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A copolymer is a chain of repetitive units (monomers) that are almost
identical, but they differ in their degree of affinity for certain solvents. This
difference leads to striking phenomena when the polymer fluctuates in a non-
homogeneous medium, for example, made of two solvents separated by an
interface. One may observe, for instance, the localization of the polymer at
the interface between the two solvents. A discrete model of such system,
based on the simple symmetric random walk on Z, has been investigated
in [8], notably in the weak polymer-solvent coupling limit, where the conver-
gence of the discrete model toward a continuum model, based on Brownian
motion, has been established. This result is remarkable because it strongly
suggests a universal feature of copolymer models. In this work, we prove
that this is indeed the case. More precisely, we determine the weak coupling
limit for a general class of discrete copolymer models, obtaining as limits a
one-parameter [α ∈ (0,1)] family of continuum models, based on α-stable
regenerative sets.

1. Introduction.

1.1. The discrete model. Let S := {Sn}n=0,1,... be the simple symmetric ran-
dom walk on Z, that is, S0 = 0 and {Sn+1 − Sn}n=0,1,... is an i.i.d. sequence of
random variables, each taking values +1 or −1 with probability 1/2. If P is the
law of S, we introduce a new probability measure PN,ω = PN,ω,λ,h on the random
walk trajectories defined by

dPN,ω

dP
(S) := 1

ZN,ω

exp

(
−2λ

N∑
n=1

�(Sn−1 + Sn)(ωn + h)

)
,(1.1)

where N ∈ N := {1,2, . . .}, λ,h ∈ [0,∞), we have set �(·) := 1(−∞,0)(·) and
ω := {ωn}n∈N is a sequence of real numbers. Of course ZN,ω = ZN,ω,λ,h is the
normalization constant, called partition function and given by

ZN,ω := E

[
exp

(
−2λ

N∑
n=1

�(Sn−1 + Sn)(ωn + h)

)]
.(1.2)
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FIG. 1. The polymer model we deal with has been introduced in the mathematical literature (see,
e.g., [23]) as a modification of the law of the simple symmetric random walk {Sn}n≥0 on Z, with a
density proportional to exp[λ∑N

n=1(ωn + h) sign(Sn)] (Boltzmann factor). Each bond (Sn−1, Sn)

is interpreted as a monomer and by definition sign(Sn) is the sign of (Sn−1, Sn), that is, it is +1
(resp., −1) if the monomer (Sn−1, Sn) lies in the upper (resp., lower) half plane. In a quicker way,
sign(Sn) is just the sign of Sn−1 + Sn. The Boltzmann factor is somewhat different from the one
appearing in (1.1), but this is not a problem: in fact λ

∑N
n=1(ωn + h) sign(Sn) can be rewritten as

−2λ
∑N

n=1 �(Sn−1 +Sn)(ωn +h)+cN , where cN := λ
∑N

n=1(ωn +h) does not depend on S, there-
fore the quenched probability PN,ω is not affected by such a change. It is clear that the trajectories
of the walk, that are interpreted as configurations of a polymer chain, have an energetic gain (i.e.,
a larger Boltzmann factor) if positively charged monomers [(ωn +h) > 0] lie in the upper half plane
and negatively charged ones [(ωn + h) < 0] lie in the lower one. The fulfillment of this requirement,
even if only in a partial way, entails however an entropic loss: in fact the trajectories have to stick
very close to the horizontal axis (the interface) and there are only few such random walk trajectories.
The issue is precisely to understand who is the winner in this energy-entropy competition. The lower
part of the figure stresses the fact that the Boltzmann factor does not depend on the full trajectory S,
but only on the lengths and the signs of the successive excursions, described by the variables τ, ξ . In
the figure, it is also represented an example of the sequence of charges attached to the copolymer, in
the binary case (ωn ∈ {−1,+1}).

We could have used �(Sn) instead of �(Sn−1 + Sn), but this apparently unnatural
choice actually has a nice interpretation, explained in the caption of Figure 1.

We are interested in the case when ω, called the sequence of charges, is chosen
as a typical realization of an i.i.d. sequence (call P its law). We assume that ω and
S are independent, so that the relevant underlying law is P ⊗ P, but in reality we
are interested in quenched results, that is, we study PN,ω (in the limit N → ∞)
for a fixed choice of ω. In the literature, the charge distribution is often chosen
Gaussian or of binary type, for example, P(ω1 = +1) = P(ω1 = −1) = 1/2. We
invite the reader to look at Figure 1 in order to have a quick intuitive view of what
this model describes (a polymer model).

Figure 1 also schematizes an aspect of the model which is particularly relevant
to us. Namely that the Hamiltonian of the model, that is, the quantity appearing at
the exponent in the right-hand side of (1.1), does not depend on the full trajectories
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of S, but only on the random set τ := {n ∈ N ∪ {0} :Sn = 0} (that we may also
look at as an increasing random sequence τ =: {τ0, τ1, τ2, . . .}) and on the signs
ξ = {ξj }j∈N, defined by ξj := �(Sn) for n ∈ {τj + 1, τj+1 − 1} (i.e., ξj = 0 or 1
if the j th excursion of S is positive or negative). In fact, it is easily seen that
�(Sn−1 +Sn) = ∑∞

j=1 ξj 1(τj−1,τj ](n) is a function of τ and ξ only, and this suffices
to reconstruct the Hamiltonian [see (1.1)]. Note that we call the variables ξn signs
even if they take the values {0,1} instead of {+1,−1}.

Under the simple random walk law P, the two random sequences τ and ξ are
independent. Moreover, ξ is just an IID sequence of B(1/2) (i.e., Bernoulli of
parameter 1/2) variables, while τ is a renewal process, that is, τ0 = 0 and {τj −
τj−1}j∈N is i.i.d. Let us also point out that for every j ∈ N,

P(τj − τj−1 = 2n) = P(τ1 = 2n)
n→∞∼ 1

2
√

πn3/2 ,(1.3)

where we have introduced the notation f (x) ∼ g(x) for limx→∞ f (x)/g(x) = 1
[in the sequel, we will also use ∼ to denote equality in law: e.g., ω1 ∼ ω2 ∼
N (0,1)].

This discussion suggests a generalized framework in which to work, that has
been already introduced in [6, 16]. We start from scratch: let us consider a general
renewal process τ = {τn}n≥0 on the nonnegative integers N ∪ {0} such that

K(n) := P(τ1 = n)
n→∞∼ L(n)

n1+α
,(1.4)

where α ≥ 0 and L : (0,∞) → (0,∞) a slowly varying function, that is, a (strictly)
positive measurable function such that limx→∞ L(cx)/L(x) = 1, for every c > 0
(see Remark 1.1 below for more details). We assume that τ is a persistent renewal,
that is, P(τ1 < ∞) = ∑

n∈N K(n) = 1, which is equivalent to P(|τ | = ∞) = 1,
where |τ | denotes the cardinality of τ , viewed as a (random) subset of N ∪ {0}.
We will switch freely from looking at τ as a sequence of random variables or as a
random set.

Let ξ = {ξn}n∈N denote an i.i.d. sequence of B(1/2) variables, independent of τ ,
that we still call signs. With the couple (τ, ξ) in our hands, we build a new sequence
� = {�n}n∈N by setting �n = ∑∞

j=1 ξj 1(τj−1,τj ](n), in analogy with the simple
random walk case. In words, the signs �n are constant between the epochs of τ

and they are determined by ξ .
We are now ready to introduce the general discrete copolymer model, as the

probability law PN,ω = Pλ,h
N,ω for the sequence � defined by

dPN,ω

dP
(�) := 1

ZN,ω

exp

(
−2λ

N∑
n=1

�n(ωn + h)

)
,(1.5)

where N ∈ N, λ,h ∈ [0,∞) and ω = {ωn}n∈N is a sequence of real numbers
(a typical realization of an i.i.d. sequence, see below). The partition function



WEAK COUPLING LIMIT FOR COPOLYMER MODELS 2325

ZN,ω = Z
λ,h
N,ω is given by

ZN,ω := E

[
exp

(
−2λ

N∑
n=1

�n(ωn + h)

)]
.(1.6)

In order to emphasize the value of α in (1.4), we will sometimes speak of a discrete
α-copolymer model, but we stress that PN,ω depends on the full law K(·).

Note that the new model (1.5) only describes the sequence of signs �, while the
simple random walk model (1.1) records the full trajectory S. However, once we
project the probability law (1.1) on the variables �n := �(Sn−1 + Sn), it is easy to
check that the simple random walk model becomes a particular case of (1.5) and
its partition function (1.2) coincides with the general one given by (1.6), provided
we choose K(·) as the law of the first return to zero of the simple random walk
[corresponding to α = 1

2 ; see (1.3) and (1.4)]. As a matter of fact, since we require
that K(n) > 0 for all large n ∈ N [cf. (1.4)], strictly speaking the case of the simple
random walk is not covered. We stress, however, that our arguments can be adapted
in a straightforward way to treat the cases in which there exists a positive integer
T such that K(n) = 0 if n/T /∈ N and relation (1.4) holds restricting n ∈ T N (of
course T = 2 for the simple random walk case).

To complete the definition of the discrete copolymer model, let us state pre-
cisely our hypotheses on the disorder variables ω = {ωn}n∈N. We assume that the
sequence ω is i.i.d. and that ω1 has locally finite exponential moments, that is,
there exists t0 > 0 such that

M(t) := E[exp(tω1)] < ∞ for every t ∈ [−t0, t0].(1.7)

We also fix

E[ω1] = 0 and E[ω2
1] = 1,(1.8)

which entails no loss of generality (it suffices to shift λ and h). In particular, these
assumptions guarantee that there exists c0 > 0 such that

max
t∈[−t0,t0]

M(t) ≤ exp(c0t
2).(1.9)

Although it only keeps track of the sequence of signs �, we still interpret the
probability law PN,ω defined in (1.5) as a model for an inhomogeneous polymer
(this is the meaning of copolymer) that interacts with two selective solvents (the
upper and lower half planes) separated by a flat interface (the horizontal axis), as it
is explained in the caption of Figure 1. In particular, �n = 0 (resp., 1) means that
the nth monomer of the chain lies above (resp., below) the interface. To reinforce
the intuition, we will sometimes describe the model in terms of full trajectories,
like in the simple random walk case.
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REMARK 1.1. We refer to [4] for a full account on slowly varying functions.
Here, we just recall that the asymptotic behavior of L(·) is weaker than any power,
in the sense that, as x → ∞, L(x)xa tends to ∞ for a > 0 and to zero if a < 0.
The most basic example of a slowly varying function is any positive measurable
function that converges to a positive constant at infinity (in this case, we say that
the slowly varying function is trivial). Other important examples are positive mea-
surable functions which behave asymptotically like the power of a logarithm, that
is, L(x) ∼ log(1 + x)a , a ∈ R.

1.2. The free energy: Localization and delocalization. This work focuses on
the properties of the free energy of the discrete copolymer, defined by

F(λ,h) := lim
N→∞ FN(λ,h) where FN(λ,h) := 1

N
E[logZN,ω].(1.10)

The existence of such a limit follows by a standard argument, see, for example,
[16], Chapter 4, where it is also proven that for every λ and h

F(λ,h) = lim
N→∞

1

N
logZN,ω, P(dω)-a.s. and in L1(P).(1.11)

Equations (1.10) and (1.11) are telling us that the limit in (1.11) does not depend
on the (typical) realization of ω. Nonetheless, it is worthwhile to stress that it does
depend on P, that is, on the law of ω1, as well as on the renewal process on which
the model is built, namely on the inter-arrival law K(·). This should be kept in
mind, even if we omit P and K(·) from the notation F(λ,h).

An elementary, but crucial observation is

F(λ,h) ≥ 0 ∀λ,h ≥ 0.(1.12)

This follows simply by restricting the expectation in (1.6) to the event {τ1 >

N,ξ1 = 0}, on which we have �1 = 0, . . . ,�N = 0, hence we obtain ZN,ω ≥
1
2P(τ1 > N) and it suffices to observe that N−1 log P(τ1 > N) vanishes as N →
∞, thanks to (1.4). Notice that the event {τ1 > N,ξ1 = 0} corresponds to the set
of trajectories that never visit the lower half plane, therefore the right-hand side of
(1.12) may be viewed as the contribution to the free energy given by these trajecto-
ries. Based on this observation, it is customary to say that (λ,h) ∈ D (delocalized
regime) if F(λ,h) = 0, while (λ,h) ∈ L (localized regime) if F(λ,h) > 0 (see also
Figure 2 and its caption).

We have the following theorem.

THEOREM 1.2. If we set hc(λ) := sup{h : F(λ,h) > 0}, then hc(λ) = inf{h :
F(λ,h) = 0} and the function hc : [0,∞) → [0,∞] is strictly increasing and con-
tinuous as long as it is finite. Moreover, we have the explicit bounds

1

2λ/(1 + α)
log M

(−2λ/(1 + α)
) ≤ hc(λ) ≤ 1

2λ
log M(−2λ),(1.13)
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FIG. 2. In the figure, on the left, a sketch of the phase diagram of the discrete copolymer model.
The critical curve λ �→ hc(λ) separates the localized regime L from the delocalized one D. This
is a free energy characterization of the notion of (de)localization, but this characterization does
correspond the to sharply different path behaviors, sketched on the right side of the figure. In a
nutshell, if (λ,h) ∈ L then, for N → ∞, the typical paths intersect the interface (the horizontal axis)
with a positive density, while in the interior of D the path strongly prefers not to enter the lower half
plane. In this work, we just focus on properties of the free energy and for details on the link with
path properties, including a review of the literature and open problems; we refer to [16], Chapters 7
and 8.

where the left inequality is strict when α ≥ 0.801 (at least for λ small) and the right
inequality is strict as soon as α > 0 [for every λ < sup{t : log M(−2t) < ∞}].

The first part of Theorem 1.2 is proven in [8] and [5] (see also [16], Chapter 6).
In [5], one also finds the quantitative estimates (1.13), except for the strict inequal-
ities proven in [6] (see also [24]). From (1.13), one directly extracts

1

1 + α
≤ lim inf

λ↘0

hc(λ)

λ
≤ lim sup

λ↘0

hc(λ)

λ
≤ 1 ∀α ≥ 0.(1.14)

For α > 0, this result has been sharpened to

max
(

1

2
,

g(α)√
1 + α

,
1

1 + α

)
≤ lim inf

λ↘0

hc(λ)

λ
≤ lim sup

λ↘0

hc(λ)

λ
< 1,(1.15)

where g(·) is a continuous function such that g(α) = 1 for α ≥ 1 and for which
one can show that g(α)/

√
1 + α > 1/(1 + α) for α ≥ 0.801 [by evaluating g(·)

numerically one can go down to α ≥ 0.65]. In particular, the lower bound in (1.15)
reduces to 1/2 for α ≥ 3 and to 1/

√
1 + α for α ∈ [1,3]. The bounds in (1.15)

are proven in [6] and [25]. We invite the reader to look again at Figure 2. We also
point out that a numerical study of the critical line in the simple random walk
case (α = 1

2 ) has been performed in [9], while the critical point of a simplified
copolymer model, originally introduced in [5], has been obtained in [7].
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The focus on the behavior of the critical line hc(λ) for λ small has a reason, that
is, at the heart of this paper: our aim is to study the free energy F(λ,h) of discrete
copolymer models in the weak coupling limit, that is, when λ and h are small. We
will show that the behavior of F(λ,h) in this regime is captured by the exponent α

appearing in (1.4), independently of the finer details of the inter-arrival law K(·).
In particular, we prove that h′

c(0) exists and that it depends only on α. In order
to state these results precisely, we need to introduce a class of copolymer models
in the continuum: in a suitable sense, they capture the limit of discrete copolymer
models as λ,h ↘ 0.

1.3. The continuum model: Brownian case. Bolthausen and den Hollander in-
troduced in [8] the Brownian copolymer model, whose partition function is given
by

Z̃BM
t,β := E

[
exp

(
−2λ

∫ t

0
�(B̃(u))

(
dβ(u) + hdu

))]
,(1.16)

where once again λ,h ≥ 0, �(x) := 1(−∞,0)(x) and B̃(·) (the polymer), β(·) (the
medium) are independent standard Brownian motions with laws P and P, respec-
tively.

The corresponding free energy F̃BM(λ,h) is defined as the limit as t → ∞ of
1
t
E[log Z̃BM

t,β ] and one has F̃BM(λ,h) ≥ 0 for every λ,h ≥ 0, in analogy with the
discrete case. Therefore, by looking at the positivity of F̃BM, one can define also
for the Brownian copolymer model the localized and delocalized regimes, that are
separated by the critical line h̃c(λ) := sup{h : F̃BM(λ,h) > 0}. Now a real novelty
comes into the game: the scaling properties of the two Brownian motions yield
easily that for every a > 0

1

a2 F̃BM(aλ, ah) = F̃BM(λ,h).(1.17)

In particular, the critical line is a straight line: h̃c(λ) = m̃BMλ, for every λ ≥ 0,
with

m̃BM := sup{c ≥ 0 : F̃BM(1, c) > 0}.(1.18)

We are now ready to state the main result in [8].

THEOREM 1.3. For the simple random walk model (1.1), with ω1 such that
P(ω1 = +1) = P(ω1 = −1) = 1/2, we have

lim
a↘0

1

a2 F(aλ, ah) = F̃BM(λ,h) ∀λ,h ≥ 0,(1.19)

and

lim
λ↘0

hc(λ)

λ
= m̃BM ∈ (0,1].(1.20)
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The great interest of this result is that it provides a precise formulation for the
fact that the Brownian copolymer model is the weak coupling scaling limit of
the simple random walk copolymer model (1.1). At the same time, the fact that
such a result is proven only for the simple random walk model and only for a
single choice of the charges distribution appears to be a limitation. In fact, since
Brownian motion is the scaling limit of many discrete processes, it is natural to
guess that Theorem 1.3 should hold for a large class of discrete copolymer models
and for a vast choice of charge distributions (remaining of course in the domain
of attraction of the Gaussian law and adding some technical assumptions). This
would show that the Brownian copolymer model has indeed a universal character.

