n a.s., (E|〈Xi, x〉|q)1/q ≤ L for all x ∈ Sn−1.(1.4)

2The constant implicit in the O(·) notation in the sample complexity N depends only on the con-
stants implicit in the assumptions (1.2); the same convention applies to other results.
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THEOREM 1.1 (Approximation of marginals). Let p > 2, ε > 0 and δ > 0.
Consider independent random vectors Xi in R

n which satisfy (1.4) for q = 4p. Let
N ≥ Cnp/2 where C is a suitably large quantity that depends (polynomially) only
on K,L,p, ε, δ. Then with probability at least 1 − δ one has

sup
x∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

|〈Xi, x〉|p − E|〈Xi, x〉|p
∣∣∣∣∣ ≤ ε.(1.5)

REMARK. 1. A more elaborate version of this result is Theorem 4.3 below.
One can get more information on the probability in question using general con-
centration of measure results as is done in [7]. One can also modify the argument
to deduce a version of this result “with high probability” in spirit of [1], that is,
with probability converging to 1 (at polynomial rate) as n → ∞.

2. A standard modification of the argument (as in [1]) gives an optimal result
also in the range 1 ≤ p < 2. Namely, if the random vectors satisfy (1.4) for some
q ≥ 4p, q > 4, then the conclusion (1.5) holds for N ≥ CK,L,p,q,ε,δn.

3. The method of the present note does not seem to work for p = 2; this impor-
tant and more difficult case is addressed in [18] with an oversampling by a possibly
parasitic (log logn)cp,q factor.

The argument of this paper also yields sharp bounds on the norms of random op-
erators �2 → �p . The following result is a version of a result of [1], Corollary 4.12,
proved there under the stronger sub-exponential moment assumptions (1.3).

THEOREM 1.2 (Norms or random matrices). Let p > 2 and δ > 0. Consider
independent random vectors Xi in R

n which satisfy (1.4) for q = 4p. Then the
N × n random matrix A with rows X1, . . . ,XN satisfies with probability at least
1 − δ that

‖A‖�2→�p ≤ C(n1/2 + N1/p),

where C depends (polynomially) only on K,L,p, δ.

1.3. On the boundedness assumptions. Let us take a closer look on our as-
sumptions (1.4) on the distribution. The boundedness assumption ‖Xi‖2 = O(

√
n)

a.s. seems to be too strong—even the standard Gaussian distribution in R
n does

not satisfy it. We will observe that, although this assumption cannot be for-
mally dropped, it can be removed by slightly modifying the estimation process—
discarding the the sample vectors Xi that do not satisfy it.

First, it is easy to see that the boundedness assumption ‖Xi‖2 = O(
√

n)

a.s. cannot be dropped from our results. To this end, one easily constructs
a random vector whose Euclidean norm has sufficiently heavy tails3 so that

3For example, one can achieve this by considering a version of a “multidimensional Pareto” dis-
tribution [10]—the product of the standard Gaussian random vector in R

n by an independent scalar
random variable ξ with a power-law tail.
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maxi≤N ‖Xi‖2 � √
n with high probability for N � 1 and, in particular, for the

stated number of samples N ∼ np/2. Then the approximation inequality (1.5) will
fail. Indeed, once we choose x in the direction of the vector Xi with the largest
Euclidean norm, we will have with high probability that |〈Xi, x〉|p = ‖Xi‖p

2 �
np/2, which will force the average of the N terms in (1.5) to be much larger than
np/2/N ∼ const while E|〈Xi, x〉|p = O(1).

As a side note, the last observation also shows that the sample size N ∼ np/2 in
Theorem 1.1 is optimal.

Let us also note that the weaker boundedness assumption

(E‖Xi‖q
2)1/q ≤ L

√
n(1.6)

follows automatically from the second (moment) assumption in (1.4). To see this,
we represent ‖Xi‖2

2 = ∑n
j=1 Zj where Zj = |〈Xi, ej 〉|2 and where (ej ) is an or-

thonormal basis in R
n. Then Minkowski’s inequality yields (1.6)

(E‖Xi‖q
2)2/q =

[
E

(
n∑

j=1

Zj

)q/2]2/q

≤
n∑

j=1

(EZ
q/2
j )2/q

=
n∑

j=1

(E|〈Xi, ej 〉|q)2/q ≤ L2n.

