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INTERMITTENCY ON CATALYSTS: VOTER MODEL1
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Technische Universität Berlin, Leiden University and EURANDOM and
Université de Provence

In this paper we study intermittency for the parabolic Anderson equation
∂u/∂t = κ�u + γ ξu with u : Zd × [0,∞) → R, where κ ∈ [0,∞) is the
diffusion constant, � is the discrete Laplacian, γ ∈ (0,∞) is the coupling
constant, and ξ : Zd × [0,∞) → R is a space–time random medium. The
solution of this equation describes the evolution of a “reactant” u under the
influence of a “catalyst” ξ .

We focus on the case where ξ is the voter model with opinions 0 and 1 that
are updated according to a random walk transition kernel, starting from either
the Bernoulli measure νρ or the equilibrium measure μρ , where ρ ∈ (0,1) is
the density of 1’s. We consider the annealed Lyapunov exponents, that is, the
exponential growth rates of the successive moments of u. We show that if the
random walk transition kernel has zero mean and finite variance, then these
exponents are trivial for 1 ≤ d ≤ 4, but display an interesting dependence on
the diffusion constant κ for d ≥ 5, with qualitatively different behavior in
different dimensions.

In earlier work we considered the case where ξ is a field of independent
simple random walks in a Poisson equilibrium, respectively, a symmetric ex-
clusion process in a Bernoulli equilibrium, which are both reversible dynam-
ics. In the present work a main obstacle is the nonreversibility of the voter
model dynamics, since this precludes the application of spectral techniques.
The duality with coalescing random walks is key to our analysis, and leads
to a representation formula for the Lyapunov exponents that allows for the
application of large deviation estimates.

1. Introduction and main results. The outline of this section is as follows. In
Section 1.1 we provide motivation. In Sections 1.2–1.4 we recall some basic facts
about the voter model. In Section 1.5 we define the annealed Lyapunov exponents,
which are the main objects of our study. In Section 1.6 we prove a representation
formula for these exponents in terms of coalescing random walks released at Pois-
son times along a random walk path. This representation formula is the starting
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point for our further analysis. Our main theorems are stated in Section 1.7 (and
proved in Sections 2–5). Finally, in Sections 1.8–1.9 we list some open problems
and state a scaling conjecture.

1.1. Reactant and catalyst. The parabolic Anderson equation is the partial
differential equation

∂

∂t
u(x, t) = κ�u(x, t) + γ ξ(x, t)u(x, t), x ∈ Z

d, t ≥ 0.(1.1)

Here, the u-field is R-valued, κ ∈ [0,∞) is the diffusion constant, � is the discrete
Laplacian, acting on u as

�u(x, t) = ∑
y∈Zd

‖y−x‖=1

[u(y, t) − u(x, t)](1.2)

(‖ · ‖ is the Euclidean norm), γ ∈ [0,∞) is the coupling constant, while

ξ = {ξ(x, t) :x ∈ Z
d, t ≥ 0}(1.3)

is an R-valued random field that evolves with time and that drives the equation. As
initial condition for (1.1) we take

u(·,0) ≡ 1.(1.4)

The PDE in (1.1) describes the evolution of a system of two types of particles,
A and B , where the A-particles perform autonomous dynamics and the B-particles
perform independent simple random walks that branch at a rate that is equal to
γ times the number of A-particles present at the same location. The link is that
u(x, t) equals the average number of B-particles at site x at time t conditioned
on the evolution of the A-particles. The initial condition in (1.4) corresponds to
starting off with one B-particle at each site. Thus, the solution of (1.1) may be
viewed as describing the evolution of a reactant u under the influence of a catalyst
ξ . Our focus of interest will be on the annealed Lyapunov exponents, that is, the
exponential growth rates of the successive moments of u.

In earlier work (Gärtner and den Hollander [5], Gärtner, den Hollander and
Maillard [6, 8]) we treated the case where ξ is a field of independent simple random
walks in a Poisson equilibrium, respectively, a symmetric exclusion process in a
Bernoulli equilibrium. In the present paper we focus on the case where ξ is the
Voter Model (VM), that is, ξ takes values in {0,1}Z

d×[0,∞), where ξ(x, t) is the
opinion of site x at time t , and opinions are imposed according to a random walk
transition kernel. We choose ξ(·,0) according to either the Bernoulli measure νρ

or the equilibrium measure μρ , where ρ ∈ (0,1) is the density of 1’s. We may
think of 0 as a vacancy and 1 as a particle.

An overview of the main results in [5, 6, 8] and the present paper as well as
further literature is given in Gärtner, den Hollander and Maillard [7]. Gärtner and
Heydenreich [4] consider the case where the catalyst consists of a single random
walk.
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1.2. Voter model. Throughout the paper we abbreviate 	 = {0,1}Z
d

(equipped
with the product topology), and we let p : Zd ×Z

d → [0,1] be the transition kernel
of an irreducible random walk, that is,∑

y∈Zd

p(x, y) = 1 ∀x ∈ Z
d,

p(x, y) = p(0, y − x) ≥ 0 ∀x, y ∈ Z
d,(1.5)

p(·, ·) generates Z
d .

Occasionally we will need to assume that p(·, ·) has zero mean and finite variance.
A special case is simple random walk

p(x, y) =
⎧⎨⎩

1

2d
, if ‖x − y‖ = 1,

0, otherwise.
(1.6)

The VM is the Markov process on 	 whose generator L acts on cylindrical
functions f as

(Lf )(η) = ∑
x,y∈Zd

p(x, y)[f (ηx→y) − f (η)], η ∈ 	,(1.7)

where

ηx→y(z) =
{

η(x), if z = y,
η(z), if z 
= y.

(1.8)

Under this dynamics, site x imposes its state on site y at rate p(x, y). The states
0 and 1 are referred to as opinions or, alternatively, as vacancy and particle. The
VM is a nonconservative dynamics: opinions are not preserved. We write (St )t≥0
to denote the Markov semigroup associated with L.

Let ξt = {ξ(x, t);x ∈ Z
d} be the random configuration of the VM at time t . Let

Pη denote the law of ξ starting from ξ0 = η, and let Pμ = ∫
	 μ(dη)Pη. We will

consider two choices for the starting measure μ:{
μ = νρ, the Bernoulli measure with density ρ ∈ (0,1),
μ = μρ, the equilibrium measure with density ρ ∈ (0,1).(1.9)

Let p∗(·, ·) be the dual transition kernel, defined by p∗(x, y) = p(y, x),
x, y ∈ Z

d , and p(s)(·, ·) the symmetrized transition kernel, defined by p(s)(x, y) =
(1/2)[p(x, y) + p∗(x, y)], x, y ∈ Z

d . The ergodic properties of the VM are qual-
itatively different for recurrent and for transient p(s)(·, ·). In particular, when
p(s)(·, ·) is recurrent all equilibria are trivial, that is, μρ = (1 − ρ)δ0 + ρδ1, while
when p(s)(·, ·) is transient there are also nontrivial equilibria, that is, ergodic mea-
sures μρ . In the latter case, μρ is taken to be the unique shift-invariant and ergodic
equilibrium with density ρ. For both cases we have

Pνρ (ξt ∈ ·) → μρ(·) weakly as t → ∞,(1.10)
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with the same convergence for any starting measure μ that is stationary and ergodic
with density ρ (see Liggett [10], Corollary V.1.13).

We will frequently use the measures νρST , T ∈ [0,∞], where νρS∞ = μρ

by convention in view of (1.10). The VM is attractive (see Liggett [10], Defini-
tion III.2.1 and Theorem III.2.2). Consequently, since νρ has positive correlations,
the same is true for νρST , that is, nondecreasing functions on 	 are positively
correlated (see Liggett [10], Theorem II.2.14).

1.3. Graphical representation and duality. In the VM’s graphical represen-
tation Gt from time 0 up to time t (see, e.g., Cox and Griffeath [3], Section 0),
space is drawn sideward, time is drawn upward, and for each ordered pair of sites
x, y ∈ Z

d arrows are drawn from x to y at Poisson rate p(x, y). A path from
(x,0) to (y, s), s ∈ (0, t], in Gt (see Figure 1) is a sequence of space–time points
(x0, s0), (x0, s1), (x1, s1), . . . , (xn, sn), (xn, sn+1) such that:

(i) x0 = x, s0 = 0, xn = y, sn+1 = s;
(ii) the sequence of times (si)0≤i≤n+1 is increasing;

(iii) for each 1 ≤ i ≤ n, there is an arrow from (xi−1, si) to (xi, si);
(iv) for each 0 ≤ i ≤ n, no arrow points to xi at any time in (si, si+1).

Then ξ can be represented as

ξ(y, s) =
⎧⎨⎩

1, if there exists a path from (x,0) to (y, s) in Gt

for some x ∈ ξ(0),
0, otherwise,

(1.11)

FIG. 1. Graphical representation Gt . Opinions propagate along paths.
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where ξ(0) = {x ∈ Z
d : ξ(x,0) = 1} is the set of initial locations of the 1’s. The

graphical representation corresponds to binary branching with transition kernel
p(·, ·) and step rate 1 and killing at the moment when an arrow comes in from
another location. Figure 1 shows how opinions propagate along paths. An open
circle indicates that the site adopts the opinion of the site where the incoming
arrow comes from. The thick line from (x,0) to (y, s) shows that the opinion at
site y at time s stems from the opinion at a unique site x at time 0.

We can define the dual graphical representation G∗
t by reversing time and di-

rection of all the arrows in Gt . The dual process (ξ∗
s )0≤s≤t on G∗

t can then be
represented as

ξ∗(x, t) =
⎧⎨⎩

1, if there exists a path from (y, t − s) to (x, t) in G∗
t

for some y ∈ ξ∗(t − s),
0, otherwise,

(1.12)

where ξ∗(t − s) = {x ∈ Z
d : ξ∗(x, t − s) = 1}. The dual graphical representation

corresponds to coalescing random walks with dual transition kernel p∗(·, ·) and
step rate 1 (see Figure 2).

Figures 1 and 2 make it plausible that the equilibrium measure μρ in (1.10) is
nonreversible, because the evolution is not invariant under time reversal.

1.4. Correlation functions. A key tool in the present paper is the following
representation formula for the n-point correlation functions of the VM, which is
an immediate consequence of the dual graphical representation (see, e.g., Cox and
Griffeath [3], Section 1). For n ∈ N, x1, . . . , xn ∈ Z

d and −∞ < s1 ≤ · · · ≤ sn ≤ t ,

FIG. 2. Dual graphical representation G∗
t . Opinions propagate along time-reversed coalescing

paths.
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let

ξ∗
t {(x1, s1), . . . , (xn, sn)}(1.13)

be the set of locations at time t of n coalescing random walks, with transition
kernel p∗(·, ·) and step rate 1, when the mth random walk is born at site xm at time
sm, 1 ≤ m ≤ n, and let

Nt {(x1, s1), . . . , (xn, sn)} = |ξ∗
t {(x1, s1), . . . , (xn, sn)}|(1.14)

be the number of random walks alive at time t .
The following lemma gives us a handle on the n-point correlation functions.