In fact, Theorem 1.3 has been generalized in [17] to a large class of disorder ran-
dom variables (including all bounded random variables). A further generalization
has been obtained in [21], in the case when, added to the copolymer interaction,
there is also a pinning interaction at the interface, that is, an energy reward in
touching the interface. We stress, however, that these generalizations are always
for the copolymer model built over the simple random walk: going beyond the
simple random walk case appears indeed to be a very delicate (albeit natural) step.

The main result of this paper is that Theorem 1.3 can be generalized to any
discrete α-copolymer model with α ∈ (0,1) and to any disorder distribution sat-
isfying (1.7) and (1.8) (see Theorem 1.5 below). For α = 1

2 , the scaling limit is
precisely the Brownian copolymer model (1.16), like in the simple random walk
case, while for α �= 1

2 the continuum copolymer model is defined in the next sub-
section. We stress from now that the scaling limit depends only on α: in particular,
there is no dependence on the slowly varying function L(·) appearing in (1.4) and
no dependence on P(τ1 = n) for any finite n.

1.4. The continuum α-copolymer model. Let us start by recalling that, for
δ ≥ 0, the square of δ-dimensional Bessel process (started at 0) is the process
X = {Xt }t≥0 with values in [0,∞), that is, the unique strong solution of the fol-
lowing equation:

Xt = 2
∫ t

0

√
Xs dws + δt,(1.21)

where {wt }t≥0 is a standard Brownian motion. The δ-dimensional Bessel process
is by definition the process Y = {Yt := √

Xt }t≥0: it is a Markov process on [0,∞)

that enjoys the standard Brownian scaling ([22], Chapter XI, Proposition (1.10)).
We focus on the case δ ∈ (0,2), when a.s. the process Y visits the origin infinitely
many times [22], Chapter XI, Proposition (1.5). We actually use the parametriza-
tion δ = 2(1 − α) and we then restrict to α ∈ (0,1).

It is easily checked using Itô’s formula that for α = 1
2 (i.e., δ = 1) the process

Y has the same law as the absolute value of Brownian motion on R. Since to de-
fine the Brownian copolymer model (1.16) we have used the full Brownian motion
process, not only its absolute value, we need a modification of the Bessel process
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in which each excursion from zero may be either positive or negative, with the sign
chosen by fair coin tossing. Such a process, that we denote by B̃α := {B̃α(t)}t≥0,
has been considered in the literature, for example, in [3], and is called Walsh
process of index α (in [3] a more general case is actually considered: in their no-
tation, our process corresponds to the choices k = 2, E1 = [0,∞), E2 = (−∞,0]
and p1 = p2 = 1/2). It is easy to see that the process B̃α inherits the Brownian
scaling. We denote by P its law.

We are now ready to generalize the Brownian copolymer model (1.16): given
α ∈ (0,1), we define the partition function of the continuum α-copolymer model
through the formula

Z̃α
t,β := E exp

(
−2λ

∫ t

0
�(B̃α(u))

(
dβ(u) + hdu

))
,(1.22)

where β = {β(t)}t≥0 always denotes a standard Brownian motion with law P, in-
dependent of B̃α , and �(x) = 1(−∞,0)(x). Since for α = 1

2 the process B̃1/2 is just

a standard Brownian motion, Z̃
1/2
t,β coincides with Z̃BM

t,β defined in (1.16). For the
sake of simplicity, in (1.22) we have only defined the partition function of the con-
tinuum α-copolymer model: of course, one can easily introduce the corresponding
probability measure Pt,β on the paths of B̃α , in analogy with the discrete case, but
we will not need it.

Let us stress that the integral in (1.22), as well as the one in (1.16), does
not really depend on the full path of the process B̃α ; in fact, being a function
of �(B̃α(·)), it only matters to know, for every u ∈ [0, t], whether B(u) < 0 or
B(u) ≥ 0. For this reason, it is natural to introduce (much like in the discrete case)
the zero level set τ̃ α of B̃α(·):

τ̃ α := {s ∈ [0,∞) : B̃α(s) = 0}.(1.23)

The set τ̃ α contains almost all the information we need, because, conditionally
on τ̃ α , the sign of B̃α inside each excursion is chosen just by tossing an indepen-
dent fair coin. Moreover, the random set τ̃ α is a much studied object: it is, in fact,
the α-stable regenerative set ([22], Chapter XI, Exercise (1.25)). Regenerative sets
may be viewed as the continuum analogues of renewal processes: we discuss them
in some detail in Section 2, also because it will come very handy to restate the
model in terms of regenerative sets for the proofs.

The free energy for the continuum α-copolymer model is defined in close anal-
ogy to the discrete case, but proving its existence turns out to be a highly nontrivial
task. For this reason, we state it as a result in its own.

THEOREM 1.4. The limit of 1
t
E[log Z̃α

t,β] as t → ∞ exists and we call it
F̃α(λ,h). For all α ∈ (0,1) and λ,h ∈ [0,∞) we have 0 ≤ F̃α(λ,h) < ∞ and
furthermore

lim
t→∞

1

t
log Z̃α

t,β = F̃α(λ,h),(1.24)
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both P(dβ)-a.s. and in L1(P). The function (λ,h) �→ Fα(λ,h) is continuous.

Like before, the nonnegativity of the free energy leads to exploiting the di-
chotomy F̃α(λ,h) = 0 and F̃α(λ,h) > 0 in order to define, respectively, the
delocalized and localized regimes of the continuum α-copolymer model. The
monotonicity of F̃α(λ, ·) guarantees that if we set h̃α

c (λ) := sup{h ≥ 0 : F̃α(λ,h) >

0}, then we also have h̃α
c (λ) := inf{h ≥ 0 : F̃α(λ,h) = 0}. Moreover, the scaling

properties of β and B̃α imply that (1.17) holds unchanged for F̃α(·, ·) so that the
critical line is again a straight line: h̃α

c (λ) = m̃αλ for every λ ≥ 0, with

m̃α := sup{c ≥ 0 : F̃α(1, c) > 0},(1.25)

in direct analogy with (1.18). Plainly, m̃1/2 = m̃BM.

1.5. The main result. We can finally state the main result of this paper.

THEOREM 1.5. Consider an arbitrary discrete α-copolymer model satisfying
the hypotheses (1.4), (1.7) and (1.8), with α ∈ (0,1). For all λ,h ≥ 0, we have

lim
a↘0

1

a2 F(aλ, ah) = F̃α(λ,h).(1.26)

Moreover,

lim
λ↘0

hc(λ)

λ
= m̃α.(1.27)

Theorem 1.5 shows that the continuum α-copolymer is the universal weak in-
teraction limit of arbitrary discrete α-copolymer models. Although the phase dia-
gram of a discrete copolymer model does depend on the details of the inter-arrival
law K(·), it nevertheless exhibits universal features for weak coupling. In par-
ticular, the critical line close to the origin is, to leading order, a straight line of
slope m̃α . It is therefore clear that computing m̃α or, at least, being able of improv-
ing the known bounds on m̃α would mean a substantial progress in understanding
the phase transition in this model. Note that, of course, given (1.27), the bounds
in (1.15) are actually bounds on m̃α (and they represent the state of the art on this
important issue, to the the authors’ knowledge).

It is remarkable that in the physical literature there is, on the one hand, quite
some attention on the slope at the origin of the critical curve (see, e.g., [14]) but, on
the other hand, its universal aspect has not been appreciated (some of the physical
predictions are even in contradiction with the universality of the slope). We refer to
[6, 11, 16] for overviews of the extensive physical literature on copolymer models.

We do not expect a generalization of Theorem 1.5 to α /∈ (0,1). To be more
precise, the case α = 0 is rather particular: the critical curve is known explicitly
by Theorem 1.2, the slope at the origin is universal and its value is one. The case
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α = 1 with E[τ1] = ∞ may still be treatable, but the associated regenerative set
is the full line, so Theorem 1.5 cannot hold as stated. An even more substantial
problem arises whenever E[τ1] < ∞ (in particular, for every α > 1): apart from
the fact that the regenerative set becomes trivial, there is a priori no reason why
universality should hold. The rationale behind Theorem 1.5 is that at small cou-
pling the renewal trajectories are not much perturbed by the interaction with the
charges. If E[τ1] = ∞, one may then hope that long inter-arrival gaps dominate,
as they do when there is no interaction with the charges: since the statistics of long
gaps depends only on the tail of K(·) and within long gaps the disorder can be
replaced by Gaussian disorder, Theorem 1.5 is plausible. This is, of course, not at
all the case if E[τ1] < ∞.

REMARK 1.6. One may imagine that (1.27) is a consequence of (1.26), but
this is not true. In fact, it is easy to check that (1.26) directly implies

lim inf
λ↘0

hc(λ)

λ
≥ m̃α,(1.28)

but the opposite bound (for the superior limit) does not follow automatically. We
obtain it as a corollary of our main technical result (Theorem 3.1).

1.6. Outline of the paper. We start, in Section 2, by taking a closer look at
the continuum model and by giving a proof of the existence of the free energy
(Theorem 1.4). Such an existence result had been overlooked in [8]. A proof was
proposed in [15], in the Brownian context, giving for granted a suitable uniform
boundedness property, that is not straightforward (this is the issue addressed in
Appendix A). The proof that we give here therefore generalizes [from α = 1/2 to
α ∈ (0,1)] and completes the proof in [15]. We follow the general scheme of the
proof in [15], that is, we first define a suitably modified partition function, that falls
in the realm of Kingman’s super-additive ergodic theorem [18], and then we show
that such a modified partition function has the same Laplace asymptotic behavior
as the original one. Roughly speaking, the modified partition function is obtained
by relaxing the condition that B̃α(0) = 0; one takes, rather, the infimum over a
finite interval of starting points. If introducing such a modified partition function
is a standard procedure, a straightforward application of this idea does not seem to
lead far. Such an infimum procedure has to be set up in a careful way in order to be
able to perform the second step of the proof, that is, stepping back to the original
partition function. With respect to the proof in [15], that exploits the full path of the
Brownian motion B(·), the one we present here is fully based on the regenerative
set. Overall, establishing the existence of the continuum free energy is very much
harder than the discrete counterpart case and it appears to be remarkably subtle
and complex when compared to the analogous statement for close relatives of our
model (see, e.g., [10]).
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In Section 3, we give the proof of our main result, Theorem 1.5, following the
scheme set forth in [8] (we refer to it as the original approach), which is based on
a four step procedure. We outline it here, in order to give an overview of the proof
and to stress the points at which our arguments are more substantially novel.

(1) Coarse graining of the renewal process. In this step, we replace the Boltzmann
factor by a new, coarser one, which does not depend on the short excursions
of the renewal process (in the sense that these excursions inherit the sign of
a neighbor long gap). This step is technically, but not substantially different
from the one in the original approach.

(2) Switching to Gaussian charges. The original approach exploits the well
known, and highly nontrivial, coupling result due to Komlós, Major and Tus-
nády [20]. We take instead a more direct, and more elementary, approach. In
doing so, we get rid of any assumption, beyond local exponential integrability,
on the disorder.

(3) From the renewal process to the regenerative set. This is probably the crucial
step. The original approach exploits heavily the underlying simple random
walk and the exact formulas available for such a process. Our approach nec-
essarily sticks to the renewal process and, in a sense, the point is showing that
suitable local limit theorems (crucial here are results by Doney [12]) suffice
to perform this step. There is, however, another issue that makes our general
case different from the simple random walk case. In fact this step, in the origi-
nal approach, is based on showing that a suitable Radon–Nikodym derivative,
comparing the renewal process and the regenerative set, is uniformly bounded.
In our general set-up, this Radon–Nikodym derivative is not bounded and a
more careful estimate has to be carried out.

(4) Inverse coarse graining of the regenerative set. We are now left with a model
based on the regenerative set, but depending only on the large excursions. We
have therefore to show that putting back the dependence on the small excur-
sions does not modify substantially the quantity we are dealing with. This is
parallel to the first step: it involves estimates that are different from the ones
in the original approach, because we are sticking to the regenerative set for-
mulation and because α is not necessarily equal to 1/2, but the difference is,
essentially, just technical.

Let us finally mention that our choice of focusing on discrete copolymer models
built over renewal processes leaves out another possible (and perhaps more natural)
generalization of the simple random walk copolymer model (1.1): namely, the one
obtained by replacing the simple random walk with a more general random walk.
A general random walk crosses the interface without necessarily touching it, there-
fore the associated point process is a Markov renewal process [2], because one has
to carry along not only the switching-sign times, but also the height of the walk at
these times (sometimes called the overshoot). This is definitely an interesting and



2334 F. CARAVENNA AND G. GIACOMIN

nontrivial problem that goes in a direction which is complementary to the one we
have taken. However two remarks are in order:

(1) Symmetric random walks with i.i.d. increments in {−1,0,1} touch the in-
terface when they cross it, hence, they are covered by our analysis: their
weak coupling limit is the continuum 1/2-copolymer, because K(n)

n→∞∼
(const.)n−3/2 (e.g., [16], Appendix A.5).

(2) While one definitely expects an analog of Theorem 1.5 to hold for rather gen-
eral random walks with increments in the domain of attraction of the normal
law (with the continuum 1/2-copolymer as weak coupling limit), it is less
clear what to expect when the increments of the walk are in the domain of
attraction of a non-Gaussian stable law. In our view, working with generalized
copolymer models has, in any case, a considerable flexibility with respect to
focusing on the random walk set-up.

2. A closer look at the continuum model. In this section, we prove the ex-
istence of the continuum free energy F̃α(λ,h), that is, we prove Theorem 1.4. In
Section 2.3, we define a modified partition function, to which Kingman’s super-
additive ergodic theorem can be applied, and then in Section 2.4, we show that this
modified partition function yields the same free energy as the original one. Be-
fore starting with the proof, in Section 2.1 we redefine the partition function Z̃α

t,β

more directly in terms of the α-stable regenerative set τ̃ α , whose basic properties
are recalled in Section 2.2 (cf. also Appendix A.1). We are going to drop some
dependence on α for short, writing, for example, F̃(λ,h).

2.1. Preliminary considerations. As explained in Section 1.4, the process B̃α

is introduced just to help visualizing the copolymer, but the underlying relevant
process is �(B̃α) := 1(−∞,0)(B̃

α). So let us reintroduce Z̃t,β more explicitly, in
terms of the random set τ̃ α [cf. (1.23)] and of the signs of the excursions, that are
sufficient to determine �(B̃α).

There is no need to pass through the process B̃α to introduce τ̃ α : we can define
it directly as the stable regenerative set of index α, that is, the closure of the image
of the stable subordinator of index α; cf. [13]. Some basic properties of regener-
ative sets are recalled in Section 2.2 and Appendix A.1; we mention in particular
the scale invariance property: τ̃ α ∼ cτ̃ α , for every c > 0. Since τ̃ α is a closed set,
we can write the open set (τ̃ α)� = ⋃

n∈N In as the disjoint union of countably many
(random) open intervals In, the connected components (i.e., maximal open inter-
vals) of (τ̃ α)�. Although there is no canonical way of numbering these intervals,
any reasonable rule is equivalent for our purpose. As an example, one first numbers
the intervals that start (i.e., whose left endpoint lies) in [0,1) in decreasing order
of width, obtaining {J 1

n }n∈N; then one does the same with the intervals that start in
[1,2), getting {J 2

n }n∈N; and so on. Finally, one sets In := J
an

bn
, where n �→ (an, bn)

is any fixed bijection from N to N × N.
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Let ξ̃ = {̃ξn}n∈N be an i.i.d. sequence of Bernoulli random variables of para-
meter 1/2, defined on the same probability space as τ̃ α and independent of τ̃ α ,
that represent the signs of the excursions of B̃α . We then define the process
�̃α(u) := ∑

n ξ̃n1In(u), which takes values in {0,1} and is a continuum analogue
of the discrete process {�n}n∈N introduced in Section 1.1: �̃α(u) = 1 (resp., 0)
means that the continuum copolymer in u is below (resp., above or on) the inter-
face. With this definition, we have the equality in law

{�̃α(u)}u≥0 ∼ {�(B̃α(u))}u≥0,(2.1)

so that we can use �̃α(·) instead of �(B̃α(·)). More precisely, for 0 ≤ s ≤ t < ∞
we set

Z̃s,t;β = Z̃ λ,h
s,t;β := E[exp(Hs,t;β(�̃α))],

(2.2)

Hs,t;β(�̃α) = Hλ,h
s,t;β(�̃α) := −2λ

∫ t

s
�̃α(u)

(
dβ(u) + hdu

)
,

so that the partition function Z̃α
t,β defined in (1.22) coincides with Z̃0,t;β . For later

convenience, we introduce the finite-volume free energy

F̃t (λ, h) := 1

t
E[log Z̃0,t;β].(2.3)

To be precise, for Z̃s,t;β and F̃t (λ, h) to be well defined we need to use a measur-
able version of Hs,t;β(�̃α) (we build one in Remark 2.1 below).

Notice that we have the following additivity property:

Hr,t;β(�̃α) = Hr,s;β(�̃α) + Hs,t;β(�̃α),(2.4)

for every r < s < t and P ⊗ P-a.e. (�̃α, β). Another important observation is that,
for any fixed realization of �̃α(·), the process {Hs,t;β(�̃α)}s,t under P is Gaussian.

REMARK 2.1. Some care is needed for definition (2.2) to make sense. The
problem is that Hs,t;β(�̃α), being a stochastic (Wiener) integral, is defined (for
every fixed realization of �̃α) through an L2 limit, hence it is not canonically
defined for every β , but only P(dβ)-a.s. However, in order to define Z̃s,t;β , we
need Hs,t;β(�̃α) to be a measurable function of �̃α , for every (or at least P-almost
every) fixed β . For this reason, we now show that it is possible to define a version
of Hs,t;β(�̃α), that is, a measurable function of (β, �̃α, s, t, λ,h).

