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THE SPEED OF A BIASED RANDOM WALK ON
A PERCOLATION CLUSTER AT HIGH DENSITY

BY ALEXANDER FRIBERGH1

New York University

We study the speed of a biased random walk on a percolation cluster
on Z

d in function of the percolation parameter p. We obtain a first order
expansion of the speed at p = 1 which proves that percolating slows down
the random walk at least in the case where the drift is along a component of
the lattice.

1. Introduction. Random walks in reversible random environments are an
important subfield of random walks in random media. In the last few years a lot of
work has been done to understand these models on Z

d , one of the most challenging
being the model of reversible random walks on percolation clusters, which has
raised many questions.

In this model, the walker is restrained to a locally inhomogeneous graph, mak-
ing it difficult to transfer any method used for elliptic random walks in random
media. In the beginning, results concerned simple random walks, the question of
recurrence and transience (see [12]) was solved first and later a quenched invari-
ance principles was proved in [3] and [19]. More recently new results (e.g., [4]
and [18]) appeared, but still under the assumption that the walker has no global
drift.

The case of drifted random walks on percolation cluster features a very inter-
esting phenomenon which was first described in the theoretical physics literature
(see [7] and [8]); as the drift increases the model switches from a ballistic to a sub-
ballistic regime. From a mathematical point of view, this conjecture is partially
addressed in [5] and [22]. This slowdown is due to the fact that the percolation
cluster contains arbitrarily large parts of the environment which act as traps for a
biased random walk. This phenomenon, and more, is known to happen on inho-
mogeneous Galton–Watson trees (cf. [2] and [16]).

Nevertheless this model is still not well understood and many questions remain
open, the most famous being the existence and the value of a critical drift for
the expected phase transition. Another question of interest is the dependence of
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the limiting velocity with respect to the parameters of the problem, that is, the
percolation parameter and the bias. This last question is not specific to this model,
but understanding in a quantitative, or even qualitative way, the behavior of speed
of random walks in random media seems to be a difficult problem, and very few
results are currently available on Z

d (see [21]).
In this article we study the dependence of the limiting velocity with respect

to the percolation parameter around p = 1. We try to adapt the methods used in
[21] which were introduced to study environments subject to small perturbations
in a uniformly-elliptic setting. For biased-random walk on a percolation cluster of
high density, the walk is subject to rare but arbitrarily big pertubations so that the
problem is very different and appears to be more difficult.

The methods rely mainly on a careful study of Kalikow’s auxiliary random walk
which is known to be linked to the random walks in random environments (see
[24] and [25]) and also to the limiting velocity of such walks when it exists (see
[21]). Our main task is to show that the unbounded effects of the removal of edges,
once averaged over all configurations, is small. This will enable us to consider
Kalikow’s auxiliary random walk as a small perturbation of the biased random
walk on Z

d . As far as we know it is the first time such methods have been used to
study a random conductance model or even nonelliptic random walks in random
media.

2. The model. The models presented in [5] and [22] are slightly different; we
choose to consider the second one as it is a bit more general since it allows the
drift to be in any direction. Nevertheless all the following can be adapted without
any difficulty to the model described in [5].

Let us describe the environment. We consider the set of edges E(Zd) of the
lattice Z

d for some d ≥ 2. We fix p ∈ (0,1) and perform a Bernoulli bond-
percolation, that is, we pick a random configuration ω ∈ � := {0,1}E(Zd ) where
each edge has probability p (resp., 1 − p) of being open (resp., closed) indepen-
dently of all other edges. Let us introduce the corresponding measure

Pp = (
pδ1 + (1 − p)δ0

)⊗E(Zd )
.

Hence an edge e will be called open (resp., closed) in the configuration ω if
ω(e) = 1 [resp., ω(e) = 0]. This naturally induces a subgraph of Z

d which will be
denoted ω and it also yields a partition of Z

d into open clusters.
It is classical in percolation that for p > pc(d), where pc(d) ∈ (0,1) denotes

the critical percolation probability of Z
d (see [11]), we have a unique infinite open

cluster K∞(ω), Pp-a.s. The corresponding set of configuration is denoted by �0.
Moreover, the following event has positive Pp-probability:

I = {there is a unique infinite cluster K∞(ω) and it contains 0}.
In order to define the random walk, we introduce a bias � = λ�� of strength λ > 0

and a direction �� which is in the unit sphere with respect to the Euclidian metric
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of R
d . On a configuration ω ∈ �, we consider the Markov chain of law P ω

x on Z
d

with transition probabilities pω(x, y) for x, y ∈ Z
d defined by:

1. X0 = x, P ω
x -a.s.,

2. pω(x, x) = 1, if x has no neighbor in ω,
3. pω(x, y) = cω(x,y)∑

z∼x cω(x,z)
,

where x ∼ y means that x and y are adjacent in Z
d , and also we set

for all x, y ∈ Z
d cω(x, y) =

{
e(y+x)·�, if x ∼ y and ω({x, y}) = 1,
0, otherwise.

We see that this Markov chain is reversible with invariant measure given by

πω(x) = ∑
y∼x

cω(x, y).

Let us call cω(x, y) the conductance between x and y in the configuration ω.
This is natural because of the links existing between reversible Markov chains
and electrical networks. We will be making extensive use of this relation, and we
refer the reader to [9] and [15] for a further background. Moreover for an edge
e = [x, y] ∈ E(Zd), we denote cω(e) = cω(x, y) and rω(e) = 1/cω(e).

Finally the annealed law of the biased random walk on the infinite percolation
cluster will be the semi-direct product Pp = Pp[· | I] × P ω

0 [·].
The starting point of our work is the existence of a constant limiting velocity

which was proved in [22], and with some additional work Sznitman managed to
obtain the following result:

THEOREM 2.1. For any d ≥ 2, p ∈ (pc(d),1) and any � ∈ R
d∗ , there exists

v�(p) ∈ R
d such that

for ω − Pp[· | I]-a.s. lim
n→∞

Xn

n
= v�(p), P ω

0 -a.s.

Moreover there exist λ1(p, d, �), λ2(p, d, �) ∈ R+ such that:

1. for λ = � · �� < λ1(p, d, �), we have v�(p) · �� > 0,
2. for λ = � · �� > λ2(p, d, �), we have v�(p) = 0.

Our main result is a first order expansion of the limiting velocity with respect to
the percolation parameter at p = 1. As in [21], the result depends on certain Green
functions defined for a configuration ω as

for any x, y ∈ Z
d Gω(x, y) := Eω

x

[∑
n≥0

1{Xn ∈ y}
]
.

Before stating our main theorem we recall that v�(1) = ∑
e∈ν p(e)e where ω0 is

the environment at p = 1, p(e) = pω0(0, e) and ν is the set of unit vectors of Z
d .
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THEOREM 2.2. For d ≥ 2, p ∈ (pc(d),1) and for any � ∈ R
d∗ , we have

v�(1 − ε) = v�(1) − ε
∑
e∈ν

(
v�(1) · e)(

Gωe
0(0,0) − Gωe

0(e,0)
)(

v�(1) − de

) + o(ε),

where for any e ∈ ν we denote

for f ∈ E(Zd) ωe
0(f ) = 1{f 
= e} and de = ∑

e′∈ν

pωe
0(0, e′)e′,

are, respectively, the environment where only the edge [0, e] is closed and its cor-
responding mean drift at 0.

PROPOSITION 2.1. Let us denote J e = Gω0(0,0) − Gω0(e,0) for e ∈ ν. We
can rewrite the first term of the expansion in the following way:

v′
�(1) = ∑

e∈ν

(
v�(1) · e) p(e)J e

1 − p(e)J e − p(−e)J−e

(
e − v�(1)

)
,

so that if for e ∈ ν such that v�(1) · e > 0 we have v�(1) · e ≥ ‖v�(1)‖2
2, then

v�(1) · v′
�(1) > 0,

which in words means that the percolation slows down the random walk at least at
p = 1.

The previous condition is verified, for example, in the following cases:

1. �� ∈ ν, that is, when the drift is along a component of the lattice,
2. � = λ��, where λ < λc(��) for some λc(��) > 0, that is, when the drift is weak.

REMARK 2.1. The property of Proposition 2.1 is expected to hold for any
drift, but we were unable to carry our the computations. More generally the previ-
ous should be true in a great variety of cases; in particular one could hope it holds
in the whole supercritical regime. For a somewhat related conjecture, see [6].

REMARK 2.2. Another natural consequence which is not completely obvious
to prove is that the speed is positive for p close enough to 1.

REMARK 2.3. Finally, this result can give some insight on the dependence of
the speed with respect to the bias. Indeed, fix a bias � and some μ > 1. Theorem 2.2
implies that for ε0 = ε0(�,μ) > 0 small enough we have

vμ�(1 − ε) · �� > v�(1 − ε) · �� for ε < ε0.

Before turning to the proof of this result, we introduce some further notation.
Let us also point out that we will refer to the percolation parameter as 1−ε instead
of p and assume

ε < 1/2;(2.1)
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in particular we have 1 − ε > pc(d) for all d ≥ 2.
We denote by {x ↔ y} the event that x and y are connected in ω. If we want

to emphasize the configuration we will use {x ω↔ y}. Accordingly, let us denote
Kω(x) the cluster (or connected component) of x in ω.

Given a set V of vertices of Z
d , we denote by |V | its cardinality, by E(V ) =

{[x, y] ∈ E(Zd) | x, y ∈ V } its edges and

∂V = {x ∈ V | y ∈ Z
d \ V,x ∼ y}, ∂EV = {[x, y] ∈ E(Zd) | x ∈ V,y /∈ V },

and also for B a set of edges of E(Zd) we denote

∂B = {x | ∃y, z, [x, y] ∈ B, [x, z] /∈ B}, ∂EB = {[x, y] | x ∈ ∂B,y /∈ V (B)},
where V (B) = {x ∈ Z

d | ∃y ∈ Z
d [x, y] ∈ B}.

Given a subgraph G of Z
d containing all vertices of Z

d , we denote dG(x, y) the
graph distance in G induced by Z

d between x and y. Moreover if x and y are not
connected in G we set dG(x, y) = ∞. In particular dω(x, y) is the distance in the
percolation cluster if {x ↔ y}. Moreover for x ∈ G and k ∈ N, we denote the ball
of radius k by

BG(x, k) = {y ∈ G,dG(x, y) ≤ k} and BE
G(x, k) = E(BG(x, k)),

where we will omit the subscript when G = Z
d .

Let us denote by (e(i))i=1,...,d an orthonormal basis of Z
d such that e(1) · �� ≥

e(2) · �� ≥ · · · ≥ e(d) · �� ≥ 0; in particular we have e(1) · �� ≥ 1/
√

d .
In order to control volume growth let us define ρd such that

for all r ≥ 1 |B(x, r)| ≤ ρdrd and |∂B(x, r)| ≤ ρdrd−1.

We will need to modify the configuration of the percolation cluster at certain
vertices. So given A1,A2 ∈ E(Zd), B1 ⊂ A1 and B2 ⊂ A2, let us denote ω

A1,B1
A2,B2

the configuration such that:

1. ω
A1,B1
A2,B2

([x, y]) = ω([x, y]), if [x, y] /∈ A1 ∪ A2,

2. ω
A1,B1
A2,B2

([x, y]) = 1{[x, y] /∈ B1}, if [x, y] ∈ A1,

3. ω
A1,B1
A2,B2

([x, y]) = 1{[x, y] /∈ B2}, if [x, y] ∈ A2 \ A1,

which in words means that we impose that the set of closed edges (in ω
A1,B1
A2,B2

) of A1

(resp., A2) is exactly B1 (resp., B2), and in case of an intersection between A1 and
A2 the condition imposed by A1 is most important. Furthermore given A ∈ E(Zd)

and B ⊂ A the configurations ωA,B and ωA,B are such that:

1. ωA,B([x, y]) = ωA,B([x, y]) = ω([x, y]), if [x, y] /∈ A,
2. ωA,B([x, y]) = ωA,B([x, y]) = 1{[x, y] /∈ B}, if [x, y] ∈ A,
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that is equal to ω everywhere except on the edges of A. The closed edges of A (in
the configuration ωA,B or ωA,B ) being exactly those in B .

For k1, k2 ≥ 1, z1, z2 ∈ Z
d , B1 ⊂ BE(0, k1) and B2 ⊂ BE(0, k2), we introduce

ω
(z1,k1),B1
(z2,k1),B2

:= ω
BE(z1,k1),z1+B1
BE(z2,k2),z2+B2

and for B1,B2 ⊂ ν

(2.2)
ω

z1,B1
z2,B2

:= ω
(z1,1),z1+B1
(z2,1),z2+B2

,

to describe configurations modified on balls. We define the same type of notation
without the subscript or the superscript in the natural way.

Moreover, we will use shortened notation when we impose that all edges of a
certain set are open (resp., closed), for example,

ωA,1 := ωA,∅ and ωA,0 := ωA,A,(2.3)

to denote in particular the special cases where all (resp., no) edges of A are open.
We will use combinations of these notation, for example, ω(z,k),1 := ωBE(z,k),∅.

In connection with that, for a given configuration ω ∈ �, we call configuration
of z and denote

C(z) = {e ∈ ν,ω([z, z + e]) = 0},
the set of closed edges adjacent to z.

Hence we can denote e ∈ ν and A ⊂ ν

pA(e) = pω0,A

(0, e), c(e) = cω0,1
(e) and πA = πω0,A

(0).(2.4)

This means, for example, pA is the transition probability along the edge e under
the configuration A.

Furthermore the pseudo-elliptic constant κ0 = κ0(�, d) > 0 will denote

κ0 = min
A⊂ν,A 
=ν,e/∈A

pA(e),(2.5)

which is the minimal nonzero transition probability.
Similarly we fix κ1 = κ1(�, d) > 0 such that

1

κ1
πωz,A

(z) ≤ e2λz·�� ≤ κ1π
ωz,A

(z)(2.6)

for any A ⊂ ν, A 
= ν and z ∈ Z
d .

Finally τδ will denote a geometric random variable of parameter 1 − δ indepen-
dent of the random walk and the environment. Moreover, for A ⊂ Z

d , set

TA = inf{n ≥ 0,Xn ∈ A} and T +
A = inf{n ≥ 1,Xn ∈ A},

and for z ∈ Z
d we denote Tz (resp., T +

z ) for T{z} (resp., T +
{z}).

Concerning constants, we choose to denote them by Ci for global constants,
or γi for local constants and will implicitly be supposed to be in (0,∞). Their
dependence with respect to d and � will not always be specified.
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Let us present the structure of the paper. In Section 3, we will introduce the
central tool for the computation of the expansion of the speed: Kalikow’s environ-
ment and link it to the asymptotic speed. Then, we will concentrate on getting the
continuity of the speed. Mathematically the problem is simply reduced to giving
upper bounds on quantities depending on Green functions. On a more heuristical
level our aim is to understand the slowdown induced by unlikely configurations
where “traps” appear. Since getting the upper bound is a rather complicated and
technical matter we will first give a quick sketch, as soon as further notation are in
place, and try to motivate our approach at the end of the next section.

In Sections 4 and 5, we will, respectively, give estimates on the behavior of the
random walk near traps and on the probability of appearance of such traps in the
percolation cluster. Then in Section 6 we will put together the previous results to
prove the continuity of the speed.

The proof of Theorem 2.2 will be done in Section 7. In order to obtain the first
order expansion, the task is essentially similar to obtaining the continuity, but the
computations are much more involved and will partly be postponed to Section 8.

Finally Proposition 2.1 is proved in Section 9.

3. Kalikow’s auxiliary random walk. We denote for x, y ∈ Z
d , P a Markov

operator and δ < 1, the Green function of the random walk killed at geometric rate
1 − δ by

GP
δ (x, y) := EP

x

[ ∞∑
k=0

δk1{Xk = y}
]

and Gω
δ (x, y) := GP ω

δ (x, y),

where P ω is the Markov operator associated with the random walk in the environ-
ment ω.

Then we introduce the so-called Kalikow environment associated with the point
0 and the environment P1−ε[· | I], which is given for z, y ∈ Z

d , δ < 1 and e ∈ ν by

p̂ε
δ(z, z + e) = E1−ε[Gω

δ (0, z)pω(z, z + e)|I]
E1−ε[Gω

δ (0, z)|I] .

The family (p̂ε
δ (z, z + e))z∈Zd ,e∈ν defines transition probabilities of a certain

Markov chain on Z
d . It is called Kalikow’s auxiliary random walk and its first

appearance in a slightly different form goes back to [13].
This walk has proved to be useful because it links the annealed expectation of

a Green function of a random walk in random media to the Green function of a
Markov chain. This result is summarized in the following proposition.

PROPOSITION 3.1. For z ∈ Z
d and δ < 1, we have

E1−ε[Gω
δ (0, z)|I] = G

p̂ε
δ

δ (0, z).
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The proof of this result can be directly adapted from the proof of Proposition 1
in [21]. We emphasize that in the case δ < 1, the uniform ellipticity condition is
not needed.

Using the former property we can link the Kalikow’s auxiliary random walk to
the speed of our RWRE through the following proposition.

PROPOSITION 3.2. For any 0 < ε < 1 − pc(Z
d), we have

lim
δ→1

∑
z∈Zd G

ω̂ε
δ

δ (0, z)d̂ε
δ (z)∑

z∈Zd G
ω̂ε

δ
δ (0, z)

= lim
δ→1

E[Xτδ ]
E[τδ] = v�(1 − ε),

where d̂ε
δ (z) = ∑

e∈ν p̂ε
δ (z, z + e)e.

Let Cε
δ be the convex hull of all d̂ε

δ (z) for z ∈ Z
d , then an immediate conse-

quence of the previous proposition follows.

PROPOSITION 3.3. For ε > 0 we have that v�(1−ε) is an accumulation point
of Cε

δ as δ goes to 1.

The proofs of both propositions are contained in the proof of Proposition 2 in
[21] and rely only on the existence of a limiting velocity, which is a consequence
of Theorem 2.1.

In order to ease notation we will, from time to time, drop the dependence with
respect to ε of the expectation E1−ε[·].

Let us now give a quick sketch of the proof of the continuity of the speed.
A way of understanding d̂ε

δ (z) is to decompose the expression of Kalikow’s drift
according to the possible configurations at z

d̂ε
δ (z) = ∑

e∈ν

∑
A⊂ν

E[1{I}1{C(z) = A}Gω
δ (0, z)pω(z, z + e)e]

E[1{I}Gω
δ (0, z)]

= ∑
A⊂ν,A 
=ν

E[1{I}1{C(z) = A}Gω
δ (0, z)]

E[1{I}Gω
δ (0, z)] dA(3.1)

= ∑
A⊂ν,A 
=ν

P[C(z) = A]E[1{I}Gω
δ (0, z)|C(z) = A]

E[1{I}Gω
δ (0, z)] dA,

where dA = ∑
e∈A pA(e)e is the drift under the configuration A.

Since P[C(z) = A] ∼ ε|A| for any A ∈ ν, if we want to find the limit of d̂ε
δ (z) as

ε goes to 0, it is natural to conjecture that the term corresponding to {C(z) = ∅} is
dominant in (3.1). For this, recalling the notation from (2.2), we may find an upper
bound on

E[1{I}Gω
δ (0, z)|C(z) = A]

E[1{I}Gω
δ (0, z)] = E[1{I(ωz,A)}Gωz,A

δ (0, z)]
E[1{I}Gω

δ (0, z)](3.2)
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for z ∈ Z
d , A ∈ {0,1}ν \ ν and δ < 1 which is uniform in z for δ close to 1, to be

able to apply Proposition 3.3 and show that |v�(1 − ε) − d∅| = O(ε).
Let us show why the terms in (3.2) are upper bounded. It is easy to see that the

denominator is greater than γ1E[1{I(ωz,1)}Gωz,1

δ (0, z)], so we essentially need to
show that closing some edges adjacent to z cannot increase the quantity appearing
in (3.2) by a huge amount. That is, for A ⊂ ν,

E[1{I(ωz,A)}Gωz,A

δ (0, z)] ≤ γ2E[1{I(ωz,1)}Gωz,1

δ (0, z)].(3.3)

In order to show that closing edges cannot have such a tremendous effect, let
us first remark that the Green function can be written as Gω

δ (0, z) = P ω
0 [Tz <

τδ]Gω
δ (z, z). When we close some edges we might create a trap, for example, a

long “corridor” can be transformed into a “dead-end” and this effect can, in the
quenched setting, increase arbitrarily Gω

δ (z, z), the number of returns to z.
The first step is to quantify this effect, we will essentially show in Section 4

that Gωz,ν\A
δ (z, z) ≤ γ3G

ωz,1

δ (z, z) + Lz(ω) (see Proposition 4.2) where Lz(ω) is,
in some sense, to be defined later, a “local” quantity around z (see Propositions 4.1
and 5.2). With this random variable we try to quantify how far from z the ran-
dom walk has to go to find a “regular” environment without traps where the ef-
fect of the modification around z is “forgotten.” In this upper bound, we may
get rid of the term Gωz,1

δ (z, z) which is, once multiplied by 1{I}P ω
0 [Tz < τδ] ≤

1{I(ωz,1)}P ωz,1

0 [Tz < τδ], of the same type as the terms on the right-hand side
of (3.3).

