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T. E. HARRIS’S CONTRIBUTIONS TO RECURRENT MARKOV
PROCESSES AND STOCHASTIC FLOWS

BY PETER BAXENDALE

University of Southern California

This is a brief survey of T. E. Harris’s work on recurrent Markov
processes and on stochastic flows, and of some more recent work in these
fields.

1. Introduction. I was a colleague of Ted Harris at USC, first as a sabbatical
visitor for the academic year 1982–1983 and later as a regular faculty member
from 1988 until his retirement. During this time, I spent many hours in discussions
with Ted, and appreciated his insight into all areas of probability theory. I feel
deeply grateful for the opportunity to have learned so much from him.

This paper covers two areas of Harris’s work. Early in his career he wrote
his seminal paper [16] on the existence and uniqueness of stationary measures
for Markov processes satisfying a certain recurrence condition. Nowadays, this is
called Harris recurrence, although Ted was far too modest a person to ever use
the term himself. Section 2 contains a brief account of [16] together with some
indication of later developments based on his idea.

Later in his career Harris became interested in stochastic flows. These can be
regarded as random mappings of an entire state space into itself. Section 3 starts
with some details of Harris’s construction of a stochastic flow as a limit of ran-
dom stirring processes. (Here, we see a transition from Poisson point processes
and percolation theory into processes more frequently described by stochastic dif-
ferential equations.) The rest of this section describes Harris’s work on isotropic
stochastic flows and coalescing stochastic flows, together with some more recent
developments in these areas.

2. Harris recurrence. Consider a (time homogeneous) discrete time Markov
process {Xn :n ≥ 0} taking values in a measurable space (S, B). For simplicity
here, we will assume B is separable, although many results are valid in a more
general setting. Let P(x, ·) denote the transition probability function, and let P

x

denote the law of the process with initial condition X0 = x. A nonzero measure μ

on (S, B) is a stationary measure for the Markov process if

μ(A) =
∫
S

P(x,A)μ(dx) for all A ∈ B.
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DEFINITION. For any set A ∈ B, define the hitting time TA = inf{n ≥ 1 :Xn ∈
A}. Let m be a σ -finite measure on (S, B). The Markov process is said to be m-
recurrent if P

x(TA < ∞) = 1 for all x ∈ S whenever m(A) > 0.

Nowadays, we say the Markov process is Harris recurrent if it is m-recurrent
for some nonzero m.

THEOREM 2.1 (Harris [16]). Assume the Markov process {Xn :n ≥ 0} is m-
recurrent for some nonzero σ -finite measure m. Then there is a stationary measure
μ for the Markov process. Moreover, μ is unique up to a constant multiplier, and
m is absolutely continuous with respect to μ.

In the case of a discrete state space S, this result was already known; see Derman
[13] and Chung [7]. The usual definition of recurrence to a point a ∈ S corresponds
to m-recurrence with m taken to be the Dirac measure δa at the point a, and then
the measure

μ(B) =
∞∑

n=1

P
a(

Xn ∈ B,T{a} ≥ n
)
, B ∈ B,

is stationary. In this setting, the times of visits of Xn to the recurrent point a are
renewal times for the Markov process. However, with a nondiscrete state space
S it will typically be necessary to look for recurrence to larger sets A than just
singleton sets, and then the locations of the visits within A are of interest.

For fixed A ∈ B with m(A) > 0, denote by T
(k)
A the times of visits to A, so that

T
(1)
A = TA and T

(k+1)
A = inf{n > T

(k)
A :Xn ∈ A}. The Markov process Zm = X

T
(m)
A

with values in A is called the process on A. The transition probabilities for the
process on A will be denoted PA(x, ·). The following result, combining several
lemmas in Harris [16], gives a characterization of the stationary measure showing
how the discrete space result is extended.

PROPOSITION 2.1. Assume the Markov process {Xn :n ≥ 0} is m-recurrent
for some nonzero σ -finite measure m, and that m(A) > 0. Suppose that μA is
a stationary probability measure for the process on A and that m is absolutely
continuous with respect to μA on A. Define μ on (S, B) by

μ(B) =
∫
A

(
E

x
TA∑
n=1

1B(Xn)

)
μA(dx), B ∈ B.(2.1)

Then μ is a stationary measure for the Markov process {Xn :n ≥ 0} on S and m is
absolutely continuous with respect to μ. Moreover, any other stationary measure
is a multiple of μ.
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It remains to consider the existence of the stationary probability μA for the
process on A. At this point, we see the conflicting requirements for the set A:
typically it has to be larger than a singleton so that m(A) > 0, but it should be
chosen small enough so that the process on A has some good behavior.