Let us fix a realization of the process {�̃α(u)}u∈[0,∞). We build a sequence of
approximating functions as follows: for k ∈ N we set

�̃α
k (u) := ∑

n∈N : |In|≥ 1
k

ξ̃n1In(u),(2.5)

that is, we only keep the excursion intervals of width at least 1
k

. Note that �̃α
k (u) →

�̃α(u) as k → ∞, for every u ∈ R
+. By dominated convergence, we then have
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�̃α
k → �̃α in L2((s, t), dx), for all 0 ≤ s ≤ t < ∞, hence by the theory of Wiener

integration it follows that limk→∞ Hs,t;β(�̃α
k ) = Hs,t;β(�̃α) in L2(dP). Note that,

for any k ∈ N, we have

Hs,t;β(�̃α
k ) = −2λ

∑
n∈N : |In|≥1/k

ξ̃n

(
βIn∩(s,t) + h|In ∩ (s, t)|),(2.6)

where we have set β(a,b) := βb − βa and β∅ := 0 [note that the right-hand side
of (2.6) is a finite sum]. This shows that Hs,t;β(�̃α

k ) is a measurable function of
(β, �̃α, s, t, λ,h). Therefore, if we prove that limk→∞ Hs,t;β(�̃α

k ) = Hs,t;β(�̃α)

P(dβ)-a.s., we can redefine Hs,t;β(�̃α) := lim infk→∞ Hs,t;β(�̃α
k ) and get the

measurable version we are aiming at. However, for any fixed realization of �̃α ,
it is clear from (2.6) that ({Hs,t;β(�̃α

k )}k∈N,P) is a supermartingale (it is a process
with independent Gaussian increments of negative mean) bounded in L2, hence it
converges P(dβ)-a.s.

2.2. On the α-stable regenerative set. We collect here a few basic formulas
on τ̃ α .

For x ∈ R, we denote by Px the law of the regenerative set started at x, that
is, Px(τ̃

α ∈ ·) := P(τ̃ α + x ∈ ·). Analogously, the process {�̃α(u)}u≥x under Px is
distributed like the process {�̃α(u − x)}u≥x under P =: P0. Two variables of basic
interest are

gt = gt (τ̃
α) := sup{x ∈ τ̃ α ∩ (−∞, t]},

(2.7)
dt = dt (τ̃

α) := inf{x ∈ τ̃ α ∩ (t,∞)}.
The joint density of (gt , dt ) under Px is

Px(gt ∈ da, dt ∈ db)

da db
= α sin(πα)

π

1(x,t)(a)1(t,∞)(b)

(a − x)1−α(b − a)1+α
,(2.8)

from which we easily obtain the marginal distribution of gt : for y ∈ [x, t]
Gx,t (y) := Px(gt ≤ y) = sin(πα)

π

∫ y

x

1

(a − x)1−α(t − a)α
da.(2.9)

Observing that d
dx

(xα/(1 − x)α) = α(x1−α(1 − x)1+α)−1, one obtains also the
distribution of dt : for y ∈ [t,∞)

Dx,t (y) := Px(dt ≤ y) = sin(πα)

π

∫ y

t

(t − x)α

(b − t)α(b − x)
db.(2.10)

Let us denote by Fu the σ -field generated by τ̃ α ∩ [0, u]. The set τ̃ α enjoys
the remarkable regenerative property, the continuum analogue of the well-known
renewal property, that can be stated as follows: for every {Fu}u≥0-stopping time γ

such that P(γ ∈ τ̃ α) = 1, the portion of τ̃ α after γ , that is, the set (τ̃ α −γ )∩[0,∞),
under P is independent of Fγ and distributed like the original set τ̃ α . Analogously,
the translated process {�̃α(γ + u)}u≥0 is independent of Fγ and distributed like
the original process �̃α .



WEAK COUPLING LIMIT FOR COPOLYMER MODELS 2337

2.3. A modified partition function. In order to apply super-additivity argu-
ments, we introduce a modification of the partition function. We extend the Brown-
ian motion β(t) to negative times, setting β(t) := β ′(−t) for t < 0, where β ′(·)
is another standard Brownian motion independent of β , so that β(t) − β(s) ∼
N (0, t − s) for all s, t ∈ R with s ≤ t .

Observe that {da < b} = {τ̃ α ∩ (a, b) �= ∅}, where the random variable dt has
been defined in (2.7). Then for 0 ≤ s < t we set

Z̃ ∗
s,t;β := inf

x∈[s−1,s] Ex[exp(Hx,dt−1;β(�̃α)), dt−1 < t].(2.11)

In words: we take the smallest free energy among polymers starting at x ∈ [s−1, s]
and coming back to the interface at some point in (t − 1, t). Notice that the Hamil-
tonian looks at the polymer only in the interval (x, dt−1). Also notice that for
t < s + 1 the expression is somewhat degenerate, because for x > t − 1 we have
dt−1 = x and therefore Hx,dt−1;β(�̃α) = Hx,x;β(�̃α) = 0. Therefore, we may re-
strict the infimum over x ∈ [s − 1,min{s, t − 1}], and for clarity we state it explic-
itly:

Z̃ ∗
s,t;β := inf

x∈[s−1,min{s,t−1}] Ex[exp(Hx,dt−1;β(�̃α)), dt−1 < t].(2.12)

Let us stress again that {dt−1 < t} = {τ̃ α ∩ (t − 1, t) �= ∅}.
It is sometimes more convenient to use E = E0 instead of Ex . To this purpose,

by a simple change of variables we have Hx,a;β(�̃α) = H0,a−x;θxβ(θx�̃
α), where

θxf (·) := f (x+·), as it follows easily from the definition (2.2) of the Hamiltonian.
Since by definition the process θx�̃

α under Px is distributed like �̃α under P = P0,
we can write

Ex[exp(Hx,y;β(�̃α))] = E[exp(H0,y−x;θxβ(�̃α))].(2.13)

Analogously, since the random variable dt−1 under Px is distributed like x +
dt−1−x under P, we can rewrite the term appearing in (2.12) as

Ex[exp(Hx,dt−1;β(�̃α)), dt−1 < t]
(2.14)

= E[exp(H0,dt−1−x;θxβ(�̃α)), dt−1−x < t − x].
These alternative expressions are very useful to get uniform bounds. In fact, if we
set

�T (β, �̃α) := sup
−1≤x≤T ,0≤y≤T +1

|H0,y;θxβ(�̃α)|,(2.15)

from (2.12) and (2.14) we have the following upper bound:

sup
0≤s<t≤T

Z̃ ∗
s,t;β ≤ E[exp(�T (β, �̃α))].(2.16)

In a similar fashion, from relation (2.13) we obtain the lower bound

inf−1≤x≤T ,0≤y≤T +1
Ex[exp(Hx,y;β(�̃α))] ≥ E[exp(−�T (β, �̃α))].(2.17)
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We finally state a very useful result which we prove in Appendix A: for every
η ∈ (0,∞) there exists D(η) ∈ (0,∞) such that

E[E[exp(η�T (β, �̃α))]] ≤ D(η)eD(η)T < ∞ for every T > 0.(2.18)

2.4. Proof of Theorem 1.4. We start by proving the existence of the limit in
(1.24) when the partition function Z̃α

t,β = Z̃0,t;β is replaced by Z̃ ∗
0,t;β .

PROPOSITION 2.2. For all λ,h ≥ 0, the following limit exists P(dβ)-a.s. and
in L1(dP):

lim
t→∞

1

t
log Z̃ ∗

0,t;β =: F̂(λ,h),(2.19)

where F̂(λ,h) is finite and nonrandom.

PROOF. We are going to check that, for all fixed λ,h ≥ 0, the process
{log Z̃ ∗

s,t;β}0≤s<t<∞ under P satisfies the four hypotheses of Kingman’s super-
additive ergodic theorem; cf. [18]. This entails the existence of the limit in the left-
hand side of (2.19), both P-a.s. and in L1(dP), as well as the fact that the limit is a
function of β which is invariant under time translation β(·) �→ θtβ(·) := β(t + ·),
for every t ≥ 0. Therefore, the limit must be measurable w.r.t. the tail σ -field of
β(·), hence nonrandom by Kolmogorov 0–1 law for Brownian motion.

The first of Kingman’s conditions is that for every k ∈ N, any choice of
{(sj , tj )}k∈N, with 0 ≤ sj < tj , and for every a > 0 we have

(Z̃ ∗
s1,t1;β, . . . , Z̃ ∗

sk,tk;β)
d= (Z̃ ∗

s1+a,t1+a;β, . . . , Z̃ ∗
sk+a,tk+a;β).(2.20)

However this is trivially true, because Z̃ ∗
s+a,t+a;β = Z̃ ∗

s,t;θaβ , as it follows from
(2.12), recalling the definition of the Hamiltonian in (2.2).

The second condition is the super-additivity property: for all 0 ≤ r < s < t

Z̃ ∗
r,t;β ≥ Z̃ ∗

r,s;β · Z̃ ∗
s,t;β.(2.21)

To this purpose, for any fixed x ∈ [r − 1, r] the inclusion bound yields

Ex

(
exp(Hx,dt−1;β), dt−1 < t

)
(2.22)

≥ Ex

(
exp(Hx,ds−1;β) exp(Hds−1,dt−1;β), ds−1 < s,dt−1 < t

)
,

where we have used the additivity of the Hamiltonian, see (2.4). We integrate over
the possible values of ds−1 and, using the regenerative property, we rewrite the
right-hand side of (2.22) as follows:∫

y∈(s−1,s)
Ex

(
exp(Hx,y;β), ds−1 ∈ dy

)
Ey

(
exp(Hy,dt−1;β), dt−1 < t

)
(2.23)

≥ Ex

(
exp(Hx,ds−1;β), ds−1 < s

) · Z̃ ∗
s,t;β,
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where the inequality is just a consequence of taking the infimum over y ∈ [s −1, s]
and recalling the definition (2.12) of Z̃ ∗

s,t;β . Putting together the relation (2.22) and
(2.23) and taking the infimum over x ∈ [r − 1, r], we have proven (2.21).

The third condition to check is

sup
t>0

1

t
E(log Z̃ ∗

0,t;β) < ∞.(2.24)

Recalling (2.12) and applying Jensen’s inequality and Fubini’s theorem, we can
write

E(log Z̃ ∗
0,t;β) ≤ log E

(
E[exp(H0,dt−1;β(�̃α))], dt−1 < t

)
.(2.25)

Since the Hamiltonian is a stochastic integral [cf. (2.2)] for fixed a < b and
�̃α we have Ha,b;β(�̃α) ∼ N (μ,σ 2), where μ = −2λh

∫ b
a �̃α(u) du and σ 2 =

4λ2 ∫ b
a |�̃α(u)|2 du. In particular, |μ| ≤ 2λh(b − a) and σ 2 ≤ 4λ2(b − a), hence,

on the event {dt−1 < t}, we have E[exp(H0,dt−1;β(�̃α))] ≤ exp(2λht + 2λ2t), and
(2.24) follows.

Finally, the fourth and last condition is that for some (hence every) T > 0,

E

(
sup

0≤s<t≤T

|log Z̃ ∗
s,t;β |

)
< ∞.(2.26)

We need both a lower and an upper bound on Z̃ ∗
s,t;β . For the upper bound, directly

from (2.16) we have

sup
0≤s<t≤T

log Z̃ ∗
s,t;β ≤ log E(exp(�T (β, �̃α))).(2.27)

The lower bound is slightly more involved. The additivity of the Hamiltonian
yields Hx,dt−1;β(�̃α) = Hx,t−1;β(�̃α) + Ht−1,dt−1;β(�̃α). Observing that �̃α(s)

is constant for s ∈ (t − 1, dt−1(τ̃
α)), from the definition (2.2) of the Hamiltonian,

we can write

Ht−1,dt−1;β(�̃α) ≥ −2λ|βdt−1 − βt−1| − 2λh
(
dt−1 − (t − 1)

)
(2.28)

≥ −2λ sup
0≤s<t≤T

|βt − βs | − 2λhT =: −CT (β).

Recalling (2.12), we can therefore bound Z̃ ∗
s,t;β from below by

Z̃ ∗
s,t;β ≥ e−CT (β)

(
inf

x∈[s−1,min{s,t−1}] Ex

(
exp(Hx,t−1;β(�̃α))|dt−1 < t

))
(2.29)

× Px(dt−1 < t).

From (2.10) it follows easily that, for fixed T ,

inf
0≤s<t≤T

inf
x∈[s−1,min{s,t−1}] Px(dt−1 < t) > 0.(2.30)
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Furthermore, we now show that we can replace the law Px(·|dt−1 < t) with Px(·)
by paying a positive constant. In fact, the laws of the set τ̃ α ∩ [x, t − 1] under
these two probability measures are mutually absolutely continuous. The Radon–
Nikodym derivative, which depends only on gt−1, is computed with the help of
(2.8), (2.9), (2.10) and equals

dPx(·|dt−1 < t)

dPx(·) (τ̃ α ∩ [x, t − 1])

= Px(gt−1 ∈ dy, dt−1 < t)

Px(gt−1 ∈ dy)Px(dt−1 < t)

∣∣∣∣
y=gt−1

(2.31)

=
(

1 − (t − 1 − gt−1)
α

(t − gt−1)α

)
· 1

Dx,t−1(t)
.

Using (2.10), it is straightforward to check that, for every fixed T , the infimum of
this expression over 0 ≤ s < t ≤ T and x ∈ [s −1,min{s, t −1}] is strictly positive.
Therefore, uniformly in the range of parameters, we have

Z̃ ∗
s,t;β ≥ (const.)e−CT (β) inf

x∈[s−1,min{s,t−1}] Ex(exp(Hx,t−1;β(�̃α)))

(2.32)
≥ (const.)e−CT (β)E(exp(−�T (β, �̃α))),

where we have applied (2.17). By Jensen’s inequality, we then obtain

inf
0≤s<t≤T

log Z̃ ∗
s,t;β ≥ −E(�T (β, �̃α)) − CT (β) + (const.′).(2.33)

Putting together (2.27) and (2.33), we then get

sup
0≤s<t≤T

|log Z̃ ∗
s,t;β | ≤ log E(exp(�T (β, �̃α))) + E(�T (β, �̃α))

(2.34)
+ CT (β) + (const.).

It is clear from (2.28) that E(CT (β)) < ∞, for every T > 0. Moreover, by Jensen’s
inequality and (2.18) we have E log E[exp(�T (β, �̃α))] ≤ log E[E[exp(�T (β,

�̃α))]] < ∞, so that E[E[�T (β, �̃α)]] < ∞. Therefore, (2.26) is proven. �

We finally show that Proposition 2.2 still holds if we replace the modified par-
tition function Z̃ ∗

0,t;β with the original partition function Z̃0,t;β ; in particular, the
free energy F̃(λ,h) is well defined and coincides with F̂(λ,h). We first need a
technical lemma.

LEMMA 2.3. For every fixed h ≥ 0, the function F̂(λ,h) appearing in Propo-
sition 2.2 is a nondecreasing and continuous function of λ.
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PROOF. Note that sending λ → cλ is the same as multiplying the Hamiltonian
by c. By Jensen’s inequality, for every ε > 0 we have

Ex

(
exp(Hx,dt−1;β)1{dt−1<t}

)1+ε ≤ Ex

(
exp

(
(1 + ε)Hx,dt−1;β

)
1{dt−1<t}

)
,(2.35)

hence, taking the infimum over x ∈ [−1,0], then 1
t
E log(·) and letting t → ∞, we

obtain F̂((1+ε)λ,h) ≥ (1+ε)̂F(λ,h). In particular, λ �→ F̂(λ,h) is nondecreasing
for fixed h.

To prove the continuity, we use Hölder’s inequality with p = 1
1−ε

and q = 1
ε
,

getting

Ex

(
e
(1+ε)Hx,dt−1;β 1{dt−1<t}

)
= Ex

(
e
(1−ε)Hx,dt−1;β e

2εHx,dt−1;β 1{dt−1<t}
)

(2.36)

≤ Ex

(
e

Hx,dt−1;β 1{dt−1<t}
)1−εEx

(
e

2Hx,dt−1;β 1{dt−1<t}
)ε

.

Now observe that by (2.14) and (2.15) we can write

Ex

(
e

2Hx,dt−1;β 1{dt−1<t}
)ε ≤ E

(
e2�t+1(β,�̃α))ε.(2.37)

Taking 1
t
E infx∈[−1,0] log(·) in (2.36), applying Jensen’s inequality to the last term,

using (2.18) and letting t → ∞ then yields

F̂
(
(1 + ε)λ,h

) ≤ (1 − ε)̂F(λ,h) + εD(2)
(2.38)

for every λ,h ≥ 0 and every ε > 0.

Since λ �→ F̂(λ,h) is nondecreasing, this shows that λ �→ F̂(λ,h) is continuous.
�

We now pass from Z̃ ∗
0,t;β to the original partition function Z̃0,t;β in three steps:

first, we remove the infimum over x ∈ [−1,0], then we replace H0,dt−1;β with
H0,t−1;β and finally we remove the event {dt−1 < t}. From now till the end of the
proof, we assume t ≥ 1.

Step 1. It follows from the regenerative property of τ̃ α that the laws of the
random set τ̃ α ∩ [1,∞) under the probabilities P = P0 and Px , with x ∈ [−1,0],
are mutually absolutely continuous, with Radon–Nikodym derivative depending
only on d1, given by

dP(τ̃ α ∩ [1,∞) ∈ ·)
dPx(τ̃ α ∩ [1,∞) ∈ ·) = P(d1 ∈ dz)

Px(d1 ∈ dz)

∣∣∣∣
z=d1

= 1

(1 − x)α

d1

d1 − x
.(2.39)

It is clear that, uniformly on x ∈ [−1,0], this expression is bounded from above by
some constant 0 < C < ∞. Therefore, for every ε > 0, by the Hölder inequality
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with p = 1+ε
ε

and q = 1 + ε we can write

E
(
e

H0,dt−1;β 1{dt−1<t}
)

= E
(
e

H0,1;β+H1,dt−1;β 1{dt−1<t}
)

≤ E
(
e(1+ε)/εH0,1;β )ε/(1+ε)E

(
e
(1+ε)H1,dt−1;β 1{dt−1<t}

)1/(1+ε)(2.40)

≤ E
(
e(1+ε)/εH0,1;β )ε/(1+ε)

C1/(1+ε)

× inf
x∈[−1,0] Ex

(
e
(1+ε)H1,dt−1;β 1{dt−1<t}

)1/(1+ε)
.

Analogously, again by the Hölder inequality, we have

Ex

(
e
(1+ε)H1,dt−1;β 1{dt−1<t}

)
= Ex

(
e
(1+ε)(Hx,dt−1;β−Hx,1;β)1{dt−1<t}

)
(2.41)

≤ Ex

(
e−(1+ε)2/εHx,1;β )ε/(1+ε)Ex

(
e
(1+ε)2 Hx,dt−1;β 1{dt−1<t}

)1/(1+ε)
.