The second step is to understand how the “local” quantity Lz is correlated with
the hitting probability. The intuition here is that the hitting probability depends
on the environment as a whole but that a very local modification of the environ-
ment cannot change tremendously the value of the hitting probability. On a more
formal level this corresponds to (see Lemma 6.1) E[1{I}P ω

0 [Tz < τδ]Lz(ω)] ≤
γ4E[1{I}P ω

0 [Tz < τδ]] where γ4 is some moment of Lz, which is a sufficient up-
per bound.

Before turning to the proof, we emphasize that the aim of Sections 4 and 5 is
mainly to introduce the so-called “local” quantities, which is done at the beginning
of Section 4, and prove some properties on these quantities (see Propositions 4.1,
4.2 and 5.2). The corresponding proofs are essentially unrelated to the rest of the
paper and may be skipped in a first reading to concentrate on the actual proof of
the continuity which is in Section 6.

4. Resistance estimates. In this section we shall introduce some elements of
electrical networks theory (see [15]) to estimate the variations on the diagonal of
the Green function induced by a local modification of the state of the edges around
a vertex x. Our aim is to show that we can get efficient upper bounds using only
the local shape of the environment.
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Let us denote the effective resistance between x ∈ Z
d and a subgraph H ′ of a

certain finite graph H by RH(x ↔ H ′). Denoting V (H ′) the vertices of H ′, it can
be defined through Thomson’s principle (see [15])

RH(x ↔ H ′) = inf
{∑

e∈H

r(e)θ2(e), θ(·) is a unit flow from x to V (H ′)
}
,

and this infimum is reached for the current flow from x to V (H ′). Under the envi-
ronment ω, we will denote the resistance between x and y by Rω(x ↔ y).

For a fixed ω ∈ �, we add a cemetery point � which is linked to any vertex x

of K∞(ω) with a conductance such that at x the probability of going to � is 1 − δ

and denote the associated weighted graph by ω(δ). We denote πω(δ)(x) the sum
of the conductances of edges adjacent to x in ω(δ), and we define Rω(δ)(x ↔ �)

to be the limit of Rω(δ)(x ↔ ω \ ωn) where ωn is any increasing exhaustion of
subgraphs of ω. We emphasize that the Rω(δ)(x ↔ ω \ ωn) is well defined for n

large enough since x ∈ ωn for n large enough. In this setting we have

πω(δ)(x) = πω(x)

δ
and

(4.1)

rω(δ)([x,�]) = 1

πω(δ)(x)

1

1 − δ
= 1

πω(x)

δ

1 − δ
.

We emphasize that changing the state of an edge [x, y] changes the values
of rω(δ)([x,�]) and rω(δ)([y,�]). It can nevertheless be noted that Rayleigh’s
monotonicity principle (see [15]) is preserved, that is, if we increase (resp., de-
crease) the resistance of one edge any effective resistance in the graph also in-
creases (resp., decreases).

There is no ambiguity to simplify the notation by setting Rω(x ↔ �) :=
Rω(δ)(x ↔ �) for x ∈ Z

d and rω(e) := rω(δ)(e) for e any edge of ω(δ). It is
classic (and can be found as an exercise in chapter 2 of [15]) that

LEMMA 4.1. For any δ < 1, we have

Gω
δ (x, x) = πω(δ)(x)Rω(x ↔ �)

for any ω ∈ �0, that is, if there exists a unique infinite cluster.

Hence to understand, in a rough sense, how closing edges might increase the
number of returns at z, we can concentrate on understanding the effect of clos-
ing edges on the effective resistance. By Rayleigh’s monotonicity principle, given
a vertex x, the configuration in A = BE(x, r) which has the lowest resistance
between any point and � is the one where all edges are open. Hence, for con-
figurations B ⊂ A, we want to get an upper bound RωA,B

(x ↔ �) in terms of
RωA,∅

(x ↔ �) and of “local” quantities.
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FIG. 1. Configurations where one deleted edge increases Gδ(x, x).

Let us begin with a heuristic description of configurations which are likely to
increase strongly the number of returns when we close an edge. There are mainly
two situations that can occur (see Figure 1):

1. The vertex x ∈ K∞(ω) is in a long corridor, which is turned into a “dead-end”
if we close only an edge, hence increasing the number of returns.

2. If closing an edge adjacent to x creates a new finite cluster K , the number of
returns to x can be tremendously increased. Indeed, because of the geometrical
killing parameter, when the particle gets stuck in K for a long time it may die
(i.e., go to �). Hence by closing the edge linking x to K , we can remove this
escape possibility and increase the number of returns to x.

We want to find properties of the environment which will quantify how strongly
the number of returns will increase for a point in the infinite cluster. In order to find
a quantity which controls the effect of the first type of configurations we denote,
for any x ∈ Z

d and r ≥ 1, denoting A = BE(x, r) where x ∈ K∞(ω), we set

MA(ω) =
⎧⎪⎨⎪⎩

0, if ∀y ∈ ∂A,y /∈ K∞(ωA,0),

max
y1,y2∈∂A∩K∞(ωA,0)

dωA,0(y1, y2),

otherwise,

(4.2)

which is the maximal distance between vertices of ∂A ∩ K∞(ωA,0) in the infinite
cluster of ωA,0. It is important to notice that the notation K∞(ωA,0) makes sense,
since it is classical that P-a.s. modifying the states of a finite set of edges does not
create multiple infinite clusters.

This quantity will help us give upper bounds on the number of returns to x after
having closed some adjacent edges. Indeed even if the “best escape way to infinity”
is closed, MA tells us in some sense how much more the particle has to struggle
to get back onto this good escape route, even though some additional edges are
closed.
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Let us control the effect the second type of bad configurations has on the ex-
pected number of returns to x ∈ K∞(ω). We first want to find out if we are likely
to go to � during an excursion into the part we called K . For this we introduce a
way to measure the size of the biggest finite cluster of ωA,0 which intersects ∂A,

TA(ω) =
⎧⎪⎨⎪⎩

0, if ∀y ∈ ∂A,y ∈ K∞(ωA,0),

max
y∈∂A,y /∈K∞(ωA,0)

|∂EKωA,0(y)|,
otherwise,

(4.3)

which gives an indication on the time of an excursion into K , hence on the proba-
bility of going to � during this excursion.

The idea now is to find an alternate place K ′ close and connected to x ∈ K∞,
from which the particle needs a long time to return to x. Thus from this place the
particle is likely to go to � before returning to x. This means that K ′ have an effect
similar to K . This area K ′ ensures that the number of returns to x cannot be too
big even in the case where all the accesses to parts such as K adjacent to x are
closed. For this let us denote η ≥ 1 depending on d and � such that

for all n ≥ 1 e2λ(η−1)n ≥ 3κ2
1 |B(0, n)|,(4.4)

and H ′
A(ω) the half-space {y, y · �� ≥ x · �� + ηTA(ω)}. From any point of this half-

space the particle is very unlikely to return to x in a short time. Indeed to come
back from this half-space the particle must go against the drift, and for this to
happen we have to wait a long amount of time during which the particle is most
likely to go to �. A relevant quantity to control the effect of the second type of
configurations is the distance between x and this half-space, which quantifies the
difficulty to reach this half-plane.

In order to define these quantities we need to know the infinite cluster K∞, and
hence they are not “local” quantities. Nevertheless we are able to define random
variables which are “local” and fulfill the same functions.

For A = BE(x, r), we denote L1
A(ω) the smallest integer larger or equal to r

such that all y ∈ ∂A which are connected to ∂B(x,L1
A(ω)) in ωA,0, are connected

to each other using only edges of BE(x,L1
A(ω)) ∩ ωA,0.

We always have L1
A(ω) < ∞, Pp-a.s. by uniqueness of the infinite cluster. Con-

sequently there are two types of vertices in ∂A, first those which are not connected
to ∂B(x,L1

A(ω)) in ωA,0 (hence in a finite cluster of ωA,0) and then those which
are, the latter being all inter-connected in B(x,L1

A(ω)) ∩ ωA,0.
Set HA(ω) to be the half-space {y, y · �� ≥ x · �� + ηL1

A(ω)} and finally let us
define LA(ω) the smallest integer larger or equal to r such that:

1. either ∂A is connected to HA(ω) using only edges of BE(x,LA(ω)) ∩ ωA,0,
2. or ∂A is not connected to BE(x,LA(ω)), which can only happen if ∂A ∩

K∞ = ∅.
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In both cases we can see that

on ∂A ∩ K∞ = ∅ LA ≤ min{n ≥ 0, ∂A is not connected to ∂B(x,n)}.(4.5)

In order to make the notation lighter we use

Lz,k := LBE(z,k) and Lz = Lz,1.(4.6)

Using this definition for LA we get an upper bound for the quantities MA and
dω(x,H ′

A) in the event that x ∈ K∞ which is the only case we will need to con-
sider. Now we can easily obtain, with the proof is left to the reader, the following
proposition:

PROPOSITION 4.1. For a ball A = BE(x, r), set Fx,n the σ -field generated
by {ω(e), e ∈ BE(x,n)}, we have the following:

1. LA(ω) does not depend on the state of the edges in A,
2. LA(ω) is a stopping time with respect to (Fx,n)n≥0, and in particular the event

{LA(ω) = k} does not depend on the state of the edges of BE(x, k)c = E(Zd) \
BE(x, k),

3. r ≤ LA(ω) < ∞, P-a.s.

The second property is one of the two central properties for what we call a “lo-
cal” quantity. Recalling the notation of (2.2) and (2.3), let us prove the following:

PROPOSITION 4.2. Set A = BE(x, r) with r ≥ 1, δ < 1 and ω ∈ �0. Suppose
that y ∈ K∞(ω) and ∂A ∩ K∞(ω) 
= ∅. We have

Rω(y ↔ �) ≤ 4RωA,1
(y ↔ �) + C1LA(ω)C2e2λ(LA(ω)−x·��),

where C1 and C2 depend only on d and �.

The 4 appearing is purely arbitrary and could be any constant larger than 1.
Here the correcting term is essentially of the same order as the largest between:

1. The resistance of paths linking the vertices of ∂A∩K∞(ωA,0) inside B(x,LA),
2. the resistance of paths linking x to HA inside B(x,LA).

PROOF OF PROPOSITION 4.2. Let us introduce

A+ = B(x, r) ∪ ⋃
a∈∂A,a /∈K∞(ωA,0)

KωA,0(a) and A+,δ = ⋃
a∈A+

{[a,�]}.

Moreover, we set

A− = B(x, r − 1) ∪ ⋃
a∈∂A,a /∈K∞(ωA,0)

KωA,0(a) and A−,δ = ⋃
a∈A−

{[a,�]}.
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Let ωn be an exhaustion of ω and n0 such that B(x,LA(ω)) ∩ ω ⊂ ωn0 and y

is connected to ∂A in ωn0 . Set n ≥ n0, we denote θ(·) any unit flow from y to
ω(δ) \ ωn using only edges of ωn(δ). By Thomson’s principle, we get

Rω(δ)(y ↔ ω(δ) \ ωn

) − RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1
n

)
(4.7)

≤ ∑
e∈ω(δ)

(
rω(e)θ(e)2 − rωA,1

(e)i0(e)
2)

,

where i0(·) denotes the unit current flow from z to ωA,1(δ) \ ωA,1
n . We want to

apply the previous equation with a flow θ(·) which is close to the current flow i0(·).
Since the latter does not necessarily use only edges of ω we will need to redirect
the part flowing through A.

For a vertex a ∈ ∂A, we denote iA0 (a) = ∑
e∈ν,[a,a+e]∈A i0([a, a + e]) the quan-

tity of current entering A through a. Hence we can partition ∂A into:

1. a1, . . . , ak the vertices of ∂A ∩ K∞(ωA,0) such that iA0 (a) ≥ 0,
2. ak+1, . . . , al the vertices of ∂A ∩ K∞(ωA,0) such that iA0 (a) < 0,
3. al+1, . . . , am the vertices of ∂A \ K∞(ωA,0).

Moreover, we denote

i+0 (�) = ∑
e∈A+,δ

i0(e) and i−0 (�) = ∑
e∈A−,δ

i0(e).

Let us first assume y ∈ K∞(ωA,0), in particular y /∈ B(x, r − 1). The following
facts are classical (see, e.g., [15], Chapter 2):

1. For any e ∈ E(Zd), we have |i0(e)| ≤ 1.
2. The intensity entering B(x, r − 1) is equal to the intensity leaving B(x, r − 1),

that is, ∑
i≤k

iA0 (ai) = i−0 (�) − ∑
j∈[k+1,l]

iA0 (aj ).

Using the two previous remarks, we see it is possible to find a collection ν(i, j)

with i ∈ [1, k] and j ∈ [k + 1, l] ∪ {�} such that:

1. For all i, j , we have ν(i, j) ∈ [0,1].
2. For all j ∈ [k + 1, l], it holds that

∑
i≤k ν(i, j) = −iA0 (aj ).

3. For all i ∈ [1, k], we have
∑

j∈[k+1,l]∪{�} ν(i, j) = iA0 (ai).
4. It holds that

∑
i≤k ν(i,�) = i−0 (�),

which should be seen as a way of matching the flow entering and leaving B(x,

r − 1).
For i ∈ [1, k] and j ∈ [k + 1, l] we denote �P(i, j) one of the directed paths

between ai and aj in ωA,0 ∩BE(x,L1
A(ω)). By the definitions of L1

A, LA and HA,
we may choose �Q to be one of the directed paths from ∂A to HA(ω) in ωA,0 ∩
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FIG. 2. The flow θ0(·) in the case where y ∈ K∞(ωA,0).

BE(x,LA(ω)) with starting point aj0 and endpoint h1. Since ∂A ∩ K∞ 
= ∅, then
all vertices of ∂A connected to ∂BE(x,LA(ω)) are in K∞. Hence we necessarily
have j0 ≤ l and E(A+) ∩ �Q = ∅.

Finally let us notice that the values of the resistances rω([a,�]) and rωA,1
([a,

�]) might differ for a ∈ ∂A so that to get further simplifications in (4.7), it is
convenient to redirect the flow using these edges too. We introduce the unique
flow (see Figure 2) defined by

θ0(�e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if e ∈ A+,δ,

0, if e ∈ E(A+),

i0(�e) + i+0 (�), if �e = [h1,�],
i0(�e) + ∑

i≤k,j∈[k+1,l]
ν(i, j)1{�e ∈ �P(i, j)}

+ ∑
i≤k

ν(i,�)1{�e ∈ �P(i, j0)} + i+0 (�)1{�e ∈ �Q}

+ ∑
i≤l

i0([ai,�])1{�e ∈ �P(i, j0)}, else.

In words, we could say that we have redirected parts of i0(·) in order to go
around A and the flow going from A to � is first sent to aj0 , then to h1 and finally
to �. We have the following properties:

1. θ0(·) is a unit flow from y to ω(δ) \ ωn.
2. |θ0(e)| ≤ 5|∂A|2 for all e ∈ E(Zd).
3. θ0(·) coincides with i0(·) except on the edges of E(A+), A+,δ , Q, [h1,�] and

P(i, j) for i, j ≤ k + l.
4. rω(·) coincides with rωA,1

(·) except on the edges of E(A+) and A+,δ .
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Hence recalling (4.7) we get

Rω(δ)(y ↔ ω(δ) \ ωn

) − RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1
n

)
≤ ∑

e∈P(i,j)∪Q
rω(e)

(
θ0(e)

2 − i0(e)
2)

+ rω([h1,�])(i+0 (�) + i0([h1,�]))2

(4.8) − ∑
e∈A+,δ

rω(e)i0(e)
2 − rω([h1,�])i0([h1,�])2

≤ 50ρd |∂A|6Ld
Ae2λ(LA−x·��) + rω([h1,�])(i+0 (�) + i0([h1,�]))2

− ∑
e∈A+,δ

rω(e)i0(e)
2 − rω([h1,�])i0([h1,�])2,

where we used that rω(e) ≤ e2λ(LA−x·��) for e ∈ P(i, j) ∪ Q and that there are at
most (1 +|∂A|2)ρdLd

A ≤ 2ρd |∂A|2Ld
A such edges in those paths. These properties

are a consequence of the fact that P(i, j) and Q are contained in BE(x,L1
A(ω)).

Since |∂A| ≤ ρdrd ≤ ρdLd
A by the third property of Proposition 4.1, the first

term is of the form announced in the proposition, the remaining issue is to control
the remaining terms. First, we have by definition∑

e∈A+,δ

rω(e)i0(e)
2 = ∑

a∈A+
rω([a,�])i0([a,�])2,

and since for a ∈ K∞(ω), we have using (4.1) and (2.6) that

κ1e
−2λa·�� δ

1 − δ
≥ rω([a,�]) ≥ 1

κ1
e−2λa·�� δ

1 − δ
.

Furthermore, since for any a ∈ A+ we have a · �� ≤ x · �� + L1
A, and since h1 ∈

HA(ω) we have h1 · �� ≥ x · �� + ηL1
A ≥ a · �� + (η − 1)L1

A so that the definition of
η at (4.4) yields

1

κ1
e−2λa·�� ≥ 1

κ1
e−2λh1·��e2λ(η−1)L1

A(ω) ≥ 3κ1|B(0,L1
A)|e−2λh1·��.

Since A+ is contained in B(x,L1
A(ω)), the two previous equations yield

rω([a,�]) ≥ 3κ1|A+|e−2λh1·�� δ

1 − δ
≥ 3|A+|rω([h1,�]),

and hence ∑
e∈A+,δ

rω(e)i0(e)
2 + rω([h1,�])i0([h1,�])2

≥ rω([h1,�])
(
i0([h1,�])2 + 3|A+| ∑

e∈A+,δ

i0(e)
2
)

(4.9)

≥ rω([h1,�])(i0([h1,�])2 + 3i+0 (�)2)
,
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where we used Cauchy–Schwarz in the last inequality.
Hence the remaining terms in (4.8) verify if i+0 (�) ≤ i0([h1,�])

rω([h1,�])(i+0 (�) + i0([h1,�]))2

− ∑
e∈A+,δ

rω(e)i0(e)
2 − rω([h1,�])i0([h1,�])2

≤ rω([h1,�])(2i0([h1,�]))2 − rω([h1,�])i0([h1,�])2

≤ 3rω([h1,�])i0([h1,�])2 ≤ 3RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1
n

)
,

or if i+0 (�) > i0([h1,�]), we obtain using (4.9)

rω([h1,�])(i+0 (�) + i0([h1,�]))2

− ∑
e∈A+,δ

rω(e)i0(e)
2 − rω([h1,�])i0([h1,�])2

≤ rω([h1,�])(i0([h1,�])2 + 2i+0 (�)i0([h1,�]) + i+0 (�)2

− (
i0([h1,�])2 + 3i+0 (�)2)) ≤ 0.

In any case we get

rω([h1,�])(i+0 (�) + i0([h1,�]))2

− ∑
e∈A+,δ

rω(e)i0(e)
2 − rω([h1,�])i0([h1,�])2

≤ 3RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1
n

)
,

and so we have shown that

Rω(δ)(y ↔ ω(δ) \ ωn

) − 4RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1
n

) ≤ 50ρ7
dL7d

A e2λ(LA−x·��)

and letting n go to infinity yields the result in the case where y ∈ K∞(ωA,0).
Let us come back to the remaining case where y ∈ K∞(ω) \ K∞(ωA,0).

Keeping the same notation, we see that obviously there exists j1 ≤ l such that
aj1 ∈ K∞(ωA,0) which is connected in ω to y using only vertices of A+, and let
us denote �R path connecting aj1 and y in ω ∩ A+.