Let pn(x, y) denote the absolutely continuous part of the n-step transition prob-
ability P n(x, ·) with respect to m. The following technical lemma of Harris is
based in the idea that m-recurrence implies that for each x, the set T (x) = {y ∈
S :pn(x, y) = 0 for all n ≥ 1} must satisfy m(T (x)) = 0.

LEMMA 2.1. Assume the Markov process {Xn :n ≥ 0} is m-recurrent for
some nonzero σ -finite measure m. For any r ∈ (0,1), there exist A ∈ B with
0 < m(A) < ∞, a positive integer k and a positive constant s such that for all
x ∈ A,

m{y ∈ A :p1(x, y) + · · · + pk(x, y) > s} > rm(A).

This enables Harris to obtain a Doeblin-like condition on the transition oper-
ator R(x, ·) = (PA(x, ·) + · · · + P k

A(x, ·))/k and the existence of the stationary
probability μA follows directly.

2.1. Small sets.

DEFINITION. A set A ∈ B is a small set if there exist a positive integer k, a
probability measure ν and a constant β > 0 such that

P
k(x, ·) ≥ βν(·) for all x ∈ A.(2.2)

The following result is a strengthening of Harris’s Lemma 2.1.

PROPOSITION 2.2 (Orey [40]). Assume the Markov process {Xn :n ≥ 0} is
m-recurrent for some nonzero σ -finite measure m. Every set E ∈ B such that
m(E) > 0 contains a set A ∈ B such that 0 < m(A) < ∞ and

inf{pk(x, y) :x, y ∈ A} > 0

for some positive integer k.

COROLLARY 2.1. The Markov process {Xn :n ≥ 0} is m-recurrent for some
nonzero σ -finite measure m if and only if there exists a small set A ∈ B such that
P

x(TA < ∞) = 1 for all x ∈ S.

PROOF. Any set A with the property described in Proposition 2.2 is a small
set, with ν(B) = m(A ∩ B)/m(A). Conversely, suppose A has the properties
described in Corollary 2.1, with k, ν and β as in (2.2). If ν(B) > 0, then
P

x(Xn+k ∈ B) ≥ βν(B)Px(Xn ∈ A). Since P
x(TA < ∞) = 1 for all x ∈ S, then
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P
x(Xn ∈ A infinitely often) = 1 and so P

x(Xn ∈ B infinitely often) = 1. It follows
that {Xn :n ≥ 0} is ν-recurrent. �

This result shows that in some sense the study of Harris recurrence is equivalent
to the study of small sets with almost surely finite hitting times. The property that
A is small can be used in two distinct but related ways. For convenience assume
here that A is a small set with k = 1. The general case can be handled by applying
the methods described below to the k-step process {Xnk :n ≥ 0}.

2.1.1. Coupling. Two copies {Xn :n ≥ 0} and {X′
n :n ≥ 0} of the Markov

process can be coupled so that P(Xn+1 = X′
n+1|Xn,X

′
n) ≥ β whenever (Xn,X

′
n) ∈

A × A. This implies that two copies {Zm :m ≥ 0} and {Z′
m :m ≥ 0} of the process

on A can be coupled so that P(Zm+1 = Z′
m+1|Zm,Z′

m) ≥ β . It follows easily that
the process on A has a unique stationary probability μA, say, with

‖P
m
A(x, ·) − μA‖ ≤ 2(1 − β)m

for all m ≥ 0 and x ∈ A. Details of this coupling argument may be found in Lind-
vall [29].

2.1.2. The split chain. A set C is said to be an atom for the Markov chain
{Xn :n ≥ 0} if P(x, ·) = P(y, ·) for all x, y ∈ C. If C is an atom, then the times
of visits to C are renewal times for the Markov chain. The excursions away from
C will be independent and identically distributed, and many questions about the
large time behavior of the Markov chain may be resolved using this fact.