LEMMA 1.1. For all n ∈ N, T ∈ [0,∞], x1, . . . , xn ∈ Z
d and −∞ < s1 ≤

· · · ≤ sn ≤ t < ∞,

PνρST

(
ξ(xm, t − sm) = 1 ∀1 ≤ m ≤ n

) = E
∗(

ρNT +t {(x1,s1),...,(xn,sn)}),(1.15)

where E
∗ denotes expectation with respect to the coalescing random walk dynam-

ics.

PROOF. For T < ∞, we have

PνρST

(
ξ(xm, t − sm) = 1 ∀1 ≤ m ≤ n

)
(1.16)

= Pνρ

(
ξ(xm,T + t − sm) = 1 ∀1 ≤ m ≤ n

)
.

The event in the right-hand side of (1.16) occurs if and only if ξ(z,0) = 1 for all
sites z in the set ξ∗

T +t {(x1, s1), . . . , (xn, sn)} (Figure 2), which under νρ has proba-
bility ρNT +t {(x1,s1),...,(xn,sn)} and proves the claim. Since t �→ Nt is nonincreasing,
we may let T → ∞ in (1.15) and use (1.10) to get the formula for T = ∞. �

Note that for T = ∞ the right-hand side of (1.15) does not depend on t , in
accordance with the fact that νρS∞ = μρ is an equilibrium measure.

1.5. Lyapunov exponents. By the Feynman–Kac formula, the formal solution
of (1.1) and (1.4) reads

u(x, t) = Ex

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t − s

)
ds

])
,(1.17)

where Xκ is a simple random walk on Z
d with step rate 2dκ , and Ex denotes

expectation w.r.t. Xκ given Xκ(0) = x. Let μ be an arbitrary initial distribution.
For p ∈ N and t > 0, the pth moment of the solution is then given by

Eμ([u(0, t)]p) = (Eμ ⊗ E⊗p
0 )

(
exp

[
γ

∫ t

0

p∑
q=1

ξ
(
Xκ

q (s), t − s
)
ds

])
,(1.18)
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where Xκ
q , q = 1, . . . , p, are p independent copies of Xκ .

For p ∈ N and t > 0, define

�μ
p(t) = 1

pt
log Eμ([u(0, t)]p).(1.19)

Then

�μ
p(t) = 1

pt
log(Eμ ⊗ E⊗p

0 )

(
exp

[
γ

∫ t

0

p∑
q=1

ξ
(
Xκ

q (s), t − s
)
ds

])
.(1.20)

We will see that for μ = νρST , T ∈ [0,∞], the last quantity admits a limit as
t → ∞,

λμ
p = lim

t→∞�μ
p(t),(1.21)

which is independent of T and which we call the pth annealed Lyapunov exponent.
Note that �

μ
p(t) ∈ [ργ, γ ] for all t > 0, as is immediate from (1.20) and Jensen’s

inequality. Hence,

λμ
p ∈ [ργ, γ ].(1.22)

From Hölder’s inequality applied to (1.19), it follows that �
μ
p(t) ≥ �

μ
p−1(t) for

all t > 0 and p ∈ N \ {1}. Hence, λ
μ
p ≥ λ

μ
p−1 for all p ∈ N \ {1}. We say that the

solution of the parabolic Anderson model is p-intermittent if λ
μ
p > λ

μ
p−1. In the

latter case the solution is q-intermittent for all q > p as well (see, e.g., Gärtner
and Heydenreich [4], Lemma 3.1). We say that the solution is intermittent if it
is p-intermittent for all p ∈ N \ {1}. Intermittent means that the u-field develops
sparse high peaks dominating the moments in such a way that each moment is
dominated by its own collection of peaks (see Gärtner and König [9], Section 1.3,
and Gärtner and den Hollander [5], Section 1.2).

1.6. Representation formula. In this section we derive a coalescing ran-
dom walk representation for the Lyapunov exponents. Recall (1.14). For n ∈ N,
x1, . . . , xn ∈ Z

d and −∞ < s1 ≤ · · · ≤ sn ≤ t , let

N coal
t {(x1, s1), . . . , (xn, sn)} = n − Nt {(x1, s1), . . . , (xn, sn)}(1.23)

be the number of random walks coalesced at time t . Let �ργ and PPoiss denote the
Poisson point process on R with intensity ργ and its law, respectively. We consider
�ργ as a random subset of R and write �ργ (B) = �ργ ∩B for Borel sets B ⊆ R.

PROPOSITION 1.2. For all T ∈ [0,∞], t > 0 and right-continuous paths
ϕq : [0, t] → Z

d , q = 1, . . . , p,

e−ργpt
EνρST

(
exp

[
γ

∫ t

0

p∑
q=1

ξ
(
ϕq(s), t − s

)
ds

])
(1.24)

= (E
⊗p
Poiss ⊗ E

∗)
(
ρ

−N coal
T +t {

⋃p
q=1{(ϕq(s),s) : s∈�

(q)
ργ ([0,t])}})

,
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where �
(q)
ργ , q = 1, . . . , p, are p independent copies of �ργ . In particular,

exp
[
pt

(
�

νρST
p (t) − ργ

)]
(1.25)

= (E⊗p
0 ⊗ E

⊗p
Poiss ⊗ E

∗)
(
ρ

−N coal
T +t {

⋃p
q=1{(Xκ

q (s),s) : s∈�
(q)
ργ ([0,t])}})

.

PROOF. Fix ϕq , q = 1, . . . , p. By a Taylor expansion of the factors exp[γ ×∫ t
0 ξ(ϕq(s), t − s) ds], q = 1, . . . , p, we have

e−ργpt
EνρST

(
exp

[
γ

∫ t

0

p∑
q=1

ξ
(
ϕq(s), t − s

)
ds

])

= e−ργpt

[ p∏
q=1

∞∑
nq=0

γ nq

nq !
( nq∏

m=1

∫ t

0
ds(q)

m

)]

× EνρST

( p∏
q=1

nq∏
m=1

ξ
(
ϕq

(
s(q)
m

)
, t − s(q)

m

))
(1.26)

=
[ p∏

q=1

∞∑
nq=0

(ργ t)nq

nq ! e−ργ t 1

tnq

( nq∏
m=1

∫ t

0
ds(q)

m

)]

× ρ
−∑p

q=1 nq
EνρST

( p∏
q=1

nq∏
m=1

ξ
(
ϕq

(
s(q)
m

)
, t − s(q)

m

))
.

For each q = 1, . . . , p:

• [(ργ t)nq /nq !] exp[−ργ t], nq ∈ N0 = N ∪ {0}, is the Poisson distribution with
parameter ργ t ;

• (1/tnq )(
∏nq

m=1

∫ t
0 ds

(q)
m ) is the uniform distribution on [0, t]nq , coinciding with

the distribution of the (unordered) points of �
(q)
ργ in [0, t] given |�(q)

ργ ([0, t])| =
nq , nq ∈ N0.

Moreover, by Lemma 1.1, we have

EνρST

( p∏
q=1

nq∏
m=1

ξ
(
ϕq

(
s(q)
m

)
, t − s(q)

m

))
(1.27)

= E
∗(

ρ
NT +t {⋃p

q=1{(ϕq(s
(q)
m ),s

(q)
m ) : m=1,...,nq }})

.

Therefore, combining (1.26) and (1.27) and inserting (1.23), we get (1.24).
Recalling (1.20), we see that formula (1.25) follows from (1.24) by substituting

ϕq = Xκ
q , q = 1, . . . , p, and taking the expectation E⊗p

0 . �
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What (1.25) in Proposition 1.2 says is that, for initial distribution μ = νρST , the
pth Lyapunov exponent λ

μ
p can be computed by taking p simple random walks

(with step rate 2dκ), releasing coalescing random walks [with dual transition ker-
nel p∗(·, ·) and step rate 1] from the paths of these p random walks at rate ργ

until time t , recording the total number of coalescences up to time T + t , and let-
ting t → ∞ afterward. The representation formula (1.25) will be the starting point
of our large deviation analysis.

1.7. Main theorems. Theorems 1.3–1.5 below are our main results. We write
λ

μ
p(κ) to exhibit the κ-dependence of the Lyapunov exponents λ

μ
p . The dependence

on the other parameters will generally be suppressed from the notation.

THEOREM 1.3. For all d ≥ 1, p ∈ N, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈ (0,1),
the limit λ

μ
p in (1.21) exists for μ = νρST and is the same for all T ∈ [0,∞] (and

is henceforth denoted by λp).

THEOREM 1.4. For all d ≥ 1, p ∈ N, γ ∈ (0,∞) and ρ ∈ (0,1):

(i) κ �→ λp(κ) is globally Lipschitz outside any neighborhood of 0;
(ii) λp(κ) > ργ for all κ ∈ [0,∞).

THEOREM 1.5. Fix p ∈ N, γ ∈ (0,∞) and ρ ∈ (0,1).

(i) If 1 ≤ d ≤ 4 and p(·, ·) has zero mean and finite variance, then λp(κ) = γ for
all κ ∈ [0,∞).

(ii) If d ≥ 5, then:
(a) limκ↓0 λp(κ) = λp(0);
(b) limκ→∞ λp(κ) = ργ ;
(c) if p(·, ·) has zero mean and finite variance, then there exists κ0 > 0 such

that p �→ λp(κ) is strictly increasing for κ ∈ [0, κ0).

Theorem 1.3 says that the Lyapunov exponents exist and do not depend on the
choice of the starting measure μ. Theorem 1.4 says that the Lyapunov exponents
are continuous functions of the diffusion constant κ away from 0 and that the sys-
tem exhibits clumping for all κ : the Lyapunov exponents are strictly larger in the
random medium than in the average medium. Theorem 1.5 shows that the Lya-
punov exponents satisfy a dichotomy (see Figure 3): for p(·, ·) with zero mean and
finite variance they are trivial when 1 ≤ d ≤ 4, but display an interesting depen-
dence on κ when d ≥ 5. In the latter case (a) the Lyapunov exponents are contin-
uous in κ at κ = 0; (b) the clumping vanishes in the limit as κ → ∞: when the
reactant particles move much faster than the catalyst particles, they effectively see
the average medium; (c) the system is intermittent for small κ : when the reactant
particles move much slower than the catalyst particles, the growth rates of their
successive moments are determined by different piles of the catalyst.

Theorems 1.3 and 1.4 are proved in Sections 2 and 3, respectively. Section 4
contains block estimates for coalescing random walks, which are needed to ex-
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FIG. 3. κ �→ λp(κ) for 1 ≤ d ≤ 4, respectively, d ≥ 5, when p(·, ·) has zero mean and finite vari-
ance.

ploit Proposition 1.2 in order to prove Theorem 1.5(ii)(a) and (b). Finally, Theo-
rem 1.5(i) and (ii)(c) is proved in Section 5.