Although, as we noticed before, the strong boundedness assumptions cannot be
dropped formally, they can be easily transferred into the estimation process. In-
stead of using all sample points Xi in the approximation inequality (1.5), one can
only use those with moderate norms, ‖Xi‖2 = O(

√
n). This will produce a sim-

ilar approximation result without any boundedness assumption. Just the previous
moment assumption will suffice:

(E|〈Xi, x〉|q)1/q ≤ L for all x ∈ Sn−1.(1.7)

COROLLARY 1.3 (Approximation of marginals: no boundedness assumption).
Let p > 2, ε > 0, δ > 0 and K > 0. Consider independent random vectors Xi in
R

n which satisfy (1.7) for q = 4p. Let N ≥ Cnp/2 where C is a suitably large
quantity that depends (polynomially) only on K,L,p, ε, δ. Denote

I := {
i ≤ N :‖Xi‖2 ≤ K

√
n
}
.

Then with probability at least 1 − δ one has

sup
x∈Sn−1

∣∣∣∣∣ 1

N

∑
i∈I

|〈Xi, x〉|p − E|〈Xi, x〉|p
∣∣∣∣∣ ≤ ε + Kp−qLq.
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PROOF. Consider the events Ei = {‖Xi‖2 ≤ K
√

n}. The conclusion then fol-
lows by applying Theorem 1.1 to the random vectors X̄i = Xi1Ei

, which clearly
satisfy (1.4). Noting that |〈X̄i, x〉|p = |〈Xi, x〉|p1Ei

, we obtain this way that

sup
x∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

|〈Xi, x〉|p1Ei
− E|〈X̄i, x〉|p

∣∣∣∣∣ ≤ ε.(1.8)

To complete the proof, it remains to estimate the error∣∣E|〈Xi, x〉|p − E|〈X̄i, x〉|p∣∣ = E|〈Xi, x〉|p1E c
i

(1.9)
≤ (E|〈Xi, x〉|q)p/q(P(E c

i ))1−p/q,

where we used Hölder’s inequality. To estimate the probability of E c
i we use (1.6)

which follows from our moment assumption (1.7) as we noticed before. By Cheby-
shev’s inequality we obtain

P(E c
i ) = {‖Xi‖2 > K

√
n
} ≤ (L/K)q.

Using this and moment assumption (1.7) we conclude that the error (1.9) is
bounded by Lp(L/K)q(1−p/q) = LqKp−q . Therefore in (1.8) we can replace
E|〈X̄i, x〉|p by E|〈Xi, x〉|p by increasing the error bound ε by LqKp−q . This com-
pletes the proof. �

REMARKS. 1. Of course one can achieve the approximation error 2ε in Corol-
lary 1.3 by choosing the threshold K = K(L, ε) sufficiently large.

2. For some distributions one may be able to show that with high probability,

max
i≤N

‖Xi‖2 ≤ K
√

n(1.10)

for some moderate value of K [ideally K = O(1)] and for the desired sample
size N . In this case, with high probability all events Ei in Corollary 1.3 hold simul-
taneously, and therefore they can be dropped from the approximation inequality.
One thus obtains the same bound as in Theorem 1.1 except for the extra error term
Kp−qLq .

This situation occurs, for example, in the estimation result Adamczak et al.
[1] mentioned above. For the uniform distribution on an isotropic convex body,
the concentration theorem of Paouris [15] implies that P(‖Xi‖2 ≥ K

√
n) ≤

exp(−√
n). By union bound this implies that (1.10) holds with probability 1 −

N · exp(−√
n), which is almost 1 for sample sizes N growing linearly or polyno-

mially in n. This is why in the final result of [1] for uniform distributions on convex
bodies no boundedness assumption is needed, whereas for general subexponential
distributions one needs the boundedness assumption ‖Xi‖2 = O(

√
n) a.s.
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1.4. Heuristics of the proof of Theorem 1.1. Bourgain [4] first demonstrated
that proving deviation estimates like (1.5) reduces to bounding the contribution
to the sum of the large coefficients—those for which |〈Xi, x〉| > B for a suitably
large fixed level B . Such reduction is used in some of the later approaches to the
problem [1, 6] as well as in the present note. However, after this reduction we use
a different route. Suppose for some vector x ∈ Sn−1 there are s = s(B) large coef-
ficients as above. The new ingredient of this note is a decoupling argument which
is formalized in Proposition 2.1. It transports the vector x into the linear span of at
most 0.01s of these Xi , while approximately retaining the largeness of the coef-
ficients, |〈Xi, x〉| > B/4. Let us condition on these 0.01s random vectors Xi . On
the one hand, we have reduced the “complexity” of the problem—our x now lies
in a fixed 0.01s-dimensional subspace, which has an 1