A singleton set C = {a} is an clearly an atom. Nummelin [38] showed how to
use a small set A to build a Markov chain with an atom. [More generally, Num-
melin assumes a minorization condition P(x,C) ≥ h(x)ν(C) with some nontrivial
nonnegative function h; here, we specialize to h(x) = β1A(x).] Consider the split
chain {(Xn,Yn) :n ≥ 0} with state space S × {0,1} and transition probabilities
given by

P {Yn = 1|F X
n ∨ F Y

n−1} = β1C(Xn),

P {Xn+1 ∈ A|F X
n ∨ F Y

n } =
⎧⎨
⎩

ν(A), if Yn = 1,
P(Xn,A) − β1C(Xn)ν(A)

1 − β1C(Xn)
, if Yn = 0.

Here, F X
n = σ {Xr : 0 ≤ r ≤ n} and F Y

n = σ {Yr : 0 ≤ r ≤ n}. Thus, the split chain
evolves as follows. Given Xn, choose Yn so that P(Yn = 1) = β1C(Xn). If Yn = 1
then Xn+1 has distribution ν, whereas if Yn = 0, then Xn+1 has distribution
(P (Xn, ·) − β1C(Xn)ν)/(1 − β1C(Xn)). The split chain {(Xn,Yn) :n ≥ 0} is de-
signed so that it has an atom S × {1}, and so that its first component {Xn :n ≥ 0}
is a copy of the original Markov chain.
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Thus, renewal theory can be used to describe the large time and stationary
behavior of the split chain {(Xn,Yn) :n ≥ 0}, and hence of its first component
{Xn :n ≥ 0}.

Much more information about small sets, and more generally about the er-
godic theory of Harris recurrent Markov chains, may be found in the books of
Revuz [42], Nummelin [39] and Meyn and Tweedie [36] and the references therein.

2.2. Positive recurrence and rates of convergence. A Harris recurrent Markov
process {Xn :n ≥ 0} is to be positive Harris recurrent if the stationary measure μ

can be normalized to be a probability measure on (S, B).
Suppose that A is a small set with 0 < m(A) < ∞, and recall that μA denotes

the stationary probability measure for the process on A. The stationary measure μ

given by (2.1) has total mass

μ(S) =
∫
A

E
x(TA)μA(dx).

Thus, the issue of positive recurrence depends on estimates of the expected hitting
times E

x(TA) for x ∈ A.

PROPOSITION 2.3 (Tweedie [43]). Assume A is a small set. Suppose there
exist a measurable function V ≥ 0 and constants c > 0, k such that PV (x) ≤
V (x)− c for x /∈ A and PV (x) ≤ k for x ∈ A. Then supx∈A E

x(TA) ≤ 1+ k/c and
so the Markov process is positive Harris recurrent.

The proof is based on the fact that the first inequality assumed for the Lyapunov–
Foster function V implies that when X0 /∈ A the process V (Xn) + cn stopped at
time TA is a supermartingale. With stronger assumptions on the function V , to-
gether with conditions to ensure aperiodicity, results may be obtained concerning
the rate of convergence of P n(x, ·) to the stationary probability measure π , say.
Several such conditions are given by Meyn and Tweedie [32, 36]. The following
result includes also stronger conditions on the small set A so as to ensure aperiod-
icity.

PROPOSITION 2.4 (Meyn and Tweedie [32]). Assume the set A ∈ B satisfies
P(x, ·) ≥ βν(·) for all x ∈ A, where β > 0 and ν(A) = 1. Assume also there ex-
ist a measurable function V ≥ 1 and positive constants λ < 1 and k such that
PV (x) ≤ λV (x) for x /∈ A and PV (x) ≤ k for x ∈ A. Then the Markov process
has a unique stationary probability measure π , say. Moreover, there exist positive
constants γ < 1 and M with the property that∣∣∣∣

∫
S
f (y)P n(x, dy) −

∫
f (y)π(dy)

∣∣∣∣ ≤ MV (x)γ n(2.3)

for all x ∈ S and n ≥ 0 whenever f :S → R is a measurable function such that
|f (y)| ≤ V (y) for all y ∈ S.
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More details about estimates of the form (2.3) can be found in Chapter 16: V -
uniform ergodicity of [36]. In Meyn and Tweedie [37] it is shown that the constants
M and γ can be chosen depending only on λ, k and β . See also Baxendale [4].

