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THE CIRCULAR LAW FOR RANDOM MATRICES

BY FRIEDRICH GÖTZE1 AND ALEXANDER TIKHOMIROV1,2

University of Bielefeld and St. Petersburg State University

We consider the joint distribution of real and imaginary parts of eigen-
values of random matrices with independent entries with mean zero and unit
variance. We prove the convergence of this distribution to the uniform distri-
bution on the unit disc without assumptions on the existence of a density for
the distribution of entries. We assume that the entries have a finite moment of
order larger than two and consider the case of sparse matrices.

The results are based on previous work of Bai, Rudelson and the authors
extending those results to a larger class of sparse matrices.

1. Introduction. Let Xjk,1 ≤ j, k < ∞, be complex random variables with
EXjk = 0 and E|Xjk|2 = 1. For a fixed n ≥ 1, denote by λ1, . . . , λn the eigenval-
ues of the n × n matrix

X = (Xn(j, k))nj,k=1, Xn(j, k) = 1√
n
Xjk for 1 ≤ j, k ≤ n,(1.1)

and define its empirical spectral distribution function by

Gn(x, y) = 1

n

n∑
j=1

I{Re{λj }≤x,Im{λj }≤y},(1.2)

where I{B} denotes the indicator of an event B . We investigate the convergence of
the expected spectral distribution function EGn(x, y) to the distribution function
G(x,y) of the uniform distribution in the unit disc in R

2.
The main result of our paper is the following:

THEOREM 1.1. Let ϕ(x) denote the function (ln(1 + |x|))19+η, η > 0, ar-
bitrary, small and fixed. Let Xjk, j, k ∈ N, denote independent complex random
variables with

EXjk = 0, E|Xjk|2 = 1 and κ := sup
j,k∈N

E|Xjk|2ϕ(Xjk) < ∞.

Then EGn(x, y) converges weakly to the distribution function G(x,y) as n → ∞.
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We shall prove the same result for the following class of sparse matrices. Let
εjk , j, k = 1, . . . , n, denote a triangular array of Bernoulli random variables (tak-
ing values 0,1 only) which are independent in aggregate and independent of
(Xjk)

n
j,k=1 with common success probability pn := Pr{εjk = 1} depending on n.

Consider the sequence of matrices X(ε) = 1√
npn

(εjkXjk)
n
j,k=1. Let λ

(ε)
1 , . . . , λ

(ε)
n

denote the (complex) eigenvalues of the matrix X(ε) and denote by G
(ε)
n (x, y) the

empirical spectral distribution function of the matrix X(ε), that is,

G(ε)
n (x, y) := 1

n

n∑
j=1

I{Re{λ(ε)
j }≤x,Im{λ(ε)

j }≤y}.(1.3)

THEOREM 1.2. For η > 0 define ϕ(x) = (ln(1 + |x|))19+η. Let Xjk, j, k ∈ N,
denote independent complex random variables with

EXjk = 0, E|Xjk|2 = 1 and κ := sup
j,k∈N

E|Xjk|2ϕ(Xjk) < ∞.

Assume that there is a θ ∈ (0,1] such that p−1
n = O(n1−θ ) as n → ∞. Then

EG
(ε)
n (x, y) converges weakly to the distribution function G(x,y) as n → ∞.

REMARK 1.3. The crucial problem of the proofs of Theorems 1.1 and 1.2
is to bound the smallest singular values sn(z), respectively, s

(ε)
n (z) of the shifted

matrices X − zI, respectively, X(ε) − zI. (See also [5], page 1561.) These bounds
are based on the results obtained by Rudelson and Vershynin in [18]. In a previ-
ous version of this paper [10] we have used the corresponding results of Rudel-
son [17] proving the circular law in the case of i.i.d. sub-Gaussian random vari-
ables. In fact, the results in [10] actually imply the circular law for i.i.d. random
variables with supj,k E|Xjk|4 ≤ κ4 < ∞ in view of the fact (explicitly stated
by Rudelson in [17]) that in his results the sub-Gaussian condition is needed
for the proof of Pr{‖X‖ > K} ≤ C exp{−cn} only. Restricting oneself to the set
�n(z) = {sn(z) ≤ cn−3; ‖X‖ ≤ K} for the investigation of the smallest singular
values, the inequality Pr{�n(z)

c} ≤ cn−1/2 follows from the results of Rudelson
[17] without the assumption of sub-Gaussian tails for the matrix X. A similar re-
sult has been proved by Pan and Zhou in [13] based on results of Rudelson and
Vershynin [18] and Bai and Silverstein [2].

The strong circular law assuming moment condition of order larger than 2 only
and comparable sparsity assumptions was proved independently by Tao and Vu in
[22] based on their results in [23] in connection with the multivariate Littlewood
Offord problem.

The approach in this paper though is based on the fruitful idea of Rudelson
and Vershynin to characterize the vectors leading to small singular values of ma-
trices with independent entries via “compressible” and “incompressible” vectors
(see [18], Section 3.2, page 15). For the approximation of the distribution of singu-
lar values of X − zI we use a scheme different from the approach used in Bai [1].
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The investigation of the convergence the spectral distribution functions of real
or complex (nonsymmetric and non-Hermitian) random matrices with independent
entries has a long history. Ginibre’s [7], in 1965, studied the real, complex and
quaternion matrices with i.i.d. Gaussian entries. He derived the joint density for
the distribution of eigenvalues of matrix. Applying Ginibre’s formula, Mehta [15],
in 1967, determined the density of the expected spectral distribution function of
random matrices with Gaussian entries with independent real and imaginary parts
and deduced the circle law. Pastur suggested in 1973 the circular law for the gen-
eral case (see [16], page 64). Using the Ginibre results, Edelman [4], in 1997,
proved the circular law for the matrices with i.i.d. Gaussian real entries. Rider
proved in [21] and [20] results about the spectral radius and about linear statistics
of eigenvalues of non-Hermitian matrices with Gaussian entries.

Girko [6], in 1984, investigated the circular law for general matrices with in-
dependent entries assuming that the distribution of the entries has densities. As
pointed out by Bai [1], Girko’s proof had serious gaps. Bai in [1] gave a proof of
the circular law for random matrices with independent entries assuming that the
entries had bounded densities and finite sixth moments. His result does not cover
the case of the Wigner ensemble and in particular ensembles of matrices with
Rademacher entries. These ensembles are of some interest in various applications
(see, e.g., [24]). Girko’s [6] approach using families of spectra of Hermitian ma-
trices for a characterization of the circular law based on the so-called V-transform
was fruitful for all later work. See, for example, Girko’s Lemma 1 in [1]. In fact,
Girko [6] was the first who used the logarithmic potential to prove the circular law.
We shall outline his approach using logarithmic potential theory. Let ξ denote a
random variable uniformly distributed over the unit disc and independent of the
matrix X. For any r > 0, consider the matrix

X(r) = X − rξI,

where I denotes the identity matrix of order n. Let μ
(r)
n (resp., μn) be empirical

spectral measure of matrix X(r) (resp., X) defined on the complex plane as empir-
ical measure of the set of eigenvalues of matrix. We define a logarithmic potential
of the expected spectral measure Eμ

(r)
n (ds, dt) as

U(r)
μn

(z) = −1

n
E log
∣∣det
(
X(r) − zI

)∣∣= −1

n

∑
E log|λj − z − rξ |,

where λ1, . . . , λn are the eigenvalues of the matrix X. Note that the expected spec-
tral measure Eμ

(r)
n is the convolution of the measure Eμn and the uniform distrib-

ution on the disc of radius r (see Lemma A.4 in the Appendix for details).

LEMMA 1.1. Assume that the sequence Eμ
(r)
n converges weakly to a measure

μ as n → ∞ and r → 0. Then

μ = lim
n→∞ Eμn.
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PROOF. Let J be a random variable which is uniformly distributed on the set
{1, . . . , n} and independent of the matrix X. We may represent the measure Eμ

(r)
n

as the distribution of a random variable λJ + rξ where λJ and ξ are independent.
Computing the characteristic function of this measure and passing first to the limit
with respect to n → ∞ and then with respect to r → 0 (see also Lemma A.5 in the
Appendix), we conclude the result. �

Now we may fix r > 0 and consider the measures Eμ
(r)
n . They have bounded

densities. Assume that the measures Eμn have supports in a fixed compact set
and that Eμn converges weakly to a measure μ. Applying Theorem 6.9 (Lower
envelope theorem) from [14], page 73 (see also Section 3.8 in the Appendix), we
obtain that under these assumptions

lim inf
n→∞ U(r)

μn
(z) = U(r)(z),

quasi-everywhere in C (for the definition of “quasi-everywhere” see, e.g., [14],
page 24). Here U(r)(z) denotes the logarithmic potential of the measure μ(r) which
is the convolution of a measure μ and of the uniform distribution on the disc of
radius r . Furthermore, note that U(r)(z) may be represented as

U(r)(z0) = 2

r2

∫ r

0
vL(μ; z0, v) dv,

where

L(μ; z0, v) = 1

2π

∫ π

−π
Uμ(z0 + v exp{iθ}) dθ(1.4)

and

Uμ(z) =
∫

ln|ζ − z|dμ(ζ ).(1.5)

Applying Theorem 1.2 in [14], page 84, we get

lim
r→0

U(r)
μ (z) = Uμ(z).

Let s1(X) ≥ · · · ≥ sn(X) denote the singular values of the matrix X.
Since E 1

n
Tr XX∗ = 1 the sequence of measures Eμn is weakly relatively com-

pact. These results imply that for any η > 0 we may restrict the measures Eμn

to some compact set Kη such that supn Eμn(K
(c)
η ) < η. Moreover, Lemma A.2

implies the existence of a compact K such that limn→∞ supn Eμn(K
(c)) = 0. If

we take some subsequence of the sequence of restricted measures Eμn which
converges to some measure μ, then lim infn→∞ U

(r)
μn (z) = U

(r)
μ (z), r > 0, and

limr→0 U
(r)
μ (z) = Uμ(z). If we prove that lim infn→∞ U

(r)
μn (z) exists and Uμ(z) is

equal to the logarithmic potential corresponding the uniform distribution on the
unit disc [see Section 3, equality (3.15)], then the sequence of measures Eμn
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weakly converges to the uniform distribution on the unit disc. Moreover, it is
enough to prove that for some sequence r = r(n) → 0, limn→∞ U

(r)
μn (z) = Uμ(z).

Furthermore, let s
(ε)
1 (z, r) ≥ · · · ≥ s

(ε)
n (z, r) denote the singular values of matrix

X(ε)(z, r) = X(ε)(r) − zI. We shall investigate the logarithmic potential U
(r)
μn (z).

Using elementary properties of singular values (see, e.g., [8], Lemma 3.3, page 35),
we may represent the function U

(r)
μn (z) as follows:

U(r)
μn

(z) = −1

n

n∑
j=1

E log s
(ε)
j (z, r) = −1

2

∫ ∞
0

logxν(ε)
n (dx, z, r),

where ν
(ε)
n (·, z, r) denotes the expected spectral measure of the matrix H(ε)

n (z, r) =
(X(ε)(r) − zI)(X(ε)(r) − zI)∗, which is the expectation of the counting measure of
the set of eigenvalues of the matrix H(ε)

n (z, r).
In Section 2 we investigate convergence of the measure ν

(ε)
n (·, z) := ν(ε)(·, z,0).

In Section 3 we study the properties of the limit measures ν(·, z). But the crucial
problem for the proof of the circular law is the so-called “regularization of the
potential.” We solve this problem using bounds for the minimal singular values
of the matrices X(ε)(z) := X(ε) − zI based on techniques developed in Rudelson
[17] and Rudelson and Vershynin [18]. The bounds of minimal singular values
of matrices X(ε) are given in Section 4 and in the Appendix, Theorem 1.2. In
Section 5 we give the proof of the main theorem. In the Appendix we combine
precise statements of relevant results from potential theory and some auxiliary
inequalities for the resolvent matrices.

In the what follows we shall denote by C and c or α,β, δ, ρ, η (without indices)
some general absolute constant which may be changed from line to line. To spec-
ify a constant we shall use subindices. By IA we shall denote the indicator of an
event A. For any matrix G we denote the Frobenius norm by ‖G‖2, and we denote
by ‖G‖ the operator norm.