Introducing the flow (see Figure 3) defined by

θ ′
0(�e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if �e ∈ �R,

0, if e ∈ A+,δ ∪ E(A+) \ R,

i+0 (�) + i0([h1,�]), if �e = [h1,�],
i0(�e) + ∑

j≤l

iA0 (aj )1{�e ∈ �P(j1, j)} + ∑
i≤l

i0([ai,�])1{�e ∈ �P(i, j0)}

+ i−0 (�)1{�e ∈ �P(j1, j0)} + i+0 (�)1{�e ∈ �Q},
else,
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FIG. 3. The flow θ ′
0(·) in the case where y ∈ K∞(ω) \ K∞(ωA,0).

for which we can get the same properties as for θ0(·).
The computation of the energy of θ ′

0(·) is essentially similar to that of θ0(·) and
we get

Rω(δ)(y ↔ ω(δ) \ ωn

) − RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1
n

)
≤ γ1L

7d
A e2λ(LA−x·��) + ∑

e∈R
rω(e) + 3RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1

n

)
≤ γ2L

7d
A e2λ(LA−x·��) + 3RωA,1(δ)(y ↔ ωA,1(δ) \ ωA,1

n

)
since |R| ≤ |A+| ≤ ρdLd

A and rω(e) ≤ e2λ(LA−x·��) for e ∈ R. The result follows.
�

We set for x, y ∈ Z
d and Z ⊂ Z

d ,

Gδ,Z(x, y) = Eω
x

[
TZ∑
k=0

δk1{Xk = y}
]
,(4.10)

and similarly we can define Rω(x ↔ Z ∪ �) to be the limit of Rω(δ)(x ↔ Z ∪
{ω(δ) \ ωn}) where ωn is any increasing exhaustion of subgraphs of ω. We can
get:

LEMMA 4.2. For any δ < 1, we have for x, z ∈ Z
d ,

Gω
δ,{z}(x, x) = πω(δ)(x)Rω(x ↔ z ∪ �).
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In a way similar to the proof of Proposition 4.2, we get:

PROPOSITION 4.3. Set A = BE(x, r), δ < 1, z ∈ Z
d and ω ∈ �0. Suppose

that y, z ∈ K∞(ω) and ∂A ∩ K∞(ω) 
= ∅. We have

Rω(y ↔ z ∪ �) ≤ 4RωA,1
(y ↔ z ∪ �) + C1LA(ω)C2e2λ(LA(ω)−x·��),

where C1 and C2 depend only on d and �.

We assume, without loss of generality, the constants are the same as in Proposi-
tion 4.2.

PROOF OF PROPOSITION 4.3. This time let us denote i0(·) by the unit current
flow from y to z ∪ {ω(δ) \ ωn}.

The case where z ∈ K∞(ωA,0) can be treated using the same flows as in the
proof of Proposition 4.2, and we will not give further details.

In order to treat the case where z /∈ K∞(ωA,0) and y ∈ K∞(ωA,0), we keep the
notation of the previous proof for the partition (ai)1≤i≤m of ∂A, i+0 (�), i−0 (�),
A+ and A+,δ . We set

iz0 = ∑
e∈ν

i0([z + e, z]).
Similarly, we can find a family ν(i, j) with i ∈ [1, k] and j ∈ [k + 1, l] ∪ {�} ∪

{z} such that:

1. For all i, j , we have ν(i, j) ∈ [0,1].
2. For all j ∈ [k + 1, l], it holds that

∑
i≤k ν(i, j) = −iA0 (aj ).

3. We have
∑

i≤k ν(i,�) = i−0 (�).
4. It holds that

∑
i≤k ν(i, z) = iz0.

5. For all i ∈ [1, k], we have
∑

j∈[k+1,l]∪{�}∪{z} ν(i, j) = iA0 (ai).

We use again the same notation for P(i, j), Q, j0 and h1 and add an index
j2 ≤ l such that z is connected inside A+ to aj2 and �S the corresponding directed
path. We set

θ0(�e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iz0(�e), if �e ∈ �S ,
0, if e ∈ A+,δ ∪ E(A+) \ S ,
i0(�) + i0([h1,�]), if �e = [h1,�],
i0(�e) + i+0 (�)1{�e ∈ �Q}

+ ∑
i≤k,j∈[k+1,l]

ν(i, j)1{�e ∈ �P(i, j)}

+ ∑
i≤k

ν(i,�)1{�e ∈ �P(i, j0)}

+ ∑
i≤k

ν(i, z)1{�e ∈ �P(i, j2)}

+ ∑
i≤l

i0([ai,�])1{�e ∈ �P(i, j0)}, else,
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which is similar to the flow considered in Proposition 4.2 except that the flow nat-
urally supposed to escape at z is, instead of entering A, redirected to aj2 and from
there sent to z. Using this flow with Thomson’s principle yields similar computa-
tions as in Proposition 4.2, and thus we obtain a similar result.

The case where z /∈ K∞(ωA,0) and 0 /∈ K∞(ωA,0) can be easily adapted from
the proof above and the second part of the proof of Proposition 4.2. �

5. Percolation estimate. We want to give tail estimates on L1
A and LA for

some ball A = B(x, r). More precisely we want to show for any C > 0, we have
E1−ε[eCLA] < ∞ for ε small enough. The exact statement can be found in Propo-
sition 5.2. Let us recall the definitions of MA and TA at (4.2) and (4.3). We see
that all vertices of ∂A are either in finite clusters of ωA,0 [which are included in
B(x, r + TA)] or in the infinite cluster, and all those last ones are inter-connected
in B(x, r + MA). Hence we get by the two remarks above (4.6) that

L1
A ≤ r + max(MA,TA).(5.1)

Recalling the definitions of LA and HA below (4.4), our overall strategy for de-
riving an upper-bound on the tail of LA in the case ∂A∩K∞ 
= ∅ is the following:
if LA is large, then there are two cases.

1. The random variable L1
A is large. This means by (5.1) that either MA or TA is

large. The random variable MA cannot be large with high probability, since the
distance in the percolation cluster cannot be much larger than the distance in
Z

d (see Lemma 5.2) and neither can TA since finite clusters are small in the
supercritical regime (see Lemma 5.3).

2. Otherwise the distance from x to HA in the percolation cluster is large even
though it is not large in Z

d . Once again this is unlikely. In fact, for technical
reasons, it appears to be easier to show that the distance to HA ∩ Tx is small,
where Tx is some two-dimensional cone. For this we will need Lemma 5.5.

The following is fairly classical result about first passage percolation with a
minor twist due to the conditioning on the edges in A. We will outline the main
idea of the proof while skipping a topological argument. To get a fully-detailed
proof of the topological argument, we refer the reader to the proof of Theorem 1.4
in [10].

LEMMA 5.1. Set A = BE(x, r) and y, z ∈ Z
d \ B(x, r − 1). There exists a

nonincreasing function α1 : [0,1] → [0,1] such that for ε < ε1 and n ∈ N,

P1−ε

[
y

ωA,0↔ z, dωA,0(y, z) ≥ n + 2dZd\B(x,r−1)(y, z)
] ≤ 2α1(ε)

n+d
Zd \B(x,r−1)

(y,z)

and

P1−ε[y ωA,0↔ z, dωA,0(y, z) ≥ n + 2dZd (y, z) + 4dr] ≤ 2α1(ε)
n+d

Zd (y,z),

where ε1 and α1(·) depend only on d and limε→0 α1(ε) = 0.
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The main tool needed to prove Lemma 5.1 is a result of stochastic domination
from [17]. Next we will state a simplified version of this result which appeared as
Proposition 2.1 in [10]. We recall that a family {Yu,u ∈ Z

d} of random variables is
said to be k-dependent if for every a ∈ Z

d , Ya is independent of {Yu :‖u−a‖1 ≥ k}.

PROPOSITION 5.1. Let d, k be positive integers. There exists a nondecreasing
function α′ : [0,1] → [0,1] satisfying limτ→1 α′(τ ) = 1, such that the following
holds: if Y = {Yu,u ∈ Z

d} is a k-dependent family of random variables taking
values in {0,1} satisfying

for all u ∈ Z
d P (Yu = 1) ≥ τ,

then PY � (α′(τ )δ1 + (1 − α′(τ ))δ0)
⊗Z

d
, where “�” means stochastically domi-

nated.

Two vertices u, v are ∗-neighbors if ‖u − v‖∞ = 1. This topology naturally
induces a notion of ∗-connected component on vertices.

Let us say that a vertex u ∈ Z
d is ωA-wired if all edges [s, t] ∈ E(Zd) with

‖u − s‖∞ ≤ 1 and ‖u − t‖∞ ≤ 1 are open in ωA,1 [recall that A = BE(x, r)].
Otherwise it is called ωA-unwired.

We say that a vertex u ∈ Z
d \ B(x, r − 1) is ωA-strongly-wired if all y ∈

Z
d \ B(x, r − 1) such that ‖u − y‖∞ ≤ 2 are ωA-wired. Otherwise u is called ωA-

weakly-wired. It is plain that 1{u is ωA-strongly-wired} are γ1-dependent {0,1}-
valued random variables where γ1 depends only on d . We can thus use Proposi-
tion 5.1 with this family of random variables since we have

for all u ∈ Z
d P1−ε[1{u is ωA-strongly-wired} = 1] ≥ (1 − ε)γ1,

and that limε→0(1 − ε)γ1 = 1. This yields a function α′(·) which solely depends
on d .

Let us start the proof of Lemma 5.1.

PROOF OF LEMMA 5.1. Let γ be one of the shortest paths in Z
d \ B(x, r −

1) connecting y to z. For u ∈ Z
d \ B(x, r − 1), we define V (u)(ωA) to be the

∗-connected component of the ωA-unwired vertices of u and

V (ωA) = ⋃
u∈γ

V (u)(ωA).

Since y and z are connected in ωA,0, a topological argument (see Section 3
of [10] for details) proves there is an ωA,0-open path P from y to z using
only vertices in γ ∪ (V (ωA,0) + {−2,−1,0,1,2}d). In the event dωA,0(y, z) ≥
n + 2dZd\B(x,r−1)(y, z), this path P has m ≥ n + 2dZd\B(x,r−1)(y, z) + 1 vertices
and all vertices which are not in γ are ωA-weakly-wired. Thus there are at least
m − dZd\B(x,r−1)(y, z) − 1 of them.
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Since there are at most (2d)k paths of length k in Z
d \ B(x, r − 1) we get,

through a straightforward counting argument, that

P1−ε

[
y

ωA,0↔ z, dωA,0(y, z) ≥ n + dZd\B(x,r−1)(y, z)
]

≤ ∑
m≥n+2d

Zd \B(x,r−1)
(y,z)+1

(2d)m
(
1 − α′((1 − ε)γ1

))m−d
Zd \B(x,r−1)

(y,z)−1

≤ ∑
m≥n+2d

Zd \B(x,r−1)
(y,z)+1

(
(2d)3(

1 − α′((1 − ε)γ1
)))m−d

Zd \B(x,r−1)
(y,z)−1

,

where α′(·) is given by Proposition 5.1 and verifies limε→0 1 − α′((1 − ε)γ1) = 0.
Thus, the first part of the proposition is verified with α1(ε) := 1 − α′((1 − ε)γ1)

and ε1 small enough so that 1 − α′((1 − ε1)
γ1) ≤ (2d)−3/2.

The second part is a consequence of

d(y, z) ≤ dZd\B(x,r−1)(y, z) ≤ d(y, z) + 2dr. �

An easy consequence is the following tail estimate on MA [defined in (4.2)].

LEMMA 5.2. Set A = BE(x, r). There exists a nonincreasing function
α1 : [0,1] → [0,1] such that for ε < ε1 and n ∈ N,

P1−ε[MA ≥ n + 4dr] ≤ C3r
2dα1(ε)

n,

where C3, ε1 and α1(·) depend only on d and limε→0 α1(ε) = 0. The function α1(·)
is the same as in Lemma 5.1.

PROOF. Since |∂A| ≤ ρdrd , we have

P1−ε[MA ≥ n + 4dr]
≤ (ρdrd)2 max

a,b∈∂A
P1−ε[a ωA,0↔ b, dωA,0(a, b) ≥ n + 4dr] ≤ γ1r

2dα1(ε)
n,

where we used Lemma 5.1 since dZd\B(x,r−1)(a, b) ≤ 4dr for a, b ∈ ∂A. �

A set of n edges F disconnecting x from infinity in Z
d , that is, any infinite

simple path starting from x uses an edge of F , is called a Peierls’s contour of
size n. Asymptotics on the number μn of Peierls’s contours of size n have been
intensively studied (see, e.g., [14]). We will use the following bound proved in [20]
and cited in [14]:

μn ≤ 3n.

This enables us to prove the following tail estimate on TA [defined in (4.3)].



THE SPEED OF A BIASED RANDOM WALK ON A PERCOLATION CLUSTER 1739

LEMMA 5.3. Set A = BE(x, r). There exists a nonincreasing function
α2 : [0,1] → [0,1] such that for ε < ε2v

P1−ε[TA ≥ n] ≤ C4r
dα2(ε)

n,

where C4, ε2 and α2(·) depend only on d and limε→0 α2(ε) = 0.

PROOF. First we notice that for n ≥ 1,

P1−ε[TA ≥ n] ≤ ρdrd max
a∈∂A

P1−ε[a /∈ K∞(ωA,0), |∂EKωA,0
(a)| ≥ n].

For any a ∈ ∂A such that a /∈ K∞(ωA,0), we have that ∂EKωA,0
(a) is a finite

Peierls’s contour of size |∂EKωA,0
(a)| surrounding a which has to be closed in

ωA,0.
Because A is a ball, at least half of the edges of ∂EKωA,0

(a) have to be closed
in ω as well. Indeed, take [x, y] ∈ A ∩ ∂EKωA,0

(a) and denote x its endpoint in
KωA,0

(a). Then by definition of a Peierls’s contour there is i ≥ 0 such that [x +
i(x −y), x + (i +1)(x −y)] is in ∂EKωA,0

(a); let i0(x, y) be the smallest one (see
Figure 4 for a drawing).

If [x + i0(x, y)(x − y), x + (i0(x, y) + 1)(x − y)] were in A, since A is a ball,
all edges between x and x + (i0(x, y) + 1)(x − y) would too. This would imply
that all edges adjacent to x are in A, but since x is connected to a in ωA,0, we have
a = x. This is a contradiction since a ∈ ∂A and all edges adjacent to x = a are
in A. Hence [x + i0(x, y)(x − y), x + (i0(x, y) + 1)(x − y)] /∈ A.

FIG. 4. Half of the edges of ∂EKωA,0
(a) have to be closed in ω.
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Hence

ψ :

{
A ∩ ∂EKωA,0

(a) → ∂EKωA,0
(a) \ A,

[x, y] �→ [
x + i0(x, y)(x − y), x + (

i0(x, y) + 1
)
(x − y)

]
,

is an injection so that at least half of the edges of ∂EKωA,0
(a) are indeed closed

in ω. Let us denote m = |∂EKωA,0
(a)| ≥ n. Then we know that at least �m/2�

edges of ∂EKωA,0
(a) are closed. There are at most

( m
�m/2�

) ≤ γ12m ways of choos-
ing those edges. Thus we get for any a ∈ ∂A

P1−ε[a /∈ K∞(ωA,0), |∂EKωA,0
(a)| ≥ n]

≤ ∑
m≥n

(
m

�m/2�
)

μnε
m/2 ≤ γ1

∑
m≥n

6mεm/2 ≤ γ2(ε
1/2)n.

�

A direct consequence of (5.1), Lemmas 5.2 and 5.3 is the following tail estimate
on L1

A, defined below (4.4):

LEMMA 5.4. Set A = BE(x, r). There exists a nonincreasing function
α3 : [0,1] → [0,1] such that for ε < ε3 and n ∈ N,

P1−ε[L1
A ≥ n + C5r] ≤ C6r

2dα3(ε)
n,

where C5, C6, ε3 and α3(·) depend only on d and limε→0 α3(ε) = 0.

Recalling the definition of HA above (4.6), let us introduce

L′
A(ω) =

{∞, if ∀y ∈ ∂A,y /∈ K∞(ωA,0),
dωA,0(∂A,HA(ω)), otherwise,

(5.2)

it is plain that LA ≤ L′
A + r .

We need one more estimate before turning to the tail of L′
A (and thus LA).

Define the cone T = {ae(1) + be(2),0 ≤ b ≤ a/2 for a, b ∈ N}. It is a standard
percolation result that pc(T) < 1 (see Section 11.5 of [11]) and well known that
the infinite cluster is unique. We denote KT∞(ω) the unique infinite cluster of T

induced by the percolation ω, provided ε < 1 − pc(T).

LEMMA 5.5. There exists a nonincreasing function α4 : [0,1] → [0,1] so that
for ε < ε4 and n ∈ N,

P1−ε[dT(0,KT∞(ω)) ≥ 1 + n] ≤ C7α4(ε)
n,

where C7, α4(·) depend only on d and limε→0 α4(ε) = 0.

PROOF. Choose ε < 1 − pc(T), so that KT∞(ω) is well defined almost surely.
We emphasize that the following reasoning is in essence two dimensional, so we
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FIG. 5. The closed path in the dual lattice.

are allowed to use duality arguments (see [11], Section 11.2). We recall that an
edge of the dual lattice [i.e., of Z

2 + (1/2,1/2)] is called closed when it crosses a
closed edge of the original lattice.

The idea is to show that if dT(0,KT∞(ω)) = n + 1, there is a closed interface,
in the dual lattice, separating the infinite cluster from 0 in T. The length of this
interface grows linearly with n and so this event has very small probability.

If dT(0,KT∞(ω)) = n+1, then let x be a point for which this distance is reached;
x belongs to a set of at most γ1n points. Consider an edge e = [x, y] where
dT(0, y) = n, implying that y /∈ KT∞(ω). Let e′ denote the corresponding edge
in the dual lattice (see Figure 5). From each endpoint of e′ there is a closed path
in the dual lattice, such that the union of those path and e′ separates KT∞ from 0.
The union of e′ and the longest one of these paths has to be at least of length n/γ2.
Thus there has to be a closed path P in the dual lattice of length m ≥ n/γ2 starting
from one of the endpoints of e′ and exiting T.

Thus since there are at most 4m paths of length m starting at a given point, we
get for ε small enough

P1−ε[dT(0,KT∞(ω)) = 1 + n] ≤ 2γ1n
∑

m≥n/γ2

4mεm ≤ γ3n(4ε)n/γ2,

and the result follows since for n large enough γ3n ≤ 2n we have for n large enough

P1−ε[dT(0,KT∞(ω)) ≥ 1 + n] ≤ ∑
m≥n

γ3m(4ε)m/γ2 ≤ γ4(2
γ5ε1/γ2)n.

�

Now we turn to the study of the asymptotics of LA.



1742 A. FRIBERGH

PROPOSITION 5.2. Set A = BE(x, r). There exists a nonincreasing function
α : [0,1] → [0,1] so that for ε < ε0 and n ∈ N,

P1−ε[LA ≥ n + C8r] ≤ C9r
2dnα(ε)n,

where C8, C9, ε0 and α(·) depend only on d and � and limε→0 α(ε) = 0.

PROOF. Let us notice that two cases emerge. First let us consider that we are
on the event {∂A ∩ K∞ = ∅} in which case we have by (4.5)

LA(ω) ≤ min{n ≥ 0, ∂A is not connected to ∂B(x,n)} ≤ r + TA(ω),

and hence because of Lemma 5.3 we have for C8 > 1

P[∂A ∩ K∞ = ∅,LA ≥ n + C8r] ≤ C4r
2dα2(ε)

n.(5.3)

We are now interested in the case where ∂A∩K∞ 
= ∅. It is sufficient to give an
upper bound for L′

A [defined at (5.2)] since LA ≤ L′
A + r . Set ε < ε1 ∧ε2 ∧ε3 ∧ε4.

We notice using Lemma 5.4 that

P1−ε[∂A ∩ K∞ 
= ∅,L′
A ≥ n + (C8 − 1)r]

≤ P1−ε[L1
A ≥ n/(8ηd) + C5r]

+ P1−ε[∂A ∩ K∞ 
= ∅,L1
A ≤ n/(8ηd) + C5r,L

′
A ≥ n + (C8 − 1)r](5.4)

≤ P1−ε[∂A ∩ K∞ 
= ∅,L1
A ≤ n/(8ηd) + C5r,L

′
A ≥ n + (C8 − 1)r]

+ C6r
2dα1(ε)

n/(8ηd).