1.8. Open problems. The following problems remain open:

(1) Show that λp(κ) < γ for all κ ∈ [0,∞) when d ≥ 5 and p(·, ·) has zero mean
and finite variance.

(2) Show that κ �→ λp(κ) is convex on [0,∞). Convexity, when combined with
the properties in Theorems 1.4(ii) and 1.5(ii)(b), would imply that κ �→ λp(κ)

is strictly decreasing on [0,∞) when d ≥ 5. Convexity was proved in [5]
and [6] for the case where ξ is a field of independent simple random walks
in a Poisson equilibrium, respectively, a symmetric exclusion process in a
Bernoulli equilibrium.

(3) Show that the following extension of Theorem 1.5 is true: the Lyapunov ex-
ponents are nontrivial if and only if p(s)(·, ·) is strongly transient, that is,∫ ∞

0 tp
(s)
t (0,0) dt < ∞. A similar full dichotomy was found in [6] for the case

where ξ is a symmetric exclusion process in a Bernoulli equilibrium, namely,
between recurrent and transient p(·, ·).

1.9. A scaling conjecture. Let pt(x, y) be the probability for the random walk
with transition kernel p(·, ·) [satisfying (1.5)] and step rate 1 to move from x to y

in time t . The following conjecture is a refinement of Theorem 1.5(ii)(b).

CONJECTURE 1.6. Suppose that p(·, ·) is a simple random walk. Then for all
d ≥ 5, p ∈ N, γ ∈ (0,∞) and ρ ∈ (0,1),

lim
κ→∞ 2dκ[λp(κ) − ργ ]

(1.28)

= ρ(1 − ρ)γ 2

Gd

G∗
d + 1{d=5}(2d)5

[
ρ(1 − ρ)γ 2

Gd

p

]2

P5
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with

Gd =
∫ ∞

0
pt(0,0) dt, G∗

d =
∫ ∞

0
tpt (0,0) dt(1.29)

and

P5 = sup
f ∈H 1(R5)

‖f ‖2=1

[∫
R5

∫
R5

dx dy
f 2(x)f 2(y)

16π2‖x − y‖ − ‖∇f ‖2
2

]
∈ (0,∞),(1.30)

where ‖ · ‖2 is the L2-norm on R
5, ∇ is the gradient operator, and H 1(R5) =

{f : R5 → R :f,∇f ∈ L2(R5)}.
A remarkable feature of (1.28) is the occurrence of a “polaron-type” term in

d = 5. An important consequence of (1.28) is that in d = 5 there exists a κ1 < ∞
such that λp(κ) > λp−1(κ) for all κ ∈ (κ1,∞) when p = 2 and, by the remark
made after formula (1.22), also when p ∈ N \ {1}, that is, the solution of the par-
abolic Anderson model is intermittent for all κ sufficiently large. For d ≥ 6, Con-
jecture 1.6 does not allow to decide about intermittency for large κ .

The analogue of (1.28) for independent simple random walks and simple sym-
metric exclusion was proved in [5, 6] and [8] with quite a bit of effort (with d = 3
rather than d = 5 appearing as the critical dimension). We provide a heuristic ex-
planation of (1.28) in the Appendix.

2. Proof of Theorem 1.3. Throughout this section we assume that p(·, ·) sat-
isfies (1.5). The existence of the Lyapunov exponents for μ = νρST , T ∈ [0,∞],
is proved in Section 2.1, the fact that they are equal is proved in Section 2.2. In
what follows, d ≥ 1, p ∈ N, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈ (0,1) are kept fixed.
Recall (1.21).

2.1. Existence of Lyapunov exponents.

PROPOSITION 2.1. For all T ∈ [0,∞], the Lyapunov exponent λ
νρST
p exists.

PROOF. The proof proceeds in 2 steps:
Step 1 (Bridge approximation argument). Let Qt log t = Z

d ∩ [−t log t, t log t]d .
As noted in Gärtner and den Hollander [5], Section 4.1, we have, for μ = νρST ,

�μ
p(t) ≤ �μ

p(t) ≤ 1

pt
log

(|Qt log t |pept�
μ
p(t) + peγptP0

(
Xκ

1 (t) /∈ Qt log t

))
(2.1)

with

�μ
p(t) = 1

pt
log max

x∈Zd
(Eμ ⊗ E⊗p

0 )

(2.2)

×
(

exp

[
γ

∫ t

0

p∑
q=1

ξ
(
Xκ

q (s), t − s
)
ds

] p∏
q=1

δx(X
κ
q (t))

)
.
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Since limt→∞(1/t) log P0(X
κ
1 (t) /∈ Qt log t ) = −∞, it follows that

lim
t→∞[�μ

p(t) − �μ
p(t)] = 0.(2.3)

Hence, to prove the existence of λ
μ
p , it suffices to prove the existence of

λμ
p = lim

t→∞�μ
p(t),(2.4)

after which we can conclude from (2.3) that λ
μ
p = λ

μ
p . We will prove (2.4) by

showing that t �→ t�
μ
p(t) is superadditive, which will imply that

λμ
p = sup

t>0
�μ

p(t).(2.5)

Step 2 (Superadditivity). We first give the proof for p = 1. To that end, abbrevi-
ate

E (t, y) = exp
[
γ

∫ t

0
ξ
(
Xκ(s), t − s

)
ds

]
δy(X

κ(t)), t > 0, y ∈ Z
d .(2.6)

Using formula (1.24) in Proposition 1.2, we have, for all t1, t2 > 0 and x, y ∈ Z
d ,

e−ργ (t1+t2)(EνρST
⊗ E0)

(
E (t1 + t2, x)

)
= (E0 ⊗ EPoiss)

(
δx

(
Xκ(t1 + t2)

)
E

∗(
ρ

−N coal
T +t1+t2

{(Xκ(s),s) : s∈�ργ ([0,t1+t2])}))
≥ (E0 ⊗ EPoiss)

(
δy(X

κ(t1))δx

(
Xκ(t1 + t2)

)
× E

∗(
ρ

−N coal
T +t1

{(Xκ(s),s) : s∈�ργ ([0,t1])}
(2.7)

× ρ
−N coal

T +t1+t2
{(Xκ(s),s) : s∈�ργ ([t1,t1+t2])}))

= (E0 ⊗ EPoiss)
(
δy(X

κ(t1))δx−y

(
Xκ(t1 + t2) − Xκ(t1)

)
× E

∗(
ρ

−N coal
T +t1

{(Xκ(s),s) : s∈�ργ ([0,t1])}

× ρ
−N coal

T +t1+t2
{(Xκ(s)−Xκ(t1),s) : s∈�ργ ([t1,t1+t2])})),

where the inequality comes from inserting the extra factor δy(X
κ(t1)) under the

expectation and ignoring coalescence between random walks that start before, re-
spectively, after time t1, and the last line uses the shift-invariance of N coal

T +t1+t2
.

Because Xκ and �ργ have independent stationary increments, we have

r.h.s. (2.7)

= (E0 ⊗ EPoiss)
(
δy(X

κ(t1))E
∗(

ρ
−N coal

T +t1
{(Xκ(s),s) : s∈�ργ ([0,t1])}))

(2.8)
× (E0 ⊗ EPoiss)

(
δx−y(X

κ(t2))E
∗(

ρ
−N coal

T +t2
{(Xκ(s),s) : s∈�ργ ([0,t2])}))

= e−ργ t1(EνρST
⊗ E0)(E (y, t1)) × e−ργ t2(EνρST

⊗ E0)
(

E (x − y, t2)
)
,
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where in the last line we again use formula (1.24). Taking the maximum over
x, y ∈ Z

d in (2.7)–(2.8), we conclude that

exp[(t1 + t2)�
νρST

1 (t1 + t2)] ≥ exp[t1�νρST

1 (t1)] × exp[t2�νρST

1 (t2)],(2.9)

which proves the superadditivity of t �→ t�
νρST

1 (t).
The same proof works for p ∈ N \ {1}. Simply replace (2.6) by

Ep(t, y) = exp

[
γ

∫ t

0

p∑
q=1

ξ
(
Xκ

q (s), t − s
)
ds

] p∏
q=1

δy(X
κ
q (t)),

(2.10)
t ≥ 0, y ∈ Z

d,

and proceed in a similar manner. �

2.2. Equality of Lyapunov exponents.

PROPOSITION 2.2. λ
νρ
p = λ

νρST
p for all T ∈ [0,∞]. In particular, λνρ = λμρ .

PROOF. We first give the proof for p = 1.

λ
νρ

1 ≤ λ
νρST

1 : Since t �→ N coal
t is nondecreasing, it is immediate from the repre-

sentation formula (1.25) in Proposition 1.2 that

�
νρ

1 (t) ≤ �
νρST

1 (t) ∀t > 0, T ∈ [0,∞].(2.11)

Since λ
νρST

1 = limt→∞ �
νρST

1 (t), this implies the claim.

λ
νρ

1 ≥ λ
νρST

1 : We first assume that T < ∞. Recall (2.3) and (2.4)–(2.6), and
estimate, for T , t > 0,

λ
νρ

1 = �
νρ

1 (∞) = �
νρ

1 (∞)
(2.12)

≥ �
νρ

1 (T + t) = 1

T + t
log max

x∈Zd
(Eνρ ⊗ E0)

(
E (T + t, x)

)
.

In the right-hand side of (2.12), drop the part s ∈ [t, T + t] from the integral over
s ∈ [0, T + t] in definition (2.6) of E (T + t, x), insert an extra factor δx(X

κ(t))

under the expectation, and use the Markov property of ξ and Xκ at time t . This
gives

r.h.s. (2.12) ≥ 1

T + t
log max

x∈Zd

{
(EνρST

⊗ E0)(E (t, x))P0
(
Xκ(T ) = 0

)}
.(2.13)

Combine (2.12) with (2.13) to get

λ
νρ

1 ≥ t

T + t
�

νρST

1 (t) + 1

T + t
log P0

(
Xκ(T ) = 0

)
.(2.14)
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Let t → ∞ to get λ
νρ

1 ≥ �
νρST

1 (∞) = λ
νρST

1 , which proves the claim.
Next, for T , t > 0 and x ∈ Z

d ,

λ
νρ

1 ≥ λ
νρST

1 = �
νρST

1 (∞) ≥ �
νρST

1 (t) ≥ 1

t
log(EνρST

⊗ E0)(E (t, x)),(2.15)

where we have used (2.5). The weak convergence of νρST to μρ implies that we
can take the limit as T → ∞ to obtain

λ
νρ

1 ≥ 1

t
log(Eμρ ⊗ E0)(E (t, x)).(2.16)

Finally, taking the maximum over x and letting t → ∞, we arrive at λ
νρ

1 ≥ λ
μρ

1 ,
which is the claim for T = ∞.