2 -net in the Euclidean metric
of cardinality e0.02s . On the other hand, the inequality |〈Xi, x〉| > B holds for the
remaining 0.99s vectors Xi of which x is independent; by (1.4) and Chebyshev’s
inequality this happens with probability (L/B)qs . Choosing the level B suitably
large so that (L/B)qs � e−0.02s allows us to take the union bound over the net,
and therefore to control the contribution of the large coefficients.

1.5. Organization of the paper. In Section 2 we develop the decoupling argu-
ment. We use it to control the contribution of the large coefficients in Section 3.
This is formalized in Theorem 3.1 where we estimate the norm of a random matrix
A with rows Xi in the operator norm �2 → �2,∞, and also in Lemma 4.2. In Sec-
tion 4, we deduce in a standard way the main results of this note—Theorem 1.1
on approximating the moments of marginals and Theorem 1.2 on the norms of
random matrices �2 → �p .

In what follows, C and c will stand for positive absolute constants (suitably cho-
sen); quantities that depend only on the parameters in question such as K,L,p,q

will be denoted CK,L,p,q .

2. Decoupling.

PROPOSITION 2.1 (Decoupling). Let X1, . . . ,Xs be vectors in R
n which sat-

isfy the following conditions for some K1,K2:

‖Xk‖2 ≤ K1
√

n,
1

s

∑
i≤s,i �=k

〈Xi,Xk〉2 ≤ K4
2n, k = 1, . . . , s.(2.1)

Let δ ∈ (0,1) and let B ≥ Cδ−3/2K1, M ≥ Cδ−1/2K2
2/K1. Assume that there ex-

ists x ∈ Sn−1 such that

〈Xi, x〉 ≥ B
√

n/s + M, i = 1, . . . , s.

Then there exist a subset I ⊆ {1, . . . , s}, |I | ≥ (1 − δ)s, and a vector y ∈ Sn−1 ∩
span(Xi)i∈I c such that

〈Xi, y〉 ≥ 1
4

(
B

√
n/s + M

)
, i ∈ I.
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PROOF. Without loss of generality, we may assume that δ > 0 is smaller than
a suitably chosen absolute constant (this can be done by suitably increasing the
value of constant C).

Step 1: Random selection. Denote a := B
√

n/s + M . Then

〈Xi/a, x〉 ≥ 1, i = 1, . . . , s.

The convex hull K := conv{Xi/a, i = 1, . . . , s} is separated in R
n from the origin

by the hyperplane {u : 〈u,x〉 = 1}. By a separation argument, one can find a vector
x̄ ∈ conv(K ∪ 0), ‖x̄‖2 = 1 and such that

〈Xi/a, x̄〉 ≥ 1, i = 1, . . . , s.(2.2)

(Indeed, one chooses x̄ = z/‖z‖2 where z is the element of K with the smallest
Euclidean norm.) We express x̄ as a convex combination

x̄ =
s∑

i=1

λiXi/a for some λi ≥ 0,

s∑
i=1

λi ≤ 1.

By Chebyshev’s inequality, the set E := {i ≤ s :λi ≤ 1/δs} has cardinality |E| ≥
(1−δ)s. We will perform a random selection on E. Let δ1, . . . , δs be i.i.d. selectors,
that is, independent {0,1} valued random variables with Eδi = δ. We define the
random vector

ȳ := ∑
i∈E

δiλiXi/a + ∑
i∈Ec

δλiXi/a then Eȳ = δx̄.

Step 2: Control of the norm and inner products. By independence and by defin-
itions of a, E and B we have

E‖ȳ − δx̄‖2
2 = E

∥∥∥∥∑
i∈E

(δi − δ)λiXi/a

∥∥∥∥
2

2
= ∑

i∈E

E(δi − δ)2 · λ2
i

‖Xi‖2
2

a2

≤ sδ · (1/δs)2 K2
1n

(B
√

n/s)2
≤ K2

1

δB2 ≤ 0.1δ2.