2. Convergence of ν
(ε)
n (·, z). Denote by F

(ε)
n (x, z) the distribution function

of the measure ν
(ε)
n (·, z), that is,

F (ε)
n (x, z) = 1

n

n∑
j=1

EI{s(ε)
j (z)2<x},

where s
(ε)
1 (z) ≥ · · · ≥ s

(ε)
n (z) ≥ 0 denote the singular values of the matrix

X(ε)(z) = X(ε) − zI. For a positive random variable ξ and a Rademacher ran-
dom variable (r.v.) κ consider the transformed r.v. ξ̃ = κ

√
ξ . If ζ has distribution

function F
(ε)
n (x, z), the variable ζ̃ has distribution function F̃

(ε)
n (x, z), given by

F̃ (ε)
n (x, z) = 1

2

(
1 + sgn{x}F (ε)

n (x2, z)
)

for all real x. Note that this induces a one-to-one corresponds between the respec-
tive measures ν

(ε)
n (·, z) and ν̃

(ε)
n (·, z). The limit distribution function of F

(ε)
n (x, z)
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as n → ∞, is denoted by F(·, z). The corresponding symmetrization F̃ (x, z) is
the limit of F̃

(ε)
n (x, z) as n → ∞. We have

sup
x

∣∣F (ε)
n (x, z) − F(x, z)

∣∣= 2 sup
x

∣∣F̃ (ε)
n (x, z) − F̃ (x, z)

∣∣.
Denote by s

(ε)
n (α, z) [resp., s(α, z)] and S

(ε)
n (x, z) [resp., S(x, z)] the Stieltjes

transforms of the measures ν
(ε)
n (·, z) [resp., ν(·, z)] and ν̃

(ε)
n (·, z) [resp., ν̃(·, z)]

correspondingly. Then we have

S(ε)
n (α, z) = αs(ε)

n (α2, z), S(α, z) = αs(α2, z).

REMARK 2.1. As shown in Bai [1], the measure ν(·, z) has a density p(x, z)

with bounded support. More precisely, p(x, z) ≤ C max{1, 1√
x
}. Thus the measure

ν̃(·, z) has bounded support and bounded density p̃(x, z) = |x|p(x2, z).

THEOREM 2.2. Let EXjk = 0, E|Xjk|2 = 1. Assume for some function
ϕ(x) > 0 such that ϕ(x) → ∞ as x → ∞ and such that the function x/ϕ(x) is
nondecreasing we have

κ := max
1≤j,k<∞ E|Xjk|2ϕ(Xjk) < ∞.(2.1)

Then

sup
x

∣∣F (ε)
n (x, z) − F(x, z)

∣∣≤ Cκ
(
ϕ
(√

npn

))−1/6
.(2.2)

COROLLARY 2.1. Let EXjk = 0, E|Xjk|2 = 1, and

κ = max
1≤j,k<∞ E|Xjk|3 < ∞.(2.3)

Then

sup
x

∣∣F (ε)
n (x, z) − F(x, z)

∣∣≤ C(npn)
−1/12.(2.4)

PROOF. To bound the distance between the distribution functions F̃
(ε)
n (x, z)

and F̃ (x, z) we investigate the distance between their the Stieltjes transforms. In-
troduce the Hermitian 2n × 2n matrix

W =
(

On

(
X(ε) − zI

)(
X(ε) − zI

)∗ On

)
,

where On denotes n × n matrix with zero entries. Using the inverse of the partial
matrix (see, e.g., [11], Chapter 08, page 18) it follows that, for α = u + iv, v > 0,

(W − αI2n)
−1 =

(
α
(
X(ε)(z)X(ε)(z)∗ − α2I

)−1

X(ε)(z)∗
(
X(ε)(z)X(ε)(z)∗ − α2I

)−1

(2.5)
X(ε)(z)

(
X(ε)(z)∗X(ε)(z) − α2I

)−1

α
(
X(ε)(z)∗X(ε)(z) − α2I

)−1

)
,
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where X(ε)(z) = X(ε)−zI and I2n denotes the unit matrix of order 2n. By definition
of S

(ε)
n (α, z), we have

S(ε)
n (α, z) = 1

2n
E Tr(W − αI2n)

−1.

Set R(α, z) := (Rj,k(α, z))2n
j,k=1 = (W − αI2n)

−1. It is easy to check that

1 + αS(ε)
n (α, z) = 1

2n
E Tr WR(α, z).

We may rewrite this equality as

1 + αS(ε)
n (α, z)

= 1

2n
√

npn

n∑
j,k=1

E
(
εjkXjkRk+n,j (α, z)

(2.6)
+ εjkXjkRk,j+n(α, z)

)
− z

2n

n∑
j=1

ERj,j+n(α, z) − z

2n

n∑
j=1

ERj+n,j (α, z).

We introduce the notation

A = (X(ε)(z)X(ε)(z)∗ − α2I
)−1

, B = X(ε)(z)C,

C = (X(ε)(z)∗X(ε)(z) − α2I
)−1

, D = X(ε)(z)∗A.

With this notation we rewrite equality (2.5) as follows:

R(α, z) = (W − αI2n)
−1 =

(
αA B
D αC

)
.(2.7)

Equalities (2.7) and (2.6) together imply

1 + αS(ε)
n (α, z)

= 1

2n
√

npn

n∑
j,k=1

E
(
εjkXjkRk+n,j (α, z)

(2.8)
+ εjkXjkRk,j+n(α, z)

)
− z

2n
E Tr D − z

2n
E Tr B.

In what follows we shall use a simple resolvent equality. For two matrices U
and V let RU = (U − αI)−1, RU+V = (U + V − αI)−1, then

RU+V = RU − RU VRU+V .
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Let {e1, . . . , e2n} denote the canonical orthonormal basis in R
2n. Let W(jk) denote

the matrix obtained from W by replacing both entries Xj,k and Xj,k by 0. In our
notation we may write

W = W(jk) + 1√
npn

εjkXjkej eT
k+n + 1√

npn

εjkXjkek+neT
j .(2.9)

Using this representation and the resolvent equality, we get

R = R(j,k) − 1√
npn

εjkXjkR(j,k)ej eT
k+nR

(2.10)

− 1√
npn

εjkXjkR(j,k)ek+neT
j R.

Here, and in what follows, we omit the arguments α and z in the notation of resol-
vent matrices. For any vector a, let aT denote the transposed vector a. Applying
the resolvent equality again, we obtain

R = R(j,k) − 1√
npn

εjkXjkR(j,k)ej eT
k+nR(j,k)

(2.11)

− 1√
npn

εjkXjkR(j,k)ek+neT
j R(j,k) + T(jk),

where

T(jk) = 1√
npn

εjkXjkR(j,k)ej eT
k+n

(
R(j,k) − R

)
+ 1√

npn

εjkXjkR(j,k)ej eT
k+n

(
R(j,k) − R

)
(2.12)

+ 1√
npn

εjk(Xjk)R(j,k)ek+neT
j

(
R(j,k) − R

)
+ 1√

npn

εjkXjkR(j,k)ek+neT
j

(
R(j,k) − R

)
.

This implies

Rj,k+n = R(j,k)
j,k+n − 1√

npn

εjkXjkR(j,k)
j,j R(j,k)

k+n,k+n

− 1√
npn

εjkXjk

(
R(j,k)

j,k+n

)2 + T(j,k)
j,k+n,

(2.13)

Rk+n,j = R(j,k)
k+n,j − 1√

npn

εjkXjkR(j,k)
k+n,j R(j,k)

j,k+n

− 1√
npn

εjkXjkR(j,k)
k+n,k+nR(j,k)

j,j + T(j,k)
k+n,j .
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Applying this notation to equality (2.8) and taking into account that Xjk and R(jk)

are independent, we get

1 + αS(ε)
n (α, z) + z

2n
Tr D + z

2n
Tr B

= − 1

n2pn

n∑
j,k=1

Eεjk|Xjk|2R(j,k)
j,j R

(j,k)
k+n,k+n

(2.14)

− 1

n2pn

n∑
j,k=1

Eεjk Re(X2
jk)E
(
R

(j,k)
j,k+n

)2
− 1

2n
√

npn

n∑
j,k=1

E
(
εjkXjkT

(j,k)
k+n,j + εjkXjkT

(j,k)
j,k+n

)
.

From (2.10) it follows immediately that for any p,q = 1, . . . ,2n, j, k = 1, . . . , n,∣∣Rp,p − R(j,k)
p,p

∣∣≤ Cεjk|Xjk|√
npn

(|Rjk
pj ||Rk+n,p| + |Rjk

p,k+n||Rjp|).(2.15)

Since
∑n

m,l=1|Rm,l|2 ≤ n/v2 and
∑n

m,l=1|R(jk)
m,l |2 ≤ n/v2, equality (2.13) implies

1

n2

n∑
j,k=1

E
∣∣R(j,k)

j,k+n

∣∣2 ≤ C

nv4 .(2.16)

By definition (2.12) of T(j,k), applying standard resolvent properties, we obtain
the following bounds, for any z = u + iv, v > 0,

1

n
√

npn

n∑
j,k=1

Eεjk|Xjk|
∣∣T (j,k)

j,k+n

∣∣≤ Cκ

v3ϕ(
√

npn)
.(2.17)

For the proof of this inequality see Lemma A.3 in the Appendix. Using the last
inequalities we obtain, that for v > 0∣∣∣∣∣1n

n∑
j=1

ERjj

1

n

n∑
k=1

Rk+n,k+n − 1

n2

n∑
j=1

n∑
k=1

ER
(jk)
jj R

(jk)
k+n,k+n

∣∣∣∣∣
≤ C

n2√npnv

n∑
j=1

n∑
k=1

Eεjk|Xjk|(∣∣R(jk)
jj

∣∣|Rk+n,j | +
∣∣R(jk)

j,k+n

∣∣|Rjj |)(2.18)

≤ C

nv4 .

Since 1
n

∑n
j=1 Rjj = 1

n

∑n
k=1 Rk+n,k+n = 1

2n
Tr R(α, z), we obtain∣∣∣∣∣ 1

n2

n∑
j=1

n∑
k=1

ER
(jk)
jj R

(jk)
k+n,k+n − E

(
1

2n
Tr R(α, z)

)2
∣∣∣∣∣≤ C

nv4 .(2.19)
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Note that for any Hermitian random matrix W with independent entries on and
above the diagonal we have

E
∣∣∣∣1n Tr R(α, z) − E

1

n
Tr R(α, z)

∣∣∣∣2 ≤ C

nv2 .(2.20)

The proof of this inequality is easy and due to a martingale-type expansion already
used by Girko. Inequalities (2.19) and (2.20) together imply that for v > 0∣∣∣∣∣ 1

n2

n∑
j=1

n∑
k=1

ER
(jk)
jj R

(jk)
k+n,k+n − (S(ε)

n (α, z)
)2∣∣∣∣∣≤ C

nv4 .(2.21)

Denote by r(α, z) some generic function with |r(α, z)| ≤ 1 which may vary from
line to line. We may now rewrite equality (2.8) as follows:

1 + αS(ε)
n (α, z) + (S(ε)

n (α, z)
)2

(2.22)

= − z

2n
E Tr D − z

2n
E Tr B + r(α, z)

v3ϕ(
√

npn)
,

where v > cϕ(
√

npn)/n.
We now investigate the functions T (α, z) = 1

n
E Tr B and V (α, z) = 1

n
E Tr D.

Since the arguments for both functions are similar we provide it for the first one
only. By definition of the matrix B, we have

Tr B = 1√
npn

n∑
j,k=1

εjkXj,k

(
X(ε)(z)∗X(ε)(z) − α2I

)−1
kj − z Tr C.

According to equality (2.7), we have

Tr B = 1

α
√

npn

n∑
j,k=1

εjkXj,kRk+n,j+n − z Tr C.

Using the resolvent equality (2.10) and Lemma A.3, we get, for v > c ×
ϕ(

√
npn)/n

T (α, z) = − 1

αn2

n∑
j,k=1

ER
(jk)
k+n,k+nR

(jk)
j,j+n − z

α
S(ε)

n (α, z) + Cκr(α, z)

v3ϕ(
√

npn)
.(2.23)

Similar to (2.21) we obtain∣∣∣∣∣ 1

n2

n∑
j,k=1

ER
(jk)
j,j+nR

(jk)
k+n,k+n − T (α, z)S(ε)

n (α, z)

∣∣∣∣∣≤ C

nv4 .(2.24)

Inequalities (2.23) and (2.24) together imply, for v > cϕ(
√

npn)/n,

T (α, z) = − zS
(ε)
n (α, z)

α + S
(ε)
n (α, z)

+ Cκr(α, z)

ϕ(
√

npn)v3|α + S
(ε)
n (α, z)| .(2.25)
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Analogously we get

V (α, z) = − zS
(ε)
n (α, z)

α + S
(ε)
n (α, z)

+ Cr(α, z)

ϕ(
√

npn)v3|α + S
(ε)
n (α, z)| .(2.26)

Inserting (2.25) and (2.26) in (2.14), we get

(
S(ε)

n (α, z)
)2 + αS(ε)

n (α, z) + 1 − |z|2S(ε)
n (α, z)

α + S
(ε)
n (α, z)

= δn(z),(2.27)

where

|δn(α, z)| ≤ Cκ

ϕ(
√

npn)v3|S(ε)
n (α, z) + α|

or equivalently

S(ε)
n (α, z)

(
α + S(ε)

n (α, z)
)2

(2.28)
+ (α + S(ε)

n (α, z)
)− |z|2S(ε)

n (α, z) = δ̃n(α, z),

where δ̃n(α, z) = θ Cκr(α,z)

ϕ(
√

npn)v3 .

Furthermore, we introduce the notation

Q(ε)
n (α, z) := (α + S(ε)

n (α, z)
)2 − |z|2 and

Q(α, z) := (α + S(α, z)
)2 − |z|2,(2.29)

P(α, z) := α + S(α, z) and P (ε)(α, z) := α + S(ε)
n (α, z).