2.3. Continuous time Markov processes.

2.3.1. Sampled chains. Suppose that {Xt : t ≥ 0} is a time homogeneous
Markov process, and that {T (n) :n ≥ 0} is an independent undelayed renewal
process with increment distribution a, for some probability distribution on (0,∞).
Then the sampled chain {Yn :n ≥ 0} defined by Yn = XT (n) is a time homoge-
neous Markov chain. If Pt(x, ·) denotes the time t transition probability function
for {Xt : t ≥ 0}, then {Yn :n ≥ 0} has transition probability function Ka(x, ·) =∫

Pt(x, ·)a(dt).
The 	-skeleton chain Yn = Xn	 corresponds to the deterministic a = δ	. Alter-

natively, the resolvent chain observes the process X at the times of a rate 1 Poisson
process and has transition probability

R(x, ·) =
∫

Pt(x, ·)e−t dt,

which is the resolvent of the original continuous time process. The advantages and
disadvantages of various choices for a, and the connections between the theories
of Harris recurrence for continuous time and discrete time Markov processes are
discussed in the papers [33, 34] of Meyn and Tweedie. Results analogous to those
in Propositions 2.3 and 2.4, involving the action of the infinitesimal generator L

on V , are given in Meyn and Tweedie [35].

2.3.2. Stopping times. An alternative approach to recurrence for continuous
time Markov processes was developed independently by Maruyama and Tanaka
[30] and Khas’minskii [21]. Assume that {Xt : t ≥ 0} is a strong Markov process
with right continuous paths and left limits on a separable metric space S. Suppose
that D1 and D2 are open sets with disjoint closures D1 and D2 with the property
that the stopping times TD1 = inf{t ≥ 0 :Xt ∈ D1} and TD2 = inf{t ≥ 0 :Xt ∈ D2}
are both P

x-almost surely finite for all x ∈ S. Define inductively sequences σn and
τn of stopping times by σ0 = inf{t ≥ 0 :Xt ∈ D1}, τn = inf{t ≥ σn :Xt ∈ D2} for
n ≥ 0, and σn = inf{t ≥ τn−1 :Xt ∈ D1} for n ≥ 1. Then {Yn ≡ Xσn :n ≥ 0} is a
time homogeneous Markov chain on D1.

Assume for the moment that the process {Yn :n ≥ 0} on D1 has a stationary
probability measure μD1

. Then it is shown in [30] and [21] that the measure μ on
(S, B) defined by

μ(B) =
∫
D1

(
E

x
∫ σ1

0
1B(Xs) ds

)
μD1

(dx), B ∈ B,(2.4)

is a stationary measure for the original continuous time Markov process {Xt :
t ≥ 0}.
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So far this is a very natural extension to continuous time of Harris’s result in
Proposition 2.1. It remains to show the existence of the stationary probability mea-
sure μD1

, and this is where both [30] and [21] impose extra conditions on the
process {Xt : t ≥ 0}. In particular, they both use additional properties of the hitting
distribution P

x(XTD1
∈ B) for x ∈ D2 and B ⊂ D1 which ensure that the process

{Yn :n ≥ 0} satisfies Doeblin’s condition (D).
The representation (2.4) can be used to convert occupation time estimates for the

process {Xt : t ≥ 0} in a very direct way into estimates on the stationary measure μ,
see, for example, Baxendale and Stroock [6] and Baxendale [3].

3. Stirring processes and stochastic flows.

3.1. Random stirring in R
d . Let φ : Rd → R

d be a homeomorphism of R
d

onto itself such that φ(x) = x whenever ‖x‖ ≥ K , for some K . The mapping φ

can be thought of as a stirring of R
d centered at the origin 0 ∈ R

d . (Harris used
the term “stirring” originally in the case where the homeomorphism φ is volume
preserving, but it is convenient to keep the term in this more general setting.) For
a ∈ R

d , the translated mapping φa(x) = a + φ(x − a) represents stirring centered
at a.

Consider a Poisson point process on R
d × (0,∞) with intensity λdx dt . For

each atom (a, t) of the point process, apply the mapping φa at time t . Then for
0 ≤ s ≤ t < ∞ the value Xst of the stirring process is the random mapping of R

d

to itself obtained as the composition of the stirrings φa at times u for all the atoms
(a, u) with s < u ≤ t . A percolation argument, using the fact that φ(x) − x has
bounded support, can be used to show that for sufficiently small t −s the restriction
of the mapping Xst to any bounded set is almost surely given by the composition
of a finite number of stirrings. It follows that the process {Xst : 0 ≤ s ≤ t < ∞ is
well defined.