The same proof works for p ∈ N \ {1} by using (2.10) instead of (2.6). �

3. Proof of Theorem 1.4. Throughout this section we assume that p(·, ·) sat-
isfies (1.5). In Section 3.1 we show that κ �→ λp(κ) is globally Lipschitz outside
any neighborhood of 0. In Section 3.2 we show that λp(κ) > ργ for all κ ∈ [0,∞).
In what follows, d ≥ 1, p ∈ N, γ ∈ (0,∞) and ρ ∈ (0,1) are kept fixed.

3.1. Lipschitz continuity. In this section we prove Theorem 1.4(i).

PROOF OF THEOREM 1.4(i). In what follows, μ can be any of the initial dis-
tributions νρST , T ∈ [0,∞] (recall Proposition 2.2). We write �

μ
p(κ; t) to indicate

the κ-dependence of �
μ
p(t) given by (1.20). We give the proof for p = 1.

Pick κ1, κ2 ∈ (0,∞) with κ1 < κ2 arbitrarily. By a standard application of Gir-
sanov’s formula,

exp[t�μ
1 (κ2; t)]

= (Eμ ⊗ E0)

(
exp

[
γ

∫ t

0
ξ
(
Xκ2(s), t − s

)
ds

])
= (Eμ ⊗ E0)

(
exp

[
γ

∫ t

0
ξ
(
Xκ1(s), t − s

)
ds

]
(3.1)

× exp[J (Xκ1; t) log(κ2/κ1) − 2d(κ2 − κ1)t]
)

= I + II,

where J (Xκ1; t) is the number of jumps of Xκ1 up to time t , I and II are
the contributions coming from the events {J (Xκ1; t) ≤ M2dκ2t}, respectively,
{J (Xκ1; t) > M2dκ2t}, and M > 1 is to be chosen. Clearly,

I ≤ exp
[(

M2dκ2 log(κ2/κ1) − 2d(κ2 − κ1)
)
t
]
exp[t�μ

1 (κ1; t)],(3.2)

while

II ≤ eγ tP0
(
J (Xκ2; t) > M2dκ2t

)
(3.3)
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because we may estimate
∫ t

0 ξ(Xκ1(s), t − s) ds ≤ t and afterward use Girsanov’s
formula in the reverse direction. Since J (Xκ2; t) = J ∗(2dκ2t) with (J ∗(t))t≥0 a
rate-1 Poisson process, we have

lim
t→∞

1

t
log P0

(
J (Xκ2; t) > M2dκ2t

) = −2dκ2I(M)(3.4)

with

I(M) = sup
u∈R

[Mu − (eu − 1)] = M logM − M + 1.(3.5)

Since λ1(κ) = limt→∞ �
μ
1 (κ; t), it follows from (3.1)–(3.4) that

λ1(κ2) ≤ [M2dκ2 log(κ2/κ1) − 2d(κ2 − κ1) + λ1(κ1)]
(3.6)

∨ [γ − 2dκ2I(M)].
On the other hand, estimating J (Xκ1; t) ≥ 0 in (3.1), we have

exp[t�μ
1 (κ2; t)] ≥ exp[−2d(κ2 − κ1)t] exp[t�μ

1 (κ1; t)],(3.7)

which gives the lower bound

λ1(κ2) − λ1(κ1) ≥ −2d(κ2 − κ1).(3.8)

Next, for κ ∈ (0,∞), define

D+λ1(κ) = lim sup
δ→0

δ−1[λ1(κ + δ) − λ1(κ)],
(3.9)

D−λ1(κ) = lim inf
δ→0

δ−1[λ1(κ + δ) − λ1(κ)].
Then, picking κ1 = κ and κ2 = κ + δ (resp., κ1 = κ − δ and κ2 = κ) in (3.6) and
letting δ ↓ 0, we get

D+λ1(κ) ≤ (M − 1)2d ∀M > 1 : 2dκI(M) − (1 − ρ)γ ≥ 0(3.10)

[with the latter together with λ1(κ) ≥ ργ guaranteeing that the first term in the
right-hand side of (3.6) is the maximum], while (3.8) gives

D−λ1(κ) ≥ −2d.(3.11)

We may pick

M = M(κ) = I −1
(

(1 − ρ)γ

2dκ

)
(3.12)

with I −1 the inverse of I : [1,∞) → R. Since I(M) = 1
2(M − 1)2[1 + o(1)] as

M ↓ 1, it follows that

[M(κ) − 1]2d = 2d

√
γ

1 − ρ

dκ
[1 + o(1)] as κ → ∞.(3.13)

By (3.10), the latter implies that κ �→ D+λ1(κ) is bounded from above outside
any neighborhood of 0. Since, by (3.11), κ �→ D−λ1(κ) is bounded from below,
the claim follows.

The extension to p ∈ N \ {1} is straightforward and is left to the reader. �
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3.2. Clumping. In this section we prove Theorem 1.4(ii).

PROOF OF THEOREM 1.4(ii). Fix d ≥ 1, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈
(0,1). Since p �→ λp(κ) is nondecreasing, it suffices to give the proof for p = 1.
In what follows, μ can be any of the measures νρST , T ∈ [0,∞] (recall Proposi-
tion 2.2).

Abbreviate

I (Xκ;T ) = γ

∫ T

0
ds

[
ξ
(
Xκ(s), T − s

) − ρ
]
, T > 0.(3.14)

For any T > 0 we have, recalling (2.2)–(2.5),

λ1(κ) = �
μ
1 (∞) = �

μ
1 (∞) ≥ �

μ
1 (T )

≥ ργ + 1

T
log(Eμ ⊗ E0)(exp[I (Xκ;T )]δ0(X

κ(T )))

(3.15)

≥ ργ + 1

T
log(Eμ ⊗ E0)

([
1 + I (Xκ;T )

+ 1

2
I (Xκ ;T )2e−γ T

]
δ0(X

κ(T ))

)
,

where in the third line we use that ex ≥ 1 + x + 1
2x2e−|x|, x ∈ R.

As T ↓ 0, we have

(Eμ ⊗ E0)

([
1

T
I (Xκ;T )

]2

δ0(X
κ(T ))

)
→ γ 2

∫
	

μ(dη)[η(0) − ρ]2

(3.16)
= ρ(1 − ρ)γ 2

and

(Eμ ⊗ E0)

([
1

T
I (Xκ;T )

]
δ0(X

κ(T ))

)
≥ −O(T 2).(3.17)

The claim in (3.16) is obvious, the claim in (3.17) will be proven below. Combining
(3.15)–(3.17), we have

λ1(κ) − ργ ≥ 1
4Tρ(1 − ρ)γ 2, 0 < T ≤ T0(κ),(3.18)

for some T0(κ) < ∞, showing that λ1(κ) > ργ .
To prove (3.17), let J (Xκ ;T ) denote the number of jumps by Xκ up to time T .

Then

(Eμ ⊗ E0)

([
1

T
I (Xκ ;T )

]
δ0(X

κ(T ))

)
= (Eμ ⊗ E0)

([
1

T
I (Xκ;T )

]
δ0(X

κ(T ))(3.19)

× (
1{J (Xκ ;T ) = 0} + 1{J (Xκ ;T ) ≥ 1})).
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The first term in the right-hand side of (3.19) equals

P0
(
J (Xκ ;T ) = 0

)γ

T

∫ T

0
ds Eμ

(
ξ(0, s) − ρ

) = 0,(3.20)

while the second term is bounded below by

−ργ P0
(
J (Xκ ;T ) ≥ 1,Xκ(T ) = 0

) ≥ −ργ P0
(
J (Xκ ;T ) ≥ 2

)
(3.21)

= −O(T 2),

as T ↓ 0. Combine (3.19)–(3.21) to get the claim in (3.17). �

4. Proof of Theorem 1.5(ii)(a) and (b). Throughout this section we assume
that p(·, ·) satisfies (1.5) and that d ≥ 5. In Section 4.1 we state an estimate for
blocks of coalescing random walks. In Section 4.2 we formulate two lemmas, and
in Section 4.3 we use these lemmas to prove the block estimate. The block estimate
is used in Sections 4.4 and 4.5 to prove Theorem 1.5(ii)(a) and (b), respectively.

4.1. Block estimate. We call a collection of subsets S1, . . . , SN of R ordered,
if s < t for all s ∈ Si , t ∈ Sj and i < j . Given a path ψ : R → Z

d and a collec-
tion of disjoint finite subsets S1, . . . , SN of R, we are going to estimate the mo-
ment generating function of N coal∞ {(ψ(s), s) : s ∈ ⋃N

j=1 Sj }, the number of random

walks starting from sites ψ(s) at times s ∈ ⋃N
j=1 Sj that coalesce eventually [recall

(1.23)]. Let d(Si, Sj ) denote the Euclidean distance between Si and Sj .
Our key estimate, which will be proved in Section 4.3, is the following propo-

sition.

PROPOSITION 4.1. Let d ≥ 5. Then there exist δ : (0,∞) → (0,∞) with
limK→∞ δ(K) = 0 and, for each ε ∈ (0, (d − 4)/2), Cε > 0 such that the fol-
lowing holds. For all ρ ∈ (0,1), ψ : R → Z

d , all ordered collections of disjoint
finite subsets S1, . . . , SN of R, all ε ∈ (0, (d − 4)/2), K > 0 and r, r ′ > 1 with
1/r + 1/r ′ = 1,

E
∗(

ρ
−N coal∞ {(ψ(s),s) : s∈⋃N

j=1 Sj })
≤ exp

[
δ(K)

ρ

N∑
j=1

|Sj | + CεK
ρ−r ′ − 1

r ′
∑

1≤j<k≤N

|Sj ||Sk|
d(Sj , Sk)1+ε

]
(4.1)

×
[

N∏
j=1

E
∗(

ρ−rN coal∞ {(ψ(s),s) : s∈Sj })]1/r

.

Let I ′
1, I

′′
1 , . . . , I ′

N, I ′′
N be a finite collection of adjacent time intervals and as-

sume that Sj ⊂ I ′
j for j = 1, . . . ,N . What the above proposition does is decouple

the coalescing random walks that start in disjoint time-blocks I ′
j separated by time-

gaps I ′′
j .
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4.2. Preparatory lemmas. To prove Proposition 4.1, we need Lemmas 4.2–
4.3 below. To this end, fix a path ψ : R → Z

d arbitrarily. Let (Y u)u∈R be a family
of independent random walks Yu with transition kernel p∗(·, ·) and step rate 1
starting from ψ(u) at time u. Set Yu(s) = ψ(u) for s < u. We write P

∗ for the
joint law of these random walks.