We denote hx
m the half-space {y, y · �� ≥ x · �� + m}. We have

P1−ε[∂A ∩ K∞ 
= ∅,L1
A ≤ n/(8ηd) + C5r,L

′
A ≥ n + (C8 − 1)r]

≤ P1−ε

[
∂A ∩ K∞ 
= ∅, dωA,0

(
∂A,hx

n/(8d)+ηC5r

) ≥ n + (C8 − 1)r
]

(5.5)

≤ |∂A| max
y∈∂A

P1−ε

[
y

ωA,0↔ ∞, dωA,0
(
y,hx

n/(8d)+γ1r

) ≥ n + (C8 − 1)r
]
.

Set y ∈ ∂A, and let us denote γ2, a constant which will be chosen large enough.
Using the uniqueness of the infinite cluster we get

P1−ε

[
dZd

(
y,K∞(ωA,0) ∩ hx

n/(8d)+γ1r
∩ {y + T}) ≥ n/2 + γ2r

]
≤ P1−ε

[
dy+T

(
y,Ky+T∞ (ωA,0) ∩ hx

n/(8d)+γ1r

) ≥ n/2 + γ2r
]

(5.6)

≤ P1−ε

[
dy+T

(
y,Ky+T∞ (ω) ∩ hx

n/(8d)+γ1r

) ≥ n/2 + γ2r
]
,

where we have to suppose that γ2 ≥ 2 for the last inequality. Indeed, then
dy+T(y,K

y+T∞ (ω)) = dy+T(y,K
y+T∞ (ωA,0)) on the event {dy+T(y,K

y+T∞ (ω)) ≥
γ2r} since the distance to the infinite cluster is greater than the radius of A.
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Moreover, since e(1) · �� ≥ 1/
√

d , we notice that

max
z∈∂hx

m∩T

dz+T(x, y) ≤ 2
√

dm.

Applying this for m = n/(8d) + γ1r , we get that

P1−ε

[
dy+T

(
y,Ky+T∞ (ω) ∩ hx

n/(8d)+γ1r

) ≥ n/2 + γ2r
]

(5.7)
= P1−ε[dy+T(y,Ky+T∞ (ω)) ≥ n/2 + γ2r],

where γ2 is large enough so that 2
√

d(n/(8d) + γ1r) ≤ n/2 + γ2r . Indeed, if
dy+T(y,K

y+T∞ (ω)) ≥ n/2 + γ2r , then K
y+T∞ (ω) ⊂ h

y
n/(8d)+γ1r

.
Equations (5.6) and (5.7) used with Lemma 5.5 yield that for γ3 large enough

and any y ∈ ∂A,

P1−ε

[
dZd

(
y,K∞(ωA,0) ∩ hx

n/(8d)+γ1r
∩ {y + T}) ≥ n/2 + γ3r

] ≤ γ4α4(ε)
n/2.

If we use Lemma 5.1 and the previous inequality, for C8 large enough so that
n + (C8 − 1)r ≥ 2(n/2 + γ3r) + 4dr ,

P1−ε

[
y ∈ KωA,0

∞ , dωA,0
(
y,hx

n/(8d)+γ1r

) ≥ n + C8r
]

≤ P1−ε

[
dZd

(
y,K∞(ωA,0) ∩ hx

n/(8d)+γ1r
∩ {y + T}) ≥ n/2 + γ3r

]
+ ∑

z∈∂B
Zd (y,�n/2+γ3r�)∩{y+T}

P1−ε[z ωA,0↔ y,(5.8)

dωA,0(z, y) ≥ 2d(y, z) + 4dr]
≤ γ4α4(ε)

n/2 + γ5(n + γ3r)α1(ε)
n/2 ≤ γ6rnα5(ε)

n,

where ε < ε5 depends only on d and � for some α5(·) such that limε→0 α5(ε) = 0.
Adding up (5.4), (5.5) and (5.8) we get

P1−ε[∂A ∩ K∞ 
= ∅,L′
A ≥ n + C8r] ≤ γ7nr2d(

α1(ε)
n/(8ηd) + α5(ε)

n)
≤ γ8nr2dα(ε)n,

where α(ε) := α1(ε)
1/(8ηd) + α5(ε). As we have limε→0 α(ε) = 0, this last equa-

tion and (5.3) completes the proof of Proposition 5.2. �

Essentially by replacing (Zd,E(Zd)) by (Zd,E(Zd \ [z, z + e])) and ω by ωz,e

(resp., ω(z,2)=e) along with some minor modifications we obtain

PROPOSITION 5.3. Set A = BE(x, r), z ∈ Z
d and e ∈ ν. There exists a non-

increasing function α : [0,1] → [0,1] so that for ε < ε0 and n ∈ N,

P1−ε[LA(ωz,e) ≥ n + C8r] ≤ C9r
2dnα(ε)n
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and

P1−ε

[
LA

(
ω(z,2)=e) ≥ n + C8r

] ≤ C9r
2dnα(ε)n,

where C8, C9, ε0 and α(·) depend only on d and � and limε→0 α(ε) = 0.

Also by changing ω by ωz,∅ (resp., ω(z,2)=∅) we can obtain

PROPOSITION 5.4. Set A = BE(x, r), z ∈ Z
d . There exists a nonincreasing

function α : [0,1] → [0,1] so that for ε < ε0 and n ∈ N,

P1−ε[LA(ωz,∅) ≥ n + C8r] ≤ C9r
2dnα(ε)n

and

P1−ε

[
LA

(
ω(z,2)=∅

) ≥ n + C8r
] ≤ C9r

2dnα(ε)n,

where C8, C9, ε0 and α(·) depend only on d and � and limε→0 α(ε) = 0.

Here we assume without loss of generality that the constants are the same as in
Proposition 5.2.

6. Continuity of the speed at high density. We now have the necessary tools
to study the central quantities which appeared in (3.2).

PROPOSITION 6.1. For 0 < ε < ε5, A ⊂ ν, A 
= ν and δ ≥ 1/2

E[1{I}Gω
δ (0, z)|C(z) = A]

E1−ε[1{I}Gω
δ (0, z)] = E1−ε[1{I(ωz,A)}Gωz,A

δ (0, z)]
E1−ε[1{I}Gω

δ (0, z)] < C,

where C and ε5 depend only on � and d .

This section is devoted to the proof of this proposition. We have

E[1{I}Gω
δ (0, z)] ≥ E[1{C(z) = ∅}1{I}Gω

δ (0, z)]
= E[1{C(z) = ∅}1{I(ωz,∅)}Gωz,∅

δ (0, z)]
= P[C(z) = ∅]E[1{I(ωz,∅)}Gωz,∅

δ (0, z)].
For ε < 1/4 ≤ 1 − pc(d), we have P[C(z) = ∅] > γ1 > 0 for γ1 independent

of ε, so that

E[1{I}Gω
δ (0, z)] ≥ γ1E[1{I(ωz,∅)}Gωz,∅

δ (0, z)].(6.1)

Now we want a similar upper bound for the numerator of Proposition 6.1. Let
A ⊂ ν, A 
= ν, and then by (2.6) and (4.1) we obtain

1

κ1
e2λz·�� 1

δ
≤ πωz,A(δ)(z) ≤ κ1e

2λz·�� 1

δ
.(6.2)
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This equation combined with Lemma 4.1 yields

E[1{I(ωz,A)}Gωz,A

δ (0, z)]
(6.3)

≤ κ1e
2λz·��

δ
E

[
1{I(ωz,A)}P ωz,A

0 [Tz < τδ]Rωz,A

(z ↔ �)
]
.

If z /∈ K∞(ωz,A), then P ωz,A

0 [Tz < τδ] = 0. Otherwise we can apply Proposi-
tion 4.2 to get

Rωz,A

δ (z ↔ �) ≤ 4Rωz,∅

δ (z ↔ �) + C1Lz(ω)C2e2λ(Lz(ω)−z·��),(6.4)

where we used notation from (4.6).
Moreover we notice that P ωz,A

0 [Tz < τδ] ≤ P ωz,∅

0 [Tz < τδ] and 1{I(ωz,A)} ≤
1{I(ωz,∅)}. Then inserting (6.4) into (6.3), using Lemma 4.1 and (6.2) we get
since δ ≥ 1/2

E1−ε[1{I(ωz,A)}Gωz,A

δ (0, z)]
≤ 4κ2

1 E[1{I(ωz,∅)}Gωz,∅

δ (0, z)](6.5)

+ 2C1κ1E
[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]Lz(ω)C2e2λLz(ω)].
Now we want to prove that even though hitting probabilities depend on the

whole environment their correlation with “local” quantities are weak in some
sense. Let us now make explicit the two properties which are crucial for what
we call “local quantity” (such as Lz) which are:

1. the second property of Proposition 4.1;
2. the existence of arbitrarily large exponential moments for ε small enough, such

as those obtained in Proposition 5.2.

We obtain the following lemma.

LEMMA 6.1. Set δ ≥ 1/2. Then

E
[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]Lz(ω)C2e2λLz(ω)]
≤ C10E

[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]]E[
Lz(ω)C11eC12Lz(ω)],

where C10, C11 and C12 depend only on d and �.

Let us prove this lemma.

PROOF OF LEMMA 6.1. First let us notice that the third property in Proposi-
tion 4.1 implies that Lz is finite. Set k ∈ N

∗, recall that the event {Lz = k} depends
only on edges in BE(z, k) by the second property of Proposition 4.1.
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We have 1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ] ≤ 1{∂B(z, k) ↔ ∞}P ωz,∅

0 [Tz < τδ]. As-
sume first that 0 /∈ B(z, k),

E
[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]Lz(ω)C2e2λLz(ω)|Lz = k
]

= kC2e2λkE
[
1{∂B(z, k) ↔ ∞}P ωz,∅

0 [Tz < τδ] | Lz = k
]

(6.6)

≤ ρdkγ1e2λkE
[
1{∂B(z, k) ↔ ∞} max

x∈∂B(z,k)
P ω

0
[
Tx < τδ, Tx = T∂B(z,k)

]]
,

indeed |∂B(z, k)| ≤ ρdkd . Here we implicitly used that 0 /∈ B(z, k). Now the in-
tegrand of the last term does not depend on the configuration of the edges in
BE(z, k), which allowed us to get rid of the conditioning by the second property
of Proposition 4.1.

We denote x0(ω) a vertex of ∂B(z, k) connected in ω to infinity without using
edges of BE(z, k), and accordingly we introduce {a ⇔ b}, the event where a is
connected in ω to b using no edges of BE(z, k). Again we point out that the random
variable x0(ω) is measurable with respect to {ω(e), e /∈ BE(z, k)}.

In case there are multiple choices in the definition of the random variable
x0(ω), we pick one of the choices according to some predetermined order on
the vertices of Z

d . In case x0(ω) is not properly defined, that is, when ∂B(z, k)

is not connected to infinity, we set x0(ω) = z. With this definition we have
{x0 ⇔ ∞} = {∂B(z, k) ↔ ∞}.

Let us set x1(ω), the point for which the maximum in the last line of (6.6)
is achieved. This random point also depends only on the set of configurations in
E(Zd) \ BE(z, k), and the same is true for P ω

0 [Tx0 < τδ,Tx0 = T∂B(z,k)]. Once
again, if there are multiple choices in the definition of x1(ω), we pick one of the
choices according to some predetermined order on the vertices of Z

d .
The definition of x1 implies that

x1(ω) ⇔ 0 if max
x∈∂B(z,k)

P ω
0

[
Tx < τδ, Tx = T∂B(z,k)

]
> 0.

Now let P0 be a path of k edges in Z
d between z and x0, and P1 a path of k

edges in Z
d between z and x1, which are not necessarily disjoint. As those paths

are contained in BE(z, k), we get

E
[
1{∂B(z, k) ↔ ∞}1{x1 ⇔ 0}P ω

0
[
Tx1 < τδ,Tx1 = T∂B(z,k)

]]
= E

[
1{x0 ⇔ ∞}1{x1 ⇔ 0}P ω

0
[
Tx1 < τδ,Tx1 = T∂B(z,k)

]|P0 ∪ P1 ∈ ω
]

(6.7)

≤ 1

P[P0 ∪ P1 ∈ ω]E
[
1{P0 ∪ P1 ∈ ω}1{x0 ⇔ ∞}

× 1{x1 ⇔ 0}P ω
0 [Tx1 < τδ]].

Then we see that since we have ε < 1/2, by assumption (2.1)

P[P0 ∪ P1 ∈ ω] ≥ (1 − ε)2k ≥ 1

4k
.(6.8)
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Moreover, on the event P0 ∈ ω, Markov’s property yields

(δκ0)
kP ω

0 [Tx1 < τδ] ≤ P ω
0 [Tz < τδ].(6.9)

Since δ ≥ 1/2,

E
[
1{P0 ∪ P1 ∈ ω}1{x0 ⇔ ∞}1{x1 ⇔ 0}P ω

0 [Tx1 < τδ]]
≤ (2/κ0)

kE
[
1{P0 ∪ P1 ∈ ω}1{x0 ⇔ ∞}1{x1 ⇔ 0}P ω

0 [Tz < τδ]](6.10)

≤ (2/κ0)
kE

[
1{I}P ω

0 [Tz < τδ]],
since on 1{P0 ∪ P1 ∈ ω}1{x0 ⇔ ∞}1{x1 ⇔ 0}, we have 0 ↔ x0 ↔ z ↔ x1 ↔ ∞
and which means that I occurs.

Collecting (6.6)–(6.8), (6.10), noticing that 1{I} ≤ 1{I(ωz,∅)} and P ω
0 [Tz <

τδ] ≤ P ωz,∅

0 [Tz < τδ], we get

E
[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]Lz(ω)C2e2λLz(ω) | Lz = k
]

(6.11)
≤ ρdkγ1(8e2λ/κ0)

kE
[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]].
Let us come back to the case where 0 ∈ B(z, k). We can obtain the same re-

sult by saying that P ωz,∅

0 [Tz < τδ] ≤ 1 in (6.6) and formally replacing P ω
0 [Tx <

τδ, Tx = T∂B(z,k)] by 1 for any x ∈ ∂B(z, k) and x1 by 0 in the whole previous
proof. The conclusion of this is that (6.11) holds in any case.

The result follows from an integration over all the events {Lz = k} for k ∈ N

since by (6.11), we obtain

E
[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]Lz(ω)C2e2λLz(ω)]
≤ E

[ ∞∑
k=1

P[Lz = k]E[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]Lz(ω)C2e2λLz(ω) | Lz = k
]]

≤ ρdE

[ ∞∑
k=1

P[Lz = k]kγ1(8e2λ/κ0)
kE

[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]]
]

= ρdE[Lγ1
z (8e2λ/κ0)

Lz]E[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]]. �

Let us now prove Proposition 6.1.

PROOF OF PROPOSITION 6.1. We can apply Proposition 5.2 to get that for
0 < ε < ε6

E
[
Lz(ω)C11eC12Lz(ω)] ≤ ∑

k≥0

kC11eC12kP[Lz ≥ k] < C13 < ∞,
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where ε6 is such that α0(ε6) < e−C12/2 and, as C13, depends only on d and �. Then
recalling (6.5), using Lemma 6.1 with the previous equation we obtain

E[1{I(ωz,A)}Gωz,A

δ (0, z)]
≤ 4κ2

1 E[1{I(ωz,∅)}Gωz,∅

δ (0, z)]
+ 2C1C10C13κ1E

[
1{I(ωz,∅)}P ωz,∅

0 [Tz < τδ]]
≤ γ2E[1{I(ωz,∅)}Gωz,∅

δ (0, z)].
Using the preceding equation with (6.1) completes the proof of Proposition 6.1.

�

We are now able to prove the following:

PROPOSITION 6.2. For any d ≥ 2, ε < ε5 ∧ ε6 and � ∈ R
d we have

v�(1 − ε) = d∅ + O(ε).

PROOF. First notice that

P[C(z) = ∅] = 1 + O(ε) and P[C(z) 
= ∅] = O(ε).

Using (3.1) and Proposition 6.1 we get for δ ≥ 1/2,

d̂ε
δ (z) = d∅

E1−ε[1{I}1{C(z) = ∅}Gω
δ (0, z)]

E1−ε[1{I}Gω
δ (0, z)] + O(ε),(6.12)

where the O(·) depends only on d and �. But using Proposition 6.1 again yields∣∣∣∣E1−ε[1{I}1{C(z) = ∅}Gω
δ (0, z)]

E1−ε[1{I}Gω
δ (0, z)] − 1

∣∣∣∣
=

∑
A⊂ν,A 
=∅ E1−ε[1{I}1{C(z) = A}Gω

δ (0, z)]
E1−ε[1{I}Gω

δ (0, z)]

= ∑
A⊂ν,A 
=∅

P1−ε[C(z) = A]E1−ε[1{I}Gω
δ (0, z) | C(z) = A]

E1−ε[1{I}Gω
δ (0, z)]

≤ O(ε),

and thus

d̂ε
δ (z) − d∅ = O(ε),

where the O(·) depends only on d and �. Recalling Proposition 3.3, we get

v�(1 − ε) = d∅ + O(ε). �
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7. Derivative of the speed at high density. Next we want to obtain the deriv-
ative of the velocity with respect to the percolation parameter.

In this section we fix z ∈ Z
d . Using (3.1) with Proposition 6.1 we can get the

first order of Kalikow’s drift

dω̂
δ (z) − d∅ = ε

(∑
e∈ν

E1−ε[1{I(ωz,e)}Gωz,e

δ (0, z)]
E1−ε[1{I(ω)}Gω

δ (0, z)] (de − d∅)

)
+ Oz(ε

2),(7.1)

where

sup
z∈Zd

|Oz(ε
2)| ≤ O(ε2).(7.2)

The remaining issue is the dependence of the expectation with respect to ε.
For any A ⊂ BE(0,2) we denote

{(z,2) = A} = {{e ∈ BE(z,2), e ∈ ω} = BE(z,2) \ {z + A}}.
7.1. Technical estimate. Let us prove the following technical lemma which

will simplify the rest of the proof. In words, it states that the configuration BE(z,2)

is typically as open as it can be. For example, without any condition all edges are
open, if [z, z + e] is forced to be closed then it will be the only closed edge in
BE(z,2). One could continue like this, but those two cases are the only ones we
need for the rest of the paper.

LEMMA 7.1. We have for δ ≥ 1/2, z ∈ Z
d and e ∈ ν,

E[1{I}Gω
δ (0, z)] ≤ (

1 + O(ε)
)
E[1{I}1{(z,2) = ∅}Gω

δ (0, z)]
and

E[1{I(ωz,e)}Gωz,e

δ (0, z)] ≤ (
1 + O(ε)

)
E[1{I(ωz,e)}1{(z,2) = ∅}Gωz,e

δ (0, z)],
where the O(·) depends only on d and �.

The proof of this lemma is independent of the rest of the paper so it can be
skipped in a first reading.

PROOF OF LEMMA 7.1. Due to the strong similarities with the proof of
Lemma 6.1 we will simply sketch the proof of the lemma.

Let us prove the second inequality which is the most complicated. We have

E[1{I(ωz,e)}Gωz,e

δ (0, z)]
(7.3)

= ∑
A∈⊂BE(z,2)

A 
=∅

P[(z,2) = A]E[1{I(ωz,e)}Gωz,e

δ (0, z) | (z,2) = A].
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Let us show that for any A ⊂ BE(z,2), A 
= ∅

E[1{I(ωz,e)}Gωz,e

δ (0, z) | (z,2) = A]
E[1{I(ωz,e)}Gωz,e

δ (0, z)] < γ1,(7.4)

where γ1 depends only on d and �. The method is the same as before:

1. We apply Lemma 4.1 to decompose the Green function into P
ω

z,e
(z,2),A

0 [Tz < τδ]×
R

ω
z,e
(z,2),A[z ↔ �]e2λz·��.

2. With Lemma 4.2 we decompose the resistance appearing in (1) into

Rωz,e [z ↔ �] ≤ 4R
ω

z,e
(z,2),1[z ↔ �] + C1Lz,2(ω

z,e)C2e2λ(Lz,2(ω
z,e)−x·��).

3. Similarly to (6.6) in the case k = 2 we can obtain

E
[
1
{

I
(
ω

z,e
(z,2),A

)}
P

ω
z,e
(z,2),A

0 [Tz < τδ]Rω
z,e
(z,2),1[z ↔ �]]

≤ γ2E
[
1{∂B(z,2) ↔ ∞}
× max

x∈∂B(z,2)
P ω

0
[
Tx < τδ, Tx = T∂B(z,2)

]
R

ω
z,e
(z,2),1[z ↔ �]

]
,

and repeating the steps (6.6)–(6.9) and (6.10) for k = 2 we prove that

E[1{I(ω
z,e
(z,2),A)}P ω

z,e
(z,2),A

0 [Tz < τδ]Rω
z,e
(z,2),1[z ↔ �]]e2λz·��

E[1{I(ωz,e)}Gωz,e

δ (0, z)] < γ3.