We may rewrite the last equation as

S(ε)
n (α, z) = −P

(ε)
n (α, z)

Q
(ε)
n (α, z)

+ δ̂n(α, z),(2.30)

where

δ̂n(α, z) = δ̃n(α, z)

Q
(ε)
n (α, z)

.(2.31)

Furthermore, we prove the following simple lemma.

LEMMA 2.2. Let α = u + iv, v > 0. Let S(α, z) satisfy the equation

S(α, z) = −P(α, z)

Q(α, z)
,(2.32)

and Im{S(α, z)} > 0. Then the inequality

1 − |S(α, z)|2 − |z|2|S(α, z)|2
|α + S(α, z)|2 ≥ v

v + 1

holds.
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PROOF. For α = u+ iv with v > 0, the Stieltjes transform S(α, z) satisfies the
following equation:

S(α, z) = −P(α, z)

Q(α, z)
.(2.33)

Comparing the imaginary parts of both sides of this equation, we get

Im{P(α, z)} = Im{P(α, z)} |P(α, z)|2 + |z|2
|Q(α, z)|2 + v.(2.34)

Equations (2.32) and (2.34) together imply

Im{α + S(α, z)}
(

1 − |P(α, z)|2 + |z|2
|Q(α, z)|2

)
= v.(2.35)

Since v > 0 and Im{α + S(α, z)} > 0, it follows that

1 − |P(α, z)|2 + |z|2
|Q(α, z)|2 = 1 − |S(α, z)|2 − |z|2|S(α, z)|2

|α + S(α, z)|2 > 0.

In particular we have

|S(α, z)| ≤ 1.

Equality (2.35) and the last remark together imply

1 − |P(α, z)|2 + |z|2
|Q(α, z)|2 = v

Im{P(α, z)} ≥ v

v + 1
.

The proof is complete. �

To compare the functions S(α, z) and Sn(α, z) we prove:

LEMMA 2.3. Let

|̂δn(α, z)| ≤ v

2
.

Then the following inequality holds

1 − |P (ε)
n (α, z)|2 + |z|2
|Q(ε)

n (α, z)|2 ≥ v

4
.

PROOF. By the assumption, we have

Im{̂δn(α, z) + α} >
v

2
.

Repeating the arguments of Lemma 2.2 completes the proof. �

The next lemma provides a bound for the distance between the Stieltjes trans-
forms S(α, z) and S

(ε)
n (α, z).
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LEMMA 2.4. Let

|̂δn(α, z)| ≤ v

8
.

Then

∣∣S(ε)
n (α, z) − S(α, z)

∣∣≤ 4|̂δn(α, z)|
v

.

PROOF. Note that S(α, z) and S
(ε)
n (α, z) satisfy the equations

S(α, z) = −P(α, z)

Q(α, z)
(2.36)

and

S(ε)
n (α, z) = −P

(ε)
n (α, z)

Q
(ε)
n (α, z)

+ δ̂n(α, z),(2.37)

respectively. These equations together imply

S(α, z) − S(ε)
n (α, z)

(2.38)

= (S(α, z) − S
(ε)
n (α, z))(P

(ε)
n (α, z)P (α, z) + |z|2)

Q(α, z)Q
(ε)
n (α, z)

+ δ̂n(α, z).

Applying inequality |ab| ≤ 1
2(a2 + b2), we get

∣∣∣∣1 − P
(ε)
n (α, z)P (α, z) + |z|2
Q(α, z)Q

(ε)
n (α, z)

∣∣∣∣≥ 1

2

(
1 − |P (ε)

n (α, z)|2 + |z|2
|Q(ε)

n (α, z)|2
)

+ 1

2

(
1 − |P(α, z)|2 + |z|2

|Q(α, z)|2
)
.

The last inequality and Lemmas 2.2 and 2.3 together imply∣∣∣∣1 − P
(ε)
n (α, z)P (α, z) + |z|2

Q(α, z)Q
ε)
n (α, z)

∣∣∣∣≥ v

4
.

This completes the proof of the lemma. �

To bound the distance between the distribution function Fn(x, z) and the distri-
bution function F(x, z) corresponding the Stieltjes transforms Sn(α, z) and S(α, z)

we use Corollary 2.3 from [9]. In the next lemma we give an integral bound for the
distance between the Stieltjes transforms S(α, z) and S

(ε)
n (α, z).
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LEMMA 2.5. For v ≥ v0(n) = c(ϕ(
√

npn))
−1/6 the inequality∫ ∞

−∞
∣∣S(α, z) − S(ε)

n (α, z)
∣∣du ≤ C(1 + |z|2)κ

ϕ(
√

npn)v7

holds.

PROOF. Note that∣∣Q(ε)
n

∣∣≥ ∣∣P (ε)
n (α, z) − |z|∣∣∣∣P (ε)

n (α, z) + |z|∣∣≥ v2.(2.39)

It follows from here that |̂δn(α, z)| ≤ C
v5ϕ(

√
npn)

and

|̂δn(α, z)| ≤ v/8

for v ≥ c(ϕ(
√

npn))
−1/6. Lemma 2.4 implies that it is enough to prove the inequal-

ity ∫ ∞
−∞

|̂δn(α, z)|du ≤ Cγn,

where γn = C
v6ϕ(

√
npn)

. By definition of δ̂(α, z), we have∫ ∞
−∞

|̂δn(α, z)|du ≤ cκ

v3ϕ(
√

npn)

∫ ∞
−∞

du

|Q(ε)
n (α, z))| .(2.40)

Furthermore, representation (2.30) implies that

1

|Q(ε)
n (α, z)| ≤ |S(ε)

n (α, z)|
|P (ε)

n (α, z)| + |̂δn(α, z)|
|P (ε)

n (α, z)| .(2.41)

Note that, according to relation (2.27),

1

|P (ε)
n (α, z)| ≤ |z|2|S(ε)

n (α, z)|
|P (ε)

n (α, z)|2 + ∣∣S(ε)
n (α, z)

∣∣+ |δn(α, z)|
|P (ε)

n (α, z)|2 .(2.42)

This inequality implies∫ ∞
−∞

|S(ε)
n (α, z)|

|P (ε)
n (α, z)| du ≤ C(1 + |z|2)

v2

∫ ∞
−∞
∣∣S(ε)

n (α, z)
∣∣2 du

(2.43)

+
∫ ∞
−∞

|δn(α, z)| |S
(ε)
n (α, z)|

|P (ε)
n (α, z)| du.

It follows from relation (2.27) that for v > c(ϕ(
√

npn))
−1/6,

|δn(α, z)| ≤ Cκ

(ϕ(
√

npn))v4 < 1/2.(2.44)
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The last two inequalities together imply that for sufficiently large n and v >

c(ϕ(
√

npn))
−1/6,∫ ∞

−∞
|S(ε)

n (α, z)|
|P (ε)

n (α, z)| du ≤ C(1 + |z|2)
v2

∫ ∞
−∞
∣∣S(ε)

n (α, z)
∣∣2 du ≤ C(1 + |z|2)

v3 .(2.45)

Inequalities (2.42), (2.40) and the definition of δ̂n(α, z) together imply∫ ∞
−∞

|̂δn(α, z)|du ≤ C(1 + |z|2)
v6ϕ(

√
npn)

+ Cκ

v4ϕ(
√

npn)

∫ ∞
−∞

|̂δn(α, z)|du.(2.46)

If we choose v such that Cκ

v4ϕ(
√

npn)
< 1

2 we obtain

∫ ∞
−∞

|̂δn(α, z)|du ≤ C(1 + |z|2)
ϕ(

√
npn)v6 .(2.47) �

In Section 3 we show that the measure ν̃(·, z) has bounded support and bounded
density for any z. To bound the distance between the distribution functions
F̃

(ε)
n (x, z) and F̃ (x, z) we may apply Corollary 3.2 from [9] (see also Lemma A.6

in the Appendix). We take V = 1 and v0 = C(ϕ(
√

npn))
−1/6. Then Lemmas 2.2

and 2.3 together imply

sup
x

∣∣F (ε)
n (x, z) − F(x, z)

∣∣≤ C
(
ϕ
(√

npn

))−1/6
.(2.48) �

3. Properties of the measure ν̃(·, z). In this section we investigate the prop-
erties of the measure ν̃(·, z). At first note that there exists a solution S(α, z) of the
equation

S(α, z) = − S(α, z) + α

(S(α, z) + α)2 − |z|2(3.1)

such that, for v > 0,

Im{S(α, z)} ≥ 0

and S(α, z) is an analytic function in the upper half-plane α = u + iv, v > 0.
This follows from the relative compactness of the sequence of analytic functions
Sn(α, z), n ∈ N. From (2.36) it follows immediately that

|S(α, z)| ≤ 1.(3.2)

Set y = S(x, z) + x and consider equation (2.36) on the real line

y = − y

y2 − |z|2 + x(3.3)

or

y3 − xy2 + (1 − |z|2)y + x|z|2 = 0.(3.4)
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Set

x2
1 = 5 + 2|z|2

2
+ (1 + 8|z|2)3/2 − 1

8|z|2 ,

(3.5)

x2
2 = 5 + 2|z|2

2
− (1 + 8|z|2)3/2 + 1

8|z|2 .

It is straightforward to check that
√

3(1 − |z|2) ≤ |x1| and x2
2 < 0 for |z| < 1 and

x2
2 = 0 for |z| = 1, and x2

2 > 0 for |z| > 1.

LEMMA 3.1. In the case |z| ≤ 1 equation (3.4) has one real root for |x| ≤ |x1|
and three real roots for |x| > |x1|. In the case |z| > 1 equation (3.4) has one real
root for |x2| ≤ x ≤ |x1| and three real roots for |x| ≤ |x2| or for |x| ≥ |x1|.

PROOF. Set

L(y) := y3 − xy2 + (1 − |z|2)y + x|z|2.
We consider the roots of the equation

L′(y) = 3y2 − 2xy + (1 − |z|2) = 0.(3.6)

The roots of this equation are

y1,2 = x ±
√

x2 − 3(1 − |z|2)
3

.

This implies that, for |z| ≤ 1 and for

|x| ≤
√

3(1 − |z|2)
equation (3.4) has one real root. Furthermore, direct calculations show that

L(y1)L(y2) = 1
27

(−4|z|2x4 + (8|z|4 + 20|z|2 − 1)x2 + 4(1 − |z|2)3).
Solving the equation L(y1)L(y2) = 0 with respect to x, we get for |z| ≤ 1 and√

3(1 − |z|2) ≤ |x| ≤ |x1|
L(y1)L(y2) ≥ 0,

and for |z| ≤ 1 and |x| >
√

20+8|z|2
8 + (1+8|z|2)3/2−1

8|z|2

L(y1)L(y2) < 0.

These relations imply that for |z| ≤ 1 the function L(y) has three real roots for
|x| ≥ |x1| and one real root for |x| < |x1|.
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Consider the case |z| > 1 now. In this case y1,2 are real for all x and x2
2 > 0.

Note that

L(y1)L(y2) ≤ 0

for |x| ≤ |x2| and for |x| ≥ |x1| and

L(y1)L(y2) > 0

for |x2| < x < |x1|. These implies that for |z| > 1 and for |x2| < x < |x1| the
function L(y) has one real root and for |x| ≤ |x2| or for |x| ≥ |x1| the function
L(y) has three real roots. The lemma is proved. �

REMARK 3.1. From Lemma 3.1 it follows that the measure ν̃(x, z) has a den-
sity p(x, z) = limv→0 ImS(α, z) and:

• p(x, z) ≤ 1, for all x and z;
• for |z| ≤ 1, if |x| ≥ x1, then p(x, z) = 0;
• for |z| ≥ 1, if |x| ≥ x1 or |x| ≤ x2, then p(x, z) = 0;
• p(x, z) > 0 otherwise.

Introduce the function

g(s, t) :=
⎧⎨⎩

2s

s2 + t2 , if s2 + t2 > 1,

2s, otherwise.
(3.7)

It is well known that for z = s + it the logarithmic potential of uniform distribution
on the unit disc is

U0(z) :=
∫ ∫

ln
1

|z − x + iy| dG(x, y) =
⎧⎨⎩ 1

2
(1 − |z|2), if |z| ≤ 1,

− ln |z|, if |z| > 1,
(3.8)

and

∂

∂s

∫ ∫
ln

1

|z − x + iy| dG(x, y) = −1

2
g(s, t).(3.9)

According to Lemma 4.4 in Bai [1], we have, for z = s + it ,

∂

∂s

(∫ ∞
0

logxν(dx, z)

)
= 1

2
g(s, t).(3.10)

According to Remark 3.1, we have, for |z| ≥ 1,

ln(|x2|/|z|) ≤ Uν̃(z) + ln |z| ≤ ln(|x1|/|z|).(3.11)

This implies that

lim|z|→∞|Uν̃(z) − U0(z)| = 0.(3.12)
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Since ∫ ∞
−∞

log |x |̃ν(dx, z) =
∫ ∞

0
logxν(dx, z)(3.13)

we get

∂

∂s

(∫ ∞
−∞

log |x |̃ν(dx, z)

)
= 1

2
g(s, t).(3.14)

Comparing equalities (3.10) and (3.8) and using relation (3.12), we obtain

U0(z) = −
∫ ∞

0
lnxν(dx, z) = −

∫ ∞
−∞

ln |x |̃ν(dx, z) = Uμ(z).(3.15)

4. The smallest singular value. Let X(ε) = 1√
npn

(εjkXjk)
n
j,k=1 be an n × n

matrix with independent entries εjkXjk , j, k = 1, . . . , n. Assume that EXjk = 0
and EX2

jk = 1 and let εjk denote Bernoulli random variables with pn = Pr{εjk =
1}, j, k = 1, . . . , n. Denote by s

(ε)
1 (z) ≥ · · · ≥ s

(ε)
n (z) the singular values of the

matrix X(ε)(z) := X(ε) − zI. In this section we prove a bound for the minimal
singular value of the matrices X(ε)(z). We prove the following result.