By Chebyshev’s inequality, we have with probability at least 0.9 that

‖ȳ‖2 ≤ ‖ȳ − δx̄‖2 + ‖δx̄‖2 ≤ 2δ.(2.3)

Now fix k ∈ E. By definition of ȳ and by (2.2), we have

E〈Xk/a, ȳ〉 = δ〈Xk/a, x̄〉 ≥ δ.(2.4)

We will need a similar bound with high probability rather than in expectation.
More accurately, we would like to bound below

pk := P{〈(1 − δk)Xk/a, ȳ〉 ≥ δ/2}.
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Consider the random vector ȳ(k) obtained by removing from the sum defining ȳ

the term corresponding to Xk

ȳ(k) := ∑
i∈E,i �=k

δiλiXi/a + ∑
i∈Ec

δλiXi/a = ȳ − δkλkXk/a.

Then ȳ(k) is independent of δk , which gives

pk = P{δk = 0} · P
{〈
Xk/a, ȳ(k)〉 ≥ δ/2

}
.

By definitions of a, E and B we can bound the contribution of the removed term
as

〈Xk/a,λkXk/a〉 = λk

‖Xk‖2
2

a2 ≤ (1/δs)
K2

1n

(B
√

n/s)2
= K2

1

δB2 ≤ 0.1δ2.

Then the random variable Zk := 〈Xk/a, ȳ(k)〉 satisfies by (2.4) that

EZk = E〈Xk/a, ȳ〉 − E〈Xk/a, δkλkXk/a〉 ≥ δ − 0.1δ3 ≥ 0.9δ.

Similar to the argument in the beginning of Step 2, we obtain

VarZk = E(Zk − EZk)
2 = E

〈
Xk/a,

∑
i∈E,i �=k

(δi − δ)λiXi/a

〉2

= ∑
i∈E,i �=k

E(δi − δ)2 · λ2
i

〈Xk,Xi〉2

a4

≤ δ ·
(

1

δs

)2 K4
2ns

(B
√

n/s + M)4
≤ K4

2

δB2M2 ≤ 0.01δ3.

By Chebyshev’s inequality, we conclude that P{Zk ≥ δ/2} ≥ 1−δ. We have shown
that

pk ≥ (1 − δ)(1 − δ) ≥ 1 − 2δ.

Step 3: Decoupling. Denoting by Ek the event 〈(1− δk)Xk/a, ȳ〉 ≥ δ/2, we have
shown that P(Ek) ≥ 1 − 2δ for all k ∈ E. Therefore with probability at least 0.9,
at least (1 − 20δ)|E| of the events Ek hold simultaneously. Indeed, by linearity of
expectation we have

E

∑
k∈E

1E c
k
= ∑

k∈E

P(E c
k ) ≤ 2δ|E|.

By Chebyshev’s inequality this yields

P

{∑
k∈E

1Ek
≤ (1 − 20δ)|E|

}
= P

{∑
k∈E

1E c
k
≥ 20δ|E|

}
≤ 2δ|E|

20δ|E| ≤ 1

10
.
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We have shown that with probability at least 0.9 the following event occurs: there
exists a subset I ⊂ E, |I | ≥ (1 − 22δ)s ≥ (1 − 22δ)s, such that Ek holds for all
k ∈ I .

Assume the latter event occurs. By definition of Ek we clearly have δk = 0 when-
ever Ek holds. Hence by definition of ȳ one has ȳ ∈ span(Xi)i∈I c . Also, by defini-
tion of Ek , one has

〈Xk/a, ȳ〉 ≥ δ/2, k ∈ I.

Once we set y := ȳ/‖ȳ‖2, this and (2.3) complete the proof. �

3. Norms of random operators �2 → �2,∞. Recall that the weak �2-norm
‖x‖2,∞ of a vector x = (x1, . . . , xN) ∈ R

N is defined as the minimal number M for
which the nonincreasing rearrangement (x∗

k ) of the sequence (|xk|) satisfies x∗
k ≤

Mk−1/2, k = 1, . . . ,N . It is well known that the quasi-norm ‖ · ‖2,∞ is equivalent
to a norm on R

N (see [17]), and one can easily check that cp‖x‖p ≤ ‖x‖2,∞ ≤
‖x‖2 for all p > 2.