The only difference is that we impose P0 (resp., P1) to be a path in BE(z,2) \
[z, z + e] of length at most 4 connecting z and x0 (resp., x1) and that (6.9)
becomes

(δκ0)
4P ω

0 [Tx1 < τδ] ≤ P ωz,e

0 [Tz < τδ].
4. We can use arguments similar to the ones in the proof of Lemma 6.1 [essentially

repeating the steps (6.6)–(6.9) and (6.10)] to prove that

E[1{I(ω
z,e
(z,2),A)}P ω

z,e
(z,2),A

0 [Tz < τδ]LC2
z,2(ω

z,e)e2λLz,2(ω
z,e)]

E[1{I(ωz,e)}Gωz,∅

δ (0, z)] < γ4,

since Lz,2(ω
z,e) has arbitrarily large exponential moments under the mea-

sure P[·], for ε small enough by Proposition 5.3. Here we also need P0 (resp.,
P1) to be a path in BE(z, k) \ [z, z + e] of length at most k + 2 connecting z

and x0 (resp., x1) and that (6.9) becomes

(δκ0)
k+2P ω

0 [Tx1 < τδ] ≤ P ωz,e

0 [Tz < τδ].
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This reasoning yields (7.4) with γ1 = 4γ3 + C1γ4. Now, equations (7.4) and
(7.3) imply that

E[1{I(ωz,e)}Gωz,e

δ (0, z)]
≤ O(ε)E[1{I(ωz,e)}Gωz,e

δ (0, z)]
+ E[1{I(ωz,e)}1{(z,2) = ∅}Gωz,e

δ (0, z)],
and it follows that

E[1{I(ωz,e)}Gωz,e

δ (0, z)]
≤ (

1 + O(ε)
)
E[1{I}1{(z,2) = ∅}Gωz,e

δ (0, z)].
This completes the proof of the second inequality of the lemma. The proof for

the first inequality is the same except that it uses Proposition 5.4. �

7.2. Another perturbed environment of Kalikow. We recall that our aim is to
compute

E1−ε[1{I(ωz,e)}Gωz,e

δ (0, z)]
E1−ε[1{I}Gω

δ (0, z)] ,

and we will start by studying the numerator. Our aim is to relate it to the denomi-
nator, for this we need to express the quantities appearing in the environment ωz,e

in terms of similar quantities in the environment ωz,∅, which is the environment
that naturally arises for p = 1 − ε close to 1.

We can link the Green functions of two Markov operators P and P ′, since for
n ≥ 0

GP ′
δ = GP

δ +
n∑

k=1

δk(GP
δ (P ′ − P)

)k
GP

δ

(7.5)
+ δn+1(

GP
δ (P ′ − P)

)n+1
GP ′

δ .

In our case we close one edge which changes the transition probabilities at two
sites, so that the previous formula applied for n = 0,

Gωz,e

δ (0, z) = Gωz,∅

δ (0, z)

+ δGωz,∅

δ (0, z)
∑
e′∈ν

(
pe(e′) − p∅(e′)

)
Gωz,e

δ (z + e′, z)

+ δGωz,∅

δ (0, z + e)
∑
e′∈ν

(
pωz,e

(z + e, z + e + e′)(7.6)

− pωz,∅

(z + e, z + e + e′)
)

× Gωz,e

δ (z + e + e′, z),
where we used a notation from (2.4).
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Typically the configuration at z + e is {−e}. This intuition follows from an easy
consequence of Lemma 7.1 which is for all z ∈ Z

d and e ∈ ν∣∣∣∣ E1−ε[1{I(ωz,e)}Gωz,e

δ (0, z)]
E1−ε[1{I(ωz,e)}1{(z,2) = ∅}Gωz,e

δ (0, z)] − 1
∣∣∣∣ ≤ O(ε),

which yields that(
1 + Oz,e(ε)

)
E1−ε[1{I(ωz,e)}Gωz,e

δ (0, z)]
= E1−ε

[
1{I(ωz,e)}1{(z,2) = ∅}

×
[
Gωz,∅

δ (0, z) + δGωz,∅

δ (0, z)
∑
e′∈ν

(
pe(e′) − p∅(e′)

)
(7.7)

× Gωz,e

δ (z + e′, z)

+ δGωz,∅

δ (0, z + e)
∑
e′∈ν

(
p−e(e′) − p∅(e′)

)
× Gωz,e

δ (z + e + e′, z)
]]

,

where supz∈Zd ,e∈ν |Oz,e(ε)| ≤ O(ε).
We have managed to express the quantities in the environment ωz,e with quan-

tities in ωz,∅. Now we are led to look at quantities such as

E1−ε[1{I(ωz,e)}1{(z,2) = ∅}Gωz,∅

δ (0, z)Gωz,e

δ (z + e′, z)](7.8)

and

E1−ε[1{I(ωz,e)}1{(z,2) = ∅}Gωz,∅

δ (0, z + e)Gωz,e

δ (z + e + e′, z)].(7.9)

From now on we fix e ∈ ν. In order to handle the first type of terms (the proof
is similar for the second term) we introduce the measure

dμ̃z = 1{I}1{(z,2) = e}Gωz,∅

δ (0, z)

E1−ε[1{I}1{(z,2) = e}Gωz,∅

δ (0, z)] dP1−ε,

and for e+ ∈ ν we introduce the Kalikow environment, corresponding to this mea-
sure on the environment and the point z + e+, defined by

p̃z,e,z+e+(y, y + e′)

= Eμ̃z[Gω
δ (z + e+, y)pω(y, y + e′)]
Eμ̃z[Gω

δ (z + e+, y)]

= E1−ε[1{I}1{(z,2) = e}Gωz,∅

δ (0, z)Gω
δ (z + e+, y)pω(y, y + e′)]

E1−ε[1{I}1{(z,2) = e}Gωz,∅

δ (0, z)Gω
δ (z + e+, y)]
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= (
E1−ε

[
1
{

I
(
ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)

× Gω(z,2)=e

δ (z + e+, y)pω(z,2)=e

(y, y + e′)
])

× (
E1−ε

[
1
{

I
(
ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)Gω(z,2)=e

δ (z + e+, y)
])−1

,

where we used the notation from (2.2) and (2.3).
Once again since Kalikow’s property geometrically killed random walks does

not use any properties on the measure of the environment, we have for any z ∈ Z
d

and e, e′ ∈ ν a property similar to Proposition 3.1, which allows us to relate the
quantity in (7.8) to

G
p̃z,e,z+e′
δ (z + e′, z)

= E1−ε[1{I}1{(z,2) = e}Gωz,∅

δ (0, z)Gω
δ (z + e′, z)]

E1−ε[1{I}1{(z,2) = e}Gωz,∅

δ (0, z)]
(7.10)

= E1−ε[1{I(ωz,e)}1{(z,2) = e}Gωz,∅

δ (0, z)Gωz,e

δ (z + e′, z)]
E1−ε[1{I(ωz,e)}1{(z,2) = e}Gωz,∅

δ (0, z)]

= E1−ε[1{I(ωz,e)}1{(z,2) = ∅}Gωz,∅

δ (0, z)Gωz,e

δ (z + e′, z)]
E1−ε[1{I}1{(z,2) = ∅}Gω

δ (0, z)]
since on {(z,2) = ∅} or {(z,2) = e} we have 1{I} = 1{I(ωz,e)}.

The numerator of the previous display is exactly (7.8). Hence for us it is suffi-

cient to approximate G
p̃z,e,z+e′
δ (z + e′, z) to understand it and consequently to un-

derstand the derivative of the speed. We are now led to studying p̃z,e,z+e′(y, y+e′).
A similar reasoning could be made to understand (7.9).

Decomposing p̃(y, y + e′) according to the configurations at y, we get

p̃z,e,z+e+(y, y + e′)

= ∑
A⊂ν,A 
=ν

P1−ε[C(y) = A]

× (
E1−ε

[
1
{

I
(
ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)

× Gω(z,2)=e

δ (z + e+, y) | C(y) = A
])

(7.11)

× (
E1−ε

[
1
{

I
(
ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)

× Gω(z,2)=e

δ (z + e+, y)
])−1

× p
ω

(z,2)=e
y,A (y, y + e′).

Let us denote a+ = 0 ∨ a and from now on we will omit the subscript in
p̃z,e,z+e+ . The following proposition states that p̃ and p

z,e
0 are close in some sense.
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Using this, we will prove in the next section that it implies that G
p̃z,e,z+e′
δ (z + e′, z)

and G
p

z,e
0

δ (z + e′, z) are close.

PROPOSITION 7.1. For ε < ε7 and z, e, e+ ∈ Z
d × ν2 and δ ∈ (1/2,1), we

have for y ∈ Z
d , e′ ∈ ν

|p̃(y, y + e′) − p
z,e
0 (y, y + e′)| ≤ (

C14e
C15((z−y)·��)+)

ε,

where ε7, C14 and C15 depends on � and d . We recall that p
z,e
0 is the environment

where only the edge [z, z + e] is closed.

This proposition will be used to link the Green function of p̃z,e,z+e+ to the one
of p

z,e
0 . In view of (7.11) the previous proposition comes from the following.

PROPOSITION 7.2. For 0 < ε < ε8, y, z ∈ Z
d and A ⊂ ν, A 
= ν

E1−ε[1{I(ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)Gω(z,2)=e

δ (z + e+, y) | C(y) = A]
E1−ε[1{I(ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)Gω(z,2)=e

δ (z + e+, y)] | C(y) = ∅]
≤ C16e

C17((z−y)·��)+

for ε8, C16, C17 depending only on � and d for δ ≥ 1/2.

In order to prove Proposition 7.1, once we have noticed that we have P[C(y) =
∅] ≥ γ1 and that

E1−ε

[
1
{

I
(
ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)Gω(z,2)=e

δ (z + e+, y)
]

≥ P1−ε[C(y) = ∅]
× E1−ε

[
1
{

I
(
ω(z,2)=e)}Gω(z,2)=∅

δ (0, z)Gω(z,2)=e

δ (z + e+, y) | C(y) = ∅
]
,

it suffices to subtract p
z,e
0 (y, y+e′) on both sides of (7.11) and use Proposition 7.2,

to get Proposition 7.1 with C14 = 2dC16/γ1 and C15 = C17.
Obviously Proposition 7.2 has strong similarities with Proposition 6.1, since the

only difference is that the upper bound is weaker, which is simply due to technical
reasons. Moreover, since the proof is rather technical and independent of the rest
of the argument, we prefer to defer it to Section 8.

7.3. Expansion of Green functions. Once Proposition 7.1 is proved, we are
able to approximate the Green functions appearing in (7.10) through the same type
of arguments as given in [21].

Heuristically, we may say that if environments are close, then the Green func-
tions should be close at least on short distance scales.
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Compared to [21], there is a twist due to the fact that we do not have uniform
ellipticity and that our control on the environment in Proposition 7.1 is only uni-
form in the direction of the drift. Moreover our “limiting environment” as ε goes
to 0 is not translation invariant (nor uniformly elliptic). Hence we need some extra
work to adapt the methods of [21].

PROPOSITION 7.3. For any z ∈ Z
d , e, e+ ∈ ν, e′, e′′ ∈ ν ∪ {0} we get

sup
δ∈[1/2,1)

|Gp̃
δ (z + e′ + e′′, z) − G

ω
z,e
0

δ (z + e′ + e′′, z)| ≤ oε(1),

where oε(·) depends only on � and d . We recall that p̃ represents p̃z,e,z+e+ .

The proof of this proposition is independent of the rest of the argument and can
be skipped on first lecture to see how it actually leads to the computation of the
derivative.

PROOF OF PROPOSITION 7.3. The proof will be divided in two main steps:

1. prove that there exists transition probabilities p that are uniformly close to those
corresponding to the environment ω

z,e
0 on the whole lattice and which has a

Green function close to the one of the transition probabilities p̃;
2. prove the same statement as in Proposition 7.3 but for the environment p in-

stead of p̃. Since the control on the environment is now uniform we can use
arguments close to those of the proof of Lemma 3 in [21].

Step (1). For the first step, we will show that the random walk is unlikely to visit
often z and go far away in the direction opposite to the drift, that is, we want to
show that for any ε′ > 0

G
p̃
δ (z + e′ + e′′, z) − G

p̃

δ,{x∈Zd ,x·��<z·��−A}(z + e′ + e′′, z) < ε′(7.12)

for A large and ε small, where we used a notation of (4.10). This inequality follows
from the fact that except at z and z + e the local drift under p̃ can be set to be
uniformly positive in the direction �� in any half-space {x ∈ Z

d, x · �� > −A} for ε

small by Proposition 7.1.
Step (1)(a). In a first time, we show that the escape probabilities from z, z + e

and z + e′ + e′′ (to �) are lower bounded in the environment p̃. This ensures that
there cannot be many visits at those three points.

For this we use the result of a classical super-martingale argument (see
Lemma 1.1 in [23]). Without entering further into the details, this argument yields
that for any η > 0 there exists f (η) > 0 such that for any random walk on Z

d

defined by a Markov operator P(x, y) such that (
∑

y∼x P (x, y)(y − x)) · �� > η,

for x such that x · �� ≥ 0, we have

P0[Xn · �� ≥ 0, for all n > 0] > f (η).(7.13)
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Now by Proposition 7.1, it is possible to fix a percolation parameter 1−ε where
ε is chosen small enough depending solely on d and � so that:

• The drift dp̃(x) = ∑
e∈ν p̃(x, x + e)e is such that dp̃(x) · �� > d∅ · ��/2 for x such

that x · �� ≥ (z + 2de(1)) · �� (this way we avoid the transitions probabilities at the
vertices z and z + e which are special).

• The transition probabilities p̃ on the shortest paths from z, z + e and z + e′ + e′′
to z + 2de(1) which does not use the edge [z, z + e] (they have some length
inferior to some γ1 depending only on d) are greater than κ0/2.

Hence we can get a lower bound for the escape probability under p̃

min
y∈{z,z+e,z+e′+e′′}P

p̃
y

[
T +

{z,z+e,z+e′+e′′} = ∞]
≥ min

y∈{z,z+e,z+e′+e′′}P
p̃
y

[
T +

{z,z+e,z+e′+e′′} > Tz+2de(1)

]
(7.14)

× P
p̃

z+2de(1)

[(
Xn − (

z + 2de(1))) · �� ≥ 0, n > 0
]

≥ f (d∅ · ��/2)

(
κ0

2

)γ1

= γ2,

where γ2 depends only on d and �.
Step (1)(b). Now in a second time we will show that the walk is unlikely to

go far in the direction opposite to the drift during an excursion from z, z + e or
z+e′ +e′′. Once this is done, this will imply with (7.14) that the walker is unlikely
to reach the half-plane {x ∈ Z

d, x · �� < z · �� − A} and (7.14) also that when it does
the expected number of returns to z remains bounded. This will be made rigorous
in step (1)(c) and will prove (7.12).

Consider any random walk on Z
d given by a transition operator P(x, y) such

that for all x ∈ Z
d we have dP (x) · �� := ∑

y∼x P (x, y)(y −x) · �� > (d∅ · ��)/2 = γ3.
We know that

MP
n = Xn − X0 −

n−1∑
i=0

dP (Xi)

is a martingale with jumps bounded by 2. Hence since dP (x) ≥ γ3, we can use
Azuma’s inequality (see [1]) to get

P0
[
T{x∈Zd ,x·��<−A} < ∞] ≤ ∑

n≥0

P0[MP
n · �� < −A − γ3n]

≤ ∑
n≥0

exp
(
−(A + γ3n)2

8n

)
≤ γ4 exp

(
−γ3A

4

)
.

Set ε′′ > 0. Taking A = A(ε′′) large enough, depending also on d and �, we can
make the right-hand side lower than ε′′, that is, A(ε′′) ≥ −(4/γ3) ln(ε′′/γ4).
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Now let us choose ε small enough so that for any y ∈ {x ∈ Z
d, x · �� ≥ z · �� −

A − 3 and x /∈ {z, z + e}} we have dp̃(y) · �� > (d∅ · ��)/2. Let us introduce the
environment p̃A such that:

1. p̃A(y, y + f ) = p̃(y, y + f ) for all f ∈ ν and y ∈ {x ∈ Z
d, x · �� ≥ z · ��−A− 3

and x /∈ {z, z + e}};
2. p̃A(y, y + f ) = p∅(f ) for all f ∈ ν otherwise,

the same formulas holding when the target point is �.
Then, the previous computations, valid for p̃A, imply

max
y∈{z,z+e,z+e′+e′′}

P p̃
y

[
T{x∈Zd ,x·��<z·��−A−3} < T +

{z,z+e,z+e′+e′′}
]

≤ max
y∈∂{z,z+e,z+e′+e′′}

P p̃
y

[
T{x∈Zd ,x·��<z·��−A−3} < T{z,z+e,z+e′+e′′}

]
(7.15)

≤ max
y∈∂{z,z+e,z+e′+e′′}

P p̃A
y

[
T{x∈Zd ,x·��<z·��−A−3} < T{z,z+e,z+e′+e′′}

]
≤ max

y∈∂{z,z+e,z+e′+e′′}
P p̃A

y

[
T{x∈Zd ,x·��<z·��−A−3} < ∞] ≤ ε′′,

where we used that the event on the second line depends only on the transitions
probabilities at the vertices of {x ∈ Z

d, x · �� ≥ z · �� − A − 3 and x /∈ {z, z + e}}.
Step (1)(c). Let us now turn to the proof of (7.12). By (7.14) we have

G
p̃
δ (z + e′ + e′′, z + e′ + e′′) = P

p̃

z+e′+e′′ [T +
z+e′+e′′ > τδ]−1 ≤ 1

γ2
,

(7.16)

G
p̃
δ (z, z) ≤ 1

γ2
and G

p̃
δ (z + e, z + e) ≤ 1

γ2
.

Now decomposing the event T{x∈Zd ,x·��<z·��−A−3} < ∞ first with respect to the
number of excursions to z+ e′ + e′′ and then with respect to z and z+ e in addition
with (7.15) and (7.16) yields

P
p̃

z+e′+e′′
[
T{x∈Zd ,x·��<z·��−A−3} < ∞]

≤ G
p̃
δ (z + e′ + e′′, z + e′ + e′′)

× P
p̃

z+e′+e′′
[
T{x∈Zd ,x·��<z·��−A−3} < T +

z+e′+e′′
]

(7.17)

≤ 1

γ2

(
G

p̃
δ (z + e′ + e′′, z) + G

p̃
δ (z + e′ + e′′, z + e)

)
× max

y∈∂{z,z+e,z+e′+e′′}
P p̃

y

[
T{x∈Zd ,x·��<z·��−A−3} < T +

{z,z+e,z+e′+e′′}
]

≤ 2ε′′

γ 2
2

.
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For ε small enough to verify the previous conditions we have using (7.16) and
(7.17)

G
p̃
δ (z + e′ + e′′, z) − G

p̃

δ,{x∈Zd ,x·��<z·��−A−3}(z + e′ + e′′, z)

≤ P
p̃

z+e′+e′′
[
T{x∈Zd ,x·��<z·��−A−3} < ∞]

max
y∈{x∈Zd ,x·��<z·��−A−3}

G
p̃
δ (y, z)(7.18)

≤ 2ε′′

γ 2
2

G
p̃
δ (z, z) = 2ε′′

γ 3
2

.

Hence introducing p(y,f ) so that for f ∈ ν

p(y, y + f ) = p̃(y, y + f ) for y such that (y − z) · �� ≥ −A(ε′′) − 1

p(y, y + f ) = pω
z,e
0 (y, y + f ) for y such that (y − z) · �� < −A(ε′′) − 1,

the same formulas hold when the target point is �.
Equation (7.18) is also valid for G

p
δ so that

|Gp̃
δ (z + e′ + e′′, z) − G

p
δ (z + e′ + e′′, z)| ≤ γ5ε

′′,(7.19)

where, by Proposition 7.1, p (depending on ε′′) is such that

max
f ∈ν,y∈Zd

|p(y,f ) − pω
z,e
0 (y, f )| ≤ C14e

C15A(ε′′)ε ≤ ε′(7.20)

for ε small enough (depending on ε′ and ε′′) given any arbitrary ε′. This completes
step (1).