Given u ∈ R and j ∈ Z, let

Ru
j = {Yu(s) : s ∈ [j, j + 1]}(4.2)

denote the range of Yu in the time interval [j, j + 1]. For u ∈ R and K > 0, define
the event that Yu is K-good by

Gu
K =

∞⋂
j=�u�

{|Ru
j | ≤ K log(j − �u� + 5)}.(4.3)

For u, v ∈ R with u < v, define the event that Yu and Y v meet by

Mu,v = {∃s ≥ v :Yu(s) = Y v(s)}.(4.4)

Our two lemmas stated below give bounds for the probabilities of random walks
not to be K-good, respectively, to meet given that the random walk that starts later
is K-good.

LEMMA 4.2. For all u ∈ R and K > 0,

P
∗([Gu

K ]c) ≤ δ(K)(4.5)

with

δ(K) =
∞∑

j=5

exp
[−�K log j�(log(�K log j�) − 1

) − 1
]
< ∞(4.6)

satisfying limK→∞ δ(K) = 0.

PROOF. Recalling (4.3) and taking into account that Yu has stationary incre-
ments, we have

P
∗([Gu

K ]c) ≤
∞∑

j=0

P
∗(|R0

j | > K log(j + 5)
) ≤

∞∑
j=5

P
∗(N1 ≥ �K log j�),(4.7)

where N1 denotes the Poisson number of jumps of Y 0 during a time interval of
length 1. An application of Chebyshev’s exponential inequality yields, for β > 0,

P
∗(N1 ≥ �K log j�) ≤ e−β�K log j�

E
∗(eβN1)

= exp[−β�K log j� + eβ − 1](4.8)

= exp
[−�K log j�(log(�K log j�) − 1

) − 1
]
,

where in the last line we optimize over the choice of β by taking β = log(�K ×
log j�). Combining (4.7) and (4.8), we get the claim. �
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LEMMA 4.3. Let d ≥ 5. Then for all ε ∈ (0, (d − 4)/2) there exists Cε > 0
such that for all K > 0 and all u, v ∈ R with u < v,

P
∗(Mu,v | Y v) ≤ CεK

(v − u)1+ε
on Gv

K.(4.9)

PROOF. Fix u, v ∈ R with u < v. Recall (4.2)–(4.4) to see that

Mu,v ⊆
∞⋃

j=�v�

⋃
z∈Rv

j

{∃s ∈ [j, j + 1] :Yu(s) = z}.(4.10)

Hence,

P
∗(Mu,v | Y v) ≤

∞∑
j=�v�

∑
z∈Rv

j

P
∗(∃s ∈ [j, j + 1] :Yu(s) = z

)
.(4.11)

Since the transition kernel p∗(·, ·) generates Z
d [recall (1.5)], there exists a con-

stant C > 0 such that

p∗
t (x, y) ≤ C

(t + 7)d/2 ∀t ≥ 0, ∀x, y ∈ Z
d(4.12)

(see Spitzer [12], Proposition 7.6). Let Y be a random walk on Z
d with transition

kernel p∗(·, ·) and jump rate 1. Let P
Y
y denote its law when starting at y and τz =

inf{s ≥ 0 :Y(s) = z} its first hitting time of z. Then, since Yu and Y have the same
independent and stationary increments, we have, for j ≥ �v�,

P
∗(∃s ∈ [j, j + 1] :Yu(s) = z

) ≤ ∑
y∈Zd

p∗
(j∨u)−u(ψ(u), y)PY

y (τz ≤ 1)

≤ C

(j − u + 6)d/2

∑
y∈Zd

P
Y
0 (τy ≤ 1)(4.13)

= C

(j − u + 6)d/2 E
Y
0 (|R|),

where R = {Y(s) : s ∈ [0,1]} is the range of Y in the time interval [0,1]. Since
|R| ≤ 1 + N1 with N1 the Poisson number of jumps of Y in [0,1], we have
E

Y
0 (|R|) ≤ 2. Now assume that Yv is K-good [recall (4.3)]. Then, combining

(4.11) with (4.13), we obtain

P
∗(Mu,v | Y v) ≤ 2CK

∞∑
j=�v�

log(j − �v� + 5)

(j − u + 6)d/2

≤ 2CK

∞∑
j=�v�

log(j − �u� + 5)

(j − �u� + 5)d/2(4.14)

≤ 2CK
log(�v� − �u� + 4)

(�v� − �u� + 4)(d−2)/2 .



INTERMITTENCY ON CATALYSTS 2085

Since d ≥ 5, this clearly implies (4.9). �

4.3. Proof of block estimate. In this section we use Lemmas 4.2 and 4.3 to
prove Proposition 4.1.

PROOF OF PROPOSITION 4.1. Fix a path ψ : R → Z
d and an ordered collec-

tion of disjoint finite subsets S1, . . . , SN of R arbitrarily. Assume that the coalesc-
ing random walks starting from sites ψ(s) at times s ∈ ⋃N

j=1 Sj are constructed

from the independent random walks Yu, u ∈ ⋃N
j=1 Sj , introduced in Section 4.2,

in the obvious recursive manner: if two walks meet for the first time, then the
random walk that started earlier is killed and the random walk that started later
survives.

Now recall (4.3). Distinguishing between all possible ways to distribute the
good and the bad events and using the independence of the random walks Yu,
we estimate

E
∗(

ρ
−N coal∞ {(ψ(s),s) : s∈⋃N

j=1 Sj })
= ∑

Ai⊆Si

1≤i≤N

E
∗
(
ρ

−N coal∞ {(ψ(s),s) : s∈⋃N
j=1 Sj }

× 1

{
N⋂

j=1

⋂
u∈Aj

Gu
K

}
1

{
N⋂

j=1

⋂
u∈Sj \Aj

[Gu
K ]c

})
(4.15)

≤ ∑
Ai⊆Si

1≤i≤N

E
∗
(
ρ

−N coal∞ {(ψ(s),s) : s∈⋃N
j=1 Aj }1

{
N⋂

j=1

⋂
u∈Aj

Gu
K

})

× ρ
−∑N

j=1 |Sj \Aj | N∏
j=1

∏
u∈Sj\Aj

P
∗([Gu

K ]c).

To estimate the expectation in the right-hand side of (4.15), we note that

N coal∞

{
(ψ(s), s) : s ∈

N⋃
j=1

Aj

}
(4.16)

≤
N∑

j=1

N coal∞ {(ψ(s), s) : s ∈ Aj } +
N−1∑
j=1

∑
u∈Aj

1

{
N⋃

k=j+1

⋃
v∈Ak

Mu,v

}
.

Here we overestimate the number of coalescences of random walks starting in
one “time-block” Aj with random walks starting in later “time-blocks” Ak by the
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number of them that meet at least one random walk starting in a later “time-block.”
Together with Hölder’s inequality with r, r ′ > 1 and 1/r + 1/r ′ = 1, this yields

E
∗
(
ρ

−N coal∞ {(ψ(s),s) : s∈⋃N
j=1 Aj }1

{
N⋂

j=1

⋂
u∈Aj

Gu
K

})

≤ E
∗(

ρ
−∑N

j=1 N coal∞ {(ψ(s),s) : s∈Aj }

× ρ
−∑N−1

j=1
∑

u∈Aj
1{⋃N

k=j+1
⋃

v∈Ak
(Mu,v∩Gv

K)})
≤

[
N∏

j=1

E
∗(

ρ−rN coal∞ {(ψ(s),s) : s∈Sj })]1/r

(4.17)

×
[
E

∗
(

N−1∏
j=1

∏
u∈Sj

ρ
−r ′1{⋃N

k=j+1
⋃

v∈Sk
Mu,v∩Gv

K }
)]1/r ′

=
[

N∏
j=1

E
∗(

ρ−rN coal∞ {(ψ(s),s) : s∈Sj })]1/r

×
[
E

∗
(

N−1∏
j=1

∏
u∈Sj

(
1 + (ρ−r ′ − 1)1

{
N⋃

k=j+1

⋃
v∈Sk

(Mu,v ∩ Gv
K)

}))]1/r ′

.

In the last step we use the identity ρ−r ′1{A} = 1 + (ρ−r ′ − 1)1{A}. Now, by
conditional independence and Lemma 4.3, we have, for ε ∈ (0, (d − 4)/2) and
1 ≤ j ≤ N − 1,

E
∗
( ∏

u∈Sj

(
1 + (ρ−r ′ − 1)1

{
N⋃

k=j+1

⋃
v∈Sk

(Mu,v ∩ Gv
K)

})∣∣∣∣∣Yw,w ∈ ⋃
l>j

Sl

)

≤ ∏
u∈Sj

(
1 + (ρ−r ′ − 1)

N∑
k=j+1

∑
v∈Sk

P
∗(Mu,v|Y v)1{Gv

K}
)

(4.18)

≤ exp

[
CεK(ρ−r ′ − 1)

∑
u∈Sj

N∑
k=j+1

∑
v∈Sk

1

(v − u)1+ε

]
.

Clearly,

∑
u∈Sj

N∑
k=j+1

∑
v∈Sk

1

(v − u)1+ε
≤

N∑
k=j+1

|Sj ||Sk|
d(Sj , Sk)1+ε

.(4.19)
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Substituting this into the right-hand side of (4.18) and using the resulting deter-
ministic bounds successively for j = 1, . . . ,N − 1, we find that

E
∗
(

N−1∏
j=1

∏
u∈Sj

(
1 + (ρ−r ′ − 1)1

{
N⋃

k=j+1

⋃
v∈Sk

(Mu,v ∩ Gv
K)

}))
(4.20)

≤ exp
[
CεK(ρ−r ′ − 1)

∑
1≤j<k≤N

|Sj ||Sk|
d(Sj , Sk)1+ε

]
.

It remains to estimate the second factor in the right-hand side of (4.15). By
Lemma 4.2,

ρ
−∑N

j=1 |Sj \Aj | N∏
j=1

∏
u∈Sj \Aj

P
∗([Gu

K ]c) ≤
(

δ(K)

ρ

)∑N
j=1 |Sj \Aj |

.(4.21)

Observe that, by the binomial formula,

∑
Ai⊆Si

1≤i≤N

(
δ(K)

ρ

)∑N
j=1 |Sj \Aj |

=
(

1 + δ(K)

ρ

)∑N
j=1 |Sj |

(4.22)

≤ exp

[
δ(K)

ρ

N∑
j=1

|Sj |
]
.

Proposition 4.1 now follows by combining (4.15) with (4.17), (4.20) and (4.21),
and afterward applying (4.22). �

4.4. Continuity at κ = 0. In this section we prove Theorem 1.5(ii)(a). We pick
μ = μρ as the starting measure (recall Proposition 2.2).

By requiring that the p random walks in (1.20) do not step until time t , we have,
for any κ ∈ [0,∞),

�
μρ
p (t;κ) ≥ �

μρ
p (t;0) + 1

pt
log P⊗p

0

(
Xκ

q (s) = 0 ∀s ∈ [0, t] ∀1 ≤ q ≤ p
)

(4.23)
= �

μρ
p (t;0) − 2dκ.