Although ‖ · ‖2,∞ is not a norm, for linear operators A : Rn → R
N we will be

interested in the “norm” ‖A‖�2→�2,∞ defined as the minimal number M such that
‖Ax‖2,∞ ≤ M‖x‖2 for all x ∈ R

n.

THEOREM 3.1. Consider independent random vectors X1, . . . ,XN in R
n

which satisfy (1.4) for some q > 4. Then, for every t ≥ 1, the random matrix A

whose rows are Xi satisfies the following with probability at least 1−Ct−0.9q . For
every index set I ⊆ {1, . . . ,N}, one has

‖PIA‖�2→�2,∞ ≤ CK,L,q

[√
n + t

√|I |(N/|I |)2/q]
,

where PI is the coordinate projection in R
N onto R

I . In particular, one has

‖A‖�2→�2,∞ ≤ CK,L,q

(√
n + t

√
N

)
.

REMARKS. 1. This theorem is a finite-moment variant of Corollary 3.7 of [1],
where a similar result is proved under the stronger sub-exponential moment as-
sumptions (1.3). The latter is in turn a strengthening of an inequality of Bourgain
[4] that has some unnecessary logarithmic terms.

2. The conclusion of Theorem 3.1 can be equivalently stated as follows. For
every subset I ⊆ {1, . . . ,N}, one has∥∥∥∥∑

i∈I

Xi

∥∥∥∥
2
≤ CK,L,q

[√
n|I | + t |I |(N/|I |)2/q]

.

3. It seems possible that Theorem 3.1 holds for the spectral norm ‖A‖�2→�2 .
This would imply that Theorem 3.1 holds in the important case p = 2.
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The proof of Theorem 3.1 is based on the decoupling Proposition 2.1. So we
will first need to verify the assumptions on the vectors (2.1).

LEMMA 3.2. Let Z1, . . . ,ZN ≥ 0 be independent random variables which
satisfy EZ

q
i ≤ Bq for some q > 0 and some B . Consider the nonincreasing re-

arrangement (Z∗
i ) of (Zi). Then, for every t ≥ 1, one has with probability at least

1 − Ct−q/N that

Z∗
i ≤ tB(N/i)2/q, i = 1, . . . ,N.(3.1)

In particular, for q > 4 (3.1) implies

1

s

s∑
i=1

(Z∗
i )2 ≤ Cqt

2B2(N/s)4/q, s = 1, . . . ,N.

PROOF. By homogeneity, we can assume that B = 1. Then by Chebyshev’s
inequality we have P{Zj > u} ≤ u−q for every j ≤ N and u > 0. Now, if Z∗

i > u

then there exists a set J ⊆ {1, . . . ,N}, |J | = i such that |Zj | > u for all j ∈ J .
Taking union bound over possible choices of the subsets J , using independence
and Stirling’s approximation, we obtain for all i = 1, . . . ,N

P{Z∗
i > u} ≤

(
N

i

)(
max
j≤N

P{Zj > u}
)i ≤

(
N

i

)
u−qi ≤ (eu−qN/i)i .

Choosing u = t (eN/i)2/q we obtain P{Z∗
i > u} ≤ (t−qi/eN)i . Then, for t ≥ 1,

P{∃i ≤ N :Z∗
i > u} ≤

N∑
i=1

(t−qi/eN)i ≤ Ct−q/N.

This easily implies the first part of the lemma. The second part follows by summa-
tion using that 1

s

∑s
i=1 i−r ≤ Crs

−r for 0 < r < 1; here r = 4/q . �

LEMMA 3.3. Consider independent random vectors X1, . . . ,XN in R
n which

satisfy (1.4) for some q > 4. Then for every t ≥ 1 the following holds with prob-
ability at least 1 − Ct−q . For every subset E ⊆ {1, . . . ,N} and every k ≤ N one
has

1

|E|
∑

i∈E,i �=k

〈Xi,Xk〉2 ≤ Cqt2K2L2(N/|E|)4/qn.

PROOF. We fix k ≤ N and apply Lemma 3.2 to the random variables Z
(k)
i :=

|〈Xi,Xk〉|, i ≤ N , i �= k. By assumptions (1.4), we have EZ
q
i ≤ (KL

√
n)q . Then

with probability at least 1 − Ct−q/N , we have

1

s

s∑
i=1

((
Z(k))∗

i

)2 ≤ Cqt
2K2L2(N/s)4/qn, s = 1, . . . ,N.