THEOREM 4.1. Let Xjk, j, k ∈ N, be independent random complex variables
with EXjk = 0 and E|Xjk|2 = 1, which are uniformly integrable, that is,

sup
j,k

E|Xjk|2I{|Xjk |>M} → 0 as M → ∞.(4.1)

Let εjk , j, k = 1, . . . , n, be independent Bernoulli random variables with pn :=
Pr{εjk = 1}. Assume that εjk are independent from Xjk, j, k ∈ N, in aggregate.
Let p−1

n = O(n1−θ ) for some 0 < θ ≤ 1. Let K ≥ 1. Then there exist constants
c,C,B > 0 depending on θ and K such that for any z ∈ C and positive ε we have

Pr
{
s(ε)
n (z) ≤ ε/nB; s(ε)

1 (z) ≤ Kn
√

pn

}≤ exp{−cpnn} + C
√

lnn√
npn

.(4.2)

REMARK 4.2. Let Xjk be i.i.d. random variables with EXjk = 0 and
E|Xjk|2 = 1. Then condition (4.1) holds.

REMARK 4.3. Consider the event A that there exists at least one row with
zero entries only. Its probability is given by

Pr{A} ≥ 1 − (1 − (1 − pn)
n)n.(4.3)

Simple calculations show that if npn ≤ lnn for all n ≥ 1, then

Pr{A} ≥ δ > 0.(4.4)

Hence in the case npn ≤ lnn and npn → ∞ we have no invertibility with positive
probability.
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REMARK 4.4. The proof of Theorem 4.1 uses ideas of Rudelson and Ver-
shynin [18], to classify with high probability vectors x in the (n − 1)-dimensional
unit sphere S n−1 such that ‖X(ε)(z)x‖2 is extremely small into two classes, called
compressible and incompressible vectors.

We develop our approach for shifted sparse and normalized matrices X(ε)(z).
The generalization to the case of complex sparse and shifted matrices X(ε)(z) is
straightforward. For details see, for example, the paper of Götze and Tikhomirov
[10] and the proof of the Lemma 4.1 below.

REMARK 4.5. We may relax the condition p−1
n = O(n1−θ ) to p−1

n = o(n/

ln2 n). The quantity B in Theorem 4.1 should be of order lnn in this case. See
Remark 4.9 for details.

LEMMA 4.1. Let x = (x1, . . . , xn) ∈ S n−1 be a fixed unit vector and X(ε)(z)

be a matrix as in Theorem 4.1. Then there exist some positive absolute constants
γ0 and c0 such that for any 0 < τ ≤ γ0

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ τ
}≤ exp{−c0npn}.(4.5)

PROOF. Recall that EXij = 0 and E|Xij |2 = 1. Assume first that Xij are real

independent r.v. with mean zero, and variance at least 1. Let X
(ε)
ij = Xij εij with

independent Bernoulli variables which are independent of Xij in aggregate and let
z = 0. Assume also that x is a real vector. Then

∥∥X(ε)x
∥∥2

2 = 1

npn

n∑
j=1

∣∣∣∣∣
n∑

k=1

xkXjkεjk

∣∣∣∣∣
2

=: 1

npn

n∑
k=1

ζ 2
j .(4.6)

By Chebyshev’s inequality we have

Pr

{
n∑

j=1

ζ 2
j < τ 2npn

}
= Pr

{
τ 2npn

2
− 1

2

n∑
j=1

ζ 2
j > 0

}
(4.7)

≤ exp{npnτ
2t2/2}

n∏
j=1

E exp{−t2ζ 2
j /2}.

Using e−t2/2 = E exp{itξ}, where ξ is a standard Gaussian random variable, we
obtain

Pr

{
n∑

j=1

ζ 2
j < τ 2npn

}
(4.8)

≤ exp{npnτ
2t2/2}

n∏
j=1

Eξj

n∏
k=1

EεjkXjk
exp{itξj xkεjkXjk},
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where ξj , j = 1, . . . , n, denote i.i.d. standard Gaussian r.v.s and EZ denotes expec-
tation with respect to Z conditional on all other r.v.s. For every α,x ∈ [0,1] and
ρ ∈ (0,1) the following inequality holds:

αx + 1 − α ≤ xβ ∨
(

ρ

α

)β/(1−β)

(4.9)

(see [3], inequality (3.7)). Take α = Pr{|ξj | ≤ C1} for some absolute positive con-
stant C1 which will be chosen later. Then it follows from (4.8) that

Pr

{
n∑

j=1

ζ 2
j < τ 2npn

}

≤ exp{npnτ
2t2/2}(4.10)

×
n∏

j=1

(
α

∣∣∣∣∣Eξj

(
n∏

k=1

EεjkXjk
exp{itξj xkεjkXjk}

∣∣∣|ξj | ≤ C1

)∣∣∣∣∣+ 1 − α

)
.

Furthermore, we note that

|EεjkXjk
exp{itξj xkεjkXjk}|

≤ exp
{

1

2
(|EεjkXjk

exp{itξj xkεjkXjk}|2 − 1)

}
(4.11)

≤ exp
{
−pn

(
(1 − pn)

(
1 − Refjk(txkξj )

)
+ pn

2

(
1 − |fjk(txkξj )|2))},

where fjk(u) = E exp{iuXjk}. Assuming (4.1), choose a constant M > 0 such that

sup
jk

E|Xjk|2I{|Xjk |>M} ≤ 1/2.(4.12)

Since 1− cosx ≥ 11/24x2 for |x| ≤ 1, conditioning on the event |ξj | ≤ C1, we get
for 0 < t ≤ 1/(MC1)

1 − Refjk(txkξj ) = EXjk

(
1 − cos(txkXjkξj )

)
(4.13)

≥ 11
24 t2x2

k ξ2
j E|Xjk|2I{|Xjk |≤M},

and similarly

1 − |fjk(txkξj )|2 = EXjk

(
1 − cos(txkX̃jkξj )

)
(4.14)

≥ 11
24 t2x2

k ξ2
j E|X̃jk|2I{|Xjk |≤M}.

It follows from (4.11) for 0 < t < 1/(MC1) and for some constant c > 0

|EεjkXjk
exp{itξj xkεjkXjk}| ≤ exp{−cpnt

2x2
k ξ2

j }.(4.15)
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This implies that conditionally on |ξj | ≤ C1 and for 0 < t ≤ 1/(MC1)∣∣∣∣∣
n∏

k=1

EεjkXjk
exp{itξj xkεjkXjk}

∣∣∣∣∣≤ exp{−cpnt
2ξ2

j }.(4.16)

Let �0(x) := 2�(x)− 1, x > 0, where �(x) denotes the standard Gaussian distri-
bution function. It is straightforward to show that

Eξj
(exp{−cpnt

2ξ2
j }||ξj | ≤ C1)

(4.17)

= 1√
1 + 2ct2pn

�0(C1

√
1 + 2t2cpn)

�0(C1)
.

We may choose C1 large enough such that following inequalities hold:

Eξj
(exp{−cpnt

2ξ2
j }||ξj | ≤ C1) ≤ exp{−ct2pn/24}(4.18)

for all |t | ≤ 1/(MC1). Inequalities (4.8), (4.9), (4.11), (4.18) together imply that
for any β ∈ (0,1)

Pr

{
n∑

j=1

ζ 2
j < τ 2npn

}
(4.19)

≤ exp{npnτ
2t2/2}

(
exp{−cβnt2pn/24} +

(
β

α

)nβ/(1−β))
.

Without loss of generality we may take C1 sufficiently large, such that α ≥ 4/5
and choose β = 2/5. Then we obtain

Pr

{
n∑

j=1

ζ 2
j < τ 2npn

}
(4.20)

≤ exp{npnτ
2t2/2}

(
exp{−ct2npn/60} +

(
1

2

)2n/3)
.

For τ <
√

c√
60

we conclude from here that for |t | ≤ 1/(MC1)

Pr

{
n∑

j=1

ζ 2
j < τ 2npn

}
≤ exp{−ct2npn/120}.(4.21)

Inequality (4.21) implies that inequality (4.5) holds with some positive constant
c0 > 0. This completes the proof in the real case.
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Consider now the general case. Let Xjk = ξjk + iηjk with i = √−1 with
E|Xjk|2 = 1 and xk = uk + ivk and z = u + iv. In this notation we have

Pr
{∥∥(X(ε) − zI

)
x
∥∥

2 ≤ τ
}

≤ exp{τ 2npnt
2/2}

× min

{
E exp

{
−t2

n∑
j=1

∣∣∣∣∣
n∑

k=1

(ξjkuk − ηjkvk)εjk

(4.22)

− √
npn(uuj − vvj )

∣∣∣∣∣
2/

2

}
,

E exp

{
−t2

n∑
j=1

∣∣∣∣∣
n∑

k=1

(ξjkvk + ηjkuk)εjk

− √
npn(vuj + uvj )

∣∣∣∣∣
2/

2

}}
.

Note that for x = (x1, . . . , xn) ∈ S(n−1) (the unit sphere in C
n) and for any set

A ⊂ {1, . . . , n}
max
{∑

k∈A

|xk|2,
∑
k∈Ac

|xk|2
}

≥ 1/2.(4.23)

For any j = 1, . . . , n we introduce the set Aj as follows:

Aj := {k ∈ {1, . . . , n} : E|ξjkuk − ηjkvk|2 ≥ |xk|2/2
}
.(4.24)

It is straightforward to check that for any k /∈ Aj

E|ηjkuk + ξjkvk|2 ≥ |xk|2/2.(4.25)

According to inequality (4.23), for any j = 1, . . . , n, there exists a set Bj such that∑
k∈Bj

|xk|2 ≥ 1/2(4.26)

and for any k ∈ Bj

E|ξjkuk − ηjkvk|2 ≥ |xk|2/2(4.27)

or

E|ηjkuk + ξjkvk|2 ≥ |xk|2/2.(4.28)

Introduce the following random variables for any j, k = 1, . . . , n

ζ̃jk := ξjkuk − ηjkvk(4.29)
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and

ζ̂jk := ηjkuk + ξjkvk.(4.30)

Inequalities (4.27) and (4.28) together imply that one of the following two inequal-
ities

card{j : for any k ∈ Bj E|̂ζjk|2 ≥ |xk|2/2} ≥ n/2(4.31)

or

card{j : for any k ∈ Bj E|̃ζjk|2 ≥ |xk|2/2} ≥ n/2(4.32)

holds. If (4.31) holds we shall bound the first term on the right-hand side of (4.22).
In the other case we shall bound the second term. In what follows we may repeat
the arguments leading to inequalities (4.10)–(4.16). Thus the lemma is proved. �

For any qn ∈ (0,1) and K > 0 to be chosen later we define Kn := Kn
√

pn,
q̂n := qn/(ln(2/pn) lnKn) and p̂n := pn/(ln(2/pn) lnKn). Without loss of gener-
ality we shall assume that

lnKn/| lnγ0| ≥ 1 and lnKn > 1.(4.33)

PROPOSITION 4.6. Assume there exist an absolute constant c > 0 and values
γn, qn ∈ (0,1) such that for any x ∈ C ⊂ S (n−1)

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ γn and

∥∥X(ε)(z)
∥∥≤ Kn

}≤ exp{−cnqn}(4.34)

holds. Then there exists a constant δ0 > 0 depending on K and c only such that,
for k < δ0nq̂n,

Pr
{

inf
x∈S k−1∩C

∥∥X(ε)(z)x
∥∥

2 ≤ γn/2 and
∥∥X(ε)(z)

∥∥≤ Kn

}
≤ exp{−cnqn/8}.

PROOF. Let η > 0 to be chosen later. There exists an η-net N in S k−1 ∩ C
of cardinality |N | ≤ ( 3

η
)2k (see, e.g., Lemma 3.4 in [17]). By condition (4.34), we

have for τ ≤ γn

Pr
{
there exists x ∈ N :

∥∥X(ε)(z)x
∥∥

2 < τ and
∥∥X(ε)(z)

∥∥≤ Kn

}
(4.35)

≤
(

3

η

)2k

exp{−cnqn}.