However, Ex(e
−(1+ε)2/εHx,1;β ) ≤ E(e(1+ε)2/ε�2(β,�̃α)), by (2.14) and (2.15).

Putting together these relations, Proposition 2.2 and (2.18), we get P(dβ)-a.s.

lim sup
t→∞

1

t
log E

(
e

H0,dt−1;β 1{dt−1<t}
)

≤ 1

(1 + ε)2 lim sup
t→∞

1

t
log inf

x∈[−1,0] Ex

(
e
(1+ε)2 Hx,dt−1;β 1{dt−1<t}

)
(2.42)

= F̂((1 + ε)2λ,h)

(1 + ε)2 ,

and since ε > 0 is arbitrary, by Lemma 2.3 the left-hand side in (2.42) does not ex-
ceed F̂(λ,h). By the definition (2.12) of Z̃ ∗

0,t;β , we have immediately an analogous
lower bound for the lim inf, hence we have proven that P(dβ)-a.s.

lim
t→∞

1

t
log E

(
e

H0,dt−1;β 1{dt−1<t}
) = F̂(λ,h).(2.43)

Furthermore, the convergence holds also in L1(P), because the sequence in the
left-hand side is uniformly integrable, as it follows from the bounds we have ob-
tained.

Step 2. With analogous arguments, we now show that we can replace H0,dt−1;β
with H0,t−1;β in (2.43), that is, the following limit holds, P(dβ)-a.s. and in
L1(dP):

lim
t→∞

1

t
log E

(
eH0,t−1;β 1{dt−1<t}

) = F̂(λ,h).(2.44)



WEAK COUPLING LIMIT FOR COPOLYMER MODELS 2343

Since H0,dt−1;β = H0,t−1;β + Ht−1,dt−1;β , for every ε > 0, we can write

E
(
e
(1−ε)H0,dt−1;β 1{dt−1<t}

)
(2.45)

≤ E
(
e
(1−ε)/εHt−1,dt−1;β 1{dt−1<t}

)εE
(
eH0,t−1;β 1{dt−1<t}

)1−ε
,

and analogously

E
(
eH0,t−1;β 1{dt−1<t}

)
≤ E

(
e
−(1+ε)/εHt−1,dt−1;β 1{dt−1<t}

)ε/(1+ε)(2.46)

× E
(
e
(1+ε)H0,dt−1;β 1{dt−1<t}

)1/(1+ε)
.

Now notice that, by definition (2.2), since τ̃ α ∩ (t − 1, dt−1) = ∅, we can write

|Ht−1,dt−1;β | ≤ 2λ
(|βdt−1 − βt−1| + h

(
dt−1 − (t − 1)

))
,(2.47)

from which it follows easily that P(dβ)-a.s. and in L1(dP)

lim
t→∞

1

t
log E

(
e
γ |Ht−1,dt−1;β |1{dt−1<t}

) = 0 ∀γ ≥ 0.(2.48)

From (2.45), (2.46) and (2.43) we then have P(dβ)-a.s.

F̂((1 − ε)λ,h)

1 − ε
≤ lim inf

t→∞
1

t
log E

(
eH0,t−1;β 1{dt−1<t}

)
≤ lim sup

t→∞
1

t
log E

(
eH0,t−1;β 1{dt−1<t}

)
≤ F̂((1 + ε)λ,h)

1 + ε
.

Letting ε → 0 and using Lemma 2.3, we see that (2.44) holds P(dβ)-a.s. and also
in L1(dP), thanks to the bounds (2.45), (2.46) and (2.47) that ensure the uniform
integrability.

Step 3. We finally show that we can remove the indicator function 1{dt−1<t}
from (2.44). We have already observed that the laws of τ̃ α ∩ [0, t − 1] under
the two probabilities P(·|dt−1 < t) and P are mutually absolutely continuous: the
corresponding Radon–Nikodym derivative ft = ft (gt−1) is given by (2.31), from
which we extract the bound

ft (gt−1) ≥ 1 − (t − gt−1 − 1)α

(t − gt−1)α
≥ 1 − (t − 1)α

tα
≥ α

t
,(2.49)

where the last inequality holds for large t . Therefore, for large t ,

E
(
eH0,t−1;β 1{dt−1<t}

) = E(eH0,t−1;β |dt−1 < t)P(dt−1 < t)
(2.50)

≥ α

t
E(eH0,t−1;β )P(dt−1 < t),
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and note that P(dt−1 < t) = G0,t−1(t) ∼ (const.)/t1−α as t → ∞, by (2.10).
Therefore,

E
(
eH0,t−1;β 1{dt−1<t}

) ≤ E(eH0,t−1;β ) ≤ (const.)t2−αE
(
eH0,t−1;β 1{dt−1<t}

)
,(2.51)

for large t , hence by (2.44) it follows that, P(dβ)-a.s. and in L1(dP), we have

lim
t→∞

1

t
log E(eH0,t−1;β ) = F̂(λ,h).(2.52)

Replacing 1
t

with 1
t−1 in the left-hand side shows that the free energy F̃(λ,h),

defined as the limit in (1.24), does exist and coincides with F̂(λ,h) (we recall that
Z̃α

t,β = Z̃0,t;β ).
To complete the proof of Theorem 1.4, it only remains to show that the free

energy F̃(λ,h) is nonnegative and continuous. By restricting, for t > 1, the ex-
pectation that defines Z̃0,t;β to the event Et := {d1 > t, �̃α( t+1

2 ) = 0} = {d1 >

t, B̃α( t+1
2 ) > 0} and by using Jensen inequality, we have

1

t
E log Z̃0,t;β ≥ 1

t
E[E[H0,1;β(�̃α)]|Et ] + 1

t
log P(Et )

(2.53)

≥ −2λh

t
+ 1

t
log P(Et ).

By (2.10), we have P(Et )
t→∞∼ (const.)t−α so that the right-most side in (2.53)

vanishes as t → ∞ and therefore F̃(λ,h) ≥ 0.
For the continuity, it is convenient to use a different parametrization. For t > 0

and a, b ∈ R, we set

Gt (a, b) := 1

t
E

[
log E

[
exp

(
−2

∫ t

0
�̃α(u)

(
a dβ(u) + b du

))]]
.(2.54)

Since the argument of the exponential is a bilinear function of (a, b), it is easily
checked, using Hölder’s inequality, that for every fixed t > 0 the function (a, b) �→
Gt (a, b) is convex on R

2. By a straightforward adaptation of the results proven in
this section, the limit

G(a, b) := lim
t→∞ Gt (a, b)(2.55)

exists and is finite, for all a, b ∈ R. For instance, for a > 0 and b ≥ 0, by (2.3)
and (2.2) we have Gt (a, b) = F̃t (a, b/a), therefore the limit in (2.55) exists and
equals F̃(a, b/a); the restriction to a > 0 and b ≥ 0 is however not necessary for
the existence of such a limit.

Being the pointwise limit of convex functions, G(a, b) is convex too on R
2,

hence continuous (because finite). Therefore, F̃(λ,h) = G(λ,λh) is continuous too
on [0,∞) × [0,∞).
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3. The proof of the main result. We fix an arbitrary value of α ∈ (0,1) and
an arbitrary discrete α-copolymer model (and we omit α in most of the notations of
this section). We aim at proving an analogue of Theorem 6 in [8]. More precisely,
we want to show the following theorem.

THEOREM 3.1. For every choice of λ > 0 and h > 0, and for every choice of
ρ ∈ (0,1) there exists a0 > 0 such that for every a ∈ (0, a0], we have

F̃

(
λ

1 + ρ
,

h

1 − ρ

)
≤ 1

a2 F(aλ, ah) ≤ F̃
(
(1 + ρ)λ, (1 − ρ)h

)
.(3.1)

Theorem 3.1 implies Theorem 1.5. In fact, notice that it directly yields (1.26)
when both λ and h are positive [by continuity of F̃(·, ·)]. If λ = 0, there is nothing
to prove, because F(0, h) = F̃(0, h) = 0. If λ > 0 and h = 0 instead, (1.26) follows
because for h ≥ 0 we have F(λ,0) − 2λh ≤ F(λ,h) ≤ F(λ,0) by (1.5) and (1.11),
hence for every h > 0,

F̃(λ,h) = lim
a↘0

1

a2 F(aλ, ah) ≤ lim inf
a↘0

1

a2 F(aλ,0)

≤ lim sup
a↘0

1

a2 F(aλ,0) ≤ lim
a↘0

1

a2 F(aλ, ah) + 2λh(3.2)

= F̃(λ,h) + 2λh

so that (1.26) for h = 0 follows by continuity of F̃(λ, ·). For (1.27), in view of
(1.28) it suffices to show that

lim sup
λ↘0

hc(λ)

λ
≤ m̃α,(3.3)

and Theorem 3.1 does yield (3.3). In fact if c > m̃α , then F̃((1+ρ)λ, (1−ρ)cλ) =
0 for ρ sufficiently small and every λ ≥ 0; the upper bound in (3.1) then yields
F(aλ, acλ) = 0 for a small, that is, hc(λ) ≤ cλ for λ small, which implies (3.3).

In order to carry out the proof Theorem 3.1, it is convenient to introduce the
following basic order relation.

DEFINITION 3.2. Let ft,ε,δ(a, λ,h) and gt,ε,δ(a, λ,h) be two real functions.
We write f ≺ g if for all fixed λ,h > 0 and ρ ∈ (0,1) there exists δ0 > 0 such
that for every 0 < δ < δ0 there exists ε0 = ε0(δ) > 0 such that for every 0 < ε < ε0
there exists a0 = a0(δ, ε) > 0 such that for every 0 < a < a0

lim sup
t→∞

ft,ε,δ(a, λ,h) ≤ lim sup
t→∞

gt,ε,δ

(
a, (1 + ρ)λ, (1 − ρ)h

)
.(3.4)

The values δ0, ε0, a0 may also depend on λ,h,ρ. If both f ≺ g and g ≺ f , we
write f � g.
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Recalling the definitions (1.10) and (1.24) of the discrete and continum finite-
volume free energies FN(λ,h) and F̃t (λ, h), we set

f 0
t,ε,δ(a, λ,h) := 1

a2 F�t/a2�(aλ, ah), f 4
t,ε,δ(a, λ,h) := F̃t (λ, h),(3.5)

(that in fact do not depend on ε, δ and on ε, δ, a). Thanks to Definition 3.2, we
see immediately that proving Theorem 3.1 is equivalent to showing that f 0 � f 4.
Since the relation � is symmetric and transitive, we proceed by successive approx-
imations: more precisely, we are going to prove that

f 0 � f 1 � f 2 � f 3 � f 4,(3.6)

where f i = f i
t,ε,δ(a, λ,h) for i = 1,2,3 are suitable intermediate quantities.

The proof is divided into four steps, corresponding to the equivalences in (3.6).
In each step, we will make statements that hold when δ, ε and a are small in the
sense prescribed by Definition 3.2, that is, when 0 < δ < δ0, 0 < ε < ε0(δ) and
0 < a < a0(δ, ε), for a suitable choice of δ0, ε0(·) and a0(·, ·). For brevity, we will
refer to this notion of smallness by saying that ε, δ, a are small in the usual sense.
It is important to keep in mind that

t−1 � a � ε � δ � 1.(3.7)

At times, we will commit abuse of notation by writing a0(ε) or a0(δ) to stress the
parameter that enters the specific computation. In order to simplify notationally
the proof, we also assume that all the large numbers built with δ, ε, a, t that we
encounter, such as ε/a2, δ/ε, t/δ (hence δ/a2, t/ε, t/a2, . . .), are integers.

Before starting with the proof, let us describe a general scheme, that is common
to all the four steps. The functions f i that we consider will always be of the form

f i
t,ε,δ(a, λ,h) = 1

t
E log E[exp(−2aλHi

t,ε,δ(a, h))],(3.8)

for a suitable Hamiltonian Hi
t,ε,δ(a, h). Now, for ρ ∈ (0,1), let us write

Hi
t,ε,δ(a, h) = H

j
t,ε,δ

(
a, (1 − ρ)h

) + �H
(i,j)
t,ε,δ (a, h,ρ)(3.9)

(this relation is the definition of �H ). Applying Hölder, Jensen and Fubini, we get

f i
t,ε,δ(a, λ,h)

≤ 1

1 + ρ
f

j
t,ε,δ

(
a, (1 + ρ)λ, (1 − ρ)h

)
(3.10)

+ 1

(1 + ρ−1)t
log EE exp

(−2a(1 + ρ−1)λ�H
(i,j)
t,ε,δ (a, h,ρ)

)
.

Therefore, to prove f i ≺ f j it suffices to show that for every positive constant A

we can choose the parameters δ, ε, a small in the usual sense such that

lim sup
t→∞

1

t
log EE exp

(−aA�H
(i,j)
t,ε,δ (a, h,ρ)

) ≤ 0.(3.11)
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Replacing �H(i,j) by �H(j,i) in this relation, we prove that f j ≺ f i and therefore
f i � f j .

3.1. Step 1: Coarse-graining of the renewal process. We recall that by defini-
tion [see (3.5), (1.10) and (1.6)] f 0 is given by

f 0
t,ε,δ(a, λ,h) := 1

a2 Ft/a2(aλ, ah) = 1

t
E log E[exp(−2aλH 0

t,ε,δ(a, h))],(3.12)

where H 0 is defined by

H 0
t,ε,δ(a, h) =

t/a2∑
i=1

(ωi + ah)�i.(3.13)

The purpose of this section is to define a first intermediate approximation f 1 and
to show that f 0 � f 1, in the sense of Definition 3.2, following the general scheme
(3.8)–(3.11).

We recall that the sequence �i ∈ {0,1} is constant for i ∈ {τj + 1, τj +
2, . . . , τj+1} and it is chosen by flipping a fair coin. We start by defining, for
j ∈ N ∪ {0}, the basic coarse-grained blocks

Ij := (
(j − 1)ε/a2, jε/a2].(3.14)

Then we set σ0 := 0 and for k ≥ 1

σk := inf{j ≥ σk−1 + (δ/ε) : τ ∩ Ij �= ∅},(3.15)

thus introducing a coarse-grained version σ of the underlying renewal τ that has a
resolution of ε/a2 � 1. We say that the block Ij is visited if there exists k such that
σk = j . We stress that σ is built in such a way that if Ij is visited, we disregard the
content of the next (δ/ε) − 1 � 1 blocks, that is, we dub them as not visited (even
if they may contain renewal points). Since we are interested only in the blocks that
fall inside the interval [0, t/a2], we set mt/a2 := min{k :σk ≥ t/ε}. Moreover, for
k ∈ N, we give a notation for the union of blocks between visited sites (that should
be interpreted as coarse-grained excursions):

Īk :=
(

σk⋃
j=σk−1+1

Ij

)
∩ (0, t/a2].(3.16)

Note that Īk �= ∅ if and only if k ≤ σm
t/a2 ; furthermore (0, t/a2] = ⋃m

t/a2

k=1 Īk . Each

coarse-grained excursion Īk with 1 ≤ k < mt/a2 contains exactly one visited block,
namely Iσk

, at its right extremity. The last coarse-grained excursion Īm
t/a2 may or

may not end with a visited block, depending on whether σm
t/a2 = t/ε or σm

t/a2 >

t/ε.
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FIG. 3. A full trajectory, on top, and the corresponding coarse-grained trajectory, below. The vis-
ited blocks are surrounded by a box and the first renewal point inside such blocks is marked by a
vertical arrow: a coarse-grained excursion is everything that lies between visited blocks. One stipu-
lates that there is a visited block to the left of the origin, containing the origin. The visited block on
the right belongs to the coarse-grained excursion, while the one on the left does not. The sign of the
excursion is just the sign of the full trajectory just before the vertical arrow (except possibly for the
last excursion). In this example δ/ε = 4, so the first three blocks to the right of a visited block (i.e.,
up to the vertical dotted lines) cannot be visited blocks.

For 1 ≤ k < mt/a2 , we assign a sign sk to the kth coarse-grained excursion by
stipulating that it coincides with the sign just before the first renewal point in Iσk

(that we call tk , and t0 := 0), that is, we set sk := �tk . When k = mt/a2 , we need
to make a distinction: if the coarse-grained excursion Īk ends with a visited block
(σm

t/a2 = t/ε) we set sk := �tk as before; if the coarse-grained excursion Īk is
truncated (σm

t/a2 > t/ε) we set sk = �t/a2 . We refer to Figure 3 for a graphical
description of the quantities introduced so far.

We are now ready to introduce the first intermediate approximation f 1. Accord-
ing to (3.8), it suffices to define the corresponding Hamiltonian

H 1
t,ε,δ(a, h) :=

m
t/a2∑

k=1

∑
i∈Īk

(ωi + ah)sk =
m

t/a2∑
k=1

sk
(
Zk(ω) + ah|Īk|),(3.17)

where Zk(ω) := ∑
i∈Īk

ωi . Note that we may rewrite H 0 [see (3.13)] as

H 0
t,ε,δ(a, h) =

m
t/a2∑

k=1

∑
i∈Īk

(ωi + ah)�i.(3.18)

Passing from H 0 to H 1, we are thus replacing the renewal τ by its coarse-grained
version. Applying the general scheme (3.8)–(3.10), to prove that f 0 � f 1 we have
to establish (3.11) for �H(0,1) and �H(1,0), defined by

�H
(0,1)
t,ε,δ (a, h,ρ) := H 0

t,ε,δ(a, h) − H 1
t,ε,δ

(
a, (1 − ρ)h

)
(3.19)

= aρh

t/a2∑
i=1

�i +
m

t/a2∑
k=1

∑
i∈Īk

(
ωi + a(1 − ρ)h

)
(�i − sk),
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and

�H
(1,0)
t,ε,δ (a, h,ρ) := H 1

t,ε,δ(a, h) − H 0
t,ε,δ

(
a, (1 − ρ)h

)
(3.20)

= aρh

t/a2∑
i=1

�i +
m

t/a2∑
k=1

∑
i∈Īk

(ωi + ah)(sk − �i).

Formulas (3.19) and (3.20) are minimally different: in particular we are going to
estimate the second term in the right-hand side by taking the absolute value. For
this reason, we detail only the case of (3.19).