APPROXIMATING THE MOMENTS OF MARGINALS 1601

Taking union bound over k ≤ N completes the proof. �

PROOF OF THEOREM 3.1. By homogeneity, we can assume that L = 1. Also,
by decomposing I in three sets of roughly equal cardinality we see that it suffices
to prove the conclusion for the subsets I of cardinality |I | ≤ N/2.

Denote by E the event in the conclusion of Lemma 3.3. If E holds, then the
assumptions (2.1) of decoupling Proposition 2.1 are satisfied for every s and every
subset (Xi)i∈E , E ⊆ {1, . . . ,N}, |E| = s, and with parameters K1 = K , K4

2 =
Cqt2K2(N/s)4/q . So, in view of application of decoupling Proposition 2.1, we
consider B = B(K, δ) and M1 = M1(q, δ, t) defined as

B := Cδ−3/2K1, M = Cδ−1K2
2/K1 = C′

qδ−1t (N/s)2/q =: M1(N/s)2/q .

Note that we can assume that C′
q ≥ 8, which we will use later.

We will now need a convenient interpretation of the conclusion of the theorem.
Given x ∈ Sn−1, we denote by |〈Xπ(i), x〉| a nonincreasing rearrangement of the
sequence |〈Xi, x〉|, i = 1, . . . ,N . Denote by D the minimal number such that for
every x ∈ Sn−1 and every s ≤ N/2 one has∣∣〈Xπ(s), x

〉∣∣ ≤ Rs := D
[
B

√
n/s + M1(N/s)2/q]

.

Since q ≥ 4, the quantity
√

s(N/s)2/q is nondecreasing in s. Therefore one has for
every s ≤ m ≤ N/2∣∣〈Xπ(s), x

〉∣∣ ≤ D
[
B

√
n/s + M1

√
m/s(N/m)2/q]

.

It follows that for every x ∈ Sn−1, every m ≤ N/2, and every index set I ⊆
{1, . . . ,N}, |I | = m, one has

‖(〈Xi, x〉)i∈I‖2,∞ ≤ D
[
B

√
n + M1

√
m(N/m)2/q]

.

If we are able to show that D ≤ 1 with the high probability as required in Theo-
rem 3.1, this would clearly complete the proof.

Since the event E holds with probability at least 1 − Ct−q , it suffices to show
that the event {E and D > 1} occurs with probability at most Ct−0.99q . Let us
assume that the latter event does occur. By definition of D, one can find an integer
s ≤ N/2, a subset E ⊆ {1, . . . ,N}, |E| = s and a vector x ∈ Sn−1 such that

|〈Xi, x〉| ≥ Rs, i ∈ E.

By the definition of Rs,B,M above, decoupling Proposition 2.1 can be applied for
(Xi)i∈E , and it yields the following. There exists a decomposition E = I ∪ J into
disjoint sets I and J such that |I | ≥ (1 − δ)s, |J | ≤ δs, and there exists a vector
y ∈ span(Xj )j∈J , ‖y‖2 = 1, such that

|〈Xi, y〉| ≥ Rs/4, i ∈ I.(3.2)
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Let β = β(δ) ≥ 0 be a sufficiently small quantity to be determined later. Con-
sider a β-net NJ of the sphere Sn−1 ∩ span(Xj )j∈J . As in known by volumetric
argument (see, e.g., [14], Lemma 2.6), one can choose such a net with cardinality

|NJ | ≤ (3/β)|J |.

We can assume that the random set NJ depends only on β and the random vari-
ables (Xj )j∈J . There exists y0 ∈ NJ such that ‖y − y0‖2 ≤ β . By definition of D,
this implies that∣∣〈Xπ(�δs�), y − y0

〉∣∣ ≤ R�δs� · β ≤ Rδs · β ≤ (
Rs/

√
δ
)
β = Rs/8,

if we choose β = √
δ/8. This means that all but at most δs indices i in I satisfy

the inequality |〈Xi, y − y0〉| ≤ Rs/8, and therefore [by (3.2)] also the inequality
|〈Xi, y0〉| ≥ Rs/8. Let us denote the set of these coefficients by I0. Note that

Rs/8 ≥ 1

8
M1(N/s)2/q (by definition of Rs and since D > 1)

≥ C′
q

8
(t/δ)(N/s)2/q (by definition of M1)

≥ (t/δ)(N/s)2/q (since C′
q ≥ 8).