The essence of this construction can be seen in the paper by Harris [17] on
the construction of an exclusion process with nearest neighbor rates. In [17], he
considers a point process on the set of bonds of the integer lattice Z

d and the
corresponding stirring switches the two ends of the bond. The construction in [17]
allows the rates to depend on the local configuration, but in the simplest case of
constant rate it fits into the setting above. Random stirring on the real line is studied
in the paper [28] by Harris’s student W. C. Lee.

3.1.1. Convergence to a stochastic flow. Consider the effect of letting the mag-
nitude of the displacement involved in each stirring φ tend to zero while letting the
intensity of the Poisson process tend to infinity. More precisely, fix a compactly
supported vector field V on R

d and let φn denote the time 1/
√

n flow along V .
Let {Xn

st : 0 ≤ s ≤ t < ∞} be the random stirring process obtained using the stir-
ring function φn together with a Poisson process with rate nλdx dt . Assume the
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centering condition ∫
Rd

V (x) dx = 0.

Then under appropriate smoothness conditions on the vector field V the processes
{Xn

st : 0 ≤ s ≤ t < ∞} converge weakly to a process {Xst : 0 ≤ s ≤ t < ∞} with
values in the group of homeomorphisms of R

d . This is proved in Harris [18] for
the case d = 2 when V is divergence free and rotationally symmetric. A more
general form of result (although on a compact manifold) is given in Matsumoto
and Shigekawa [31].

The process {Xst : 0 ≤ s ≤ t < ∞} has the properties:

(i) for each x ∈ R
d and s ≥ 0 the mapping t → Xst (x) is continuous;

(ii) Xtu ◦ Xst = Xsu whenever s ≤ t ≤ u;
(iii) if s1 ≤ t1 ≤ s2 ≤ t2 ≤ · · · ≤ sn ≤ tn the mappings Xsiti , 1 ≤ i ≤ n are indepen-

dent;
(iv) the distribution of Xst depends only on t − s.

Any process with these properties will be called a (time-homogeneous) stochastic
flow on R

d . Much information about stochastic flows may be found in the books
of Kunita [22] and Arnold [1].

The law of a stochastic flow is determined by the laws of its k-point motions

t → (X0t (x1),X0t (x2), . . . ,X0t (xk)) ∈ R
dk

for all k ≥ 1 and x1, x2, . . . , xk ∈ R
d . It is easy to see that each k-point motion is a

Markov process on R
dk . Under suitable regularity conditions, the k-point motions

are diffusion processes and the infinitesimal generator for the k point motion can
be explicitly written in terms of the generator L, say, for the one-point motion and
a covariance matrix B(x, y) for the two-point motion. In particular for f ∈ C2(Rd)

with compact support,

Lf (x) = lim
t↘0

Ef (X0t (x)) − f (x)

t
, x ∈ R

d,

and

Bpq(x, y) = lim
t↘0

E[(Xp
0t (x) − xp)(X

q
0t (y) − yq)]

t
, x, y ∈ R

d .

The operator L and the matrix function B are related by the fact that B(x, x) is the
symbol of the operator L. Together, L and B are called the local characteristics of
the flow; see Le Jan and Watanabe [27]. For the stochastic flow constructed above
as the limit of random stirring processes, the operator L has constant coefficients
and B(x, y) depends only x − y. This implies that the law of the stochastic flow
is homogeneous in space as well as time. For the example on R

2 considered by
Harris in [18], the rotational invariance of the vector field V implies that law of
the stochastic flow is invariant under rigid motions of R

2, and in particular the
one-point motion is Brownian motion (up to a scaling factor).
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3.2. Isotropic stochastic flows. A stochastic flow {Xst : 0 ≤ s ≤ t < ∞} is
isotropic if its law is invariant under rigid motions of R

d . Harris [18] studied in-
compressible isotropic stochastic flows on R

2, and Baxendale and Harris [5] and
Le Jan [23] studied the general d-dimensional case.