In order to establish (3.11) for �H(0,1), we observe that for a ≤ t0/A
2 [t0 is the

constant in (1.9)]

Ee−Aa�H(0,1)

= E exp

(
−Aa2ρh

t/a2∑
i=1

�i − Aa

m
t/a2∑

k=1

∑
i∈Īk

(
ωi + a(1 − ρ)h

)
(�i − sk)

)

= exp

(
−Aa2ρh

t/a2∑
i=1

�i − Aa2(1 − ρ)h

m
t/a2∑

k=1

∑
i∈Īk

(�i − sk)

)
(3.21)

×
m

t/a2∏
k=1

∏
i∈Īk

M
(
Aa(�i − sk)

)

= exp

(
−Ca2

t/a2∑
i=1

�i + Ba2

m
t/a2∑

k=1

∑
i∈Īk

|�i − sk|
)
,

where C := Aρh and B := A(1 − ρ)h + c0A
2. Here, we have used (1.9) and the

fact that |�i − sk|2 = |�i − sk| because |�i − sk| ∈ {0,1}. This shows that (3.11)
is proven if we can show that for any given B,C > 0 we have

lim sup
t→∞

1

t
log E exp

(
−Ca2

t/a2∑
i=1

�i + Ba2

m
t/a2∑

k=1

∑
i∈Īk

|�i − sk|
)

≤ 0,(3.22)

for δ, ε, a small in the usual sense [recall the discussion before (3.7)].
Let us re-express (3.22) explicitly in terms of the renewal process τ and of the

signs ξ = {ξj }j∈N, where ξj = �τj
. This notation has been already introduced in

Section 1.1: here we need also Ns := |τ ∩ [0, s]| = min{k ≥ 1 : τk > s} (s ∈ N).
Observe that ξ is an i.i.d. sequence, as well as the sequence of the inter-arrivals
{ηj := τj − τj−1}j∈N. First of all,

t/a2∑
i=1

�i =
N

t/a2−1∑
j=1

ξjηj + ξN
t/a2

(
(t/a2) − τN

t/a2−1
) ≥

N
t/a2−1∑
j=1

ξjηj .(3.23)
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Concerning the second addendum in the exponent in (3.22), we use the fact that
if ηj = τj − τj−1 ≥ (δ/ε)(ε/a2) = δ/a2, then necessarily the inter-arrival ηj de-
termines a coarse-grained excursion (say, Īk). We can then distinguish two cases:
either τj−1 ∈ Īk , or τj−1 ∈ Īk−1. If τj−1 ∈ Īk , we know that �i = sk for every
i ∈ {τj−1 + 1, . . . , τj }, by our definition of the sign of the coarse-grained excur-
sions. If, on the other hand, τj−1 ∈ Īk−1, which happens if and only if τj−1 ∈ Iσk−1 ,
we can only be sure that �i = sk for every i ∈ {τj−1 + 1, . . . , τj } \ Iσk−1 . Since
|Iσk−1 | = ε

a2 and there are mt/a2 visited blocks, we are lead to the bound

m
t/a2∑

k=1

∑
i∈Īk

|�i − sk| ≤
N

t/a2−1∑
j=1

ηj 1ηj<δ/a2 + ε

a2 mt/a2 .(3.24)

This step of the proof is therefore completed by applying the following lemma.

LEMMA 3.3. For every B,C > 0, we have

lim sup
t→∞

1

t
log E exp

(
Ba2

N
t/a2−1∑
j=1

ηj 1ηj<δ/a2

(3.25)

+ Bεmt/a2 − Ca2

N
t/a2−1∑
j=1

ξjηj

)
≤ 0,

for δ, ε and a small in the usual sense.

PROOF. Since ξ and η are independent and since ξ is an i.i.d. sequence of
B(1/2) variables,

E exp

(
Ba2

N
t/a2−1∑
j=1

ηj 1ηj<δ/a2 + Bεmt/a2 − Ca2

N
t/a2−1∑
j=1

ξjηj

)

= E exp

(
Ba2

N
t/a2−1∑
j=1

ηj 1ηj<δ/a2(3.26)

+ Bεmt/a2 +
N

t/a2−1∑
j=1

log
(

1

2
+ 1

2
exp(−Ca2ηj )

))
.

The proof now proceeds in two steps: first, we will show that if δ, ε and a are small
in the usual sense,

Bεmt/a2 + 1

2

N
t/a2−1∑
j=1

log
(

1

2
+ 1

2
exp(−Ca2ηj )

)
≤ Bε,(3.27)
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uniformly in η, and then that

lim sup
t→∞

1

t
log E

(
Ba2

N
t/a2−1∑
j=1

ηj 1ηj<δ/a2

(3.28)

+ 1

2

N
t/a2−1∑
j=1

log
(

1

2
+ 1

2
exp(−Ca2ηj )

))
≤ 0.

For the proof of (3.27), recall first that tk is the first contact in Iσk
for k < mt/a2 ,

that is, tk := min{n ∈ Iσk
:n ∈ τ }. Now, let us consider the intervals (tk−1, tk] for

k = 1, . . . ,mt/a2 − 1 (t0 := 0). Given a value of k:

(1) either in (tk−1, tk] there is a long excursion, that is, there exists j∗ such that
(τj∗−1, τj∗] ⊂ (tk−1, tk] with τj∗ − τj∗−1 ≥ δ/a2, so that

Bε + 1

2

∑
j : (τj−1,τj ]⊂(tk−1,tk]

log
(

1

2
+ 1

2
exp(−Ca2ηj )

)

≤ Bε + 1

2
log

(
1

2
+ 1

2
exp(−Ca2ηj∗)

)
(3.29)

≤ Bε + 1

2
log

(
1

2
+ 1

2
e−Cδ

)
≤ 0,

where the last inequality holds for ε ≤ ε0(δ);
(2) or in (tk−1, tk] there are only short excursions, that is, ηj := τj − τj−1 < δ/a2

for every j such that (τj−1, τj ] ⊂ (tk−1, tk]. In this case, we bound from above
log(1

2 + 1
2 exp(−Ca2ηj )) by −1

4Ca2ηj for δ ≤ δ0, so that

Bε + 1

2

∑
j : (τj−1,τj ]⊂(tk−1,tk]

log
(

1

2
+ 1

2
exp(−Ca2ηj )

)
(3.30)

≤ Bε − 1

8
Ca2(tk − tk−1) ≤ 0,

where the last inequality holds for ε ≤ ε0(δ) and it follows by observing that
tk − tk−1 > ((δ/ε) − 1)(ε/a2) = (δ − ε)/a2.

Summing (3.29) and (3.30) from k = 1 to k = mt/a2 − 1, we see that (3.27) holds
true.

Let us therefore turn to (3.28): note that we need to estimate

1

t
log E exp

(N
t/a2−1∑
j=1

g(a2ηj )

)
(3.31)

with g(x) := Bx1x<δ + 1
2 log

(1
2 + 1

2e−Cx
)
.
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Since g(·) ≥ −1
2 log 2, we can add the term j = Nt/a2 by paying at most

√
2, that

is,

E exp

(N
t/a2−1∑
j=1

g(a2ηj )

)
≤ √

2E[GN
t/a2 ]

(3.32)

where Gn := exp

(
n∑

j=1

g(a2ηj )

)
.

Let us set G0 := 1 and γ := E[exp(g(a2η1))] for convenience. Since Gn is the
product of n i.i.d. random variables, the process {Gn/γ

n}n≥0 is a martingale (with
respect to the natural filtration of the sequence {τn}n≥0). Assume now that γ ≤ 1:
the process {Gn}n≥0 is a supermartingale and, since Nt/a2 is a bounded stopping
time, the optional sampling theorem yields E[GN

t/a2 ] ≤ 1. Then from (3.32) it
follows immediately that (3.28) holds, thus completing the proof.

We are left with showing that γ ≤ 1, that is, E[exp(g(a2η1)] ≤ 1, when δ, ε and
a are small in the usual sense (actually ε does not appear in this quantity). Note
that

E[exp(g(a2η1))] − 1 = ∑
n∈N

[exp(g(a2n)) − 1]K(n),(3.33)

and recall that K(n) ∼ L(n)/n1+α as n → ∞, with L(·) slowly varying at infinity.
Then it follows by Riemann sum approximation that

lim
a↘0

E[exp(g(a2η1))] − 1

a2αL(1/a2)
(3.34)

=
∫ ∞

0

[
exp

(
Bx1x<δ + 1

2
log

(
1

2
+ 1

2
e−Cx

))
− 1

]
dx

x1+α
.

The Riemann sum approximation is justified since L(cn)/L(n) → 1 as n → ∞
uniformly for c in compact sets of (0,∞) [4], Theorem 1.2.1, and since for every
ε > 0 there exists b > 0 such that L(n) ≤ bnε for every n (the latter property is
used to deal with very large and small values of n). A simple look at (3.34) suffices
to see that the right-hand side is negative if δ ≤ δ0. �

3.2. Step 2: Switching to Gaussian charges. In this step, we introduce the sec-
ond intermediate approximation f 2: following (3.8), we define the corresponding
Hamiltonian H 2 by

H 2
t,ε,δ(a, h) :=

m
t/a2∑

k=1

sk
(
Zk(ω̂) + ah|Īk|),(3.35)

where ω̂ = {ω̂i}i∈N is an i.i.d. sequence of standard Gaussian random variables
and we recall that Zk(ω̂) := ∑

i∈Īk
ω̂i . We stress that, with respect to the preceding

Hamiltonian H 1 [cf. (3.17)] we have just changed the charges ωi → ω̂i .
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In order to apply the general scheme (3.8)–(3.11), we build the two sequences
of disorder variables ω = {ωi}i∈N and ω̂ = {ω̂i}i∈N on the same probability space
(�, F ,P), that is, we define a coupling. Actually, the disorder does not appear
any longer in terms of the individual charges ωi , but it is by now summed over
the coarse-grained blocks Ij = ((j − 1) ε

a2 , j ε
a2 ], so we just need to couple the

two i.i.d. sequences {∑i∈Ij
ωi}j∈N and {∑i∈Ij

ω̂i}j∈N. The coupling is achieved
via the standard Skorohod representation in the following way: given the i.i.d. se-
quence {ω̂i}i∈N of N (0,1) variables, if we set F̂ (t) := P(ω̂1 ≤ t) and n := |I1|,
then F̂ (

∑
i∈Ij

ω̂i/
√

n) =: Uj is uniformly distributed over (0,1). Therefore, if

we set Fn(t) := P(
∑

i∈Ij
ωi/

√
n ≤ t) and F−1

n (s) := inf{t ∈ R :Fn(t) > s}, that

is, F−1
n is the generalized inverse of Fn, then the sequence {F−1

n (Uj )}j∈N has
the same law as {∑i∈Ij

ωi/
√

n}j∈N and we have built a coupling. In short, we

set X
(n)
j := F−1

n (Uj ) and Yj := F̂−1(Uj ) = ∑
i∈Ij

ω̂i/
√

n. Moreover, we observe

that, by the central limit theorem, limn→∞ Fn(t) = F̂ (t) for every t ∈ R and there-
fore limn→∞ X

(n)
j = Yj , in P-probability.

LEMMA 3.4. For every C > 0,

lim
n→∞E

[
exp

(
C
∣∣X(n)

1 − Y1
∣∣)] = 1.(3.36)

PROOF. Since limn→∞ X
(n)
1 = Y1 in probability it suffices to prove that the

sequence of random variables {exp(C|X(n)
1 −Y1|)}n∈n0+N is bounded in L2 (hence,

uniformly integrable) for a given n0 ∈ N. We choose n0 to be the smallest integer
number larger than 16C2/t2

0 , with t0 the constant in (1.9). By the triangle and
Cauchy–Schwarz inequalities, we get

sup
n>n0

E
[
exp

(
2C

∣∣X(n)
1 − Y1

∣∣)]
(3.37)

≤
√(

sup
n>n0

E
[
exp

(
4C

∣∣X(n)
1

∣∣)])E[exp(4C|Y1|)] < ∞,

where the second inequality follows from (1.9) and the choice of n0, recalling that
X

(n)
1 ∼ ∑n

i=1 ωi/
√

n and Y1 ∼ N (0,1). �

Let us see why Lemma 3.4 implies f 1 � f 2. First of all,

min
(
H 1

t,ε,δ(a, h) − H 2
t,ε,δ

(
a, (1 − ρ)h

)
,H 2

t,ε,δ(a, h) − H 1
t,ε,δ

(
a, (1 − ρ)h

))
≥ −

m
t/a2∑

k=1

sk|Zk(ω) − Zk(ω̂)| + aρh

m
t/a2∑

k=1

sk|Īk|

≥ −
m

t/a2∑
k=1

sk

σk∑
j=σk−1+1

∣∣∣∣∑
i∈Ij

ωi − ∑
i∈Ij

ω̂i

∣∣∣∣ + aρh

m
t/a2∑

k=1

sk|Īk|,
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where we redefine σm
t/a2 := t/ε for notational convenience (otherwise, we should

treat the last term j = mt/a2 separately). In view of (3.9)–(3.11), it suffices to show
that for a, ε and δ small in the usual sense [recall the discussion before (3.7)] we
have

lim sup
t→∞

1

t
log E

[
exp

(
−Aa2ρh

m
t/a2∑

k=1

sk|Īk|
)

× E

(
exp

(
Aa

m
t/a2∑

k=1

sk

σk∑
j=σk−1+1

(√
ε

a

)∣∣X(ε/a2)
j − Yj

∣∣))](3.38)

≤ 0.

By independence,

E

[
exp

(
Aa

m
t/a2∑

k=1

sk

σk∑
j=σk−1+1

(√
ε

a

)∣∣X(ε/a2)
j − Yj

∣∣)]
(3.39)

=
m

t/a2∏
k=1

E
[
exp

(
A

√
εsk

∣∣X(ε/a2)
1 − Y1

∣∣)]σk−σk−1,

and since a2|Īk| = ε(σk −σk−1) the term between square brackets in (3.38) is equal
to

m
t/a2∏

k=1

(
exp(−Aρhskε)E

[
exp

(
A

√
εsk

∣∣X(ε/a2)
1 − Y1

∣∣)])σk−σk−1 .(3.40)

Since sk ∈ {0,1}, (3.38) is implied by

exp(−Aρhε)E
[
exp

(
A

√
ε
∣∣X(ε/a2)

1 − Y1
∣∣)] ≤ 1,(3.41)

which holds for a ≤ a0(ε) by Lemma 3.4. The proof of f 1 � f 2 is complete.

3.3. Step 3: From the renewal process to the regenerative set. In this crucial
step, we replace the discrete renewal process τ = {τn}n∈N with the continuum re-
generative set τ̃ α (both processes are defined under the law P). Recall that for
the renewal process τ we have defined the coarse-grained returns {σk}k∈N as well
as the coarse-grained signs sk , and mt/a2 := inf{k :σk ≥ t/ε}. Henceforth, we set
m := mt/a2 for short and we redefine for notational convenience σm := t/ε (as in
the previous step).

Since Īk = ( ε
a2 σk−1,

ε
a2 σk], the second intermediate Hamiltonian H 2 [cf. (3.35)]

can be rewritten as

H 2
t,ε,δ(a, h) = 1

a

m∑
k=1

sk

[( ∑
(εσk−1)/a

2<i≤εσk/a
2

aω̂i

)
+ hε(σk − σk−1)

]
.(3.42)
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We now introduce the rescaled returns σk := εσk and we let β = {βt }t≥0 be a
standard Brownian motion, defined on the disorder probability space (�, F ,P).
With some abuse of notation, we can redefine H 2 as

H 2
t,ε,δ(a, h) = 1

a

m∑
k=1

sk
(
βσk

− βσk−1
+ h(σ k − σk−1)

)
,(3.43)

which has the same law as the quantity in (3.42), hence through formula (3.8) it
yields the same f 2. It is clear that H 2 depends on the renewal process τ = {τn}n∈N

only through the vector

� := (m; s1, . . . , sm;σ 1, . . . , σm),(3.44)

whose definition depends of course on t, a, ε, δ.
One can define an analogous vector �̃ in terms of the regenerative set τ̃ α , by

looking at the returns on blocks of width ε, skipping (δ/ε) blocks between succes-
sive returns. More precisely, we set Ĩj := ((j − 1)ε, jε] for j ∈ N and define

σ̃ 0 := 0,
(3.45)

σ̃ k := ε · inf{j ≥ (σ̃ k−1/ε) + (δ/ε) : τ̃ α ∩ Ĩj �= ∅}, n ∈ N.

We then set m̃ := inf{k ∈ N : σ̃ k ≥ t} and redefine σ̃ m̃ := t . The signs {̃sk}1≤k≤m

are defined in complete analogy with the discrete case, by looking at the sign �̃α

at the beginning of each visited block Ĩσ̃k
. We have thus completed the definition

of

�̃ := (m̃; s̃1, . . . , s̃m̃; σ̃ 1, . . . , σ̃ m̃).(3.46)

We are ready to introduce the third intermediate quantity f 3, which, in agree-
ment with (3.8), will be defined by the corresponding Hamiltonian H 3. We replace
in the right-hand side of (3.43) the quantities m,sk, σ k with their continuum ana-
logues m̃, s̃k, σ̃ k , that is, we set

H 3
t,ε,δ(a, h) := 1

a

m̃∑
k=1

s̃k
(
βσ̃ k

− βσ̃k−1
+ h(σ̃ k − σ̃ k−1)

)
.(3.47)

It is now convenient to modify slightly the definition (3.43) of H 2. The
laws of the vectors � and �̃ are mutually absolutely continuous (note that
they are probability laws on the same finite set) and we denote by d�

d�̃
=

d�

d�̃
(m̃; σ̃ 1, . . . , σ̃ m̃) the corresponding Radon–Nikodym derivative, which does

not depend on (̃s1, . . . , s̃m̃): in fact, conditionally on m̃, σ̃ 1, . . . , σ̃ m̃, the signs
s̃1, . . . , s̃m are i.i.d. variables that take the values {0,1} with equal probability, and
an analogous statement holds for s1, . . . , sm. We then redefine

H 2
t,ε,δ(a, h) := H 3

t,ε,δ(a, h) − 1

2aλ
log

d�

d�̃
.(3.48)
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Note that this definition of H 2 yields the same f 2 as (3.43), according to (3.8).
To prove that f 2 � f 3, we can now apply the general scheme (3.8)–(3.11).