Summarizing, we have shown that the event {E and D > 1} implies the follow-
ing event that we call E0: there exist an integer s ≤ N/2, disjoint index subsets
I0 = I0(s), J = J (s) ⊆ {1, . . . ,N} with cardinalities |I0| ≥ (1 − 2δ)s, |J | ≤ δs,
and a vector y0 ∈ NJ such that

|〈Xi, y0〉| ≥ (t/δ)(N/s)2/q, i ∈ I0.

Note that by Chebyshev’s inequality and independence, for a fixed y0 ∈ Sn−1 and
a fixed set I0 ⊂ {1, . . . ,N} as above, one has

P{|〈Xi, y0〉| ≥ (t/δ)(N/s)2/q, i ∈ I0} ≤ (
(t/δ)(N/s)2/q)−q|I0|

(3.3)
= (

(δ/t)q(s/N)2)|I0|.

Then we can bound the probability of E0 by taking the union bound over all s, I0, J

as above, conditioning on the random variables (Xj )j∈J (which fixes the net NJ ),
taking the union bound over y0 ∈ NJ , and finally evaluating the probability us-
ing (3.3). This yields

P(E0) ≤
N/2∑
s=1

(
N

|I0|
)(

N

|J |
)

|NJ |((δ/t)q(s/N)2)|I0|

(recall that I0 and J in this sum may depend on s). Also recall that with our choice
β = √

δ/8, we have |NJ | ≤ (24/
√

δ)|J |. Further, by our choice of M1 we have



APPROXIMATING THE MOMENTS OF MARGINALS 1603

Rs/8 ≥ δ−1t (N/s)2/q . Using Stirling’s approximation, we obtain

P(E0) ≤
N/2∑
s=1

(
eN

|I0|
(

δ

t

)q(
s

N

)2)|I0|(eN

|J | · 24√
δ

)|J |
.

Estimating s in the summand by 2|I0| and using the inequalities |I0| ≥ (1 − 2δ)s

and |J | ≤ δs along with monotonicity, we conclude for a sufficiently small δ that

P(E0) ≤
N/2∑
s=1

(
C

(
δ

t

)q s

N

)(1−2δ)s( CN

δ3/2s

)δs

≤
N/2∑
s=1

(
t−qs

10N

)(1−3δ)s

≤ t−0.9qN−0.9.

This completes the proof of Theorem 3.1. �

4. Approximation of marginals and the �2 → �p norms of random opera-
tors. In this section we deduce from Theorem 3.1 the main results of this paper,
Theorems 1.1 and 1.2. The method of this deduction is by now standard; it was
used in particular in [1]. It consists of an application of symmetrization, truncation,
and contraction principle, and it reduces the problem to estimating the contribution
to the sum of large coefficients.

Specifically, given a threshold B ≥ 0 and a vector x ∈ Sn, we define the set of
large coefficients with respect to random vectors X1, . . . ,XN as

EB = EB(x) = {i ≤ N : |〈Xi, x〉| ≥ B}.
The truncation argument in the beginning of proof of Proposition 4.4 in [1] yields
the following bound:

LEMMA 4.1 (Reduction to the few large coefficients). Let p ≥ 2, B ≥ 0, t ≥ 1.
Consider independent random vectors Xi in R

n which satisfy (1.7) for q = 2p.
Then for every positive integer N , with probability at least

1 − exp
(−c min

(
t2nB2p−2, t

√
Nn/B

))
one has

sup
x∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

|〈Xi, x〉|p − E|〈Xi, x〉|p
∣∣∣∣∣

≤ 16tBp−1
√

n

N
+ sup

x∈Sn−1

1

N

∑
i∈EB(x)

|〈Xi, x〉|p(4.1)

+ sup
x∈Sn−1

E
1

N

∑
i∈EB(x)

|〈Xi, x〉|p,

where c = cp,K > 0 depends only on p and the parameter K in the moment as-
sumption (1.7).
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This lemma reduces the approximation problem in Theorem 1.1 to finding an
upper bound on the contribution of the large coefficients 1

N

∑
i∈EB(x) |〈Xi, x〉|p . In

the following lemma, we observe that a slightly stronger bound (for the ‖ · ‖2,∞
norm rather than ‖ · ‖p norm) follows from Theorem 3.1. To facilitate the notation,
throughout the end of this section we will write a � b if a ≤ CK,L,p,q,δb.