Step (2). Since our control on the environment is now uniform through the en-
vironment p, it turns out that we can use methods similar to those of [21] to prove
that there exists a O(ε) depending only on d and � such that

sup
δ∈[1/2,1)

|Gω
z,e
0

δ (z + e′ + e′′, z) − G
p
δ (z + e′ + e′′, z)| ≤ O(ε),(7.21)

which in view of (7.19) and (7.20) is enough to prove Proposition 7.3.
Let us define M the operator of multiplication by (πω

z,e
0 )1/2 given for f : Zd →

R, by

M(f )(y) = (πω
z,e
0 (y))1/2f (y).

We consider a transition operator P s,δ of a random walk on Z
d ∪ {�} given by

P s,δ(x, x + e(i)) = P s,δ(x + e(i), x
)

= δ(πω
z,e
0 (x))1/2pω

z,e
0

(
x, x + e(i))(πω

z,e
0

(
x + e(i)))−1/2

(7.22)
= δ

(
πω

z,e
0

(
x + e(i)))1/2

pω
z,e
0

(
x + e(i), x

)
(πω

z,e
0 (x))−1/2

= δ
(
pω

z,e
0

(
x + e(i), x

)
pω

z,e
0

(
x, x + e(i)))1/2
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for any i = 1, . . . ,2d and for x ∈ Z
d

P s,δ(x,�)

= (1 − δ) + δ

(
1 − ∑

e(i)∈ν

(
pω

z,e
0

(
x + e(i), x

)
pω

z,e
0

(
x, x + e(i)))1/2

)
(7.23)

= (1 − δ) + δ

2

( ∑
e(i)∈ν

(
pω

z,e
0

(
x + e(i), x

)1/2 − pω
z,e
0

(
x, x + e(i))1/2)2

+ 2
(
pω0(x − e, x) − pω

z,e
0 (x − e, x)

))
and P s,δ(�,�) = 1.

Let us consider the following transformation appearing in [21] which will sim-
plify the proof. For x, y 
= �,

G
ω

z,e
0

δ (x, y) = (
(I − δP ω

z,e
0 )−1)

(x, y) = (
M−1(I − P s,δ)−1M

)
(x, y)

= (M−1Gs,δM)(x, y),

where Gs,δ is the Green function of P s,δ . We define the operator P s,δ the same
way as in (7.22) and (7.23) using the environment p instead of ω

z,e
0 . Recalling

(7.20) we have

P p,δ(x, x + e) = P ω
z,e
0 (x, x + e) + εξε(x, e)

and

P p,δ(x,�) = P ω
z,e
0 (x,�) + εξε(x,�),

where ξε(·, ·) are uniformly bounded (independently of δ).
Now, we use the following expansion of Green functions. For any n ≥ 0 and P ,

P ′ two Markov operators on Z
d ∪ {�} such that

for x ∈ Z
d P (x,�) ≥ c and P ′(x,�) ≥ c,

we get

GP ′ = GP +
n∑

k=1

(
GP (P ′ − P)

)k
GP + (

GP (P ′ − P)
)n+1

GP ′
on Z

d .

Since P p,δ(x,�) > c(δ) > 0 and P
ω

z,e
0

δ (x,�) > 1 − δ > 0, we can apply the
previous formula to obtain for x, x′ ∈ Z

d ,

Gp,δ(x, x′) − G
ω

z,e
0

δ (x, x′) =
n∑

i=1

εkSk(x, x′) + εn+1Rn(x, x′),
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where

Sn(x, x′) = ∑
x1,...,xn

∑
e1,...,en

G
ω

z,e
0

δ (x, x1)ξε(x1, e1)G
ω

z,e
0

δ (x1 + e1, x2) · · ·

× ξε(xn, en)G
ω

z,e
0

δ (xn + en, x
′)

and

Rn(x, x′) = ∑
x∗∈Zd

Sn(x, x∗)
∑
e∗∈ν

ξε(x
∗, e∗)Gp,δ(x∗ + e∗, x′).

Consider the transformation

Sn(x, x′) =
(

πω
z,e
0 (x′)

πω
z,e
0 (x)

)1/2 ∑
x1,...,xn
e1,...,en

Gs,δ(x, x1)ξε(x1, e1)

(
πω

z,e
0 (x1)

πω
z,e
0 (x1 + e1)

)1/2

× Gs,δ(x1 + e1, x2) · · ·
(

πω
z,e
0 (xn)

πω
z,e
0 (xn + en)

)1/2

× Gs,δ(xn + en, x
′)

and

Rn(x, x′) =
(

πω
z,e
0 (x′)

πω
z,e
0 (x)

)1/2 ∑
x1,...,xn
e1,...,en

Gs,δ(x, x1)ξε(x1, e1)

(
πω

z,e
0 (x1)

πω
z,e
0 (x1 + e1)

)1/2

× Gs,δ(x1 + e1, x2) · · ·
(

πω
z,e
0 (xn)

πω
z,e
0 (xn + en)

)1/2

× Gs,δ(xn + en, x
′).

Moreover for any x ∈ Z
d and ei ∈ ν we get by (2.6) that

πω
z,e
0 (x)

πω
z,e
0 (x + ei)

≤ κ2
1e2λ,(7.24)

and for x, x′ ∈ Z
d we obtain∑

x1,...,xn
e1,...,en

Gs,δ(x, x1)G
s,δ(x1 + e1, x2) · · ·Gs,δ(xn + en, x

′)

≤
(∑

x1

Gs,δ(x, x1)(2d)

)
× max

x∗∈Zd

∑
x2,...,xn
e2,...,en

Gs,δ(x∗, x2) · · ·Gs,δ(xn + en, x
′)(7.25)
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≤ 2d

minx P s,δ(x,�)
max
x∗∈Zd

∑
x2,...,xn
e2,...,en

Gs,δ(x∗, x2) · · ·Gs,δ(xn + en, x
′)

≤ · · · ≤
(

2d

γ6

)n

,

where we used an easy recursion to obtain the last inequality and the fact that
minx P s,δ(x,�) ≥ γ6 for δ ≥ 1/2 where by (7.22)

γ6 = 1

4

(
min

i

∑
f (j)∈ν\{

e(i)
}
(
pe(i)(

f (j))1/2 − pe(i)(−f (j))1/2)2
)
.

Finally using (7.24) and (7.25) in the definition of Sn(x, x′) we get

|Sn(x, x′)| ≤
(

πω
z,e
0 (x′)

πω
z,e
0 (x)

)1/2(
κ2

1e2λ
(
sup
y,e

|ξε(y, e)|
)2d

γ6

)n+1

≤
(

πω
z,e
0 (x′)

πω
z,e
0 (x)

)1/2

γ n+1
7

for some positive constant γ7, depending only on d and �. We can get a similar es-
timate for the remaining term Rn(x, x′) considering that P s,δ(x,�) ∼ P s,δ(x,�).
This implies that for ε < γ −1

7 /2 small enough, the series
∑∞

k=0 εk|Sk(x, x′)| is
convergent and upper bounded by a constant independent of δ and that

for any δ ∈ [1/2,1) |Gp,δ(x, x′) − G
ω

z,e
0

δ (x, x′)| ≤
∞∑

k=1

εk|Sk(x, x′)|

=
(

πω
z,e
0 (x′)

πω
z,e
0 (x)

)1/2

O(ε),

where O(·) depends only on d and �.
Applying this last result for all cases x = z + e′ + e′′ and x′ = z yields (7.21)

and thus the result. �

7.4. First order expansion of the asymptotic speed. We have now all the nec-
essary tools to compute the asymptotic speed. Applying Proposition 7.3, we get

G
p̃z,e,z+e′
δ (z + e′, z) = G

ω
z,e
0

δ (z + e′, z) + oδ,z,e,e′(1),

where the oδ,z,e,e′(1) verifies

for all δ ≥ 1/2 |oδ,z,e,e′(1)| ≤ |oε(1)|,(7.26)

where the oε(1) depends only on d and � and vanishes as ε goes to 0.
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Hence putting the previous equation together with (7.10) we obtain

E1−ε[1{I(ωz,e)}1{(z,2) = ∅}Gωz,∅

δ (0, z)Gωz,e

δ (z + e′, z)]
= (

1 + oδ,z,e,e′(1)
)
E1−ε[1{I}1{(z,2) = ∅}Gω

δ (0, z)]Gω
0,e
0

δ (e′,0)(7.27)

= (
1 + oδ,z,e,e′(1)

)
E[1{I}Gω

δ (0, z)]Gω
0,e
0

δ (e′,0),

where we used the following consequence of the first part of Lemma 7.1:

for all z ∈ Z
d and e ∈ ν

∣∣∣∣ E1−ε[1{I}Gω
δ (0, z)]

E1−ε[1{I}1{(z,2) = ∅}Gω
δ (0, z)] − 1

∣∣∣∣ ≤ O(ε).

Adapting the same methods for z + e yields

E[1{I(ωz,e)}1{(z,2) = e}Gωz,∅

δ (0, z + e)Gωz,e

δ (z + e + e′, z)]
(7.28)

= (
1 + oδ,z,e,e′(1)

)
E[1{I}Gω

δ (0, z + e)]Gω
0,e
0

δ (e + e′,0),

where the oδ,z,e,e′(·) verified (7.26).
Let us denote

φ(e) = ∑
e′∈ν

(
pe(e′) − p∅(e′)

)
Gω

0,e
0 (e′,0)(7.29)

and

ψ(e) = ∑
e′∈ν

(
p−e(e′) − p∅(e′)

)
Gω

0,e
0 (e + e′,0).(7.30)

Hence inserting the estimates (7.27) and (7.28) into the expression of (7.7) we
get

E1−ε[1{I(ωz,e)}Gωz,e

δ (0, z)]
= (

1 + oδ,z,e(1)
)[

E1−ε[1{I}Gω
δ (0, z)](1 + δφ(e)

)
+ E1−ε[1{I}Gω

δ (0, z + e)]δψ(e)
]
.

Inserting the previous equation in (7.1) yields

dω̂
δ (z) − d∅

= ε(1 + oδ,z(1))

E1−ε[1{I}Gω
δ (0, z)]

[
E1−ε[1{I}Gω

δ (0, z)]
(∑

e∈ν

(
1 + δφ(e)

)
(de − d∅)

)

+ E1−ε[1{I}Gω
δ (0, z + e)]

(∑
e∈ν

δψ(e)(de − d∅)

)]
+ Oz(ε

2).
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We are not able to derive uniform estimates for dω̂
δ (z); nevertheless we are

still able to estimate the asymptotic speed. Recalling Proposition 3.1, the previ-
ous equation yields∑

z∈Zd G
ω̂ε

δ
δ (0, z)d̂ε

δ (z)∑
z∈Zd G

ω̂ε
δ

δ (0, z)
− d∅

= ε
(
1 + oδ,z(1)

)∑
z∈Zd

∑
e∈ν E[1{I}Gω

δ (0, z)](1 + δφ(e))(de − d∅)∑
z∈Zd E[1{I}Gω

δ (0, z)]
+ ε

(
1 + oδ,z(1)

)
(7.31)

×
∑

z∈Zd

∑
e∈ν E[1{I}Gω

δ (0, z + e)]δψ(e)(de − d∅)∑
z∈Zd E[1{I}Gω

δ (0, z)] + oδ(ε)

= ε
∑
e∈ν

(
1 + δ

(
φ(e) + ψ(e)

))
(de − d∅) + oδ(ε),

since
∑

z E[1{I}Gω
δ (0, z)] = ∑

z E[1{I}Gω
δ (0, z+ e)] = P[I]/(1− δ). We empha-

size that we do actually get a oδ(ε) such that

for δ ≥ 1/2 |oδ(ε)| ≤ |oε(ε)|,(7.32)

since it is the sum of 2(2d)2 barycenters of all (oδ,z,e,e′(ε))z∈Zd ,e,e′∈ν which verify
the bound of (7.26) and a barycenter of (Oz(ε

2))z∈Zd verifying (7.2).
We can then obtain an expression of the speed using Proposition 3.2 by letting

δ go to 1 in (7.31)

v�(1 − ε) = d∅ + ε
∑
e∈ν

(
1 + δ

(
φ(e) + ψ(e)

))
(de − d∅) + o(ε),(7.33)

since by (7.32) all oδ(ε) are smaller than some oε(ε) uniformly in δ ∈ [1/2,1).

7.5. Simplifying the expression of the limiting velocity. In order to simplify the
expression of the limiting velocity we prove:

LEMMA 7.2. We have∑
e′∈ν

(
pe(e′) − p∅(e′)

)
Gω

0,e
0 (e′,0) + ∑

e′∈ν

(
p−e(e′) − p∅(e′)

)
Gω

0,e
0 (e + e′,0)

= (
p∅(e) − p∅(−e)

)(
Gω

0,e
0 (0,0) − Gω

0,e
0 (e,0)

) − p∅(e).

PROOF. Recalling the notation in (2.4), we get

pe(e′) − p∅(e′) =

⎧⎪⎪⎨⎪⎪⎩
c(e′)c(e)
π∅πe

, if e 
= e′,

−c(e′)
π∅

, if e = e′.
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Hence we get that∑
e′ 
=e

c(e′)c(e)
π∅πe

Gω
0,e
0 (e′,0) = c(e)

π∅

(
Gω

0,e
0 (0,0) − 1

)
(7.34)

and ∑
e′ 
=e

c(e′)c(−e)

π∅π−e
Gω

0,e
0 (e + e′,0) = c(−e)

π∅
Gω

0,e
0 (e,0).(7.35)

Finally using c(e)

π∅ = p∅(e) and the previous equations, the computations are
straightforward. �

Recalling that p∅(e) − p∅(−e) = d∅ · e and 1 − p∅(e) = πe/π∅, we see that
the previous lemma means that

α(e) = φ(e) + ψ(e) = πe

π∅
+ (d∅ · e)(Gω

0,e
0 (0,0) − Gω

0,e
0 (e,0)

)
,

where we used notation from (7.29) and (7.30). So (7.33) becomes

v�(1 − ε) = d∅ + ε
∑
e∈ν

α(e)(de − d∅) + o(ε).(7.36)

We still may simplify slightly the expression of the speed we obtained using the
following:

∑
e∈ν

πede =
2d∑
i=1

∑
e 
=e(i)

c(e)e = (2d − 1)
∑
e∈ν

c(e)e = (2d − 1)π∅d∅ = ∑
e∈ν

πed∅.

Inserting this last equation into (7.36) yields

v�(1 − ε) = d∅ + ε
∑
e∈ν

(d∅ · e)(Gω
0,e
0 (0,0) − Gω

0,e
0 (e,0)

)
(de − d∅) + o(ε),

which proves Theorem 2.2.

8. Estimate on Kalikow’s environment. This section is devoted to the proof
of Proposition 7.2 in which we assumed to have fixed y, z ∈ Z

d , A ⊂ ν, A 
=
ν, e ∈ ν and e+, e− ∈ ν ∪ {0}. Before entering into the details let us present the
main steps of the proof of the previous proposition which are rather similar to the
ones in the proof of Proposition 6.1. Let us study the numerator of the quotient of
Proposition 7.2.

1. The Green functions behave essentially as a hitting probability multiplied by a
resistance (normalized by the invariant measure). See (8.20).
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2. In order to transform the conditioning around C(y) = A into C(y) = ∅ we use
the estimates on resistances of Proposition 4.2. This procedure will essentially
give an upper bound on the numerator in Proposition 7.2 as a finite sum of terms
which resemble the denominator but with a local correlation around y due to
the presence of random variables Z

(i)
y [see (8.21)] reminiscent of the random

variable “Lz” which appeared in the proof of Proposition 6.1.
Moreover, we will need some extra work to get an expression with some

sort of independence property between our local correlation term and the other
terms appearing in the upper-bound. This is necessary for step (3) of the proof.
See (8.31) and (8.32) for the upper bound.

3. We finish the proof by decorrelation lemmas similar to Lemma 6.1 to show
that the local correlation terms have a limited effect. This will imply that the
numerator and the denominator of Proposition 7.2 are of the same order. See
Section 8.3.

Compared to Proposition 6.1 there is an extra difficulty added by the fact that
we need to handle two Green functions instead of only one (in some sense we will
even have three) Hence we will apply Proposition 4.2 recursively; this is done in
Proposition 8.2.

Before actually starting the proof, we point out that in addition, we cannot prove
directly a decorrelation lemma. Indeed one of the hitting probabilities coming from
the Green functions appearing in Proposition 7.2 behaves badly when a local mod-
ification of the environment is made at y. Hence we need to transform this hitting
probability into an expression which we will be able to decorrelate from a local
modification of the environment, and this will change slightly the outline of the
proof given above. The aim of the next subsection is to take care of this problem.

8.1. The perturbed hitting probabilities. We want to understand the effect of

the change of configuration around y on the hitting probabilities P
ω

(z,2)=e
y,A

z+e+ [Ty < τδ]
and P

ω
(z,2)=∅

y,A

0 [Tz ≤ τδ]. The former term can be estimated easily. If we denote the
(deterministic) set

B∗(y, k) = {
t ∈ B(y, k), t is connected to y in BE(y, k) \ {[z, z + e]}}(8.1)

and

pω
z (y, k) =

⎧⎪⎨⎪⎩
max

u∈∂B∗(y,k)
P ω

z+e+
[
Tu = T∂B∗(y,k) < τδ

]
,

if z + e+ /∈ B∗(y, k),

1, otherwise.

(8.2)

then for any k ≥ 1 such that z + e+ /∈ B∗(y, k), we have

P
ω

(z,2)=e
y,A

z+e+ [Ty < τδ] ≤ ρdkdp
ω

(z,2)=e
y,A

z (y, k).(8.3)
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The special notation B∗(y, k) is useful because in the configuration ω(z,2)=e the
walker can only reach B(y, k) \ ∂B(y, k) (and hence y) from z + e+ by entering
the ball B(y, k) through B∗(y, k). The technical reason will only appear in the
proof of Lemma 8.2.

As we announced previously, the second hitting probability is more difficult to
treat. Let us introduce the following notation:

pω
1 (y, k) =

{
max

u∈∂B(y,k)
P ω

0
[
Tu = T∂B(y,k) < τδ

]
, if 0 /∈ B(y, k),

1, otherwise,
(8.4)

pω
2 (y, k) =

{
max

u∈∂B(y,k)
P ω

u

[
Tz < τδ ∧ T +

∂B(y,k)

]
, if z /∈ B(y, k),

1, otherwise.
(8.5)

To make notation lighter we also set

for any x ∈ Z
d Rω∗ (x) = e2λx·��Rω[x ↔ �],(8.6)

and moreover we introduce

Rω∗ (y, k) =
{

max
u∈∂B(y,k)

Rω∗ [u ↔ z ∪ �], if z /∈ B(y, k),

1, otherwise,
(8.7)

where

for any u ∈ Z
d Rω∗ [u ↔ z ∪ �] = e2λu·��Rω[u ↔ z ∪ �].(8.8)

We can obtain an upper bound on P ω
0 [Tz < τδ] through the following proposi-

tion.

PROPOSITION 8.1. Take any configuration ω and set y, z ∈ Z
d and B =

B(y, r) with r ≥ 1 and δ ≥ 1/2. If 0, z /∈ B and P ω
0 [Tz < τδ] > 2P ω

0 [Tz <

T∂B ∧ τδ], then we have

P ω
0 [Tz < τδ] ≤ C19r

2dpω
1 (y, k)pω

2 (y, k)Rω∗ (y, k).

If 0 ∈ B , z /∈ B and P ω
0 [Tz < τδ] > 2P ω

0 [Tz < T∂B ∧ τδ], then

P ω
0 [Tz < τδ] ≤ C19r

2dpω
2 (y, k)Rω∗ (y, k).

Finally if 0 /∈ B and z ∈ B ,

P ω
0 [Tz < τδ] ≤ C19r

2dpω
1 (y, k).

Thanks to this lemma we can say that P ω
0 [Tz < τδ] is either not influenced much

by a local modification around y (in the case where typically the walk will not visit
y when it goes from 0 to z), or upper bounded by a product of at most three random
variables. Two of them behave as hitting probabilities which are well suited for
our future decorrelation purposes, and the third random variable is essentially a
resistance for which we have estimates as well.



THE SPEED OF A BIASED RANDOM WALK ON A PERCOLATION CLUSTER 1767

In the case where P ω
0 [Tz < τδ] > 2P ω

0 [Tz < T∂B ∧ τδ], we will not have any
issues for the decorrelation lemma.