Plainly,

min
{
H 2

t,ε,δ(a, h) − H 3
t,ε,δ

(
a, (1 − ρ)h

)
,

H 3
t,ε,δ(a, h) − H 2

t,ε,δ

(
a, (1 − ρ)h

)}
(3.49)

≥ − 1

2aλ

∣∣∣∣log
d�

d�̃

∣∣∣∣ + ρh

a

m̃∑
k=1

s̃k(σ̃ k − σ̃ k−1),

therefore, in view of (3.11), we are left with showing that for all A,B > 0 and for
δ, ε, a small in the usual sense we have

lim sup
t→∞

1

t
log E

[
exp

(
−A

m̃∑
k=1

s̃k(σ̃ k − σ̃ k−1) + B

∣∣∣∣log
d�

d�̃

∣∣∣∣
)]

≤ 0.(3.50)

We have already observed that, conditionally on m̃, σ̃ 1, . . . , σ̃ m̃, the variables
s̃1, . . . , s̃m̃ are i.i.d., taking the values {0,1} with probability 1

2 each, hence d�

d�̃
does not depend on these variables. Integrating over s̃1, . . . , s̃m̃, we can rewrite the
expectation in (3.50) as

E

[(
m̃∏

k=1

(
1

2
+ 1

2
exp

(−A(σ̃ k − σ̃ k−1)
)))

exp
(
B

∣∣∣∣log
d�

d�̃

∣∣∣∣)
]
.(3.51)

We need some bounds on d�

d�̃
, that are given in the following lemma (whose proof

is deferred to Appendix B). Since the result we are after at this stage is for fixed
δ > 0, for the sake of simplicity we are going to fix δ = 1: arbitrary values of δ

lead to very similar estimates.

LEMMA 3.5. Fix δ = 1. There exists κ(ε, a) > 0 with the property that

lim
ε→0

lim sup
a→0

κ(ε, a) = 0,(3.52)

such that, for all values of m̃, σ̃ 1, . . . , σ̃ m̃, the following bound holds:∣∣∣∣log
d�

d�̃
(m̃; σ̃ 1, . . . , σ̃ m̃)

∣∣∣∣ ≤ κ(ε, a)

m̃∑
i=1

(
log(σ̃ i − σ̃ i−1) + 1

)
.(3.53)

Note that by definition (σ̃ i − σ̃ i−1) ≥ δ = 1 and therefore the right-hand side of
(3.53) is positive. By applying (3.53), we now see that the expression in (3.51) is
bounded above by E[Gm̃], where for n ∈ N we set

Gn :=
n∏

i=1

1

2

(
1 + e−A(σ̃ i−σ̃ i−1)

)
eBκ(ε,a)(σ̃ i − σ̃ i−1)

Bκ(ε,a).(3.54)
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To prove (3.50), thus completing the proof that f 2 � f 3, it therefore suffices to
show that

lim sup
t→∞

1

t
log E[Gm̃] ≤ 0.(3.55)

We recall that m̃ = inf{k ∈ N : σ̃ k ≥ t} and that we had redefined σ̃ m̃ := t for
notational convenience. It is now convenient to switch back to the natural definition
(3.45) of σ̃ m̃. This produces a minor change in Gm̃, see (3.54): in fact, only the last
factor in the product is modified, and since (1+e−x) ≤ 2(1+e−y) for all x, y ≥ 0,
the new Gm̃ is at most twice the old one. The change is therefore immaterial for
the purpose of proving (3.55).

We introduce the filtration {Fn}n∈N∪{0}, defined by Fn := σ(σ̃ 0, . . . , σ̃ n), and
we note that m̃ is a bounded stopping time for this filtration. Let us set

γ = γ (ε, a) := sup
x∈[−ε,0]

Ex

[
1

2
(1 + e−Aσ̃ 1)eBκ(ε,a)(σ̃ 1)

Bκ(ε,a)

]
,(3.56)

where we recall that Px denotes the law of the regenerative set started at x, that is,
Px(τ̃

α ∈ ·) := P(τ̃ α + x ∈ ·). From (3.54) and the regenerative property of τ̃ α , we
obtain

E[Gn+1|Fn] ≤ γGn.(3.57)

If γ ≤ 1, this relation shows that the process {Gn}n≥0, with G0 := 1, is a su-
permartingale. Since m̃ is a bounded stopping time, from the optional sampling
theorem we deduce that E[Gm̃] ≤ E[G0] = 1, which clearly yields (3.55).

It only remains to show that indeed γ ≤ 1, provided ε and a are small in the
usual sense. Observe that σ̃ 1, defined in (3.45), is a discretized version of the
variable d1−ε = d1−ε(τ̃

α), defined in (2.7) (recall that δ = 1): more precisely,
σ̃ 1 = ε�d1−ε/ε�, therefore d1−ε ≤ σ̃ 1 ≤ d1−ε + ε. Setting κ := κ(ε, a) for short
and applying (2.10), we obtain

Ex

[
1

2
(1 + e−Aσ̃ 1)eBκ(σ̃ 1)

Bκ

]
≤ Ex

[
1

2
(1 + e−Ad1−ε )eBκ(d1−ε + ε)Bκ

]
(3.58)

= sin(πα)

π

∫ ∞
1−ε

[
1

2
(1 + e−At )eBκ(t + ε)Bκ

]
× ((1 − ε) − x)α

(t − (1 − ε))α(t − x)
dt.

Plainly, there exists κ0 > 0 such that the integral in (3.58) is finite for κ ∈ [0, κ0],
for every x ∈ [−ε,0], and it is in fact a continuous function of (x, κ) ∈ [−ε,0] ×
[0, κ0]. Furthermore, the integral is strictly smaller than 1 for κ = 0 and every
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x ∈ [−ε,0], as it is clear from the first line of (3.58). Therefore, by continuity,
there exists κ1 ∈ (0, κ0) such that the integral in (3.58) is strictly smaller than one
for (x, κ) ∈ [−ε,0] × [0, κ1]. Looking back at (3.56), we see that indeed γ ≤ 1
provided κ(ε, a) ≤ κ1. Thanks to (3.52), it suffices to take ε and a small in the
usual sense, and the proof of f 2 � f 3 is complete.

3.4. Step 4: Inverse coarse-graining of the regenerative set. This step is the
close analog of Step 1 (cf. Section 3.1) in the continuum set-up, and a straightfor-
ward modification of Step 4 in [8]. We will therefore be rather concise.

Recall that the function f 4 is nothing but the continuum finite-volume free en-
ergy, cf. (3.5), hence according to (3.8) it corresponds to the Hamiltonian [recall
(2.2) and (2.3)]

H 4
t,ε,δ(a, h) := 1

a

∫ t

0
�̃(u)

(
dβ(u) + hdu

)
(3.59)

= 1

a

m̃∑
k=1

∫ σ̃ k

σ̃ k−1

�̃(u)
(
dβ(u) + hdu

)
,

where we have set �̃(u) := �̃α(u) for short. As in the third step, we redefine
σ̃ m̃ := t for simplicity [otherwise, the k = m̃ term in the sum in (3.59) would
require a separate notation], but we will drop this convention later.

We now rewrite H 3
t,ε,δ(a, h) by introducing the process

�̂(u) :=
m̃∑

k=1

s̃k1(σ̃ k−1,σ̃ k](u),(3.60)

so that by (3.47) we can write

H 3
t,ε,δ(a, h) = 1

a

m̃∑
k=1

∫ σ̃ k

σ̃ k−1

�̂(u)
(
dβ(u) + hdu

)
.(3.61)

Our aim is to show that f 3 � f 4, but we prove only f 4 ≺ f 3, since the argument
for the opposite inequality is very similar. We have [recall (3.9)]

aH
(4,3)
t,ε,δ (a, h,ρ)

= ρh

m̃∑
k=1

∫ σ̃ k

σ̃ k−1

�̂(u) du(3.62)

+
m̃∑

k=1

∫ σ̃ k

σ̃ k−1

(
�̃(u) − �̂(u)

)(
dβ(u) + hdu

)
,
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and therefore, arguing as in (3.21) and (3.22), it is sufficient to show that for every
choice of A and B > 0

lim sup
t→∞

1

t
log E

[
exp

(
A

∫ t

0
|�̃(u) − �̂(u)|du

(3.63)

− B

m̃∑
k=1

s̃k(σ̃ k − σ̃ k−1)

)]
≤ 0,

provided δ and ε are small in the usual sense. Note that a has disappeared.
Let us now focus on the union of the excursions of B̃α whose length is shorter

than δ and denote the intersection of such a set with [0, t] by Jt,δ . Then, in analogy
with (3.24), we have the bound∫ t

0
|�̃(u) − �̂(u)|du ≤ |Jt,δ| + m̃ε.(3.64)

We now integrate out the s̃ variables in (3.63) [recall that they are i.i.d. B(1/2)

variables] and observe that, since σ̃ k − σ̃ k−1 ≥ δ, for every δ > 0 there exists ε0
such that for ε ≤ ε0

Am̃ε + 1

2

m̃∑
k=1

log
(

1

2
+ 1

2
exp

(−B(σ̃ k − σ̃ k−1)
)) ≤ 0.(3.65)

Also notice that, by construction, |Jt,δ ∩ (σ̃ k−1, σ̃ k]| ≤ (δ + ε) ≤ 2δ for all k =
1, . . . , m̃, hence |Jt,δ| ≤ 2δm̃. Therefore, it remains to show that

lim sup
t→∞

1

t
log E

[
exp

(
2Aδm̃

(3.66)

+ 1

2

m̃∑
k=1

log
(

1

2
+ 1

2
exp

(−B(σ̃ k − σ̃ k−1)
)))] ≤ 0.

At this point, it is practical to go back to the original definition of σ̃ m̃ [cf. (3.45)];
this produces a change in the exponent of (3.66) which is smaller than (log 2)/2
and this is irrelevant for the estimate we are after. We then rewrite (3.66) as

lim sup
t→∞

1

t
log E[Gm̃] ≤ 0

(3.67)

where Gn :=
n∏

i=1

e2Aδ

√
1

2

(
1 + e−B(σ̃ k−σ̃ k−1)

)
.

Let us set

γ = γ (δ, ε) = sup
x∈[−ε,0]

e2AδEx

[√
1

2
(1 + e−Bσ̃ 1)

]
,(3.68)
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and introduce the filtration {Fn := σ(σ̃ 0, . . . , σ̃ n)}n∈N. By the regenerative prop-
erty of τ̃ α , we can write

E[Gn+1|Fn] ≤ γGn,(3.69)

therefore if γ ≤ 1 the process {Gn}n≥0, with G0 := 0, is a supermartingale. Since
m̃ is a bounded stopping time, the optional sampling theorem yields E[Gm̃] ≤ 1,
from which (3.67) follows. We are left with showing that γ ≤ 1 if δ and ε are small
in the usual sense.

Recall that ds = ds(τ̃ ) = inf{u > s :u ∈ τ̃ α} [cf. (2.7)] and observe that, by defi-
nition, σ̃ 1 = jε if and only if dδ−ε ∈ ((j − 1)ε, jε] [cf. (3.45)]. Therefore, we may
write σ̃ 1 ≥ dδ−ε ≥ dδ−ε+x for x ≤ 0, whence

Ex

[√
1
2(1 + e−Bσ̃ 1)

]
≤ Ex

[√
1
2(1 + e−Bdδ−ε+x )

]
(3.70)

= E
[√

1
2(1 + e−Bdδ−ε )

]
.

Looking back at (3.68), we see that γ ≤ 1 if we show that the right-hand side of
(3.70) is less than exp(−2Aδ), when δ and ε are small in the usual sense. This
condition can be simplified by letting ε ↘ 0: since dδ−ε → dδ , P-a.s., it suffices to
show that

E
[√

1
2

(
1 + exp(−Bdδ)

)]
< exp(−2Aδ) for all δ > 0 small enough.(3.71)

The law of the variable dδ is given in (2.10), hence with a change of variables we
may write

1

δ

(
1 − E

[√
1

2

(
1 + exp(−Bdδ)

)])
(3.72)

= sin(πα)

π

∫ ∞
0

1

δ

[
1 −

√
1

2

(
1 + exp

(−Bδ(1 + v)
))] dv

vα(1 + v)
.

Since the term between square brackets in the right-hand side is positive and as-
ymptotically equivalent, as δ ↘ 0, to δB(1 + v)/4, Fatou’s lemma guarantees that
the limit as δ ↘ 0 of the expression in (3.72) is equal to +∞ and this entails that
(3.71) holds.

This concludes the proof of Step 4 and, hence, the proof of Theorem 3.1.

APPENDIX A: COMPLETING THE PROOF OF PROPOSITION 2.2

In this section, we are going to prove (2.18), that is, for every η ∈ (0,∞) there
exists D(η) ∈ (0,∞) such that

E[E[exp(η�T (β, �̃α))]] ≤ D(η)eD(η)T for every T > 0.(A.1)

We first state some important estimates concerning the regenerative set τ̃ α .
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A.1. Regenerative set, excursions and local time. We recall the basic link
between regenerative set and subordinators. Let (σ = {σt }t≥0,P) denote the stable
subordinator of index α, that is, the Lévy process with zero drift, zero Brown-
ian component and with Lévy measure given by �(dx) := C

x1+α 1(0,∞)(x) dx with
C > 0. We choose as usual a right-continuous version of σ . The value of the con-
stant C is quite immaterial (it corresponds to rescaling time or space by a constant
factor) and a useful normalization it to fix C so that

∫ ∞
0 (1 − e−x)�(dx) = 1. In

this way, the Lévy exponent of σ , defined by �(λ) := − log E[e−λσ1] = ∫ ∞
0 (1 −

e−λx)�(dx), equals exactly λα for all λ ≥ 0.
If we denote by �σt := σt+ − σt the size of the jump of σ at epoch t , it is well

known that σt = ∑
s∈(0,t] �σs , that is, σ increases only by jumps. A remarkable

property of σ is its scale invariance: {σct }t≥0 has the same law as {c1/ασt }t≥0. We
also recall some basic estimates (cf. Theorems 8.2.1 and 8.2.2 in [4]):

P(σ1 > x) = (const.)

xα

(
1 + o(1)

)
as x → +∞,

(A.2)

P(σ1 < x) = exp
(
− (const.′)

xα/(1−α)

(
1 + o(1)

))
as x ↘ 0.

If we set E := [0,∞) × (0,∞), the random set of points {(t,�σt )}t∈[0,∞) ∩ E
(note that we only keep the positive jumps �σt > 0) is a Poisson random mea-
sure (sometimes simply called Poisson process) on E with intensity measure
dt ⊗ �(dx), where of course dt denotes the Lebesgue measure. The stochastic
process {�σt }t∈[0,∞) is called a Poisson point process on (0,∞) with intensity
measure �.

The basic link with regenerative sets is as follows: the random closed set of
[0,∞) defined as the closure of the image of the process σ , that is, {σt }t≥0, is
precisely the α-stable regenerative set τ̃ α we are considering. Therefore, the set of
jumps {�σt }t≥0 coincides with the set of widths {|In|}n∈N ∪ {0} of the excursions
of τ̃ α .

Let us discuss an application of these results that will be useful later. If we
denote by Lt := inf{u ≥ 0 :σu > t} the inverse of σ , known as the local time of τ̃ α ,
we may write ∑

n∈N : In⊆(0,2)

|In|1−ε = ∑
t∈(0,L2)

(�σt )
1−ε = ∑

t∈(0,L2)

f (�σt)

(A.3)
where f (x) := x1−ε1[0,2](x),

therefore for λ > 0 we have by Cauchy–Schwarz

E
[
exp

(
λ

∑
n∈N : In⊆(0,2)

|In|1−ε

)]

≤ ∑
m∈N

E
[
exp

(
λ

∑
t∈(0,m)

f (�σt)

)
1{m−1<L2≤m}

]
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≤ ∑
m∈N

√√√√E
[
exp

(
2λ

∑
t∈(0,m)

f (�σt )

)]
P[m − 1 < L2 ≤ m].

By the definition of L, the scale invariance of σ and (A.2), we have for some c > 0

P[m − 1 < L2 ≤ m] ≤ P[σm−1 < 2] = P
[
σ1 <

2

(m − 1)1/α

]
(A.4)

≤ e−c(m−1)1/(1−α)

.

By Campbell’s formula for Poisson processes (cf. equation (3.17) in [19]) we ob-
tain

E
[
exp

(
2λ

∑
t∈(0,m)

f (�σt )

)]

= exp
(
m

∫ ∞
0

(
e2λf (x) − 1

)
�(dx)

)
= eC(λ)m,(A.5)

where C(λ) :=
∫ 2

0

e2λx1−ε − 1

x1+α
dx < ∞ for 0 < ε < 1 − α.

From the last relations we then obtain, for some c1 ∈ (0,∞),

E
[
exp

(
λ

∑
n∈N : In⊆(0,2)

|In|1−ε

)]
≤ ∑

m∈N

e1/2(C(λ)m−c(m−1)1/(1−α))

(A.6)
≤ c1e

c1(C(λ))1/α

,

where the last inequality can be checked, for example, by approximating the sum
with an integral and developing the function e1/2[C(λ)x−cx1/(1−α)] around its maxi-
mum.