Let V be the event that ‖X(ε)(z)‖ ≤ Kn and ‖X(ε)(z)y‖2 ≤ 1
2τ for some point

y ∈ S (k−1) ∩ C . Assume that V occurs and choose a point x ∈ N such that ‖y −
x‖2 ≤ η. Then∥∥X(ε)(z)x

∥∥
2 ≤ ∥∥X(ε)(z)y

∥∥
2 + ∥∥X(ε)(z)

∥∥‖x − y‖2 ≤ 1
2τ + Knη = τ,(4.36)
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if we set η = τ/(2Kn). Hence,

Pr(V ) ≤
((

3

η

)2δ0/(lnKn ln(2/pn))

exp
{
−c0

4

})nqn

.(4.37)

Note that under assumption (4.33) we have

2 ln(3/η)

ln 2 lnKn

≤ 10.(4.38)

Choosing δ0 = c
80 and τ = γn, we complete the proof. �

Following Rudelson and Vershynin [18], we shall partition the unit sphere
S (n−1) into the two sets of so-called compressible and incompressible vectors,
and we will show the invertibility of X on each set separately.

DEFINITION 4.7. Let δ, ρ ∈ (0,1). A vector x ∈ R
n is called sparse if

|supp(x)| ≤ δn. A vector x ∈ S (n−1) is called compressible if x is within Euclid-
ean distance ρ from the set of all sparse vectors. A vector x ∈ S (n−1) is called
incompressible if it is not compressible.

The sets of sparse, compressible and incompressible vectors depending on δ and
ρ will be denoted by

Sparse(δ), Comp(δ, ρ), Incomp(δ, ρ),(4.39)

respectively.

LEMMA 4.2. Let X(ε)(z) be a random matrix as in Theorem 1.2, and let Kn =
Kn

√
pn with a constant K ≥ 1. Assume there exist an absolute constant c > 0 and

values γn, qn ∈ (0,1) such that for any x ∈ C ⊂ S (n−1)

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ γn and

∥∥X(ε)(z)
∥∥≤ Kn

}≤ exp{−cnqn}(4.40)

holds. Then there exist δ1, c1 that depend on K and c only, such that

Pr
{

inf
x∈Comp(δ1q̂n,ρn)∩C

∥∥X(ε)(z)x
∥∥

2 ≤ γn and
∥∥X(ε)(z)

∥∥≤ Kn

}
(4.41)

≤ exp{−c1nqn},
where ρn := γn/(4Kn).

PROOF. At first we estimate the invertibility for sparse vectors. Let k =
[δ1nq̂n] with some positive constant δ1 which will be chosen later. According to
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Proposition 4.6 for any δ1 ≤ δ0 and for any τ ≤ γn/2, we have the following in-
equality:

Pr
{

inf
x∈Sparse(δ1p̂n)∩C

∥∥X(ε)(z)x
∥∥

2 ≤ τ and
∥∥X(ε)(z)

∥∥≤ Kn

}
= Pr
{
there exists σ, |σ | = k : inf

x∈Rσ ∩C,‖x‖2=1

∥∥X(ε)(z)x
∥∥

2 ≤ τ

and ‖X(ε)(z)‖ ≤ Kn

}
≤
(

n

k

)
exp{−c0nqn/8}.

Using Stirling’s formula, we get for some absolute positive constant C

1

n
ln
(

n

k

)
≤ −Cδ1q̂n ln(δq̂n).(4.42)

We may choose δ1 small enough that

1

n
ln
(

n

k

)
≤ c0qn/16.(4.43)

Thus we get

Pr
{

inf
x∈Sparse(δ1p̂n)∩C

∥∥X(ε)(z)x
∥∥

2 ≤ τ and
∥∥X(ε)(z)

∥∥≤ Kn

}
≤ exp{−c1nqn}.(4.44)

Choose ρ := γ := γn/4. Let V be the event that ‖X(ε)(z)‖ ≤ Kn and ‖X(ε)(z)y‖2 ≤
γ1 for some point y ∈ Comp(δ1p̂n, ρK−1

n ). Assume that V occurs and choose a
point x ∈ Sparse(δ1p̂n) such that ‖y − x‖2 ≤ ρK−1

n . Then∥∥X(ε)(z)x
∥∥

2 ≤ ∥∥X(ε)(z)y
∥∥

2 + ∥∥X(ε)(z)
∥∥‖x − y‖2 ≤ γ1 + ρ = γn/2.(4.45)

Hence,

Pr(V ) ≤ exp
{
−c0

8
nqn

}
.(4.46)

Thus the lemma is proved. �

LEMMA 4.3. Let δ, ρ ∈ (0,1). Let x ∈ Incomp(δ, ρ). Then there exists a set
σ(x) ⊂ {1, . . . , n} of cardinality |σ(x)| ≥ 1

2nδ such that∑
k∈σ(x)

|xk|2 ≥ 1

2
ρ2(4.47)

and
ρ√
2n

≤ |xk| ≤ 1√
nδ/2

for any k ∈ σ(x),(4.48)

which we shall call “spread set of x” henceforth.
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PROOF. See proof of Lemma 3.4 [18], page 16. For the reader’s convenience
we repeat this proof here. Consider the subsets of {1, . . . , n} defined by

σ1(x) :=
{
k : |xk| ≤ 1√

δn/2

}
, σ2(x) =

{
k : |xk| ≥ ρ√

2n

}
(4.49)

and put σ(x) = σ1(x) ∩ σ2(x). Denote by Pσ(x) the orthogonal projection onto
R

σ(x) in R
n. By Chebyshev’s inequality |σ1(x)c| ≤ δn/2. Then y := Pσ1(x)cx ∈

Sparse(δ), so the incompressibility of x implies that ‖Pσ1(x)x‖2 = ‖x − y‖2 > ρ.

By the definition of σ2(x), we have ‖Pσ2(x)cx‖2 ≤ n
ρ2

2n
= ρ2/2. Hence∥∥Pσ(x)x

∥∥2
2 ≥ ∥∥Pσ1(x)x

∥∥2
2 − ∥∥Pσ2(x)x

∥∥2
2 ≥ ρ2/2.(4.50)

Thus the lemma is proved. �

REMARK 4.8. If x ∈ Incomp(δp̂n, ρ) then there exists a set σ(x) with cardi-
nality |σ(x)| ≥ 1

2nδp̂n such that

ρ√
2n

≤ |xk| ≤ 1√
nδp̂n/2

(4.51)

and ∥∥Pσ(x)x
∥∥2

2 ≥ 1
2ρ2.(4.52)

Let Q(η) = supjk supu∈C Pr{|Xjk − u| ≤ η}. Introduce the maximal concentra-
tion function of the weighed sums of the rows of the matrix (Xjk)

n
j,k=1,

px(η) = max
j∈{1,...,n} sup

u∈C

Pr

{∣∣∣∣∣
n∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ η

}
.(4.53)

We shall now bound this concentration function and prove a tensorization lemma
for incompressible vectors.

LEMMA 4.4. Let δn and ρn be some functions of n such that ρn, δn ∈ (0,1).
Let η0 and r0 as in Lemma A.7. Let x ∈ Incomp(δn, ρn). Then there exists positive
constants r1 and r2 depending on r0 such that for any 0 < η ≤ η0 we have

px
(
ηρn/

√
2n
)≤ 1 − r2δnnpn(4.54)

for nδnpn ≤ 1/3 and

px
(
ηρn/

√
2n
)≤ 1 − r1 < 1(4.55)

for nδnpn > 1/3.



1470 F. GÖTZE AND A. TIKHOMIROV

PROOF. Put m = nδn. We have

sup
u

Pr

{∣∣∣∣∣
m∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ ηρn/
√

2n

}

≤ Pr

{
m∑

k=1

εjk = 0

}
(4.56)

+ Pr

{∣∣∣∣∣
m∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ ηρn/
√

2n;
m∑

k=1

εjk ≥ 1

}
.

Introduce σ(x) := {k ∈ {1, . . . , n} :ρn/
√

2n ≤ |xk| ≤ 1/
√

m/2}. Since x ∈
Incomp(δn, ρn) the cardinality of σ(x) is at least m/2. Using that the concen-
tration function of sum of independent random variables is less then concentration
function of its summands, we obtain

sup
u

Pr

{∣∣∣∣∣
m∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ ηρn/
√

2n

}
(4.57)

≤ (1 − pn)
m + Q(η)

(
1 − (1 − pn)

m).
According to Lemma A.7 in the Appendix for any η ≤ η0, we have Q(η) ≤ r0 < 1.
Assume that mpn ≥ 1/3. Then we have

sup
u

Pr

{∣∣∣∣∣
m∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ ηρn/
√

2n

}
≤ r0 + (1 − r0)e

−mpn

≤ 1 − (1 − e−1/3)(1 − r0)(4.58)

=: 1 − r1 < 1.

If mpn ≤ 1/3 then (1 − pn)
m ≤ 1 − mpn/3 and

sup
u

Pr

{∣∣∣∣∣
m∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ ηρn/
√

2n

}
≤ 1 − (1 − r0)mpn/3

(4.59)
=: 1 − r2mpn.

The lemma is proved. �

Now we state a tensorization lemma.

LEMMA 4.5. Let ζ1, . . . , ζn be independent nonnegative random variables.
Assume that

Pr{ζj ≤ λn} ≤ 1 − qn(4.60)
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for some positive qn ∈ (0,1) and λn > 0. Then there exists positive absolute con-
stants K1 and K2 such that

Pr

{
n∑

j=1

ζ 2
j ≤ K2

1nqnλ
2
n

}
≤ exp{−K2nqn}.(4.61)

PROOF. We repeat the proof of Lemma 4.4 in [12]. Let t = K1
√

qnλn. For any
τ > 0 we have

Pr

{
n∑

j=1

ζ 2
j ≤ nt2

}
≤ enτ

n∏
j=1

E exp{−τζ 2
j /t2}.(4.62)

Furthermore,

E exp{−τζ 2
j /t2} =

∫ ∞
0

Pr
{
exp{−τζ 2

j /t2} > s
}
ds

=
∫ 1

0
Pr
{
1/s > exp{τζ 2

j /t2}}ds

≤
∫ exp{−τλ2

n/t2}
0

ds +
∫ 1

exp{−τλ2
n/t2}

(1 − qn) ds(4.63)

≤ 1 − qn(1 − exp{−τλ2
n/t2})

= 1 − qn

(
1 − exp{−τ/(K2

1qn)}).
Choosing τ := qn/4 and K2

1 := 1
4 ln 2 , we get

Pr

{
n∑

j=1

ζ 2
j ≤ nt2

}
≤ exp{−nqn/2}.(4.64)

Thus the lemma is proved. �

Recall that we assume p−1
n = O(n1−θ ),1 ≥ θ > 0. For this fixed θ consider

L := [ 1
θ
]. Hence by definition pn,l := (np̂n)

lpn → 0, n → ∞ for l = 1, . . . ,L − 1
and lim supn→∞(npn)

Lpn > 0. We put pn,L := 1.
We shall assume that n is large enough such that (npn)

Lpn ≥ q1 > 0 for some
constant q1 > 0. Starting with a decomposition of C0 := S (n−1) into compressible
vectors x in Ĉ1 := C0 ∩ Comp(δ1pn,1, ρn,1), where pn,1 = p̂n, ρn,1 = γ0/(4Kn),
and the constants γ0 and δ1 are chosen as in Lemmas 4.1 and 4.2, respectively.
Then Lemma 4.1 implies inequality (4.40) with qn replaced by pn and γn re-
placed by γ0. Hence, using Lemma 4.2, one obtains the claim for the subset
of vectors Ĉ1. The remaining vectors x in C0 lie in C1 := Incomp(δ1pn,1, ρn,1).
According to Lemmas 4.4, 4.5 inequality (4.40) holds again for these vectors
but with new parameters qn = npnδ1pn,1 and γn = cρn,1

√
δ1pn,1. Thus we may
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again subdivide the vectors in C1 into the vectors within distance ρn,2 from these
sparse ones, that is, Ĉ2 := C1 ∩ Comp(δ2pn,2, ρn,2) and the remaining ones, that
is, C2 := C1 ∩ Incomp(δ2pn,2, ρn,2). Iterating this procedure L times we arrive at
the incompressible set CL of vectors x where Lemmas 4.4, 4.5 and Proposition 4.6
yield the required bound of order exp{−δn}, for a sufficiently small absolute con-
stant δ > 0.

Summarizing, we will determine iteratively constants δl, ρn,l , for l = 1, . . . ,L

and the following sets of vectors:

Cl :=
l⋂

i=1

Incomp(δipn,i, ρn,i)(4.65)

and

Ĉl := Cl−1 ∩ Comp(δlpn,l, ρn,l) with C0 = S (n−1).(4.66)

Note that

S (n−1) =
L−1⋃
l=1

Ĉl ∪ CL.(4.67)

The main bounds to carry out this procedure are given in the following Lemmas 4.6
and 4.7.

LEMMA 4.6. Let δn, ρn ∈ (0,1) and let x ∈ Incomp(δn, ρn) and X(ε)(z) be
a matrix as in Theorem 4.1. Then there exist some positive constants c1 and c2
depending on K , r0, η0 such that for any 0 < τ ≤ γn

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ τ
}≤ exp

{−c1n
(
(pnnδn) ∧ 1

)}
(4.68)

with

γn := c2ρn

√
δn,(4.69)

where a ∧ b denotes the minimum of a and b.