PROOF OF PROPOSITION 8.1. We will only consider the case 0, z /∈ B , the
other being similar but simpler. Our hypothesis implies

P ω
0 [Tz < τδ] ≤ 2P ω

0 [T∂B ≤ Tz < τδ],
and we can get an upper bound on the right-hand term by Markov’s property

P ω
0 [T∂B ≤ Tz < τδ] = ∑

u∈∂B

P ω
0 [Tu = T∂B < τδ]P ω

u [Tz < τδ]
(8.9)

≤ |∂B| max
u∈∂B

P ω
0 [Tu = T∂B < τδ] max

u∈∂B
P ω

u [Tz < τδ].
Denoting z1 → ·· · → zn the event that the n first vertices of ∂B ∪ z ∪ � visited

are, in order, z1, z2, . . . , zn, we can write for u ∈ ∂B

P ω
u [Tz < τδ] = Eω

u

[∑
n

∑
z1,...,zn∈∂B

1{z1 → ·· · → zn → z}
]

= ∑
n

∑
z1,...,zn∈∂B

Eω
u [1{z1 → ·· · → zn}]P ω

zn
[Tz < T +

∂B ∧ τδ]
(8.10)

≤ max
v∈∂B

P ω
v [Tz < τδ ∧ T +

∂B]Eω
u

[∑
n

∑
z1,...,zn∈∂B

1{z1 → ·· · → zn}
]

= max
v∈∂B

P ω
v [Tz < τδ ∧ T +

∂B]Gω
δ,{z}(u, ∂B),

where

Gω
δ,{z}(u, ∂B) = Eω

u

[τδ∧Tz∑
n=0

1{Xn ∈ ∂B}
]

≤ |∂B| max
v∈∂B

Gω
δ,{z}(v, v).(8.11)

Since by Lemma 4.2, (2.6) and (4.1) we have for δ ≥ 1/2 and any v ∈ ∂B

Gω
δ,{z}(v, v) = πω(δ)(v)Rω(v ↔ z ∪ �) ≤ γ1 max

u∈∂B
Rω∗ [u ↔ z ∪ �].(8.12)

Since |∂B| ≤ ρdrd adding up (8.10), (8.11) and (8.12) we get

max
u∈∂B

P ω
u [Tz < τδ] ≤ γ2r

d max
u∈∂B

Rω∗ [u ↔ z ∪ �] max
u∈∂B

P ω
u [Tz < τδ ∧ T +

∂B].
Using the previous equation with (8.9) completes the proof of the proposition.

�

Recalling the notation from (8.8), let us introduce

Rω∗ (y, k) =
{

min
u∈∂B(y,k)

Rω∗ [u ↔ z ∪ �], if z /∈ B(y, k),

1, otherwise.
(8.13)
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We do not yet have for the random variable R
ω(y,r),1∗ (y, r) a property similar

to Proposition 4.2. For the future decorrelation part it is in fact better to rewrite
R

ω(y,r),1∗ (y, r) in terms of Rω∗ (y, r ′) and local quantities. This is done in the follow-
ing lemma.

LEMMA 8.1. For any B = BE(y, r) and r ′ ≥ r . Suppose that y ∈
K∞(ω(y,r),1) and ∂B ∩ K∞(ω) 
= ∅, we have

R
ω(y,r),1∗ (y, r) ≤ 4e4λr ′

R
ω(y,r),1∗ (y, r ′) + C20L

C21
y,r ′e

C22Ly,r′ .

PROOF. Let us denote v ∈ ∂B(y, r) such that

R
ω(y,r),1∗ (y, r) = max

u∈∂B(y,k)
R

ω(y,r),1∗ (u ↔ z ∪ �)

(8.14)
= Rω(y,r),1(v ↔ z ∪ �)e2λv·��,

and applying Proposition 4.3 we get for any r ′ ≥ r

R
ω(y,r),1∗ (v ↔ z ∪ �)

≤ 4R
ω(y,r′),1(v ↔ z ∪ �) + C1L

C2
y,r ′e

2λ(−y·��+Ly,r′ )(8.15)

≤ 4R
ω(y,r′),1(v ↔ z ∪ �) + C1L

C2
y,r ′e

2λ(−v·��+2Ly,r′ ),

where we used that y · �� ≥ v · �� − r and that Ly,r ′ ≥ r ′ ≥ r by the third property of
Proposition 4.1.

For any u ∈ ∂B(y, r ′), let us denote i0(·) the unit current from u to z ∪ {�} in
ω(y,r ′),1 and �Q one of the shortest directed path from v to u included in B(y, r ′).
Let ωn be an increasing exhaustion of subgraphs of ω. Consider the unit flow
from v to z ∪ {�} given by θ(e) = i0(e) + (1{e ∈ �Q} − 1{−e ∈ �Q}). By taking the
trace on ωn ∪ {δ}, θ(·) induces naturally a family of unit flows θn(·) from v to
z ∪ {�} ∪ {ω \ ωn} on ωn, for n large enough. Applying Thompson’s principle for
θn and taking the limit as n goes to infinity yields

R
ω(y,r′),1(v ↔ z ∪ �) ≤ R

ω(y,r′),1(u ↔ z ∪ �) + 8r ′e2λ(−y·��+r ′).(8.16)

Hence adding up (8.15) and (8.16), we get

Rω(y,r),1(v ↔ z ∪ �) ≤ 4 min
u∈∂B(y,r ′)

R
ω(y,r′),1(u ↔ z ∪ �)

+ γ1(Ly,r ′)γ2γ
Ly,r′
3 e−2λy·��,

since Ly,r ′ ≥ r ′ ≥ r .

We get, multiplying the left-hand side by e2λv·�� and the right-hand side by
e2λr ′

e2λy·�� (which is greater than e2λv·��), that

Rω(y,r),1(v ↔ z ∪ �)e2λv·�� ≤ 4e4λr ′
R

ω(y,r),1∗ (y, r ′) + γ4(Ly,r ′)γ5e
γ6Ly,r′ ,
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where we used that maxu∈∂B(y,r ′) e2λu·�� ≤ e2λr ′
e2λy·��. So by (8.14) we obtain the

lemma. �

8.2. Quenched estimates on perturbed Green functions. The aim of this sub-
section is to complete the first two steps of the sketch of proof at the beginning of
Section 8. Let us introduce

R∗(z) = R
ω

(z,2)=∅

y,A∗ (z) and R∗(y) = R
ω

(z,2)=e
y,A∗ (y),(8.17)

where we emphasize those are not functions of y and z which are fixed vertices in
this section.

Step (1). We reduce our problem of studying Green functions to studying resis-
tances. Indeed, using Lemma 4.1 and (6.2) we get for δ ≥ 1/2,

1

κ1
G

ω
(z,2)=∅

y,A

δ (z, z) ≤ R∗(z) ≤ 2κ1G
ω

(z,2)=∅

y,A

δ (z, z),(8.18)

and

1

κ1
G

ω
(z,2)=e
y,A

δ (y, y) ≤ R∗(y) ≤ 2κ1G
ω

(z,2)=e
y,A

δ (y, y).(8.19)

Moreover we can now easily obtain the first step of our proof since

G
ω

(z,2)=∅

y,A

δ (0, z)G
ω

(z,2)=e
y,A

δ (z + e+, y)
(8.20)

≤ 4κ2
1P

ω
(z,2)=∅

y,A

0 [Tz ≤ τδ]P ω
(z,2)=e
y,A

z+e+ [Ty ≤ τδ]R∗(z)R∗(y).

Step (2)(a): Notation. Now our aim is to remove the condition appearing for the
configuration at y. This is done in way pretty similar to the first part of the proof
of Proposition 6.1. As mentioned before, we will apply recursively the resistance
estimates of Proposition 4.2, and for this we introduce

l(0)
y = 1, l(1)

y = Ly,1, l(2)
y = L

y,l
(1)
y

and l(3)
y = L

y,l
(2)
y

,

L
(i)
y (ω) = l

(i)
y (ω(z,2)=∅) ∨ l

(i)
y (ω(z,2)=e) and B

(i)
y = BE(y,L

(i)
y ). Moreover, we set

Zy,k = C23k
C24eC25ke2λ((z−y)·��) and Z(i)

y = Z
y,L

(i)
y

,(8.21)

where and C23 = 64 ∨ C1 ∨ C19 ∨ C20, C24 = C2 ∨ C21 ∨ 2d and C25 = 4λ ∨ C22.
Moreover set, for i = 0, . . . ,3

R(i)∗ (y) = R

ω
(z,2)=e

B
(i)
y ,1

∗ (y) and R(i)∗ (z) = R

ω
(z,2)=∅

B
(i)
y ,1

∗ (z).(8.22)

Also recalling (8.13), we set

R(i)∗ = R

ω
(z,2)=∅

B
(i)
y ,1

∗
(
y,L(i)

y

)
and R(i)∗ = R

ω
(z,2)=∅

B
(i)
y ,1

∗
(
y,L(i)

y

)
.
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Finally we denote for i = 1,2 and j = 0,1,2

p
(j)
i = pω(z,2)=∅

i

(
y,L(j)

y

)
and p(j)

z = pω(z,2)=e

z

(
y,L(j)

y

)
.

Let us state how the inequality previously proved is expressed in terms of Z
(i)
y .

From our choice of Z
(i)
y , we can write Proposition 8.1 as follows: for any z ∈ Z

d

and i ∈ {0,1,2},
P

ω
(z,2)=∅

y,A

0 [Tz < τδ] ≤ Z(i)
y p

(i)
1 p

(i)
2 R(i)∗ + 2P

ω
(z,2)=∅

y,A

0 [Tz < T
∂B

(i)
y

∧ τδ],(8.23)

which is a way to get rid of the conditioning around y for the hitting probabilities.
Also from Lemma 8.1 we obtain that for any y ∈ K∞(ω

(z,2)=∅

y,A ), we have for
any i ≤ j

R(i)∗ ≤ Z(j)
y R(j)∗ + Z(j+1)

y .(8.24)

Moreover for y, z ∈ K∞(ω
(z,2)=e
y,A ) = K∞(ω

(z,2)=∅

y,A ), Proposition 4.2 implies
that for i ≤ j ∈ {0,1,2}

R∗(z) ≤ R(i)∗ (z) ≤ 64R(j)∗ (z) + Z(j+1)
y and

(8.25)
R∗(y) ≤ R(i)∗ (y) ≤ 64R(j)∗ (y) + Z(j+1)

y .

Step (2)(b): Upper-bounding

P
ω

(z,2)=∅

y,A

0 [Tz < τδ]R∗(z)R∗(y).

Those three inequalities are enough to study (8.20). We recall that the term

P
ω

(z,2)=e
y,A

z+e+ [Ty ≤ τδ] appearing in (8.20) has already been treated at (8.3). Equations

(8.23) and (8.24) yield that for any y, z ∈ K∞(ω
(z,2)=e
y,A )

P
ω

(z,2)=∅

y,A

0 [Tz < τδ]R∗(z)R∗(y)

≤ (
p

(0)
1 p

(0)
2

(
Z(0)

y R(0)∗ + Z(1)
y

)
(8.26)

+ 2P
ω

(z,2)=∅

y,A

0 [Tz < T
∂B

(0)
y

∧ τδ])R∗(z)R∗(y).

The idea is now to use recursively (8.25) and (8.24) to obtain the following
proposition:

PROPOSITION 8.2. For any ω such that y, z ∈ K∞(ω
(z,2)=e
y,A ),

R(0)∗ R∗(z)R∗(y)

≤ C26
[
R(0)∗ R(0)∗ (z)R(0)∗ (y)

+ (
Z(1)

y

)2(
R(1)∗ R(1)∗ (z) + R(1)∗ R(1)∗ (y) + R(1)∗ (z)R(1)∗ (y)

)
+ (

Z(2)
y

)4(
R(2)∗ + R(2)∗ (z) + R(2)∗ (y)

) + (
Z(3)

y

)4]
,
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and

R∗(z)R∗(y) ≤ C27
[
R(1)∗ (z)R(1)∗ (y) + Z(2)

y

(
R(2)∗ (z) + R(2)∗ (y)

) + (
Z(3)

y

)2]
.

This is an interesting upper bound since the resistances are only multiplied with
some local quantities which are in some sense independent of those resistances.
More precisely, for example, the local quantity Z

(2)
y is independent of R

(2)∗ (y)

conditionally on {L(2)
y = k} under the measure P[·], since Z

(2)
y depends only on

the “stopping time” L
(2)
y , that is, only on the edges of BE(y,L

(2)
y ) by the second

property of Proposition 4.1.

PROOF OF PROPOSITION 8.2. Let us prove the first upper bound. We use
(8.25) to get

R(0)∗ R∗(z)R∗(y) ≤ R(0)∗
(
64R(0)∗ (z) + Z(1)

y

)(
64R(0)∗ (y) + Z(1)

y

)
≤ 642R(0)∗ R(0)∗ (z)R(0)∗ (y) + 64Z(1)

y

(
R(0)∗ R(0)∗ (z) + R(0)∗ R(0)∗ (y)

)
+ (

Z(1)
y

)2
R(0)∗ .

The first term of the right-hand side is of the form announced in the proposi-
tion. We need to simplify the remaining terms. We will continue the expansion for
R

(0)∗ R
(0)∗ (z) [the method is similar for R

(0)∗ R
(0)∗ (y)]. Emphasizing that

for i = 0,1,2 R(i)∗ ≤ R(i)∗ ,

where we used Rayleigh’s monotonicity principle. We may now use (8.25) and
(8.24) to get

R(0)∗ R(0)∗ (z)

≤ (
Z(1)

y R(1)∗ + Z(2)
y

)(
64R(1)∗ (z) + Z(2)

y

)
≤ 64

[
Z(1)

y R(1)∗ R(1)∗ (z) + Z(2)
y

(
Z(1)

y R(1)∗ + R(1)∗ (z)
) + (

Z(2)
y

)2]
≤ 64

[
Z(1)

y R(1)∗ R(1)∗ (z) + (
Z(2)

y

)2(
Z(2)

y R(2)∗ + 64R(2)∗ (z) + 2Z(3)
y

) + (
Z(2)

y

)2]
≤ (64)2[

Z(1)
y R(1)∗ R(1)∗ (z) + (

Z(2)
y

)3(
R(2)∗ + R(2)∗ (z)

) + 3
(
Z(3)

y

)3]
,

where we used that for any i ≤ j we have 1 ≤ Z
(i)
y ≤ Z

(j)
y . All terms here are of

the same type as in the proposition.
The expansion for the term (Z

(1)
y )2R

(0)∗ is handled by applying (8.24) for i = 0
and j = 1. Once again our upper bound is correct.

The second upper bound is similar and simpler since it uses only (8.25), so we
skip the details. �
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On the event {y, z ∈ K∞(ω
(z,2)=e
y,A )} (which will turn out to be verified) we want

to give an upper bound of (8.26) with a finite sum of terms of the form(
Z(i)

y

)γ1p
(i)
1 p

(i)
2 R(i)∗ R(i)∗ (z)R(i)∗ (y)(8.27)

and (
Z(i)

y

)γ1P
ω

(z,2)=∅

y,A

0 [Tz < T
∂B

(i)
y

∧ τδ]R(i)∗ (y)R(i)∗ (z)(8.28)

for i ≤ 3 and also similar terms where R
(i)∗ , R(i)∗ (z) or R

(i)∗ (y) are possibly replaced
by 1.

Recalling the notation in (8.4), (8.5) and (8.2) we have for j ∈ {z,1,2}
for y ∈ Z

d and k1 < k2 pω
j (y, k1) ≤ ρdkd−1

2 pω
j (y, k2),(8.29)

so that for j ∈ {z,1,2} and k1 < k2 ∈ {0,1,2,3},
p

(k1)
j ≤ ρdZ(k2)

y p
(k2)
j .(8.30)

Using inequalities (8.29) and (8.30) and Proposition 8.2 we can give an
upper bound of p

(0)
1 p

(0)
2 (Z

(0)
y R

(0)∗ + Z
(1)
y )R∗(z)R∗(y) in term of elements de-

scribed in (8.27). We recall here that Proposition 8.2 can be applied since y, z ∈
K∞(ω

(z,2)=e
y,A ) by the hypothesis made just above (8.27).

For the second term appearing in (8.26), let us take notice that

P
ω

(z,2)=∅

y,A

0 [Tz < T
∂B

(0)
y

∧ τδ]R∗(z)R∗(y)

= P
ω

(z,2)=∅

y,A

0 [Tz < T
∂B

(0)
y

∧ τδ]R(0)∗ (y)R(0)∗ (z),

which proves that the left-hand side can be upper bounded using the terms de-
scribed in (8.28).

Step (2)(c): Upper bounding

1
{

I
(
ω

(z,2)=e
y,A

)}
G

ω
(z,2)=∅

y,A

δ (0, z)G
ω

(z,2)=e
y,A

δ (z + e+, y).

If this term is positive then:

1. 1{I(ω
(z,2)=e
y,A )} > 0 implies that 0 ∈ K∞(ω

(z,2)=e
y,A );

2. G
ω

(z,2)=∅

y,A

δ (0, z) > 0 implies that 0 is connected to z in ω
(z,2)=∅

y,A ;

3. G
ω

(z,2)=e
y,A

δ (z + e+, y) > 0 implies that z + e+ is connected to y in ω
(z,2)=e
y,A ,

which means that y, z ∈ K∞(ω
(z,2)=e
y,A ) = K∞(ω

(z,2)=∅

y,A ).
Hence we can use the upper bound of (8.26) obtained at (8.27) and (8.28) and

insert it into (8.20). Using also (8.3) we can show that it is possible to give an
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upper bound on 1{I(ω
(z,2)=e
y,A )}Gω

(z,2)=∅

y,A

δ (0, z)G
ω

(z,2)=e
y,A

δ (z+ e+, y) with a finite sum
of terms of the form

1
{

I
(
ω

(z,2)=e
y,A

)}(
Z(i)

y

)C28p(i)
z p

(i)
1 p

(i)
2 R(i)∗ R(i)∗ (z)R(i)∗ (y)(8.31)

and

1
{

I
(
ω

(z,2)=e
y,A

)}(
Z(i)

y

)C28p(i)
z P

ω
(z,2)=∅

y,A

0 [Tz < T
∂B

(i)
y

∧ τδ]R(i)∗ (y)R(i)∗ (z)(8.32)

for i ∈ {0,1,2,3} and also similar terms where R
(i)∗ , R(i)∗ (z) or R

(i)∗ (y) are possibly
replaced by 1.

This completes step (2) of the proof of Proposition 7.2. The correlation term
Z

(i)
y is associated only with terms with which it has some independence property.

Indeed except for 1{I(ω
(z,2)=e
y,A )} which is only a minor detail, conditionally on

{L(i)
y = k}:

1. Z
(i)
y depends only on the “stopping time” L

(i)
y , that is, only on the edges of

BE(y, k) by the second property of Proposition 4.1;
2. all the other terms depend only on the edges of E(Zd) \ BE(y,L

(i)
y ),

so these terms are in fact independent conditionally on {L(i)
y = k}.

Now we can use those independence properties to prove the third step of
our proof that is the decorrelation part. We want to give an upper bound of

E[1{I(ω
(z,2)=e
y,A )}Gω

(z,2)=∅

y,A

δ (0, z)G
ω

(z,2)=e
y,A

δ (z + e+, y)], so we shall look for an up-
per bound on the expectations of (8.31) and (8.32), which is the subject of the next
subsection.

8.3. Decorrelation part. Recall the definition of Z
(i)
y at (8.21). Let us prove

the first decorrelation lemma.

LEMMA 8.2. We have for i ∈ {0,1,2,3} and δ ≥ 1/2

E
[
1
{

I
(
ω

(z,2)=e
y,A

)}(
Z(i)

y

)C28p(i)
z p

(i)
1 p

(i)
2 R(i)∗ R(i)∗ (z)R(i)∗ (y)

]
≤ C29E

[(
L(i)

y

)C30eC31L
(i)
y

]
× E

[
1
{

I
(
ω

(z,2)=e
y,∅

)}
G

ω
(z,2)=∅

y,∅

δ (0, z)G
ω

(z,2)=e
y,∅

δ (z + e+, y)
]
eC32((y−z)·��)+,

where C29, C30, C31 and C32 depend only on d and �.