For an isotropic stochastic flow, the generator L for the one-point motion is a
multiple of the Laplace operator 	, and the law of the flow is determined by the
covariance matrix B . Invariance under translations implies B(x, y) = B(x − y,0),
and then invariance under rotations implies B(x) ≡ B(x,0) satisfies B(x) =
G∗B(Gx)G for all real orthogonal matrices G. This condition gives a represen-
tation of B using Bessel functions; see Yaglom [44] and Itô [20]. A correspond-
ing representation for isotropic stochastic flows on a sphere S

d appears in Rai-
mond [41].

The isotropy condition implies that certain geometric properties of the flow
can be calculated explicitly. For example, the length ‖vt‖ of a tangent vector
vt = DX0t (x)(v) is a geometric Brownian motion and the top Lyapunov expo-
nent λ1 = limt→∞ t−1 log‖vt‖ can be calculated explicitly in terms of B . Other
local geometric properties such as the curvature of a submanifold of R

d have been
calculated; see Le Jan [24] and Cranston and Le Jan [8].

Of more interest are results involving the joint behavior of infinitely many
points. A result of Baxendale and Harris on the length of a small curve in the
case λ1 < 0 has recently been sharpened by Dimitroff [14]. Results of Cranston,
Scheutzow and Steinsaltz [10, 11] show that, while ‖X0t (x)‖ grows like

√
t for

each fixed x, if D is a nonsingleton connected set in Rd for d ≥ 2 and the isotropic
stochastic flow has λ1 > 0 then sup{‖X0t (y)‖ :y ∈ D} grows almost surely linearly
as t → ∞.

For any measure (distribution of mass) ν, let νt denote the induced random
measure ν ◦ X−1

0t . Zirbel [45] contains estimates on the first two moments of νt .
Recently Cranston and Le Jan [9] and Dimitroff and Scheutzow [15] have proved
asymptotic normality of the rescaled random measure A → νt (

√
tA).

3.3. Coalescing flows. For vector fields V0,V1,V2, . . . on R
d and independent

scalar Brownian motions {W 1
t : t ≥ 0}, {W 2

t : t ≥ 0}, . . . , consider the stochastic
differential equation

dxt = V0(xt ) dt + ∑
α≥1

Vα(xt ) dWα
t .(3.1)

Under suitable regularity and growth conditions on the vector fields V0,V1,V2, . . . ,

the strong solutions of (3.1) for different initial conditions can be pieced together
to give a stochastic flow {Xst : 0 ≤ s ≤ t < ∞} of homeomorphisms R

d ; see, for
example, Kunita [22]. The local characteristics of the flow are the operator

Lf (x) =
d∑

p=1

V
p
0 (x)

∂f

∂xp
(x) + 1

2

d∑
p,q=1

∑
α≥1

V p
α (x)V q

α (x)
∂2f

∂xp ∂xq
(x)
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and the covariance function

Bpq(x, y) = ∑
α≥1

V p
α (x)V q

α (y).(3.2)

Conversely, any stochastic flow in which L and B have sufficiently smooth coef-
ficients arises as the solution of a stochastic differential equation (taking the Vα to
be an orthonormal basis of the reproducing kernel Hilbert space of B) and the flow
consists of homeomorphisms.

Harris [19] introduced the study of coalescing stochastic flows. These are ones
where the mappings Xst may be many to one. Harris studied the case d = 1 with
continuous homogenous (in space) covariance function B , and obtained conditions
for coalescence in terms of the modulus of continuity of B at 0. (In contrast, the
“Arratia flow” of independent coalescing Brownian motions; see [2], has discon-
tinuous B = 1{0}.)

The issue of the existence of nonhomeomorphic stochastic flows in dimensions
d ≥ 2 was addressed by Darling [12]. More recently, Le Jan and Raimond [25,
26] have developed new techniques to interpret the stochastic differential equa-
tion (3.1) when the covariance function B given by (3.2) is non-Lipschitz. In this
more general setting, there is not only the possibility of coalescence; there is also
the possibility that the solution of (3.1) has to be interpreted as a flow of prob-
ability kernels. The flow of probability kernels, rather than a flow of mappings,
corresponds to the lack of uniqueness in the solutions of (3.1). Examples of such
flows include flows on Euclidean space R

d and spheres S
d with isotropic, but non-

Lipschitz, covariance functions B .
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