Let t → ∞ to obtain

λp(κ) ≥ λp(0) − 2dκ.(4.24)

Therefore, the continuity at κ = 0 reduces to proving that, for all d ≥ 5, p ∈ N,
γ ∈ (0,∞) and ρ ∈ (0,1),

lim sup
κ↓0

λp(κ) ≤ λp(0).(4.25)
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PROOF OF THEOREM 1.5(ii)(a). We first give the proof for p = 1. Fix L > 0
and ϑ ∈ (0,1) arbitrarily. For j ∈ N, let

Ij = [
(j − 1)L, jL

)
, I ′

j = [
(j − 1)L, (j − ϑ)L

)
,

(4.26)
I ′′
j = [

(j − ϑ)L, jL
)

be the j th time-interval, time-block and time-gap, respectively. Fix r, r ′ with 1/r +
1/r ′ = 1 arbitrarily and set

M = ργ (ρ−2r ′ − 1)

r ′ log(1/ρ)
.(4.27)

For any Borel set B ⊆ R, let

�̃ργ (B) =
{

�ργ (B), if |�ργ (B)| ≤ LM ,
∅, otherwise.

(4.28)

Since

�ργ ([0, t]) ⊆
�t/L�⋃
j=1

(
�̃ργ (I ′

j ) ∪ (
�ργ (I ′

j ) \ �̃ργ (I ′
j )

) ∪ �ργ (I ′′
j )

)
,(4.29)

we have

N coal∞ {(Xκ(s), s) : s ∈ �ργ ([0, t])} ≤ N coal∞

{
(Xκ(s), s) : s ∈

�t/L�⋃
j=1

�̃ργ (I ′
j )

}

+
�t/L�∑
j=1

|�ργ (I ′
j )|1{|�ργ (I ′

j )| > LM}(4.30)

+
�t/L�∑
j=1

|�ργ (I ′′
j )|.

Combining the representation formula (1.25) for p = 1 and T = ∞ with (4.30)
and applying Hölder’s inequality, we find that

exp
[
t
(
�

μρ

1 (t;κ) − ργ
)] ≤ E1E2E3,(4.31)

where

E1 = (
(E0 ⊗ EPoiss ⊗ E

∗)
(
ρ

−rN coal∞ {(Xκ(s),s) : s∈⋃�t/L�
j=1 �̃ργ (I ′

j )}))1/r
,(4.32)

E2 =
(�t/L�∏

j=1

EPoiss
(
ρ

−r ′|�ργ (I ′
j )|1{|�ργ (I ′

j )|>LM}))1/r ′

,(4.33)

E3 =
�t/L�∏
j=1

EPoiss
(
ρ

−|�ργ (I ′′
j )|) = exp[ϑ(1 − ρ)γL�t/L�].(4.34)
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To estimate E1 in (4.32), we apply Proposition 4.1 with ψ(s) = Xκ(s), N =
�t/L�, Sj = �̃ργ (I ′

j ) and ρ replaced by ρr . Then we obtain, for arbitrary ε ∈
(0, (d − 4)/2) and K > 0,

E
∗(

ρ
−rN coal∞ {(Xκ(s),s) : s∈⋃�t/L�

j=1 �̃ργ (I ′
j )}) ≤ E ′

1E ′′
1(4.35)

with

E ′
1 =

(�t/L�∏
j=1

E
∗(

ρ
−r2 N coal∞ {(Xκ(s),s) : s∈�̃ργ (I ′

j )}))1/r

(4.36)

and

E ′′
1 = exp

[
δ(K)

ρr

�t/L�∑
j=1

|�̃ργ (I ′
j )|

(4.37)

+ CεK
ρ−rr ′ − 1

r ′
∑

1≤j<k≤�t/L�

|�̃ργ (I ′
j )||�̃ργ (I ′

k)|
d(Ij , Ik)1+ε

]
.

To estimate E ′
1, we write

�ργ = �
(1)

ρr2
γ

∪ �
(2)

(ρ−ρr2
)γ

,(4.38)

where �
(1)

ρr2
γ

and �
(2)

(ρ−ρr2
)γ

are independent Poisson processes on R with intensity

ρr2
γ and (ρ − ρr2

)γ , respectively, and we use that [recall (4.28)]

N coal∞ {(Xκ(s), s) : s ∈ �̃ργ (I ′
j )}

(4.39)
≤ N coal∞

{
(Xκ(s), s) : s ∈ �

(1)

ρr2
γ
(Ij )

} + ∣∣�(2)

(ρ−ρr2
)γ

(Ij )
∣∣.

This leads to

E ′
1 ≤

(�t/L�∏
j=1

E
∗(

ρ
−r2 N coal∞ {(Xκ(s),s) : s∈�

ρr2
γ
(Ij )}))1/r

(4.40)

× exp
[
(ρ − ρr2

)γ
ρ−r2 − 1

r
L�t/L�

]
.

To estimate E ′′
1 , note that |�̃ργ (I ′

j )| ≤ LM for all j and d(I ′
j , I

′
k) ≥ ϑL(k − j) for

k > j , so that

E ′′
1 ≤ exp

[(
δ(K)

ρr
M + C′

εK
ρ−rr ′ − 1

r ′
M2

ϑ1+εLε

)
L�t/L�

]
,(4.41)
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where C′
ε = Cε

∑∞
j=1 j−(1+ε). Since the distribution of N coal∞ is invariant w.r.t.

spatial shifts of the coalescing random walks, and Xκ and �
ρr2

γ
have independent

and stationary increments, we obtain

(E0 ⊗ EPoiss)

(�t/L�∏
j=1

E
∗(

ρ
−r2 N coal∞ {(Xκ(s),s) : s∈�

ρr2
γ
(Ij )}))

= (E0 ⊗ EPoiss)

(�t/L�∏
j=1

E
∗(

ρ
−r2 N coal∞ {(Xκ(s)−Xκ((j−1)L),s) : s∈�

ρr2
γ
(Ij )}))

(4.42)

= (
(E0 ⊗ EPoiss ⊗ E

∗)
(
ρ

−r2 N coal∞ {(Xκ(s),s) : s∈�
ρr2

γ
([0,L])}))�t/L�

= exp
[(

�
μ

ρr2

1 (L;κ) − ρr2
γ

)
L�t/L�],

where in the last line we have used the representation formula (1.25) for p = 1,
T = ∞ and ρ and t replaced by ρr2

and L, respectively. Now substitute (4.40) and
(4.41) into (4.35), substitute the obtained inequality into (4.32) and use (4.42) to
arrive at

E1 ≤ exp
[

1

r2

(
�

μ
ρr2

1 (L;κ) − ρr2
γ

)
L�t/L�

]

× exp
[(

(ρ − ρr2
)γ

ρ−r2 − 1

r2 + δ(K)

rρr
M(4.43)

+ C′
εK

ρ−rr ′ − 1

rr ′
M2

ϑ1+εLε

)
L�t/L�

]
.

We next estimate E2 in (4.33). Using Chebyshev’s exponential inequality, we
obtain, for j = 1, . . . , �t/L�,

EPoiss
(
ρ

−r ′|�ργ (I ′
j )|1{|�ργ (I ′

j )|>LM})
≤ 1 + EPoiss

(
ρ

−r ′|�ργ (I ′
j )|1{|�ργ (I ′

j )| > LM})
≤ 1 + ρr ′LM

EPoiss
(
ρ

−2r ′|�ργ (I ′
j )|)(4.44)

≤ 1 + ρr ′LM
EPoiss

(
ρ−2r ′|�ργ (Ij )|)

= 1 + exp
[(

ργ (ρ−2r ′ − 1) − r ′M log(1/ρ)
)
L

]
.

By our choice of M in (4.27), the expression in the right-hand side equals 2, and
we conclude that

E2 ≤ e�t/L�.(4.45)
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Finally, substitute (4.43), (4.45) and (4.34) into (4.31), take the logarithm on
both sides of the resulting inequality, divide by t , pass to the limit as t → ∞ and
recall (1.21). Then we obtain

λ
μρ

1 (κ) − ργ ≤ 1

r2

(
�

μ
ρr2

1 (L;κ) − ρr2
γ

) + (ρ − ρr2
)γ

ρ−r2 − 1

r2
(4.46)

+ δ(K)

rρr
M + C′

εK
ρ−rr ′ − 1

rr ′
M2

ϑ1+εLε
+ 1

L
+ ϑ(1 − ρ)γ.

As can be seen from (1.20), κ �→ �
μ

ρr2

1 (L;κ) is continuous at κ = 0. Hence,
passing in (4.46) to the limits as κ ↓ 0, L → ∞, K → ∞ and ϑ ↓ 0 (in this order),
we find that

lim sup
κ↓0

(
λ

μρ

1 (κ) − ργ
) ≤ 1

r2

(
λ

μ
ρr2

1 (0) − ρr2
γ

) + (ρ − ρr2
)γ

ρ−r2 − 1

r2 .(4.47)

Expanding the exponential function in the right-hand side of (1.20) into a Taylor
series and using (1.15), we see that ρ �→ �

μρ

1 (t;0) is nondecreasing. Hence, the
same is true for ρ �→ λ

μρ

1 (0). Taking this into account, we may finally pass to the
limit as r ↓ 1 in (4.47) to arrive at

lim sup
κ↓0

(
λ

μρ

1 (κ) − ργ
) ≤ λ

μρ

1 (0) − ργ.(4.48)

This is the desired inequality (4.25) for p = 1.
The extension to p ∈ N \ {1} is straightforward. The proof follows the same

arguments with Xκ and �ργ replaced by p independent copies Xκ
q and �

(q)
ργ , q =

1, . . . , p, of Xκ and �ργ , respectively. �

4.5. Large κ . In this section we prove Theorem 1.5(ii)(b). We again pick μ =
μρ as the starting measure (recall Proposition 2.2).

PROOF OF THEOREM 1.5(ii)(b). Recall (1.22). We first give the proof for
p = 1. We show that, for all ρ ∈ (0,1), γ > 0 and L > 0,

lim
κ→∞�

μρ

1 (L;κ) = ργ.(4.49)

Then the claim for p = 1 follows from (4.46) by passing to the limits as κ → ∞,
L → ∞, K → ∞, ϑ ↓ 0 and r ↓ 1 (in this order).

To prove (4.49), we use the representation formula (1.25):

�
μρ

1 (L;κ) − ργ
(4.50)

= 1

L
log(E0 ⊗ EPoiss ⊗ E

∗)
(
ρ−N coal∞ {(Xκ(s),s) : s∈�ργ ([0,L])}).
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Recall that we are in a transient situation (d ≥ 5) and write Xκ(s) = X1(κs). Then,
P0 ⊗ PPoiss-a.s.

lim
κ→∞ min

s1,s2∈�ργ ([0,L])
s1 
=s2

|Xκ(s1) − Xκ(s2)| = ∞,(4.51)

and, consequently,

lim
κ→∞ N coal∞ {(Xκ(s), s) : s ∈ �ργ ([0,L])} = 0 in probability w.r.t. P

∗.(4.52)

Since, moreover, N coal∞ {(Xκ(s), s) : s ∈ �ργ ([0,L])} ≤ |�ργ ([0,L])|, we may ap-
ply Lebesgue’s dominated convergence theorem to see that the expression on the
right of (4.50) converges to 0 as κ → ∞. This proves (4.49).