PROOF. Assume at first that nδnpn ≤ 1/3. According to Lemma 4.4, we have,
for any j = 1, . . . , n,

sup
u∈C

Pr

{∣∣∣∣∣
n∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ η0ρn/
√

2n

}
≤ 1 − r1δnnpn.(4.70)

Applying Lemma 4.5 with qn = r1δnnpn, we get

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ γn/2 and

∥∥X(ε)(z)
∥∥≤ Kn

}≤ exp{−cnδnnpn}.(4.71)

Consider now the case nδnpn ≥ 1/3. According to Lemma 4.4, we have

sup
u∈C

Pr

{∣∣∣∣∣
n∑

k=1

Xjkεjkxk − u

∣∣∣∣∣≤ η0ρn/
√

2n

}
≤ 1 − r1.(4.72)
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Applying Lemma 4.5 with qn = r1δnnpn, we get

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ γn/2 and

∥∥X(ε)(z)
∥∥≤ Kn

}≤ exp{−cn}.(4.73)

This completes the proof of the lemma. �

LEMMA 4.7. For l = 2, . . . ,L assume that δi, ρn,i have been already deter-
mined for i = 1, . . . , l − 1. Then there exist absolute constants ĉl > 0 and cl > 0
and δl > 0 such that

Pr
{

inf
x∈Ĉl

∥∥X(ε)(z)x
∥∥

2 ≤ γn,l and
∥∥X(ε)(z)

∥∥≤ Kn

}
(4.74)

≤ exp
{−cln

(
((np̂n)

l−1pn) ∧ 1
)}

with γn,l defined by

γn,l = ĉlρn,l−1

√
δl−1pn,l−1(4.75)

and ρn,l defined by

ρn,l := γn,l/(4Kn),(4.76)

where Ĉl := Cl−1 ∩ Comp(δlpn,l, ρn,l).

REMARK 4.9. There exists some absolute constant c > 0 that

γn,L ≥ cn−L/2 and ρn,L ≥ cn−(L+3)/2.(4.77)

PROOF. Note that p−1
n,l = O(n1−lθ ). This implies that

γ −1
n,L = ρ−1

n,1O(nL−L2θ/2).(4.78)

According to Lemmas 4.1 and 4.2, we have ρ−1
n1 = O(n(3−θ)/2). After simple cal-

culations we get

γ −1
n,L = O(nL/2).(4.79) �

PROOF OF LEMMA 4.7. To prove of this lemma we may use arguments similar
to those in the proofs of Lemmas 2.6 and 3.3 in [18]. From x ∈ Cl it follows that
x ∈ Incomp(δl−1pn,l−1, ρn,l−1). Applying Lemma 4.6 with δn = pn,l−1 and ρn =
ρn,l−1, we get

Pr
{∥∥X(ε)(z)x

∥∥
2 ≤ γn,l and

∥∥X(ε)(z)
∥∥≤ Kn

}
(4.80)

≤ exp
{−c1n

(
(npnp̂n,l−1) ∧ 1

)}
with

γn,l = c2ρn,l−1

√
δl−1pn,l−1.(4.81)



1474 F. GÖTZE AND A. TIKHOMIROV

Inequality (4.80) and Lemma 4.2 together imply

Pr
{

inf
x∈Cl

∥∥X(ε)(z)x
∥∥

2 ≤ γn,l and
∥∥X(ε)(z)

∥∥≤ Kn

}
≤ exp{−c1np̂n,l}(4.82)

with δl defined in Lemma 4.2 and

ρn,l := γn,l/(4Kn).(4.83)

Thus the lemma is proved. �

The next lemma gives an estimate of small ball probabilities adapted to our case.

LEMMA 4.8. Let x ∈ Incomp(δ, ρn,L). Let X1, . . . ,Xn be random variables
with zero mean and variance at least 1. Assume that the following condition holds:

L(M) := max
n≥1

max
1≤k≤n

E|Xk|2I{|Xk |>M} → 0 as M → ∞.(4.84)

Then there exist some constants C > 0 depending on δ such that for every ε > 0

px
(
ερn,L/

√
2n
) := sup

v
Pr

{∣∣∣∣∣
n∑

k=1

xkεkXk − v

∣∣∣∣∣≤ ερn,L/
√

2n

}
≤ C

√
lnn√

npn

.(4.85)

PROOF. Put L1 := [− log2(ρn,L

√
2δ)]. Note that

ρn,L√
2n

≤ 1

2L1+1/2
√

nδ
≤ 2ρn,L√

2n
.(4.86)

According to Remark 4.9, we have ρn,L ≥ cn−L/2. This implies L1 ≤ C lnn. Let
σ(x) denote the spread set of the vector x, that is,

σ(x) :=
{
k :ρn,L/

√
2n ≤ |xk| ≤

√
2

nδ

}
.(4.87)

By Lemma 4.3, we have

|σ(x)| ≥ nδ/2.(4.88)

We divide the spread interval of the vector x into L1 + 2 intervals �l , l =
0, . . . ,L1 + 1 by

�0 :=
{
k :

ρn,L√
2n

≤ |xk| ≤ 1

2L1+1/2
√

nδ

}
,(4.89)

�l :=
{
k :

√
2

2l
√

nδ
≤ |xk| ≤

√
2

2l−1
√

nδ

}
, l = 1, . . . ,L1 + 1.(4.90)

Note that there exists an l0 ∈ {0, . . . ,L1 + 1} such that

|�l0 | ≥ nδ/
(
2(L1 + 2)

)≥ Cn/ lnn.(4.91)
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Let y = P�l0
x. Put al := mink∈�l

|xk| and bl := maxk∈�l
|xk|. Choose a constant

M such that L(M) ≤ 1/2. By the properties of concentration functions, we have

px
(
ερn,L/

√
2n
)≤ py

(
ερn,L/

√
2n
)≤ py(Mbl0).(4.92)

By definition of �l0 , we have∑
k∈�l0

|xk|2 ≥ a2
l0
|�l0 | ≥ ρ2

n,L/(2n)|�l0 |(4.93)

and

al0

bl0

≥ 1

2
.(4.94)

Define

D(ξ,λ) = λ−2E|ξ |2I{|ξ |<λ}(4.95)

and introduce for a random variable ξ , ξ̃ := ξ − ξ̂ where ξ̂ denotes an independent
copy of ξ . Put ξk := xkεkXk . We use the following inequality for a concentration
function of a sum of independent random variables:

py(Mbl0) ≤ CMbl0

( ∑
k∈�l0

λ2
kD(ξ̃kεk;λk)

)−1/2

(4.96)

with λk ≤ Mbl0 . See Petrov [19], page 43, Theorem 3. Put λk = M|xk|. It is
straightforward to check that

∑
k∈�l0

λ2
kD(ξ̃kεk;λk) ≥ pn

( ∑
k∈�l0

|xk|2(E|Xk|2 − L(M)
))

.(4.97)

This implies ∑
k∈�l0

λ2
kD(ξ̃kεk;λk) ≥ pn

2

∑
k∈�l0

|xk|2 ≥ pn

2
|�l0 |a2

l0
.(4.98)

Combining this inequality with (4.96) and (4.92) we obtain

px
(
ερn,L/

√
2n
)≤ CMbl0√|�l0 |pnal0

≤ CM√|�l0 |pn

≤ C
√

lnn√
npn

.(4.99)

The last relation concludes the proof. �
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Invertibility for the incompressible vectors via distance.

LEMMA 4.9. Let X1,X2, . . . ,Xn denote the columns of
√

npnX(ε)(z), and let
Hk denotes the span of all column vectors except the kth. Then for every δ, ρ ∈
(0,1) and every η > 0 one has

Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 < η
(
ρn,L/

√
n
)2

/
√

npn

}
≤ 1

nδL

n∑
k=1

Pr
{
dist(Xk, Hk) < ηρn,L/

√
n
}
.

PROOF. Note that

Pr
{

inf
x∈ĈL

∥∥X(ε)(z)x
∥∥

2 < η
(
ρn,L/

√
n
)2

/
√

npn

}
(4.100)

≤ Pr
{

inf
x∈Incomp(δL,ρn,L)

∥∥X(ε)(z)x
∥∥

2 < η
(
ρn,L/

√
n
)2

/
√

npn

}
.

For the upper bound of the r.h.s. of (4.100) (see [18], proof of Lemma 3.5).
For the reader’s convenience we repeat this proof. Introduce the matrix G :=√

npnX(ε)(z). Recall that X1, . . . ,Xn denote the column vector of the matrix G
and Hk denotes the span of all column vectors except the kth. Writing Gx =∑n

k=1 xkXk , we have

‖Gx‖ ≥ max
k=1,...,n

dist(xkXk, Hk) = max
k=1,...,n

|xk|dist(Xk, Hk).(4.101)

Put

pk := Pr
{
dist(Xk, Hk) < ηρn,L/

√
n
}
.(4.102)

Then

E
∣∣{k : dist(Xk, Hk) < ηρn,L/

√
n
}∣∣= n∑

k=1

pk.(4.103)

Denote by U the event that the set σ1 := {k : dist(Xk,Hk) ≥ ηρn,L/
√

n} contains
more than (1 − δL)n elements. Then by Chebyshev’s inequality

Pr{Uc} ≤ 1

nδL

n∑
k=1

pk.(4.104)

On the other hand, for every incompressible vector x, the set σ2(x) := {k : |xk| ≥
ρn,L/

√
n} contains at least nδL elements. (Otherwise, since ‖Pσ2(x)cx‖2 ≤ ρn,L,

we have ‖x−y‖2 ≤ ρn,L for the sparse vector y := Pσ2(x)x, which would contradict
the incompressibility of x.)

Assume that the event U occurs. Fix any incompressible vector x. Then
|σ1| + |σ2(x)| > (1 − δL)n + nδL > n, so the sets σ1 and σ2(x) have nonempty
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intersection. Let k ∈ σ1 ∩ σ2(x). Then by (4.101) and by definitions of the sets σ1
and σ2(x), we have

‖Gx‖2 ≥ |xk|dist(Xk, Hk) ≥ η(ρn,Ln−1/2)2.(4.105)

Summarizing we have shown that

Pr
{

inf
x∈Incomp(δL,ρn,L)

‖Gx‖2 ≤ η(ρn,Ln−1/2)2
}

≤ Pr{Uc} ≤ 1

nδL

n∑
k=1

pk.(4.106)

This completes the proof. �

We now reformulate Lemma 3.6 from [18]. Let X∗
n be any unit vector orthogonal

to X1, . . . ,Xn−1. Consider the subspace Hn = span(X1, . . . ,Xn−1).

LEMMA 4.10. Let δl, ρl, cl , l = 1, . . . ,L − 1, be as in Lemma 4.2 and δL,
ρL, cL as in Lemma 4.7. Then there exists an absolute constant ĉL > 0 such that

Pr
{
X∗ /∈ CL and

∥∥X(ε)(z)
∥∥≤ Kn

}≤ exp{−ĉLnpn}.(4.107)

PROOF. Note that

S (n−1) =
L−1⋃
l=1

Ĉl ∪ CL.(4.108)

The event {X∗ /∈ CL and ‖X(ε)(z)‖ ≤ Kn} implies that the event

E :=
{

inf
x∈⋃L−1

l=1 Ĉl : ‖x‖2=1

∥∥X(ε)(z)x
∥∥

2 ≤ c and
∥∥X(ε)(z)

∥∥≤ Kn

}
(4.109)

occurs for any positive c. This implies, for c > 0,

Pr
{
X∗ /∈ CL and

∥∥X(ε)(z)
∥∥≤ Kn

}
(4.110)

≤
L−1∑
l=1

Pr
{

inf
x∈Ĉl : ‖x‖2=1

∥∥X(ε)(z)x
∥∥≤ c and

∥∥X(ε)(z)
∥∥≤ Kn

}
.(4.111)

Now choose c := min{γn,l, l = 1, . . . ,L − 1}. Applying Lemma 4.7 proves the
claim. �

LEMMA 4.11. Let X(ε)(z) be a random matrix as in Theorem 1.2. Let
X1, . . . ,Xn denote column vectors of the matrix

√
npnX(ε)(z), and consider the

subspace Hn = span(X1, . . . ,Xn−1). Let Kn = Kn
√

pn. Then we have

Pr
{
dist(Xn, Hn) < ρn,L/

√
n and

∥∥X(ε)(z)
∥∥≤ Kn

}≤ C
√

lnn√
npn

.(4.112)
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PROOF. We repeat Rudelson and Vershynin’s proof of Lemma 3.8 in [18]. Let
X∗ be any unit vector orthogonal to X1,X2, . . . ,Xn−1. We can choose X∗ so that
it is a random vector that depends on X1,X2, . . . ,Xn−1 only and is independent
of Xn. We have

dist(Xn, Hn) ≥ |〈Xn,X∗〉|.
We denote the probability with respect to Xn by Prn and the expectation with
respect to X1, . . . ,Xn−1 by E1,...,n−1. Then

Pr
{
dist(Xn, Hn) < ρn,L/

√
n and

∥∥X(ε)(z)
∥∥≤ Kn

}
≤ E1,...,n−1Prn

{|〈X∗,Xn〉| ≤ ρn,L/
√

n and X∗ ∈ CL

}
(4.113)

+ Pr
{
X∗ /∈ CL and

∥∥X(ε)(z)
∥∥≤ Kn

}
.