Since e2λy − 1 ≤ 2λe4λy for y ∈ [0,2], it follows from (A.5) that C(λ) ≤
(const.)e5λ. By Markov’s inequality, we then obtain

P
[ ∑
n∈N : In⊆(0,2)

|In|1−ε > x

]
≤ c1e

c1(C(λ))1/α−λx

(A.7)
≤ c1e

c2e
5λ/α−λx,

for some c2 ∈ (0,∞). Optimizing over λ yields, for every x > 0,

P
[ ∑
n∈N : In⊆(0,2)

|In|1−ε > x

]
≤ min

{
c1e

−(αx/5)[log((αx)/(5c2))−1],1
}

(A.8)
≤ c3e

−c3x,
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for a suitable c3 ∈ (0,∞). We can finally estimate the quantity we are interested
in:

E

[
exp

(
γ
√

T

√ ∑
n∈N : In⊆(0,2)

|In|1−ε

)]

=
∫ ∞

0
P

[
exp

(
γ
√

T

√ ∑
n∈N : In⊆(0,2)

|In|1−ε

)
> t

]
dt

=
∫ ∞

0
P
[ ∑
n∈N : In⊆(0,2)

|In|1−ε >
(log t)2

γ 2T

]
dt

≤ c3

∫ ∞
0

e−c3(log t)2/(γ 2T ) dt

= c3

∫ ∞
−∞

exe−c3x
2/(γ 2T ) dx

≤ c4γ
√

T ec4γ
2T ,

for some c4 ∈ (0,∞), by a Gaussian integration. We have thus proven that, if
ε < 1 − α, there exists c4 ∈ (0,∞) such that for all γ,T > 0

E

[
exp

(
γ
√

T

√ ∑
n∈N : In⊆(0,2)

|In|1−ε

)]
≤ c4γ

√
T ec4γ

2T .(A.9)

A.2. Proof of (A.1). We recall that

�T (β, �̃α) := sup
−1≤x≤T ,0≤y≤T +1

|H0,y;θxβ(�̃α)|.(A.10)

Recalling (2.2), we can write

H0,y;θxβ(�̃α) = −2λ

∫ y

0
�̃α(u) d(θxβ)(u) − 2λh

∫ y

0
�̃α(u) du,

and note that the second term is bounded in absolute value by 2λhy. For the pur-
pose of proving (A.1), we may therefore focus on the first term: we set

γx,y(β, �̃α) :=
∫ y

0
�̃α(u) d(θxβ)(u)

(A.11)

=
∫ x+y

x
�̃α(u − x)dβ(u),

�T (β, �̃α) := sup
(x,y)∈ST

γx,y(β, �̃α)

(A.12)
where ST := [−1, T ] × [0, T + 1].
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We stress that �T is defined as the supremum of γx,y , not of |γx,y |. Notice how-
ever that, for fixed �̃α , the process γ = {γx,y(β, �̃α)}x,y under P is Gaussian and
centered, in particular it has the same law as −γ . Since e|x| ≤ ex + e−x , we may
then write

E[E[exp(η�T (β, �̃α))]] ≤ 2e2λh(T +1)E[E[exp(2ηλ�T (β, �̃α))]].(A.13)

Looking back at (A.1), we are left with showing that, for every η > 0, there exists
(a possibly different) D(η) ∈ (0,∞) such that

E[E[exp(η�T (β, �̃α))]] ≤ D(η)eD(η)T ∀T > 0.(A.14)

Let us set �T := �T (β, �̃α) for short. It is convenient to split

E[E[exp(η�T )]] = E
[
exp(ηE[�T ]) · E

[
exp

(
η(�T − E[�T ]))]].(A.15)

To prove (A.14), we use the powerful tools of the theory of continuity of Gaussian
processes. Let us introduce (for a fixed realization of �̃α) the canonical metric
associated to the gaussian process γ , defined for (x, y), (x′, y′) ∈ ST = [−1, T ] ×
[0, T + 1] by

d((x, y), (x′, y′)) :=
√

E
[(

γx′,y′(β, �̃α) − γx,y(β, �̃α)
)2]

.(A.16)

For ε > 0 we define NT (ε) = NT,�̃α (ε) as the least number of open balls of radius
ε (in the canonical metric) needed to cover the parameter space ST . The quan-
tity logNT (ε) is called the metric entropy of γ . It is known ([1], Corollary 4.15)
that the finiteness of

∫ ∞
0

√
logNT (ε) dε ensures the existence of a version of the

process γ which is continuous in the parameter space. Moreover, there exists a
universal constant K ∈ (0,∞) such that

E[�T (β, �̃α)] ≤ K

∫ ∞
0

√
logNT,�̃α (ε) dε.(A.17)

We show below that, for P-a.e. realization of �̃α , indeed
∫ ∞

0

√
logNT,�̃α (ε) dε <

∞, so we may (and will) choose henceforth a continuous version of the
process γ .

To estimate the right-hand side of (A.15), let us denote by σ 2
T = σ 2

T ,�̃α the max-

imal variance of the process γ , that is, σ 2
T := sup(x,y)∈ST

E[γx,y(β, �̃α)2]. Since
γ is continuous, it follows easily by Borell’s inequality ([1], Theorem 2.1) that

E
[
exp

(
η(�T − E[�T ]))] ≤ C′σT exp

(1
2η2σ 2

T

)
,

where C′ ∈ (0,∞) is an absolute constant. Now observe that σ 2
T is uniformly

bounded: by (A.11) and the isometry property of the Wiener integral, since
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|�̃α(·)| ≤ 1, we can write

σ 2
T := sup

(x,y)∈ST

E[γx,y(β, �̃α)2]
(A.18)

= sup
(x,y)∈ST

∫ x+y

x
�̃α(u − x)2 du ≤ T + 1.

Looking back at (A.15) and recalling (A.17), we have proven that there exists
C ∈ (0,∞) such that

E[E[exp(η�T (β, �̃α))]]
(A.19)

≤ CeCη2T E
[
exp

(
Kη

∫ ∞
0

√
logNT,�̃α (ε) dε

)]
.

To complete the proof of (A.14), it remains to estimate NT,�̃α (ε), which re-
quires some effort. For a fixed realization of �̃α , we introduce the function
ρT : R+ → R

+ defined by

ρT (δ) := sup
(x,y),(x′,y′)∈ST : |(x,y)−(x′,y′)|≤δ

d((x, y), (x′, y′)),(A.20)

where |(x, y) − (x′, y′)|2 := (x − x′)2 + (y − y′)2 denotes the Euclidean norm
and we recall that the canonical metric d is defined in (A.16). Note that ρT (·) is
a nondecreasing function which is eventually constant: ρT (δ) = ρT (

√
2(T + 1))

for every δ ≥ √
2(T + 1), simply because

√
2(T + 1) is the diameter of the space

ST = [−1, T ] × [0, T + 1].
Plainly, for every fixed δ > 0, we can cover the square ST with no more than

(T +1
δ

+1)2 open squares of side δ. Since the Euclidean distance between a point in
a square of side δ and the center of the square is at most δ/

√
2, the corresponding

distance in the canonical metric is at most ρT (δ/
√

2), by the definition of ρT .
Therefore, a square of side δ can be covered with a ball (in the canonical metric)
of radius ρT (δ/

√
2) centered at the center of the square. If we set ε := ρT (δ/

√
2),

this means that we need at most (T +1
δ

+1)2 balls (in the canonical metric) of radius
ε to cover the whole parameter space ST . Put otherwise, we have shown that for
every ε > 0,

NT (ε) ≤
(

1 + T + 1√
2ρ−1

T (ε)

)2

,(A.21)

where ρ−1
T is well defined because ρT is nondecreasing and continuous, as it will

be clear below. Since NT (ε) = 1 for ε > ρT ((T + 1)/
√

2) (we can cover ST with
just one ball), we obtain the estimate∫ ∞

0

√
logNT (ε) dε ≤

∫ ρT ((T +1)/
√

2)

0

√√√√2 log
(

1 + T + 1√
2ρ−1

T (ε)

)
dε.



2366 F. CARAVENNA AND G. GIACOMIN

By a change of variables and integrating by parts, we obtain∫ ∞
0

√
logNT (ε) dε

≤
∫ (T +1)/

√
2

0

√
2 log

(
1 + T + 1√

2t

)
dρT (t)

=
√

2 log 2ρT

(
T + 1√

2

)
(A.22)

+
∫ (T +1)/

√
2

0

ρT (t)

t

√
2 log(1 + (T + 1)/(

√
2t))

T + 1

T + 1 + √
2t

dt

≤ √
2ρT

(
T + 1√

2

)
+

∫ (T +1)/
√

2

0

ρT (t)

t

√
2 log(1 + (T + 1)/(

√
2t))

dt,

where in the integration by parts we have used the fact that, for P-a.e. realization

of �̃α , we have
√

2 log(1 + T +1√
2t

)ρT (t) → 0 as t → 0, as we prove below.

To proceed with the estimates, we need to obtain bounds on ρT , hence, we start
from the definition (A.11) of γx,y(β, �̃α). By the properties the Wiener integral,
we can write

d((x, y), (x′, y′))2

= E
[(

γx′,y′(β, �̃α) − γx,y(β, �̃α)
)2]

=
∫ 2T +1

−1

(
�̃α(u − x′)1[x′,x′+y′](u) − �̃α(u − x)1[x,x+y](u)

)2
du

=
∫ 2T +1

−1

∣∣�̃α(u − x′)1[x′,x′+y′](u) − �̃α(u − x)1[x,x+y](u)
∣∣du,

where the last equality holds simply because �̃α(·) takes values in {0,1}. Inci-
dentally, this expression shows that the canonical metric d(·, ·) is continuous on
ST (because the translation operator is continuous in L1). Therefore, ρT (·) is a
continuous function, as we stated before.

By the triangle inequality, we get for x′ ≤ x

d((x, y), (x′, y′))2 ≤
∫ 2T +1

−1
�̃α(u − x′)

∣∣1[x′,x′+y′](u) − 1[x,x+y](u)
∣∣du

+
∫ 2T +1

−1
|�̃α(u − x′) − �̃α(u − x)|1[x,x+y](u) du

≤ |x′ − x| + |(x′ + y′) − (x + y)|
+

∫ 2T +1

x
|�̃α(u − x′) − �̃α(u − x)|du.
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Recall that �̃α(s) = ∑
n∈N ξ̃n1In(s), where {In}n∈N are the connected components

of the open set (τ̃ α)� and {̃ξn}n∈N are i.i.d. Bernoulli variables of parameter 1/2.
For every finite interval I , we have the bound

∫
R

|1I (u − x′) − 1I (u − x)|du ≤
2 min{|In|, |x′ − x|}, whence∫ 2T +1

x
|�̃α(u − x′) − �̃α(u − x)|du

(A.23)
≤ ∑

n∈N : In∩(0,2(T +1)) �=∅

min{|In|, δ}.

Therefore, recalling definition (A.20), we can write

ρT (δ)2 ≤ 3δ + ∑
n∈N : In∩(0,2(T +1)) �=∅

min{|In|, δ}.(A.24)

Observe that the sum in the right-hand side can be rewritten as δNδ + Aδ , where
Nδ is the number of excursions In that intersect (0,2(T + 1)) with |In| > δ and
Aδ is the total area covered by the excursions In that intersect (0,2(T + 1)) with
|In| ≤ δ. The asymptotic behavior as δ ↘ 0 of Nδ and Aδ is as follows: there exists
a positive constant c = c(α) such that

lim
δ↘0

δαNδ = lim
δ↘0

Aδ

δ1−α
= cL2(T +1), P-a.s.,(A.25)

where {Lt }t≥0 is the local time associated to the regenerative set τ̃ α (whose de-
finition is recalled in Appendix A.1). The relations in (A.25) are proven in [22]
[cf. Proposition XII-(2.9) and Exercise XII-(2.14)] in the special case α = 1

2 , but
the proof is easily extended to the general case. Looking back at (A.24), it fol-
lows that, for P-a.e. realization of �̃α , we have ρT (δ) ∼ √

2c
√

L2(T +1)δ
(1−α)/2 as

δ ↘ 0. In particular,
√

log(1 + T +1√
2t

)ρT (t) → 0 as t ↘ 0, a property used in the

integration by parts in (A.22).
We are ready to bound the terms in the last line of (A.22). Note that the first

term is easily controlled: by definition d((x, y), (x′, y′)) ≤ 2σT , hence it follows
by (A.18) that

√
2ρT

(
T + 1√

2

)
≤ 2

√
2
√

T + 1.(A.26)

Now observe that from (A.24), we have

ρT (δ) ≤ FT +1(δ)
(A.27)

where FM(δ) :=
√

3δ + ∑
n∈N : In∩(0,2M) �=∅

min{|In|, δ}.
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By the scale invariance of the regenerative set τ̃ α it follows that, under P,
{FM(t)}t≥0 has the same law as {√MF1(

t
M

)}t≥0. Therefore, we can bound the
second term in the last line of (A.22) as follows:∫ (T +1)/

√
2

0

ρT (t)

t

√
2 log(1 + (T + 1)/(

√
2t))

dt

≤
∫ (T +1)/

√
2

0

FT +1(t)

t

√
2 log(1 + (T + 1)/(

√
2t))

dt(A.28)

d= √
T + 1M,

where, performing the change of variable t = (T + 1)s in the integral, we have
introduced the variable M defined by

M :=
∫ 1/

√
2

0

F1(s)

s

√
2 log(1 + 1/(

√
2s))

ds

(A.29)

=
∫ 1/

√
2

0

1

s

√√√√3s + ∑
n∈N : In∩(0,2) �=∅ min{|In|, s}
2 log(1 + 1/(

√
2s))

ds.

We can finally come back to (A.19): applying (A.22), (A.26) and (A.28) we obtain

E
[
exp

(
Kη

∫ ∞
0

√
logNT,�̃α (ε) dε

)]
≤ E

[
eKη

√
T +1

(
2
√

2+M
)]
.(A.30)

It only remains to estimate the law of M. Let us fix an arbitrary ε ∈ (0,1 − α):
applying the Cauchy–Schwarz inequality, we obtain

M ≤
√√√√∫ 1/

√
2

0

1

2s1−ε log(1 + 1/(
√

2s))
ds

(A.31)

×
√√√√√∫ 1/

√
2

0

(
3

sε
+ ∑

n∈N : In∩(0,2) �=∅

min{|In|, s}
s1+ε

)
ds.

The first integral being finite, we may focus on the second one, in particular on
the sum over the excursions {In}n∈N. Consider first the excursions such that |In| ≥

1√
2
, for which min{|In|, s} = s: there are at most 2/(1/

√
2) + 1 = 2

√
2 + 1 such

excursions with In ∩ (0,2) �= ∅, therefore∫ 1/
√

2

0

∑
n∈N : In∩(0,2) �=∅,|In|≥1/

√
2

min{|In|, s}
s1+ε

ds ≤ (
2
√

2 + 1
) ∫ 1/

√
2

0

1

sε
ds < ∞.
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Plainly, also the last excursion In � 2 gives a finite contribution. It remains to
consider the excursions In included in (0,2) such that |In| < 1√

2
, for which we

may write ∫ 1/
√

2

0

∑
In⊆(0,2),|In|<1/

√
2

min{|In|, s}
s1+ε

ds

= ∑
In⊆(0,2),|In|<1/

√
2

(∫ |In|
0

1

sε
ds +

∫ 1/
√

2

|In|
|In|
s1+ε

ds

)

= ∑
In⊆(0,2),|In|<1/

√
2

( |In|1−ε

1 − ε
+ 1

ε
|In|

(
1

|In|ε − (√
2
)ε))

≤ 1

ε(1 − ε)

∑
In⊆(0,2)

|In|1−ε.

We have thus shown that there exist constants 0 < a,b < ∞ (depending on ε) such
that

M ≤ a + b

√ ∑
n∈N : In⊆(0,2)

|In|1−ε.(A.32)

We can finally conclude the proof of (A.14). From (A.19), (A.30) and (A.32) it
follows that equation (A.14) is proven once we show that for every C > 0 there
exists D = D(C) ∈ (0,∞) such that for every T > 0

E

[
exp

(
C

√
T

√ ∑
n∈N : In⊆(0,2)

|In|1−ε

)]
≤ D exp(DT ).(A.33)

But this is a direct consequence of equation (A.9).

APPENDIX B: PROOF OF LEMMA 3.5

We recall that τ = {τn}n∈N and τ̃ α denote, respectively, the renewal process
and the regenerative set, both defined under the law P. For x ≥ 0, we denote
by Px the law of the sets τ and τ̃ α started at x, that is, Px(τ ∈ ·) := P(τ +
x = {τn + x}n∈N ∈ ·) and analogously for τ̃ α . For the definition of the vectors
� := (m; s1, . . . , sm;σ 1, . . . , σm) and �̃ := (m̃; s̃1, . . . , s̃m̃; σ̃ 1, . . . , σ̃ m̃), we refer
to Section 3.3.

In this section, we fix δ = 1. We have to estimate the Radon–Nikodym density
d�̃
d�

of the laws of �̃ and � [which does not depend on the sign variables; see the
explanation between (3.47) and (3.48)], namely the quantity

d�̃

d�
(l;x1, . . . , xl) = P((m̃; σ̃ 1, . . . , σ̃m) = (l;x1, . . . , xl))

P((m;σ 1, . . . , σm) = (l;x1, . . . , xl))
.(B.1)
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Note that by construction (σ i+1 − σ i) ∈ [δ,∞) ∩ εN, and since δ = 1 we assume
that xi+1 −xi ∈ [1,∞)∩εN. Using the regenerative property of τ̃ α and the renewal
property of τ , the ratio in (B.1) can be estimated in terms of the probability of the
first coarse-grained returns of τ̃ α and τ :

l∏
i=1

c(xi − xi−1) ≤ d�̃

d�
(l;x1, . . . , xl) ≤

l∏
i=1

C(xi − xi−1),(B.2)

where we set for convenience x0 := 0 and we have introduced, for z ∈ [1,∞)∩εN,

C(z) := sup
y,ỹ∈(0,ε]

Pỹ (inf{u > 1 :u ∈ τ̃ α} ∈ (z, z + ε])
Py/a2(inf{i > 1/a2 : i ∈ τ } ∈ (z/a2, (z + ε)/a2]) ,(B.3)

and c(z) is defined analogously, replacing the supremum (over y and ỹ) by the infi-
mum (over the same variables and range). For the purpose of proving Lemma 3.5, it
is actually more convenient to give a slightly different estimate than (B.2), namely

exp

(
−

l∑
i=1

G(xi − xi−1)

)
≤ d�̃

d�
(l;x1, . . . , xl) ≤ exp

(
l∑

i=1

G(xi − xi−1)

)
,(B.4)

where G(z) = Gε,a(z) is defined, always for z ∈ [1,∞) ∩ εN, by

Gε,a(z) := sup
y,ỹ∈(0,ε]

∣∣∣∣log
((

Py/a2

(
inf

{
i >

1

a2 : i ∈ τ

}
∈
(

z

a2 ,
z + ε

a2

]))
(B.5)

× (
Pỹ

(
inf{u > 1 :u ∈ τ̃ α} ∈ (z, z + ε]))−1

)∣∣∣∣.
Recalling the statement of Lemma 3.5, we are left with showing that

Gε,a(z) ≤ κ(ε, a)(log z + 1) with lim
ε→0

lim sup
a→0

κ(ε, a) = 0.(B.6)

We claim that the rescaled renewal process a2τ = {a2τn}n∈N, viewed as a ran-
dom closed subset of [0,∞), converges in distribution as a → 0 toward the re-
generative set τ̃ α , where we equip the family of closed subsets of [0,∞) with the
topology of Matheron, as described in [13]. To check this claim, we recall from
Appendix A.1 that τ̃ α is the closure of the image of the (stable) subordinator with
Lévy exponent �(λ) := λα . If we denote by {Nt }t≥0 a standard Poisson process
on R of rate γ > 0, independent of all the processes considered so far, the random
set a2τ can be viewed as the image of the subordinator {a2τNt }t≥0, whose Lévy
exponent is given by

�a(λ) := − log E[e−λa2τN1 ] = γ (1 − E[e−λa2τ1])
(B.7)

= γ
∑
n∈N

(1 − e−λa2n)K(n).
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If we fix γ = γ (a) so that �a(1) = 1, as prescribed by Proposition (1.14) in [13], it
follows easily by our assumption (1.4) that lima→0 �a(λ) = �(λ) = λα for every
λ ≥ 0. By Proposition (3.9) in [13], the pointwise convergence of the Lévy ex-
ponents entails the convergence in distribution of the corresponding regenerative
sets, which proves the claim.