This lemma is essentially similar to Lemma 6.1, since Z
(i)
y is in fact a function

of L
(i)
y . Notice that the second expectation on the right-hand side is equal to the

numerator of Proposition 7.2.
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The same lemma holds, with different constants, if we replace R
(i)∗ , R

(i)∗ (z) or
R

(i)∗ (y) by 1. Indeed it can be seen using Rayleigh’s monotonicity principle that
for δ ≥ 1/2, these three quantities are lower bounded by

Rω0(0 ↔ �) ∧ min
k∈N

min
u∈∂B(0,k),z/∈B(0,k)

Rω0∗ (u ↔ z ∪ �) ≥ γ1,

where γ1 can be chosen independent of y, i, z and A. Indeed by Lemma 4.2,

Rω0∗ (u ↔ z ∪ �) ≥ γ2G
ω0
δ,{z}(u,u) ≥ γ2.

PROOF OF LEMMA 8.2. We recall L
(i)
y < ∞ by Proposition 4.1.

Let us condition on the event {L(i)
y = k} for k < ∞. First suppose that 0 /∈

B(y, k), z /∈ B(y, k) and z + e+ /∈ B∗(y, k), where we used a notation appearing
above (8.2). Recalling the notations (8.2), (8.4) and (8.5), we may denote x0 ∈
∂B∗(y, k) and x1, x2 ∈ ∂B(y, k) such that

pω
z (y, k) = P ω(z,2)=e

z+e+
[
Tx0 = T∂B∗(y,k) < τδ

]
,

pω
1 (y, k) = P ω(z,2)=∅

0
[
Tx1 = TB(y,k) < τδ

]
,

pω
2 (y, k) = P ω(z,2)=∅

x2

[
Tz < τδ ∧ T +

B(y,k)

]
,

where x0 is connected to y in BE(y, k) \ [z, z + e], and we denote P0 one of the
corresponding shortest such paths (hence of length ≤ k + 2). This is possible by
the definition of ∂B∗(y, k) at (8.1).

We also introduce the event

{0 ⇔ y ⇔ ∞} = {0 ↔ ∂B(y, k), ∂B(y, k)
ω(y,k),0↔ ∞},

which is true when 1{I(ωy,A)}p(i)
1 is positive. Moreover let us set x3 connecting

∂B(y, k) to infinity without edges of B(y, k). Thus

E
[
1{I(ωy,A)}(Z(i)

y

)C28p(i)
z p

(i)
1 p

(i)
2 R(i)∗ R(i)∗ (y)R(i)∗ (z) | L(i)

y = k
]

≤ γ1k
γ2eγ3keγ4((z−y)·��)+

× E
[
1{0 ⇔ y ⇔ ∞}p(i)

z p
(i)
1 p

(i)
2 R(i)∗ R(i)∗ (y)R(i)∗ (z) | L(i)

y = k
]
,

where the integrand of the right-hand side depends only on the edges of E(Zd) \
BE(y, k), so that the conditioning inside the corresponding ball can be modified.

We emphasize that seemingly p
(i)
z may depend on the state of the edges in

BE(y, k), but the walk cannot reach B(y, k) \ ∂B(y, k) without going through
∂B∗(y, k). Hence p

(i)
z can only depend on the edges of BE(y, k) through the tran-

sition probabilities in ω(z,2)=e of a vertex in ∂B(y, k) \ ∂B∗(y, k). But if such a
vertex exists it is unique and the only edge adjacent to this vertex which lies in
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BE(y, k) is necessarily [z, z + e] and is closed in ω(z,2)=e. Hence there is in fact
no dependence.

Let us denote P1, P2 and P3 one of the shortest paths from, respectively, x1, x2
and x3 to y and P = P0 ∪ P1 ∪ P2 ∪ P3 ∪ {y + e, e ∈ ν}. Hence we need to control

E
[
1{0 ⇔ y ⇔ ∞}p(i)

z p
(i)
1 p

(i)
2 R(i)∗ R(i)∗ (z)R(i)∗ (y) | L(i)

y = k
]

≤ E
[
1{0 ⇔ y ⇔ ∞}P ω(z,2)=e

z+e+
[
Tx0 = T∂B∗(y,k) < τδ

]
× P ω(z,2)=∅

0
[
Tx1 = T∂B(y,k) < τδ

]
× P ω(z,2)=∅

x2

[
Tz < τδ ∧ T +

∂B(y,k)

]
× Rω(y,k),1

∗ [x2 ↔ z ∪ �]R(0)∗ (z)R(0)∗ (y) | P ∈ ω
]

≤ 24k+2d+2E
[
1{0 ⇔ y ⇔ ∞}1{P ∈ ω}

× P
ω

(z,2)=∅

y,∅

0

[
Tx1 = T∂B(y,k) < τδ

]
R(0)∗ (z)R(0)∗ (y)

× P
ω

(z,2)=∅

y,∅
x2

[
Tz < τδ ∧ T +

∂B(y,k)

]
× P

ω
(z,2)=e
y,∅

z+e+
[
Tx0 = T∂B∗(y,k) < τδ

]
R

ω
(z,2)=∅

y,∅∗ [x2 ↔ z ∪ �]],
where we used that:

1. P[P ∈ ω] ≥ 2−(4k+2d+2);

2. equalities such as P ω(z,2)=e

z+e+ [Tx0 = T∂B∗(y,k) < τδ] = P
ω

(z,2)=e
y,∅

z+e+ [Tx0 = T∂B∗(y,k) <

τδ];
3. Rayleigh’s monotonicity principle to say, for example, that

R(i)∗ (y) ≤ R(0)∗ (y) and R
ω

(z,2)=∅

(y,k),1∗ [x2 ↔ z ∪ �] ≤ R
ω

(z,2)=∅

y,∅∗ [x2 ↔ z ∪ �].
Using Lemma 4.1 and x2 ∈ B(y, k), we get

P
ω

(z,2)=∅

y,∅
x2

[
Tz < τδ ∧ T +

∂B(y,k)

]
R

ω
(z,2)=∅

y,∅∗ [x2 ↔ z ∪ �]

≤ γ5P
ω

(z,2)=∅

y,∅
x2 [Tz < τδ ∧ T +

x2
](P ω

(z,2)=∅

y,∅
x2 [Tz ∧ τδ < T +

x2
])−1

= γ5P
ω

(z,2)=∅

y,∅
x2 [Tz < τδ ∧ T +

x2
| Tz ∧ τδ < T +

x2
]

= γ5P
ω

(z,2)=∅

y,∅
x2 [Tz < τδ],

where for the last equality we simply notice that the probability of the event
{Tz < τδ} can be computed on the last excursion from x2 before reaching � or z.
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Moreover on ω such that 1{P ∈ ω},

P
ω

(z,2)=∅

y,∅
x1 [Tx2 < τδ] ≥ (δκ0)

2k,

and putting these last two equations together we get

P
ω

(z,2)=∅

y,∅

0

[
Tx1 = T∂B(y,k) < τδ

]
P

ω
(z,2)=∅

y,∅
x2

[
Tz < τδ ∧ T +

∂B(y,k)

]
R

ω
(z,2)=∅

y,∅∗ [x2 ↔ z ∪ �]

≤ γ5(δκ0)
−2kP

ω
(z,2)=∅

y,∅

0 [Tx1 < τδ]P ω
(z,2)=∅

y,∅
x1 [Tx2 < τδ]P ω

(z,2)=∅

y,∅
x2 [Tz < τδ]

≤ γ5(δκ0)
−2kP

ω
(z,2)=∅

y,∅

0 [Tz < δ].
In a similar way, we get by Markov’s property that

P
ω

(z,2)=e
y,∅

z+e+
[
Tx0 = T∂B∗(y,k) < τδ

] ≤ (δκ0)
−(k+2)P

ω
(z,2)=e
y,∅

z+e+ [Ty < τδ].
Finally

1{0 ⇔ y ⇔ ∞}1{P ∈ ω} ≤ 1{I}.
Hence for ω such that P ∈ ω we have, using δ ≥ 1/2,

1{0 ⇔ y ⇔ ∞}1{P ∈ ω}

× P
ω

(z,2)=∅

y,∅

0

[
Tx0 = T∂B(y,k) < τδ

]
P

ω
(z,2)=e
y,∅

z+e+
[
Tx0 = T∂B∗(y,k) < τδ

]
× P

ω
(z,2)=∅

y,∅
x2

[
Tz < τδ ∧ T +

∂B(y,k)

]
R

ω
(z,2)=∅

y,∅∗ [x2 ↔ z ∪ �]R(0)∗ (z)R(0)∗ (y)

≤ γ6(2/κ0)
3k1{I}P ω

(z,2)=∅

y,∅

0 [Tz < τδ]P ω
(z,2)=e
y,∅

z+e+ [Ty < δ]R(0)∗ (z)R(0)∗ (y)

≤ γ7e
γ8k1{I}Gω

(z,2)=∅

y,∅

δ (0, z)G
ω

(z,2)=e
y,∅

δ (z + e+, y),

where we used that R
(0)∗ (y) = R

ω
(z,2)=e
y,∅ [y ↔ �], (8.18) and (8.19).

The result follows by integrating over all possible values of L
(i)
y , since we have

just proved that

E
[
1{I(ωy,A)}(Z(i)

y

)C28p(i)
z p

(i)
1 p

(i)
2 R(i)∗ R(i)∗ (z)R(i)∗ (y) | L(i)

y = k
]

≤ γ9k
γ10eγ11kE[1{I(ωy,∅)}Gω

(z,2)=∅

y,∅

δ (0, z)G
ω

(z,2)=e
y,∅

δ (z + e+, y)]eγ12((y−z)·��)+ .

For the remaining cases, we proceed as follows:

1. if 0 ∈ B(y, k), then we formally replace P ω(z,2)=∅

0 [Tx = T∂B(z,k) < τδ] by 1 for
any x ∈ ∂B(z, k) and x1 by 0;

2. if z+ e+ /∈ B∗(y, k), then we formally replace P ω(z,2)=e

z+e+ [Tx = T∂B∗(z,k) < τδ] by
1 for any x ∈ ∂B∗(z, k) and x0 by z + e+;
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3. if z ∈ B(y, k), then we formally replace P ω(z,2)=∅

x2
[Tz = T +

∂B(z,k) ∧ τδ] by 1 for

any x ∈ ∂B(z, k), R
ω

(z,2)=∅

y,∅∗ [x2 ↔ z ∪ �] by 1 and x2 by z,

and the previous proof carries over easily. �

We need another decorrelation lemma, which is essentially similar to the previ-
ous one but simpler to prove.

LEMMA 8.3. We have for i ∈ {0,1,2,3} and δ ≥ 1/2,

E
[
1
{

I
(
ω

(z,2)=e
y,A

)}(
Z(i)

y

)C28p(i)
z P

ω
(z,2)=∅

y,A

0 [Tz < T
∂B

(i)
y

∧ τδ]R(i)∗ (y)R(i)∗ (z)
]

≤ C33E
[(

L(i)
y

)C34eC35L
(i)
y

]
× E

[
1
{

I
(
ω

(z,2)=e
y,∅

)}
G

ω
(z,2)=∅

y,∅

δ (0, z)G
ω

(z,2)=e
y,∅

δ (z + e+, y)
]
eC36((y−z)·��)+,

where the constants depend only on d and �.

PROOF. Once again we condition on {L(i)
y = k} for k < ∞ and suppose that

0 /∈ B(y, k) and z /∈ B(y, k); the other cases can be handled in the same way as
before. We see that

1{I(ωy,A)} ≤ 1{0 ⇔ y ⇔ ∞},
and we denote x0, x1 ∈ ∂B(y, k) such that

p(i)
z = P ω(z,2)=e

z

[
Tx0 = T∂B(y,k) < τδ

]
,

and x1 is connected to ∞ without edges from B(y, k). Moreover, denote P0 one of
the shortest paths connecting x0 to y and P1 one of the shortest paths connecting
x1 to y.

Then, using the same type of arguments as in the proof of Lemma 8.2, we get
for P = P0 ∪ P1 ∪ {y + e, e ∈ ν}, on ω such that {L(i)

y = k},
E

[
1{I(ωy,A)}(Z(i)

y

)C28p(i)
z P

ω
(z,2)=∅

y,A

0 [Tz < T
∂B

(i)
y

∧ τδ]R(i)∗ (y)R(i)∗ (z) | Li
y = k

]
≤ γ1k

γ2eγ3keγ4((y−z)·��)+

× E
[
1{0 ⇔ y ⇔ ∞}P ω(z,2)=e

z

[
Tx0 = T∂B∗(y,k) < τδ

]
× P

ω
(z,2)=∅

y,A

0

[
Tz < T∂B(y,k) ∧ τδ

]
R(0)∗ (y)R(0)∗ (z) | P ∈ ω

]
≤ γ1k

γ222k+2d+2eγ3keγ4((y−z)·��)+

× E
[
1{P ∈ ω}1{0 ⇔ y ⇔ ∞}P ω(z,2)=e

z

[
Tx0 = T∂B∗(y,k) < τδ

]
× P

ω
(z,2)=∅

y,A

0

[
Tz < T∂B(y,k) ∧ τδ

]
R(0)∗ (y)R(0)∗ (z)

]
.
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Now on ω such that {P ∈ ω}, we have

P
ω

(z,2)=∅

y,A

0 [Tz < T
∂B

(i)
y

∧ τδ] = P
ω

(z,2)=∅

y,∅

0 [Tz < T
∂B

(i)
y

∧ τδ] ≤ P
ω

(z,2)=∅

y,∅

0 [Tz < τδ]
and

P ω(z,2)=e

z

[
Tx0 = T∂B∗(y,k) < τδ

]
(δκ0)

k ≤ P ω(z,2)=∅

z+e+ [Ty < τδ].
Since we also have 1{P ∈ ω}1{0 ⇔ y ⇔ ∞} ≤ 1{I(ω(z,2)=∅)} and δ ≥ 1/2 so

that,

1{P ∈ ω}1{0 ⇔ y ⇔ ∞}pω(z,2)=e

z (y, k)P
ω

(z,2)=∅

y,A

0

[
Tz < T∂B(y,k) ∧ τδ

]
× R(0)∗ (y)R(0)∗ (z)

≤ γ5k
γ6eγ7k1{I(ωy,∅)}Gω

(z,2)=∅

y,∅

δ (0, z)G
ω

(z,2)=e
y,∅

δ (z + e+, y),

and the results follow by integration over the values of L
(i)
y . �

Now, as we did to obtain the continuity of the speed, we need to show that
the contribution due to the local modifications of the environment has a limited
effect. Hence we want to prove that the expectations appearing in Lemma 8.2 and
Lemma 8.3 are finite for ε small enough. This is proved using the following lemma.

LEMMA 8.4. For ε9 small enough and any ε < ε9 we have

E
[(

L(i)
y

)C30+C34e(C31+C35)L
(i)
y

]
< C37,

where C37 depends only on d and �.

PROOF. Since L
(i)
y ≤ L

(3)
y , it is enough to give an upper bound on the tail

of L
(3)
y , and we have

P
[
L(3)

y ≥ n
] ≤ P

[
L(3)

y ≥ n,L(2)
y ≤ n/(2C8)

]
+ P

[
L(2)

y ≥ n/(2C8),L
(1)
y ≤ n/(2C8)

2]
+ P

[
L(1)

y ≥ n/(2C8)
2]

,

and recalling Propositions 5.3 and 5.4 we get for A = B(x, r)

P1−ε

[
LA

(
ω(z,2)=∅

) ∨ LA

(
ω(z,2)=e) ≥ n + C8r

] ≤ 2C9r
dnα(ε)n,

so that we may use the second property of Proposition 4.1

P
[
L(3)

y ≥ n
] ≤ 6C9

(
n

2C8

)d

nα(ε)f (n),
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where f (n) = (n/(2C8)
2 −C8) and α(ε) can be arbitrarily small if we take ε small

enough. The result follows easily. �

Now, Proposition 7.2 follows from the decomposition obtained at (8.31) and
(8.32), the decorrelation part being handled by Lemma 8.2, Lemma 8.3 where the
multiplicative terms appearing in these lemmas are finite by Lemma 8.4 for ε small
enough.

9. An increasing speed. We want to prove Proposition 2.1 and show that
the walk slows down when we percolate, that is, v�(1) · v′

�(1) > 0 under cer-
tain conditions. We recall J e = Gω0(0,0) − Gω0(e,0) > 0, and we introduce

J e
e = Gω

0,e
0 (0,0) − Gω

0,e
0 (e,0) > 0.

We use (7.5) to prove that

Gω
0,e
0 (0,0) = Gω0(0,0) + Gω0(0,0)

∑
e′∈ν

(
pe(e′) − p∅(e′)

)
Gω

0,e
0 (e′,0)

+ Gω0(0, e)
∑
e′∈ν

(
p−e(e′) − p∅(e′)

)
Gω

0,e
0 (e + e′,0)

and

Gω
0,e
0 (e,0) = Gω0(e,0) + Gω0(e,0)

∑
e′∈ν

(
pe(e′) − p∅(e′)

)
Gω

0,e
0 (e′,0)

+ Gω0(e, e)
∑
e′∈ν

(
p−e(e′) − p∅(e′)

)
Gω

0,e
0 (e + e′,0).

Now, recalling the proof of Lemma 7.2 [in particular (7.34) and (7.35)],
noticing the relations, Gω0(e, e) = Gω0(0,0) and by reversibility Gω0(e,0) =
(πω0(0)/πω0(e))Gω0(0, e) = (c(e)/c(−e))Gω0(0, e), we get

J e
e = J e + Gω0(0,0)

[
p(e)

(
Gω

0,e
0 (0,0) − 1

) − p(e)Gω
0,e
0 (e,0)

− (
p(−e)Gω

0,e
0 (e,0) − p(−e)Gω

0,e
0 (0,0)

)]
+ Gω0(e,0)

[(
c(e)/c(−e)

)(
p(−e)Gω

0,e
0 (e,0) − p(−e)Gω

0,e
0 (0,0)

)
− (

p(e)
(
Gω

0,e
0 (0,0) − 1

) − p(e)Gω
0,e
0 (e,0)

)]
,

which, recalling p(e)c(−e) = p(−e)c(e), means that

J e
e = J e + Gω0(0,0)

((
p(e) + p(−e)

)
J e

e − p(e)
) + Gω0(e,0)

(−2p(e)J e
e + p(e)

)
.

Now rewriting, using reversibility p(e)Gω0(e,0) = p(−e)Gω0(0, e) = p(−e)×
Gω0(−e,0), we get

J e
e = J e + p(e)J eJ e

e + p(−e)J−eJ e
e − p(e)Je,
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that is,

J e
e = (1 − p(e))J e

1 − p(e)J e − p(−e)J−e
.(9.1)

In order to obtain the alternative form of the derivative we only need to rewrite
the term 1 − p(e) = πe/π∅ using

πe(d∅ − de) = πe

(
− ∑

e′ 
=e

c(e′)c(e)
π∅πe

e′ + c(e)

π∅
e

)
= c(e)(e − d∅),

and hence recalling (9.1) we get

J e
e

(
v�(1) − de

) = p(e)J e

1 − p(e)J e − p(−e)J−e
(e − d∅),

which proves the first part of Proposition 2.1.
Now, we need to show that this derivative is in the same direction as v�(1), for

this let us first notice that

1 − p(e)J e − p(−e)J−e

= 1 − Gω0(0,0)
(
p(e)P ω0

e [T +
0 = ∞] + p(−e)P

ω0−e [T +
0 = ∞]) > 0,

since Gω0(0,0)−1 = P
ω0
0 [T +

0 = ∞] = ∑
e′∈ν p(e′)P ω0

e′ [T +
0 = ∞].

Notice that the quantity in the previous display is the same for e and −e.
Now, fix e ∈ ν such that e · d∅ > 0. We will show that the common contribution

of the terms corresponding to e and −e in the derivative have a positive scalar
product with d∅ under our assumptions v�(1). In fact it is

H(|e|) := (d∅ · e)
[

p(e)J e + p(−e)J−e

1 − p(e)J e − p(−e)J−e
e − p(e)J e − p(−e)J−e

1 − p(e)J e − p(−e)J−e
d∅

]
,

and since β(|e|) =: (d∅ · e)/(1 − p(e)J e − p(−e)J−e) > 0 we get

H(|e|) · d∅ = β(|e|)[(p(e)J e + p(−e)J−e)(d∅ · e)
− (

p(e)J e − p(−e)J−e)(d∅ · d∅)
]
> 0,

if we suppose that

for i = 1, . . . , d such that d∅ · e(i) > 0, d∅ · e(i) ≥ ‖d∅‖2.

Finally v�(1) ·v′
�(1) = ∑d

i=1 H(|e(i)|) ·d∅ > 0, so that Proposition 2.1 is proved.
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