According to Lemma 4.10, the second term in the right-hand side of the last in-
equality is less then exp{−ĉLn}. Since the vectors X∗ = (a1, . . . , an) ∈ S (n−1) and
Xn = (ε1ξ1, . . . , εnξn) are independent, we may use small ball probability esti-
mates. We have

S = 〈Xn,X∗〉 =
n∑

k=1

akεkξk.

Let σ denote the spread set of X∗ as in Lemma 4.3. Let Pσ denote the orthogonal
projection onto R

σ in R
n. Denote by Sσ =∑k∈σ εkakξk . Using the properties of

concentration functions, we get

Prn
{|〈Xn,X∗〉| ≤ ρn,L/

√
n
}≤ sup

v
Prn
{|S − v| ≤ ρn,L/

√
n
}

≤ sup
v

Prn
{|Sσ − v| ≤ ρn,L/

√
n
}
.

By Lemma 4.8, we have for some absolute constant C > 0

Prn
{|〈Xn,X∗〉| ≤ ρn,L/

√
n
}≤ C

√
lnn√

npn

.(4.114)

Thus the lemma is proved. �

LEMMA 4.12. Let X(ε)(z) be a random matrix as in Theorem 4.1. Let
δL,ρn,L ∈ (0,1). Let X1, . . . ,Xn denote column vectors of matrix

√
npnX(ε)(z).

Let Kn = Kn
√

pn with K ≥ 1. Then we have

Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 < ρ2
n,L/n

}
≤ Pr
{∥∥X(ε)(z)

∥∥> Kn

}+ C
√

lnn√
npn

.
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PROOF. Note that

Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 < ρ2
n,L/n

}
≤ Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 < ρ2
n,L/n and

∥∥X(ε)(z)
∥∥≤ Kn

}
(4.115)

+ Pr
{∥∥X(ε)(z)

∥∥> Kn

}
.

Applying Lemma 4.9 with η = √
pn, we get

Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 <
ρ2

n,L

n

}
≤ 1

nδL

n∑
k=1

Pr
{

dist(Xk, Hk) <
ρn,L

√
pn√

n

}
.

Applying Lemma 4.11, we obtain

Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 < ρ2
n,L/n

}
≤ C

√
lnn√

npn

.(4.116)

Thus the lemma is proved. �

PROOF OF THEOREM 4.1. By definition of the minimal singular value, we
have

Pr
{
s(ε)
n (z) ≤ ρ2

n,L/n and s
(ε)
1 (z) ≤ Kn

}
≤ Pr
{
there exists x ∈ S (n−1) :

∥∥X(ε)(z)x
∥∥

2 ≤ ρ2
n,L/n and s

(ε)
1 (z) ≤ Kn

}
.

Furthermore, using the decomposition of the sphere S (n−1) =⋃L−1
l=1 Ĉl ∪ CL into

compressible and incompressible vectors, we get

Pr
{
s(ε)
n (z) ≤ ρ2

n,L/n and s
(ε)
1 (z) ≤ Kn

}
≤

L−1∑
l=1

Pr
{

inf
x∈Ĉl

∥∥X(ε)(z)x
∥∥

2 ≤ ρ2
n,L/n and s

(ε)
1 (z) ≤ Kn

}
(4.117)

+ Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 ≤ ρ2
n,L/n and s

(ε)
1 (z) ≤ Kn

}
.

According to Lemma 4.7, we have

Pr
{

inf
x∈Ĉl

∥∥X(ε)(z)x
∥∥

2 ≤ ρ2
n,L/n and s

(ε)
1 (z) ≤ Kn

}
≤ exp{−clnpn(np̂n)

l−1}.
Lemmas 4.12 and 4.7 together imply that

Pr
{

inf
x∈CL

∥∥X(ε)(z)x
∥∥

2 ≤ ρ2
n,L/n and s

(ε)
1 (z) ≤ Kn

}
≤ Pr
{

inf
x∈Incomp(δL,ρn,L)

∥∥X(ε)(z)x
∥∥

2 ≤ ρ2
n,L/n and s

(ε)
1 (z) ≤ Kn

}
(4.118)

≤ C
√

lnn√
npn

+ exp{−ĉLn}.
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The last two inequalities together imply the result. �

REMARK 4.9. To relax the condition p−1
n = O(n1−θ ) of Theorem 4.1 to

p−1
n = o(n/ ln2 n) we should put L = lnn. Then the value L1 in Lemma 4.8 is

at most C(lnn)2, and hence we get the bound C lnn/
√

npn in (4.85). This yields
the bound C lnn/

√
npn + exp{−ĉLn} in (4.118). Thus Theorem 4.1 holds with B

chosen to be of order C lnn.

5. Proof of the main theorem. In this section we give the proof of Theo-
rem 1.2. Theorem 1.1 follows from Theorem 1.2 with pn = 1. Let γ := 1

3 and
let R > 0 and k1 be defined as in Lemma A.2 with q = 18. Using the nota-
tion of Theorem 4.1 we introduce for any z ∈ C and absolute constant c > 0
the set �n(z) = {ω ∈ � : c/nB ≤ s

(ε)
n (z), s1(ε) ≤ n

√
pn, |λ(ε)

k1
| ≤ R}. According

to Lemma A.1

Pr
{
s
(ε)
1 (X) ≥ n

√
pn

}≤ C(npn)
−1.

According to Theorem 4.1 with ε = c, we have

Pr
{
c/nB ≥ s(ε)

n (z)
}≤ C

√
lnn√

npn

+ Pr
{
s
(ε)
1 ≥ n

√
pn

}
.

According to Lemma A.2 with q = 18, we have

Pr
{∣∣λ(ε)

k1

∣∣≤ R
}≤ C�γ

n ≤ C
[
ϕ
(√

npn

)]−1/18
.(5.1)

These inequalities imply

Pr{�n(z)
c} ≤ (ϕ(√npn

))−1/18
.(5.2)

Let r = r(n) be such that r(n) → 0 as n → ∞. A more specific choice will be
made later. Consider the potential U

(r)
μn . We have

U(r)
μn

= −1

n
E log
∣∣det
(
X(ε) − zI − rξI

)∣∣
= −1

n

n∑
j=1

E log
∣∣λ(ε)

j − rξ − z
∣∣I�n(z)

− 1

n

n∑
j=1

E log
∣∣λ(ε)

j − rξ − z
∣∣I

�
(c)
n (z)

= U(r)
μn

+ Û (r)
μn

,

where IA denotes an indicator function of an event A and �n(z)
c denotes the

complement of �n(z).
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LEMMA 5.1. Assuming the conditions of Theorem 4.1, for r such that

ln(1/r)
(
ϕ
(√

npn

))−1/19 → ∞ as n → ∞
we have

Û (r)
μn

→ 0 as n → ∞.(5.3)

PROOF. By definition, we have

Û (r)
μn

= −1

n

n∑
j=1

E log
∣∣λ(ε)

j − rξ − z
∣∣I

�
(c)
n (z)

.(5.4)

Applying Cauchy’s inequality, we get, for any τ > 0,

∣∣Û (r)
μn

∣∣≤ 1

n

n∑
j=1

E1/(1+τ)
∣∣log
∣∣λ(ε)

j − rξ − z
∣∣∣∣1+τ (Pr

{
�(c)

n

})τ/(1+τ )

(5.5)

≤
(

1

n

n∑
j=1

E
∣∣log
∣∣λ(ε)

j − rξ − z
∣∣∣∣1+τ

)1/(1+τ )(
Pr
{
�(c)

n

})τ/(1+τ )
.

Furthermore, since ξ is uniformly distributed in the unit disc and independent
of λj , we may write

E
∣∣log|λj − rξ − z|∣∣1+τ = 1

2π
E
∫
|ζ |≤1

∣∣log
∣∣λ(ε)

j − rζ − z
∣∣∣∣1+τ

dζ

= EJ
(j)
1 + EJ

(j)
2 + EJ

(j)
3 ,

where

J
(j)
1 = 1

2π

∫
|ζ |≤1,|λ(ε)

j −rζ−z|≤ε

∣∣log
∣∣λ(ε)

j − rζ − z
∣∣∣∣1+τ

dζ,

J
(j)
2 = 1

2π

∫
|ζ |≤1,1/ε>|λ(ε)

j −rζ−z|>ε

∣∣log
∣∣λ(ε)

j − rζ − z
∣∣∣∣1+τ

dζ,

J
(j)
3 = 1

2π

∫
|ζ |≤1,|λj −rζ−z|>1/ε

∣∣log
∣∣λ(ε)

j − rζ − z
∣∣∣∣1+τ

dζ.

Note that ∣∣J (j)
2

∣∣≤ log
(

1

ε

)
.

Since for any b > 0, the function −ub logu is not decreasing on the interval
[0, exp{− 1

b
}], we have for 0 < u ≤ ε < exp{− 1

b
},

− logu ≤ εbu−b log
(

1

ε

)
.
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Using this inequality, we obtain, for b(1 + τ) < 2,

∣∣J (j)
1

∣∣≤ 1

2π
εb(1+τ)

(
log
(

1

ε

))1+τ

(5.6)
×
∫
|ζ |≤1,|λ(ε)

j −rζ−z|≤ε

∣∣λ(ε)
j − rζ − z

∣∣−b(1+τ)
dζ

≤ 1

2πr2 εb log
(

1

ε

)∫
|ζ |≤ε

|ζ |−b(1+τ) dζ

(5.7)

≤ C(τ, b)ε2r−2
(

log
(

1

ε

))1+τ

.

If we choose ε = r , then we get

∣∣J (j)
1

∣∣≤ C(τ, b)

(
log
(

1

r

))1+τ

.(5.8)

The following bound holds for 1
n

∑n
j=1 EJ

(j)
3 . Note that |logx|1+τ ≤ ε2 ×

|log ε|1+τ x2 for x ≥ 1
ε

and sufficiently small ε. Using this inequality, we obtain

1

n

n∑
j=1

EJ
(j)
3 ≤ C(τ)ε2|log ε|1

n

n∑
j=1

E
∣∣λ(ε)

j − rζ − z
∣∣2

≤ C(τ)(1 + |z|2 + r2)ε2|log ε|(5.9)

≤ C(τ)(2 + |z|2)r2|log r|.
Inequalities (5.6)–(5.9) together imply that∣∣∣∣∣1n

n∑
j=1

E
∣∣log
∣∣λ(ε)

j − rξ − z
∣∣∣∣1+τ

∣∣∣∣∣≤ C

(
log
(

1

r

))1+τ

.(5.10)

Furthermore, inequalities (5.2), (5.4), (5.5) and (5.10) together imply

∣∣Û (r)
μn

∣∣≤ C

(
log
(

1

r

))(
C
(
ϕ
(√

npn

))−1/18)τ/(1+τ )
.

We choose τ = 18 and rewrite the last inequality as follows:

∣∣Û (r)
μn

∣∣≤ C

(
log
(

1

r

))(
ϕ
(√

npn

))−1/19 ≤ C

(
log
(

1

r

))(
ϕ
(√

npn

))−1/19
.

If we choose r = 1√
npn

we obtain log(1/r)((ϕ(
√

npn))
−1/19 → 0, then (5.3) holds

and the lemma is proved. �
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We shall investigate U
(r)
μn now. We may write

U(r)
μn

= −1

n

n∑
j=1

E log
∣∣λ(ε)

j − z − rξ
∣∣I�n(z)

= −1

n

n∑
j=1

E log
(
sj
(
X(ε)(z, r)

))
I�n(z)(5.11)

= −
∫ Kn+|z|
n−B

logx dEFn(x, z, r),

where F
(ε)
n (·, z, r) is the distribution function corresponding to the restriction of

the measure ν
(ε)
n (·, z, r) to the set �n(z). Introduce the notation

Uμ = −
∫ Kn+|z|
n−B

logx dF(x, z).(5.12)

Integrating by parts, we get

U(r)
μn

− Uμ = −
∫ Kn+|z|
n−B

EF
(ε)
n (x, z, r) − F(z, r)

x
dx

(5.13)
+ C sup

x

∣∣EF (ε)
n (x, z, r) − F(z, r)

∣∣|log(nB+1)|.
This implies that∣∣U(r)

μn
− Uμ

∣∣≤ C lnn sup
x

∣∣EF (ε)
n (x, z, r) − F(x, z)

∣∣.(5.14)

Note that, for any r > 0, |s(ε)
j (z) − s

(ε)
j (z, r)| ≤ r . This implies that

EF (ε)
n (x − r, z) ≤ EF (ε)

n (x, z, r) ≤ EF (ε)
n (x + r, z).(5.15)

Hence, we get

sup
x

∣∣EF (ε)
n (x, z, r) − F(x, z)

∣∣
(5.16)

≤ sup
x

∣∣EF (ε)
n (x, z) − F(x, z)

∣∣+ sup
x

|F(x + r, z) − F(x, z)|.
Since the distribution function F(x, z) has a density p(x, z) which is bounded (see
Remark 3.1) we obtain

sup
x

∣∣EF (ε)
n (x, z, r) − F(x, z)

∣∣≤ sup
x

∣∣EF (ε)
n (x, z) − F(x, z)

∣∣+ Cr.(5.17)

Choose r = 1√
npn

. Inequalities (5.17) and (2.48) together imply

sup
x

∣∣EF (ε)
n (x, z, r) − F(x, z)

∣∣≤ C

((
ϕ
(√

npn

))−1/18 + 1√
npn

)
.(5.18)
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From inequalities (5.18) and (5.14) it follows that∣∣U(r)
μn

− Uμ

∣∣≤ C

((
ϕ
(√

npn

))−1/18 + 1√
npn

)
log(nB).