From the convergence in distribution of a2τ toward τ̃ α it follows that the nu-
merator in the right-hand side of (B.5) converges as a → 0 toward the denominator
with ỹ replaced by y, for all fixed ε ∈ (0,1), z ∈ [1,∞) ∩ εN and y ∈ (0, ε]. In
the following lemma, we provide a quantitative control on this convergence, as a
function of z and y.

LEMMA B.1. Fix ε ∈ (0,1/3). There exists ζε(a) > 0 with lima→0 ζε(a) = 0
such that

(
1 − ζε(a)

)
z−ζε(a) ≤ Py/a2(inf{i > 1/a2 : i ∈ τ } ∈ (z/a2, (z + ε)/a2])

Py(inf{u > 1 :u ∈ τ̃ α} ∈ (z, z + ε])
(B.8)

≤ (
1 + ζε(a)

)
zζε(a),

for all a ∈ (0, a0) (with a0 > 0), y ∈ [0,1/3] and z ∈ [1,∞) ∩ εN.

We point out that Lemma B.1 is proved below through explicit estimates, with-
out reference to the convergence in distribution of a2τ toward τ̃ α stated above.

We now apply (B.8) to (B.5): since |log(1 + x)| ≤ 2|x| for x small, for small a

we obtain

Gε,a(z) ≤ 2ζε(a)(log z + 1)
(B.9)

+ sup
y,ỹ∈(0,ε]

∣∣∣∣log
(

Py(inf{u > 1 :u ∈ τ̃ α} ∈ (z, z + ε])
Pỹ (inf{u > 1 :u ∈ τ̃ α} ∈ (z, z + ε])

)∣∣∣∣.
Recalling the definition (2.7) of dt (τ̃

α) and applying (2.10), for z ∈ [1,∞) ∩ εN

we can write

Py

(
inf{u > 1 :u ∈ τ̃ α} ∈ (z, z + ε])

(B.10)

= sin(πα)

π

∫ z+ε

z

(1 − y)α

(t − 1)α(t − y)
dt.

From this explicit expression it is easy to check that the second term in the right-
hand side of (B.9) vanishes as ε → 0 uniformly in z ∈ [1,∞) ∩ εN, hence (B.6)
holds true.

B.1. Proof of Lemma B.1. We have already obtained in (B.10) an explicit
expression for the denominator in (B.8). It is however more convenient to give an
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alternative expression: recalling again the definition (2.7) of the variable dt (τ̃
α)

and applying (2.8), we can rewrite the denominator in (B.8) as

I (y, z) := α sin(πα)

π

∫ 1

y
ds

∫ z+ε

z
dt

1

(s − y)1−α(t − s)1+α
.(B.11)

Recalling that K(n) := P(τ1 = n) and setting U(n) := P(n ∈ τ), we can rewrite
the numerator in (B.8) using the renewal property as

Ja(y, z) := ∑
y/a2≤k≤1/a2

z/a2<l≤(z+ε)/a2

U

(
k − y

a2

)
K(l − k)

(B.12)

= ∑
s∈[y,1]∩a2N

t∈(z,z+ε]∩a2N

U

(
1

a2 (s − y)

)
K

(
1

a2 (t − s)

)
.

We now use [12], Theorem B, coupled with our basic assumption on the inter-
arrival distribution (1.4), to see that

U(�)
�→∞∼ α sin(πα)

π

1

L(�)�1−α
.(B.13)

Using the asymptotic relations (1.4) and (B.13) and a Riemann sum argument (with
some careful handling of the slowly varying functions, see the details below), one
can check that (B.12) converges toward (B.11) as a → 0, for all fixed ε ∈ (0,1/3),
z ∈ [1,∞) ∩ εN and y ∈ (0, ε]. However to obtain (B.8), a more attentive estimate
is required. We set n := 1/a2 for notational convenience, so that, with some abuse
of notation, we can rewrite (B.12) as

Jn(y, z) := ∑
ny≤k≤n

nz<l≤n(z+ε)

U(k − ny)K(l − k)

(B.14)
= ∑

s∈[y,1]∩1/nN

t∈(z,z+ε]∩1/nN

U
(
n(s − y)

)
K

(
n(t − s)

)
.

We can now rephrase (B.8) in the following way: for every fixed ε ∈ (0,1/3), there
exist ζε(n) > 0, with limn→∞ ζε(n) = 0, and n0 ∈ N such that

(
1 − ζε(n)

)
z−ζε(n) ≤ Jn(y, z)

I (y, z)
≤ (

1 + ζε(n)
)
zζε(n),(B.15)

for all n ≥ n0, y ∈ [0,1/3] and z ∈ [1,∞) ∩ εN. We recall that I (y, z) is defined
in (B.11). For convenience, we divide the rest of the proof in three steps.
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Step 1. We first show that the terms in (B.14) with k ≤ ny + √
n, that is,

An(y, z) := ∑
ny≤k≤ny+√

n

nz<l≤n(z+ε)

U(k − ny)K(l − k)(B.16)

give a negligible contribution to (B.15).
By paying a positive constant, we can replace K(·) and U(·) by their asymptotic

behaviors; cf. (1.4) and (B.13). Note that k ≤ ny + √
n ≤ n/2 for large n, because

y ≤ 1/3, and therefore n(z− 1/2) ≤ (l − k) ≤ n(z+ 1/3), because ε ≤ 1/3, for all
l, k in the range of summation. We thus obtain the upper bound

An(y, z) ≤ C1
∑

0<h≤√
n

1

L(h)h1−α

∑
n(z−1/2)<m≤n(z+1/3)

L(m)

m1+α
,(B.17)

for some absolute constant C1 > 0. We now show that, for some absolute con-
stant C2 > 0 (not depending on z), we can write L(m) ≤ C2L(nz) for every m in
the range of summation. To this purpose, we recall the representation theorem of
slowly varying functions:

L(x) = a(x) exp
(∫ x

1

b(t)

t
dt

)
(B.18)

with lim
x→∞a(x) ∈ (0,∞) and lim

x→∞b(x) = 0;
see Theorem 1.3.1 in [4]. Setting γn := supx≥n/2 |b(x)|, we have limn→∞ γn = 0
and for m ∈ {n(z − 1/2), n(z + 1/3)} we can write for z ≥ 1

L(m)

L(nz)
≤ a(m)

a(nz)
exp

(
γn

∫ n(z+1/3)

n(z−1/2)

1

t
dt

)
(B.19)

≤ supk≥n/2 a(k)

infk≥n a(k)
exp

(
γn log

z + 1/3

z − 1/2

)
.

Since z ≥ 1, it is clear that the right-hand side of (B.19) is bounded from above
by some absolute constant C2 (in fact, it even converges to 1 as n → ∞). From
(B.17), we then obtain

An(y, z) ≤ C2L(nz)
∑

0<h≤√
n

1

L(h)h1−α

∑
n(z−1/2)<m≤n(z+1/3)

1

m1+α

(B.20)

≤ C3
L(nz)

nαz1+α

∑
0<h≤√

n

1

L(h)h1−α
≤ C4

L(nz)

nαz1+α

nα/2

αL(
√

n)
,

where C3,C4 are absolute positive constant and the last inequality is a classical
result (Proposition 1.5.8 in [4]). Using again the representation (B.18), in analogy
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with (B.19), we can write

L(nz)

L(
√

n)
≤ a(nz)

a(
√

n)
exp

(
γn

∫ nz

√
n

1

t
dt

)
≤ C5 exp

(
γn log

nz√
n

)
(B.21)

= C5n
γn/2zγn,

for some absolute constant C5. Coming back to (B.20), we have shown that there
exists absolute constants C6 and n0 such that for all n ≥ n0, z ∈ [1,∞) ∩ εN and
y ∈ [0,1/3]

An(y, z) ≤ C6

n(α−γn)/2

zγn

z1+α
.(B.22)

Let us now look back at the integral I (y, z), defined in (B.11). It is easy to check
that for every fixed ε ∈ (0,1/3) there exists an absolute constant C7 = C7(ε) > 0
such that

I (y, z) ≥ C7

z1+α
,(B.23)

for all y ∈ [0,1/3] and z ∈ [1,∞) ∩ εN. If we set ζ ′(n) := max{γn,C6/

(C7n
(α−γn)/2)}, we have limn→∞ ζ ′(n) = 0 and from (B.22) and (B.23) we have

shown that for every fixed ε ∈ (0,1/3) there exists n0 ∈ N such that for n ≥ n0 we
have

An(y, z)

I (y, z)
≤ ζ ′(n)zζ ′(n),(B.24)

for all z ∈ [1,∞) ∩ εN and y ∈ [0,1/3]. This completes the first step.

Step 2. We now consider the terms in (B.14) with k > ny+√
n, or equivalently

s > y + 1√
n

, that is, we introduce the quantity

Bn(y, z) := ∑
s∈(y+1/

√
n,1]∩1/nN

t∈(z,z+ε]∩1/nN

U
(
n(s − y)

)
K

(
n(t − s)

)
,(B.25)

and we observe that Jn(y, z) = An(y, z) + Bn(y, z), see (B.14) and (B.16). Our
aim is to prove (B.15): in view of relation (B.24), it remains to show that for every
fixed ε ∈ (0,1/3) there exist ζ ′′(n) > 0, with limn→∞ ζ ′′(n) = 0, and n0 ∈ N such
that (

1 − ζ ′′(n)
)
z−ζ ′′(n) ≤ Bn(y, z)

I (y, z)
≤ (

1 + ζ ′′(n)
)
zζ ′′(n),(B.26)

for all n ≥ n0, y ∈ [0,1/3] and z ∈ [1,∞) ∩ εN = {1,1 + ε,1 + 2ε, . . .}. In this
step, we prove that (B.26) holds for z ∈ [1 + ε,∞) ∩ εN, that is we exclude the
case z = 1, that will be considered separately in the third step.
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By construction, the arguments of the functions U(·) and K(·) appearing in
(B.25) tend to ∞ as n → ∞ uniformly in the range of summation: in fact n(s −
y) ≥ √

n and n(t − s) ≥ εn, because we assume that z ≥ 1 + ε. We can therefore
replace U(·) and K(·) by their asymptotic behaviors, given in (1.4) and (B.13), by
committing an asymptotically negligible error: more precisely, we can write

Bn(y, z) = (
1 + o(1)

)Cα

n2

∑
s∈(y+1/

√
n,1]∩1/nN

t∈(z,z+ε]∩1/nN

[
L(n(s − y))

L(n(t − s))

]

(B.27)

× 1

(s − y)1−α(t − s)1+α
,

where we set Cα := α sin(πα)/π for short and where, here and in the sequel,
o(1) denotes a quantity (possibly depending on ε and varying from place to place)
that vanishes as n → ∞ uniformly in y ∈ [0,1/3] and in z ∈ [1 + ε,∞) ∩ εN.

We now estimate the ratio in square brackets in the right-hand side of (B.27).
Recalling the representation theorem of slowly varying functions [see (B.18)] uni-
formly for s, t in the range of summation, we can write

L(n(s − y))

L(n(t − s))
= (

1 + o(1)
)

exp
(∫ n(s−y)

n(t−s)

b(x)

x
dx

)
,(B.28)

with the convention
∫ γ
β (· · ·) := − ∫ β

γ (· · ·) if β > γ . Let us set

ηn := sup
x≥min{√n,εn}

|b(x)|,(B.29)

so that ηn → 0 as n → ∞. Uniformly for s, t in the range of summation, we can
write ∣∣∣∣∫ n(s−y)

n(t−s)

b(x)

x
dx

∣∣∣∣ ≤ ηn

∣∣∣∣∫ n(s−y)

n(t−s)

1

x
dx

∣∣∣∣
(B.30)

≤ ηn

(|log(t − s)| + |log(s − y)|).
In the range of summation of (B.27), we have 0 < (s−y) ≤ 1, hence |log(s−y)| =
− log(s − y), and ε ≤ (t − s) ≤ z + ε, whence |log(t − s)| ≤ − log ε + log(z + ε)

(recall that ε < 1 < z). Coming back to (B.27), from (B.28) and (B.30) we obtain
the upper bound

Bn(y, z) ≤ (
1 + o(1)

) (z + ε)ηn

εηn

(B.31)

×
[
Cα

n2

∑
s∈(y+1/

√
n,1]∩1/nN

t∈(z,z+ε]∩1/nN

1

(s − y)1−α+ηn(t − s)1+α

]
,
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as well as the corresponding lower bound

Bn(y, z) ≥ (
1 + o(1)

) εηn

(z + ε)ηn

(B.32)

×
[
Cα

n2

∑
s∈(y+1/

√
n,1]∩1/nN

t∈(z,z+ε]∩1/nN

1

(s − y)1−α−ηn(t − s)1+α

]
.

Observe that we can write (z+ε)ηn

εηn = cε,z,nz
ηn , with cε,z,n = (1

ε
+ 1

z
)ηn → 1 as

n → ∞ (for fixed ε) uniformly in z ∈ [1,∞). We can therefore incorporate cε,z,n in
the (1 + o(1)) term in (B.31) and (B.32). Recalling that we aim at proving (B.26),
it remains to show that for every fixed ε ∈ (0,1/3) the terms in square brackets in
the right-hand sides of (B.31) and (B.32), divided by the integral I (y, z) defined in
(B.11), converge to 1 as n → ∞ uniformly in y ∈ [0,1/3] and in z ∈ [1 + ε,∞).

Since the summand in the right-hand side of (B.31) is decreasing in t , we can
replace the sum over t by an integral over a slightly shifted domain, getting the
following upper bound on the term in square brackets in the right-hand side of
(B.31):

[· · ·](B.31) ≤
∫ z+ε

z−1/n

(
Cα

n

∑
s∈(y+1/

√
n,1]∩1/nN

1

(s − y)1−α+ηn(t − s)1+α

)
dt.(B.33)

By direct computation one sees that the term in the right-hand side of this relation,
as a function of s, is decreasing in (0, s0) and increasing in (s0,∞), where s0 =
(1−α+ηn)t+(1+α)y

2+ηn
. The precise value of s0 is actually immaterial: the important

point is that each term in the sum in (B.33) can be bounded from above by an
integral over [s − 1

n
, s] (if s ≤ s0) or over [s, s + 1

n
] (if s ≥ s0). Therefore, we get

an upper bound replacing the sum by an integral over a slightly enlarged domain:

[· · ·](B.31) ≤ α sin(πα)

π
(B.34)

×
∫ 1+1/n

y+1/
√

n−1/n
ds

∫ z+ε

z−1/n
dt

1

(s − y)1−α+ηn(t − s)1+α
.

With almost identical arguments one obtains the following lower bound on the
term in square brackets in the right-hand side of (B.32):

[· · ·](B.32) ≥ α sin(πα)

π
(B.35)

×
∫ 1−1/n

y+1/
√

n+1/n
ds

∫ z+ε+1/n

z
dt

1

(s − y)1−α−ηn(t − s)1+α
.

One can now check directly that, for every fixed ε ∈ (0,1/3), the ratio between the
right-hand side of (B.34) and the integral I (y, z) defined in (B.11) converges to 1
as n → ∞, uniformly in y ∈ [0,1/3] and in z ∈ [1 + ε,∞). Since an analogous
statement holds for the right-hand side of (B.35), the second step is complete.
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Step 3. To complete the proof of Lemma B.1, it only remains to prove that
equation (B.26) holds true also for z = 1. More explicitly, we have to show that as
n → ∞

Bn(y,1)

I (y,1)
−→ 1,(B.36)

uniformly in y ∈ [0,1/3]. We recall that

Bn(y,1) := ∑
s∈(y+1/

√
n,1]∩1/nN

t∈(1,1+ε]∩1/nN

U
(
n(s − y)

)
K

(
n(t − s)

)
,(B.37)

while the integral I (y, z) is defined in (B.11).
We only sketch the proof of (B.36), because the arguments are very similar to

those used in the preceding steps. Note that we cannot immediately replace K(·)
by its asymptotic behavior, because its argument n(t − s) can take small values. It
is therefore convenient to restrict the sum in (B.37) to t ∈ (1 + 1/

√
n,1 + ε]. For

this restricted sum, call it B ′
n(y,1), one can write a formula analogous to (B.27):

then, arguing as in the second step (with several simplifications), one shows that
(B.36) holds true with Bn replaced by B ′

n. It remains to deal with Bn − B ′
n, that is,

to control the terms in (B.37) with t ≤ 1 + 1/
√

n. In this case one can replace K(·)
by its asymptotic behavior by paying a positive constant: arguing as in the first
step, one can show that (Bn(y,1) − B ′

n(y,1))/I (y,1) → 0 as n → ∞, uniformly
in y ∈ [0,1/3]. This completes the proof of (B.36) and of Lemma B.1.
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