The extension to p ∈ N \ {1} is easy. Indeed, by (1.17)–(1.19) and Jensen’s
inequality,

exp[pt�
μρ
p (t;κ, γ )] = Eμρ

([
E0

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t − s

)
ds

])]p)
≤ Eμρ

(
E0

(
exp

[
pγ

∫ t

0
ξ
(
Xκ(s), t − s

)
ds

]))
(4.53)

= exp[t�μρ

1 (t;κ,pγ )].
Let t → ∞ to get

λp(κ;γ ) ≤ 1

p
λ1(κ;pγ ).(4.54)

This together with the assertion for p = 1 and (1.22) implies the claim for arbitrary
p ∈ N. �

5. Proof of Theorem 1.5(i) and (ii)(c). Throughout this section we assume
that p(·, ·) satisfies (1.5) and has zero mean and finite variance. Theorem 1.5(i) is
proved in Section 5.1 and Theorem 1.5(ii)(c) in Section 5.2. As a starting measure
we pick μ = νρ (recall Proposition 2.2).

5.1. Triviality in low dimensions. The proof of Theorem 1.5(i) is similar to
that of Theorem 1.3.2(i) in Gärtner, den Hollander and Maillard [6]. The key ob-
servation is the following:

LEMMA 5.1. If 1 ≤ d ≤ 4, then for any finite Q ⊂ Z
d and ρ ∈ (0,1),

lim
t→∞

1

t
log Pνρ

(
ξ(x, s) = 1 ∀x ∈ Q ∀s ∈ [0, t]) = 0.(5.1)
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PROOF. In the spirit of Bramson, Cox and Griffeath [1], Section 1, we argue
as follows. The graphical representation of the VM (recall Section 1.3) allows us
to write down a suitable expression for the probability in (5.1). Indeed, let

H
Q
t = {x ∈ Z

d : there is a path from (x,0) to Q × [0, t] in Gt },(5.2)

where, as in Section 1.3, Gt is the graphical representation of the voter model up
to time t (see Figure 4).

Note that H
Q
0 = Q and that t �→ H

Q
t is nondecreasing. Denote by P and E , re-

spectively, probability and expectation associated with the graphical representation
Gt . Then

Pνρ

(
ξ(x, s) = 1 ∀x ∈ Q ∀s ∈ [0, t]) = (P ⊗ νρ)

(
H

Q
t ⊆ ξ(0)

)
,(5.3)

where ξ(0) = {x ∈ Z
d : ξ(x,0) = 1} is the set of initial locations of 1’s. Indeed,

(5.3) holds because if ξ(x,0) = 0 for some x ∈ H
Q
t , then this 0 will propagate into

Q prior to time t (see Figure 4).
By Jensen’s inequality,

(P ⊗ νρ)
(
H

Q
t ⊆ ξ(0)

) = E
(
ρ|HQ

t |) ≥ ρE|HQ
t |.(5.4)

Moreover, H
Q
t = ⋃

y∈Q H
{y}
t , implying

E |HQ
t | ≤ |Q|E

∣∣H {0}
t

∣∣.(5.5)

FIG. 4. Some paths from (x,0) to Q × [0, t] in Gt .



2094 J. GÄRTNER, F. DEN HOLLANDER AND G. MAILLARD

By the dual graphical representation, |H {0}
t | coincides in distribution with the num-

ber of coalescing random walks alive at time t when starting at site 0 at times gen-
erated by a rate 1 Poisson stream. As shown in Bramson, Cox and Griffeath [1],
Theorem 2, if p(·, ·) is a simple random walk, then

E
∣∣H {0}

t

∣∣ = o(t) as t → ∞ when 1 ≤ d ≤ 4,(5.6)

in which case (5.1) follows from (5.3)–(5.5). As noted in Bramson, Cox and Le
Gall [2], Lemma 2, and its proof, the key ingredient in the proof of (5.6) extends
from a simple random walk to a random walk with zero mean and finite variance.

�

We are now ready to give the proof of Theorem 1.5(i).

PROOF OF THEOREM 1.5(i). Fix 1 ≤ d ≤ 4, κ ∈ [0,∞), γ ∈ (0,∞) and ρ ∈
(0,1). Since p �→ λp(κ) is nondecreasing and λp(κ) ≤ γ for all p ∈ N [recall
(1.22)], it suffices to give the proof for p = 1. For p = 1, (1.20) reads

�
νρ

1 (t) = 1

t
log(Eνρ ⊗ E0)

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t − s

)
ds

])
.(5.7)

By restricting Xκ to stay inside a finite box Q ⊂ Z
d around 0 up to time t and

requiring ξ to be 1 in the entire box up to time t , we obtain

(Eνρ ⊗ E0)

(
exp

[
γ

∫ t

0
ξ
(
Xκ(s), t − s

)
ds

])
(5.8)

≥ eγ t
Pνρ

(
ξ(x, s) = 1 ∀x ∈ Q ∀s ∈ [0, t])P0

(
Xκ(s) ∈ Q ∀s ∈ [0, t]).

The first factor is eo(t) by Lemma 5.1. For the second factor, we have

lim
t→∞

1

t
log P0

(
Xκ(s) ∈ Q ∀s ∈ [0, t]) = λκ(Q),(5.9)

with λκ(Q) < 0 the principal Dirichlet eigenvalue on Q of κ�, the generator of
Xκ . Combining (5.1) and (5.7)–(5.9), we arrive at

λ1(κ) = lim
t→∞�

νρ

1 (t) ≥ γ + λκ(Q).(5.10)

Finally, let Q ↑ Z
d and use that limQ↑Zd λκ(Q) = 0 (see, e.g., Spitzer [12], Sec-

tion 21) to arrive at λ1(κ) ≥ γ . Since, trivially, λ1(κ) ≤ γ , we get λ1(κ) = γ . �

5.2. Intermittency for small κ . We start this section by recalling some large
deviation results for the VM that will be needed to prove Theorem 1.5(ii)(c). Cox
and Griffeath [3] showed that for the VM with a simple random walk transition
kernel given by (1.6), the occupation time of the origin up to time t ≥ 0,

Tt =
∫ t

0
ξ(0, s) ds,(5.11)
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satisfies a strong law of large numbers and a central limit theorem for d ≥ 2. For
d = 1 there is no law of large numbers: Tt/t has a nontrivial limiting law. These
results carry over to a random walk with zero mean and finite variance.

The following proposition gives large deviation bounds.

PROPOSITION 5.2 (Bramson, Cox and Griffeath [1], Theorem 1; Bramson, Cox
and Le Gall [2], Lemma 2 and its proof; Maillard and Mountford [11], Theo-
rem 1.3.2). Suppose that p(·, ·) has zero mean and finite variance. Then for every
α ∈ (ρ,1) there exist 0 < I−(α) < I+(α) < ∞ such that, for t sufficiently large
(depending on α),

e−I+(α)bt ≤ Pνρ

(
Tt

t
≥ α

)
≤ e−I−(α)bt(5.12)

with

bt =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
log t, if d = 2,√

t, if d = 3,
t

log t
, if d = 4,

t, if d ≥ 5.

(5.13)

By interchanging the opinions 0 and 1, similar bounds are obtained for
Pνρ (Tt/t ≤ α), α ∈ (0, ρ). The case α = 1 may be included in d ≥ 3 but not in
d = 2, for which it is shown in Maillard and Mountford [11], Theorem 1.3.1, that
P(Tt = t) is of order exp[−(log t)2]. A full large deviation principle is expected
to hold for d ≥ 3, but this has not been established. Inspection of the proof in
Bramson, Cox and Griffeath [1] shows that for d ≥ 5 there exists a C > 0 such
that

I−(α) ≥ C
(√

α − √
ρ

)2
, α ∈ (ρ,1).(5.14)

No comparable upper bound on I+ is given.
We are now ready to give the proof of Theorem 1.5(ii)(c).

PROOF OF THEOREM 1.5(ii)(c). We first give the proof for κ = 0. Fix d ≥ 5,
p ∈ N, γ ∈ (0,∞) and ρ ∈ (0,1), and recall that λp(0) > ργ by Theorem 1.4(ii).
Pick α ∈ (ρ, γ −1λp(0)) and define

I (α) = − lim sup
t→∞

1

t
log Pνρ

(
1

t
Tt ≥ α

)
> 0,(5.15)

where the positivity of the limit comes from the upper bound in (5.12), which
implies I (α) ≥ I−(α) > 0. Put

β = γ −1
[
λp(0) + 1

2p
I (α)

]
(5.16)
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and split

�
νρ
p (t) = 1

pt
log Eνρ (e

pγTt ) = 1

pt
log(At + Bt + Ct)(5.17)

with

At = Eνρ

(
epγTt 1

{
0 ≤ 1

t
Tt < α

})
,

Bt = Eνρ

(
epγTt 1

{
α ≤ 1

t
Tt < β

})
,(5.18)

Ct = Eνρ

(
epγTt 1

{
1

t
Tt ≥ β

})
.

Next, note that

At ≤ epγαt , Bt ≤ epγβt
Pνρ

(
1

t
Tt ≥ α

)
.(5.19)

Thus, in (5.17) both At and Bt are negligible as t → ∞, because limt→∞ �
νρ
p (t) =

λp(0) while γα < λp(0) and γβ − 1
p
I (α) = λp(0) − 1

2p
I (α) < λp(0). Hence,

λp(0) = lim
t→∞

1

pt
logCt .(5.20)

Now, by (5.16) and (5.20), we have

λp+1(0) = lim
t→∞

1

(p + 1)t
log Eνρ

(
e(p+1)γ Tt

)
≥ lim sup

t→∞
1

(p + 1)t
log Eνρ

(
e(p+1)γ Tt 1

{
1

t
Tt ≥ β

})

≥ 1

p + 1
γβ + lim

t→∞
1

(p + 1)t
logCt(5.21)

= 1

p + 1
γβ + p

p + 1
λp(0)

= λp(0) + 1

2p(p + 1)
I (α) > λp(0),

which proves the gap between λp(0) and λp+1(0).
By the continuity of κ �→ λp(κ) at κ = 0 in Theorem 1.5(ii)(a), it follows that

there exists κ0 > 0 such that λp(κ) > λp−1(κ) for all κ ∈ [0, κ0) when p = 2 and,
by the remark made after formula (1.22), also when p ∈ N \ {1}. �
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APPENDIX: HEURISTIC EXPLANATION OF CONJECTURE 1.6

In this appendix we give a heuristic explanation of (1.28). We only consider the
case p = 1. A similar argument works for p ∈ N\{1}. As starting measure we pick
μ = μρ (recall Proposition 2.2).