LEMMA 4.2 (Large coefficients). Let q > 4, t ≥ 1, ε ∈ (0,1) and B ≥
t (εN/n)2/(q−4). Consider independent random vectors X1, . . . ,XN in R

n which
satisfy (1.4). Then with probability at least 1−Ct−0.9q , one has for every x ∈ Sn−1

|EB | � t2n/εB2, ‖(〈Xi, x〉)i∈EB
‖2,∞ � t

√
n/ε.

PROOF. By definition of the set EB and the norm ‖ · ‖2,∞ and using Theo-
rem 3.1, we obtain with the required probability

B2|EB | ≤ ‖(〈Xi, x〉)i∈EB
‖2

2,∞ � n + t2|EB |(N/|EB |)4/q .(4.2)

It follows that |EB | � n/B2 + N(t/B)q/2. This and the assumption on B implies
that |EB | � t2n/εB2 as required. Substituting this estimate into the second in-
equality in (4.2), we complete the proof. �

PROPOSITION 4.3 (Deviation). Let p > 2, ε ∈ (0,1), δ > 0 and N ≥ n/ε +C

where C = Cp,K,δ is suitably large. Consider independent random vectors Xi in
R

n which satisfy (1.4) for q = 4p. Then with probability at least 1 − δ one has

sup
x∈Sn−1

∣∣∣∣∣ 1

N

N∑
i=1

|〈Xi, x〉|p − E|〈Xi, x〉|p
∣∣∣∣∣ � ε1/2 + (n/ε)p/2

N
+

(
n

εN

)3/2

.(4.3)

REMARKS. 1. Theorem 1.1 follows immediately from this result.
2. One could of course optimize the right-hand side in ε; we did not do this in

order to make clear where the three terms come from.

PROOF OF PROPOSITION 4.3. We choose B := t (εN/n)2/(q−4) so that
Lemma 4.2 holds.

Next, we choose t = t (δ,K) and C = Cp,K,δ sufficiently large so that the prob-
abilities in Lemmas 4.1 and 4.2 are at least 1 − δ/2 each. This is indeed possible
for the probability in Lemma 4.1 as one can check that t2nB2p−2 = t2pεN ≥ t2p

and t
√

Nn/B ≥ N1/2−2/(q−4) ≥ C(p−2)/2(p−1); for the probability in Lemma 4.2
this is straightforward.

Let us assume that the conclusions of both these lemmas hold; as we now know
this holds with probability at least 1 − δ. Our goal is to estimate the three terms in
the right-hand side of (4.1).
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By our choice of B , the first term in the right-hand side of (4.1) is � ε1/2 as
required. The second term can be bounded using Lemma 4.2. Since ‖·‖p � ‖·‖2,∞
for p > 2, we obtain that

sup
x∈Sn−1

1

N

∑
i∈EB

|〈Xi, x〉|p � 1

N
‖(〈Xi, x〉)i∈EB

‖p
2,∞ � (n/ε)p/2

N

as required. To compute the third term in the right-hand side of (4.1), consider for
a fixed x the random variable Zi = |〈Xi, x〉|. Since EZ

q
i ≤ Lq , we have

EZ
p
i 1{Zi≥B} ≤ EZ

p
i (Zi/B)q−p1{Zi≥B} ≤ EZ

q
i /Bq−p ≤ LqBp−q .

Therefore, by our choice of B , we have

sup
x∈Sn−1

E
1

N

∑
i∈EB

|〈Xi, x〉|p = sup
x∈Sn−1

1

N

N∑
i=1

EZ
p
i 1{Z≥B}

≤ LqBp−q �
(

n

εN

)3p/(2(p−1))

≤
(

n

εN

)3/2

.

Combining these estimates, we complete the proof. �

REMARK. Theorem 1.2 now follows easily. We can assume that N ≥ C where
C = Cp,K,δ is suitably large. Now, for N ≤ n this result follows from Theorem 3.1
since ‖A‖�2→�p � ‖A‖�2→�2,∞ . For N ≥ n, the result follows from Proposition 4.3
with ε = 1, noting that (E|〈Xi, x〉|p)1/p ≤ L as p ≤ q .
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