Note that ∣∣U(r)
μn

− Uμ

∣∣≤ ∣∣∣∣∫ n−B

0
logx dF(x, z)

∣∣∣∣≤ Cn−B |ln(n−B)|.
Let K = {z ∈ C : |z| ≤ R} and let Kc denote C \ K. According to Lemma A.2

with q = 18, we have, for k1 and R from Lemma A.2,

1 − qn := Eμ(r)
n (Kc) ≤ k1

n
+ Pr{|λk1 | > R} ≤ C(ϕ(npn))

−1/18.(5.19)

Furthermore, let μ
(r)
n and μ̂

(r)
n be probability measures supported on the compact

set K and K(c), respectively, such that

Eμ(r)
n = qnμ

(r)
n + (1 − qn)μ̂

(r)
n .(5.20)

Introduce the logarithmic potential of the measure μ
(r)
n ,

U
μ

(r)
n

= −
∫

log|z − ζ |dμ(r)
n (ζ ).

Similar to the proof of Lemma 5.1 we show that

lim
n→∞
∣∣U(r)

μn
− U

μ
(r)
n

∣∣≤ C lnn(ϕ(npn))
−1/19.

This implies that

lim
n→∞U

μ
(r)
n

(z) = Uμ(z)

for all z ∈ C. According to equality (3.15), Uμ(z) is equal to the potential of uni-
form distribution on the unit disc. This implies that the measure μ coincides with
the uniform distribution on the unit disc. Since the measures μ

(r)
n are compactly

supported, Theorem 6.9 from [14] and Corollary 2.2 from [14] together imply that

lim
n→∞μ(r)

n = μ(5.21)

in the weak topology. Inequality (5.19) and relations (5.20) and (5.20) together
imply that

lim
n→∞ Eμ(r)

n = μ

in the weak topology. Finally, by Lemma 1.1 we get

lim
n→∞ Eμn = μ(5.22)

in the weak topology. Thus Theorem 1.2 is proved.
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APPENDIX

In this appendix we collect some technical results.

The largest singular value. Recall that |λ(ε)
1 | ≥ · · · ≥ |λ(ε)

n | denote the eigen-

values of the matrix X(ε) ordered via decreasing absolute values, and let s
(ε)
1 ≥

· · · ≥ s
(ε)
n denote the singular values of the matrix X(ε).

We show the following:

LEMMA A.1. Under condition of Theorem 1.1 for sufficiently large K ≥ 1 we
have

Pr
{
s
(ε)
1 ≥ n

√
pn

}≤ C/npn(A.1)

for some positive constant C > 0.

PROOF. Using Chebyshev’s inequality, we get

Pr
{
s
(ε)
1 ≥ n

√
pn

}≤ 1

n2pn

E Tr
(
X(ε)(X(ε))∗)≤ 1/(npn).(A.2)

Thus the lemma is proved. �

LEMMA A.2. Assume that maxj,k E|Xjk|2ϕ(Xjk) ≤ C with ϕ(x) := (ln(1 +
|x|))q , q ≥ 7, and �n := supx |F (ε)

n (x, z) − F(x, z)|. Then there exists some ab-
solute positive constant R such that

Pr
{∣∣λ(ε)

k1

∣∣> R
}≤ (ϕ(npn))

−(q−6)/(12q),(A.3)

where k1 := [�(q+6)/(2q)
n n lnn].

PROOF. Let us introduce k0 := [�(q+6)/(2q)
n n]. Using Chebyshev’s inequality

we obtain, for sufficiently large R > 0,

Pr
{
s
(ε)
k0

> R
}≤ 1 − EFn(R)

k0/n
≤ �(q−6)/(2q)

n .

On the other hand,

Pr
{∣∣λ(ε)

k1

∣∣> R
}≤ Pr

{
k1∏

ν=1

∣∣λ(ε)
ν

∣∣> Rk1

}
(A.4)

≤ Pr

{
k1∏

ν=1

s(ε)
ν > Rk1

}
≤ Pr

{
1

k1

k1∑
ν=1

ln s(ε)
ν > lnR

}
.
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Furthermore, for any value R1 ≥ 1, splitting into the events s
(ε)
k0

> R and s
(ε)
k0

≤ R,
we get

Pr

{
1

k1

k1∑
ν=1

ln s(ε)
ν > lnR1

}

≤ Pr
{
s
(ε)
k0

> R
}+ Pr

{
k0

k1
ln s

(ε)
1 + lnR > lnR1

}
≤ �(q−6)/(2q)

n + Pr
{

ln s
(ε)
1 >

k1

k0
ln

R1

R

}
.

Now choose R1 := R2. Thus, since k1/k0 ∼ lnn,

Pr
{∣∣λ(ε)

k1

∣∣> R
}≤ �(q−6)/(2q)

n + Pr
{
ln s

(ε)
1 > lnR lnn

}
.

Taking into account Lemma A.1 and inequality (2.48) we obtain

Pr
{∣∣λ(ε)

k1

∣∣> R
}≤ �(q−6)/(2q)

n + C

npn

≤ C(ϕ(npn))
−(q−6)/(12q)

for some positive constant C > 0, thus proving the lemma. �

LEMMA A.3. Let κ = maxj,k E|Xjk|2ϕ(Xjk). The following inequality
holds:

1

n
√

npn

n∑
j,k=1

Eεjk|Xjk|(∣∣T (jk)
k+n,j

∣∣+ ∣∣T (jk)
j,k+n

∣∣)≤ C

v3ϕ(
√

npn)
.(A.5)

PROOF. Introduce the notation

B := 1

n
√

npn

n∑
j,k=1

Eεj k|Xjk|(∣∣T (jk)
k+n,j

∣∣+ ∣∣T (jk)
j,k+n

∣∣)(A.6)

and

B1 := 2

n2pn

n∑
j,k=1

Eεjk|Xjk|2
∣∣R(jk)

k+n,j

∣∣∣∣R(jk)
k+n,j − Rk+n,j

∣∣,
B2 := 2

n2pn

n∑
j,k=1

Eεjk|Xjk|2
∣∣R(jk)

k+n,k+n

∣∣∣∣R(jk)
j,j − Rj,j

∣∣,
(A.7)

B3 := 2

n2pn

n∑
j,k=1

Eεjk|Xjk|2
∣∣R(jk)

j,j

∣∣∣∣R(jk)
k+n,k+n − Rk+n,k+n

∣∣,
B4 := 2

n2pn

n∑
j,k=1

Eεjk|Xjk|2
∣∣R(jk)

j,k+n

∣∣∣∣R(jk)
j,k+n − Rj,k+n

∣∣.
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Since the function |x|/ϕ(x) not decreasing, it follows from inequality (2.10) that∣∣R(jk)
l,m − Rl,m

∣∣≤ 1

v
I{|Xjk |>√

npn} + 1

v2ϕ(
√

npn)
ϕ(Xjk).(A.8)

It is easy to check that

max{Bk, k = 1, . . . ,8} ≤ Cκ

v3ϕ(
√

npn)
.(A.9)

This implies that

B ≤ Cκ

v3ϕ(
√

npn)
.(A.10) �

LEMMA A.4. Let μn be the empirical spectral measure of the matrix X and
νr be the uniform distribution on the disc of radius r . Let μ

(r)
n be the empirical

spectral measure of the matrix X(r) = X − rξI, where ξ is a random variable
which is uniformly distributed on the unit disc. Then the measure Eμ

(r)
n is the

convolution of the measures Eμn and νr , that is,

Eμ(r)
n = (Eμn) ∗ (νr).(A.11)

PROOF. Let J be a random variable which is uniformly distributed on the
set {1, . . . , n}. Let λ1, . . . , λn be the eigenvalues of the matrix X. Then λ1 +
rξ, . . . , λn + rξ are eigenvalues of the matrix X(r). Let δx be denote the Dirac
measure. Then

μn = 1

n

n∑
j=1

δλj
(A.12)

and

μ(r)
n = 1

n

n∑
j=1

δλj+rξ .(A.13)

Denote by μnj the distribution of λj . Then

Eμn = 1

n

n∑
j=1

μnj(A.14)

and

Eμr
n = 1

n

n∑
j=1

μnj ∗ νr =
(

1

n

n∑
j=1

μnj

)
∗ (νr) = (Eμn) ∗ (νr).(A.15)

Thus the lemma is proved. �
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Let

f (r)
n (t, v) =

∫ ∞
−∞

∫ ∞
−∞

exp{itx + ivy}dG(r)
n (x, y)(A.16)

and

fn(t, v) =
∫ ∞
−∞

∫ ∞
−∞

exp{itx + ivy}dGn(x, y),(A.17)

where

G(r)
n (x, y) = 1

n

n∑
j=1

Pr{Reλj + rξ ≤ x, Imλj + rξ ≤ y}(A.18)

and

Gn(x, y) = 1

n

n∑
j=1

Pr{Reλj ≤ x, Imλj ≤ y}.(A.19)

Denote by h(t, v) the characteristic function of the joint distribution of the real and
imaginary parts of ξ ,

h(t, v) =
∫ ∞
−∞

∫ ∞
−∞

exp{iux + ivy}dG(x, y).(A.20)

LEMMA A.5. The following relations hold

f (r)
n (t, v) = fn(t, v)h(rt, rv).(A.21)

If for any t, v there exists limn→∞ fn(t, v), then

lim
r→0

lim
n→∞f (r)

n (t, v) = lim
n→∞ lim

r→0
f (r)

n (t, v)

(A.22)
= lim

n→∞fn(t, v).

PROOF. The first equality follows immediately from the independence of the
random variable ξ and the matrix X. Since limr→0 h(rt, rv) = h(0,0) = 1 the first
equality implies the second one. �

LEMMA A.6 ([9], Lemma 2.1). Let F and G be distribution functions with
Stieltjes transforms SF (z) and SG(z), respectively. Assume that

∫∞
−∞ |F(x) −

G(x)|dx < ∞. Let G(x) have a bounded support J and density bounded by some
constant K . Let V > v0 > 0 and a be positive numbers such that

γ = 1

π

∫
|u|≤a

1

u2 + 1
du >

3

4
.
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Then there exist some constants C1,C2,C3 depending on J and K only such that

sup
x

|F(x) − G(x)| ≤ C1 sup
x∈J

∫ x

−∞
|SF (u + iV ) − SG(u + iV )|du

(A.23)

+ sup
u∈J

∫ V

v0

|SF (u + iv) − SG(u + iv)|dv + C3v0.

LEMMA A.7. Let Xjk , 1 ≤ j, k ≤ n, be independent complex random vari-
ables with EXj,k = 0 and E|Xj,k|2 = 1. Assume furthermore that

max
j,k

E|Xjk|2I{|Xjk |>M} → 0 for M → +∞.

Then we have, for some positive r0 and η0,

sup
u∈C

max
j,k

Pr{|Xjk − u| < η0} ≤ r0 < 1.

PROOF. First we note, that there exists a positive number M such that

min
j,k

E
(|Xjk|2I{|Xjk |≤M}

)
>

7

8
.

Let η0 be a small positive number. For |u| > M + η0 we have

Pr{|Xjk − u| ≥ η0} ≥ Pr{|Xjk| ≤ M} ≥ 1

M2 E
(|Xjk|2I{|Xjk |≤M}

)
(A.24)

>
7

8M2 .

Consider now |u| ≤ M + η0. Then

Pr{|Xjk − u| ≥ η0} ≥ E
(
I{2M+η0≥|Xjk−u|≥η0}

)
≥ 1

4M2 E
(|Xjk − u|2I{2M+η0≥|Xjk−u|≥η0}

)
≥ 1

4M2

(
1 − E

(|Xjk − u|2I{|Xjk−u|<η0}
)

− E
(|Xjk − u|2I{|Xjk−u|>2M+η0}

))
(A.25)

≥ 1

4M2

(
1 − η2

0 − E
(|Xjk − u|2I{|Xjk |>M}

))
≥ 1

4M2

(
3

4
− η2

0 − |u|2
4M2

)

≥ 1

16M2

(
3 − 4η2

0 −
(

1 + η2
0

M

)2)
.

Combining inequalities (A.24) and (A.25) we obtain the claim. �
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