1. Pair correlation. Lemma 1.1 for n = 2 yields the following representation for
the pair correlation function of the VM in equilibrium.

LEMMA A.1. Suppose that p(·, ·) is symmetric and transient. Then, for all
x1, x2 ∈ Z

d and s ≥ 0,

Eμρ

([ξ(x1, s) − ρ][ξ(x2,0) − ρ]) = ρ(1 − ρ)

Gd

∫ ∞
0

ps+t (x1, x2) dt(A.1)

with Gd = ∫ ∞
0 pt(0,0) dt .

PROOF. The proof is standard. By (1.15) with T = ∞ and n = 2, we have

Eμρ

([ξ(x1, s) − ρ][ξ(x2,0) − ρ])
(A.2)

= ρ(1 − ρ)P∗(
N∞{(x1,0), (x2, s)} = 1

)
.

The probability in the right-hand side of (A.2) can be computed as follows. The
first random walk starts from site x1 at time 0, moves freely until time s, and
reaches some site y at time s. The second random walk starts from site x2 at time
s and has to eventually coalesce with the first random walk. This gives

P
∗(

N∞{(x1,0), (x2, s)} = 1
) = ∑

y∈Zd

ps(x1, y)w(y − x2)(A.3)

with

w(z) = Pz(Zt = 0 for some 0 ≤ t < ∞), z ∈ Z
d .(A.4)

Here we use that, by the symmetry of p(·, ·), the difference between the two ran-
dom walks is a single random walk Z running at double the speed. By a renewal
argument (see Spitzer [12], Section 4), for transient p(·, ·) we have

w(z) = 1

Gd

∫ ∞
0

pt(z,0) dt.(A.5)

Combining (A.2), (A.3) and (A.5), we obtain (A.1). �

2. Green term. From now on let p(·, ·) be a simple random walk. Fix d ≥ 5,
γ ∈ (0,∞) and ρ ∈ (0,1). Scaling time by κ in (1.20), we have λ1(κ) = κλ∗

1(κ)

with

λ∗
1(κ) = lim

t→∞�∗
1(κ; t)(A.6)
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and

�∗
1(κ; t) = 1

t
log(Eμρ ⊗ E0)

(
exp

[
γ

κ

∫ t

0
ds ξ

(
X(s),

t − s

κ

)])
,(A.7)

where X = X1. For large κ , the ξ -field in (A.7) evolves slowly and therefore does
not manage to cooperate with the X-process in determining the growth rate. As a
result, the expectation over the ξ -field can be computed via a Gaussian approxi-
mation, which we expect to become sharp in the limit as κ → ∞, that is,

�∗
1(κ; t) − ργ

κ

= 1

t
log(Eμρ ⊗ E0)

(
exp

[
γ

κ

∫ t

0
ds

(
ξ

(
X(s),

t − s

κ

)
− ρ

)])

≈ 1

t
log E0

(
exp

[
γ 2

2κ2

∫ t

0
ds

∫ t

0
duEμρ

([
ξ

(
X(s),

t − s

κ

)
− ρ

]
(A.8)

×
[
ξ

(
X(u),

t − u

κ

)
− ρ

])])
.

(In essence, what happens here is that the asymptotics for κ → ∞ is driven by
moderate deviations of the ξ -field, which fall in the Gaussian regime.) Next, by
Lemma A.1, for any 0 ≤ s ≤ u ≤ t we have

Eμρ

([
ξ

(
X(s),

t − s

κ

)
− ρ

][
ξ

(
X(u),

t − u

κ

)
− ρ

])
(A.9)

= C

∫ ∞
0

dv p(u−s)/κ+v(X(s),X(u)),

where C = ρ(1 − ρ)/Gd . Hence,

lim
κ→∞ 2dκ[λ1(κ) − ργ ] = lim

κ→∞ 2dκ2
[
λ∗

1(κ) − ργ

κ

]
= lim

κ→∞ 2dκ2 lim
t→∞

[
�∗

1(κ; t) − ργ

κ

]
(A.10)

= lim
κ→∞ 2dκ2 lim

t→∞ I (κ; t)
with

I (κ; t)

= 1

t
log E0

(
exp

[
Cγ 2

κ2

∫ t

0
ds

∫ t

s
du

∫ ∞
0

dv p(u−s)/κ+v(X(s),X(u))

])
(A.11)

≈ Cγ 2

tκ2

∫ t

0
ds

∫ t

s
du

∫ ∞
0

dv E0
(
p(u−s)/κ+v(X(s),X(u))

)
.



INTERMITTENCY ON CATALYSTS 2099

In the last line of (A.11), a linear approximation is made in the expectation over
the random walk X, which we expect to become sharp in the limit as κ → ∞ in
d ≥ 6. Next, for any 0 ≤ s ≤ u ≤ t and T ≥ 0,

E0(pT (X(s),X(u))) = ∑
x,y∈Zd

p2ds(0, x)p2d(u−s)(x, y)pT (x, y)

= ∑
x∈Zd

p2ds(0, x)p2d(u−s)+T (x, x)(A.12)

= p2d(u−s)+T (0,0).

Here, we use that p(·, ·) is a simple random walk, so that ξ fits with X. We there-
fore have

r.h.s. (A.11) = Cγ 2

tκ2

∫ t

0
ds

∫ t

s
du

∫ ∞
0

dv p2d(u−s)1[κ]+v(0,0),(A.13)

where we abbreviate 1[κ] = 1 + 1
2dκ

. Rewriting

1

t

∫ t

0
ds

∫ t

s
du

∫ ∞
0

dv p2d(u−s)1[κ]+v(0,0)

(A.14)

=
∫ t

0
dw

∫ ∞
0

dv

(
t − w

t

)
p2dw1[κ]+v(0,0),

we get from (A.11)–(A.13) that

lim
t→∞ I (κ; t) = Cγ 2

2dκ21[κ]
∫ ∞

0
dw

∫ ∞
0

dv pw+v(0,0)

(A.15)

= Cγ 2

2dκ21[κ]G
∗
d .

Recalling (A.10), we arrive at (1.28) for d ≥ 6.
3. Polaron term. Where does the term with P5 come from? We expect this term

to arise from the part of the integral in the exponent in the first line of (A.11) with
(u − s)/κ and v of order κ2, as we will argue next. Put Z

d
κ = κ−1

Z
d and, for t ≥ 0

and x, y ∈ Z
d
κ , define

Xκ(t) = κ−1X(κ2t), pκ
t (x, y) = κdp2dκ2t (κx, κy).(A.16)

In the limit as κ → ∞, (Xκ(t))t≥0 converges weakly to Brownian motion, while
(pκ

t (·, ·))t≥0 converges to the corresponding family of Gaussian transition kernels
(pG

t (·, ·))t≥0 given by

pG
t (x, y) = (4πt)−d/2 exp[−‖x − y‖2/4t], x, y ∈ R

d .(A.17)

After scaling, the part we are after is approximately

Cγ 2κ4−d
∫ κ−2t

0
ds

∫ s+Kκ

s+εκ
du

∫ K

0
dv pG

1/(2d)((u−s)/κ+v)(X
κ(s),Xκ(u)),(A.18)
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where 0 < ε � 1 � K < ∞. For δ > 0, divide the first and the second integral in
(A.18) into pieces of length δκ , and define the occupation time measures

�κ
w(A) = 1

δκ

∫ w+δκ

w
1A(Xκ(u)) du, w ≥ 0,A ⊂ R

d Borel.(A.19)

Then, when δ � ε, (u− s)/κ is almost constant on time intervals of length δκ and,
consequently,

(A.18) ≈ Cγ 2κ4−d
∫ κ−2t

0
ds

∫ s+Kκ

s+εκ
du

∫ K

0
dv

(A.20)
×

∫
Rd

�κ
s (dx)

∫
Rd

�κ
u(dy)pG

1/(2d)((u−s)/κ+v)(x, y).

Using the large deviation principle for �κ
(·) as κ → ∞, we find that the contribution

of (A.20) to I (κ; t) for large κ is approximately

1

t
sup
μ(·)

[
Cγ 2κ4−d

∫ κ−2t

0
ds

∫ s+Kκ

s+εκ
du

∫ K

0
dv

∫
Rd

μs(dx)

∫
Rd

μu(dy)

(A.21)

× pG
1/(2d)((u−s)/κ+v)(x, y) −

∫ κ−2t

0
J (μs) ds

]
,

where the supremum is taken over all probability measure-valued paths μ(·) and

J (ν) =
{∥∥∇√

dν/dλ
∥∥2

2, if ν � λ,
∞, otherwise,

(A.22)

with λ the Lebesgue measure on R
d . By the convexity of the large deviation rate

function J , the supremum in (A.21) diagonalizes and reduces to

(A.21) = 1

κ2 sup
ν

[
Cγ 2κ4−d

∫
Rd

ν(dx)

∫
Rd

ν(dy)

∫ Kκ

εκ
du

∫ K

0
dv

(A.23)

× pG
1/(2d)(u/κ+v)(x, y) − J (ν)

]
.

Putting u = 2dκũ, v = 2dṽ and letting ε ↓ 0 and K → ∞, we end up with a
contribution to limκ→∞ 2dκ2 limt→∞ I (κ; t) of the form

2d sup
ν

[
(2d)2Cγ 2

∫
Rd

ν(dx)

∫
Rd

ν(dy)

∫ ∞
0

dũ

∫ ∞
0

dṽ pG
ũ+ṽ(x, y)

(A.24)

− J (ν)

]
in d = 5 and zero in d ≥ 6. In d = 5 we have from (A.17)∫ ∞

0
dũ

∫ ∞
0

dṽ pG
ũ+ṽ(x, y) =

∫ ∞
0

dt tpG
t (x, y) = 1

16π2‖x − y‖ .(A.25)
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Substituting this into (A.24), putting ν = f 2λ and recalling (A.22), we get

(A.24) = 2d sup
‖f ‖2=1

[
(2d)2Cγ 2

∫
R5

∫
R5

dx dy
f 2(x)f 2(y)

16π2‖x − y‖ − ‖∇f ‖2
2

]
.(A.26)

Scaling of f shows that the supremum with the prefactor (2d)2Cγ 2 equals
((2d)2Cγ 2)2 times the supremum without this prefactor. Hence, we get

(A.24) = 2d((2d)2Cγ 2)2P5,(A.27)

where we recall (1.30). This is precisely the “polaron-type” term in (1.28) for
p = 1.

The heuristic argument in parts 2 and 3 follows a line of thought that was made
rigorous in Gärtner and den Hollander [5] and Gärtner, den Hollander and Maillard
[6, 8] for the case where ξ is a field of independent simple random walks in a Pois-
son equilibrium, respectively, a simple symmetric exclusion process in a Bernoulli
equilibrium. We refer to these papers for further details. There it is also explained
why for p ∈ N \ {1} the polaron term is p2 times that for p = 1.
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