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THE OBSTACLE PROBLEM FOR QUASILINEAR
STOCHASTIC PDE’S1

BY ANIS MATOUSSI2 AND LUCRETIU STOICA3

University of Le Mans and University of Bucharest

We prove an existence and uniqueness result for the obstacle problem
of quasilinear parabolic stochastic PDEs. The method is based on the proba-
bilistic interpretation of the solution by using the backward doubly stochastic
differential equation.

1. Introduction. We consider the following stochastic PDE, in R
d ,

dut (x) + [1
2�ut(x) + ft (x, ut (x),∇ut(x))

+ divgt (x, ut (x),∇ut(x))
]
dt(1)

+ ht (x, ut (x),∇ut(x)) · ←−
dBt = 0,

over the time interval [0, T ], with a given final condition uT = � and f,g =
(g1, . . . , gd), h = (h1, . . . , hd1) nonlinear random functions. The differential
term with

←−
dBt refers to the backward stochastic integral with respect to a d1-

dimensional Brownian motion on (�, F ,P, (Bt)t≥0). We use the backward nota-
tion because in the proof we will employ the doubly stochastic framework intro-
duced by Pardoux and Peng [16] (see also Bally and Matoussi [2] and Matoussi
and Xu [13]).

In the case where f and g do not depend of u and ∇u, and if h is identically
null, the equation (1) becomes a linear parabolic equation,

∂tu(t, x) + 1
2�u(t, x) + f (t, x) + divg(t, x) = 0.(2)

If v : [0, T ] × R
d → R is a given function such that v(T , x) ≤ �(x), we may

roughly say that the solution of the obstacle problem for (2) is a function u ∈
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L2([0, T ];H 1(Rd)) such that the following conditions are satisfied in (0, T )×R
d :

(i) u ≥ v, dt ⊗ dx-a.e.,

(ii) ∂tu + 1
2�u + f + divg ≤ 0,

(3)
(iii) (u − v)

(
∂tu + 1

2�u + f + divg
) = 0,

(iv) uT = �, dx-a.e.

The relation (ii) means that the distribution appearing in the LHS of the inequal-
ity is a nonpositive measure. The relation (iii) is not rigourously stated. We may
roughly say that one has ∂tu + 1

2�u + f + divg = 0 on the set {u > v}.
If one expresses the obstacle problem for (2) in terms of variational inequalities

one should also ask that the solution has a minimality property (see Bensoussan–
Lions [3], page 250, or Mignot–Puel [14]).

The work of El Karoui et al. [9] treats the obstacle problem for (2) within the
framework of backward stochastic differential equations (BSDE in short). Namely,
the equation (2) is considered with f depending of u and ∇u, while the function
g is null (as well h) and the obstacle v is continuous. The solution is represented
stochastically as a process and the main new object of this BSDE framework is a
continuous increasing process that controls the set {u = v}. This increasing process
determines in fact the measure from the relation (ii). Bally et al. [1] point out that
the continuity of this process allows one to extend the classical notion of strong
variational solution (see Theorem 2.2 of [3], page 238) and express the solution
to the obstacle as a pair (u, ν) where ν equals the LHS of (ii) and is supported by
the set {u = v}. Moreover, based on this observation Matoussi and Xu [12] gen-
eralized the work under monotonicity and general growth conditions. They have
also used the penalization method and stochastic flow technics (see [2] and [11]
for more details on this method). In the present paper, we similarly consider the
solution as a pair (u, ν), point of view which has the advantage of expressing the
notion of solution independently of the double stochastic framework and without
the minimality property of Mignot–Puel [14], which would be very difficult to
manipulate in the case of the stochastic PDE. In Section 2.2, we are going to ex-
amine the potential and the measure associated to a continuous increasing process.
We call such potentials and measures, regular potentials, respectively regular mea-
sures.

Now let us consider the final condition to be a fixed function � ∈ L2(Rd) and
the obstacle v be a random continuous function, v :� × [0, T ] × R

d → R. Then
the obstacle problem for the equation (1) is defined as a pair (u, ν), where ν is a
random regular measure and u ∈ L2(� × [0, T ];H 1(Rd)) satisfies the following
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relations:

(i′) u ≥ v, dP ⊗ dt ⊗ dx-a.e.,

(ii′) dut (x) + [1
2�ut(x) + ft (x, ut (x),∇ut(x))

+ divgt (x, ut (x),∇ut(x))
]
dt

(4)
+ ht (x, ut (x),∇ut(x)) · ←−

dBt = −ν(dt, dx) a.s.,

(iii′) ν(u > v) = 0 a.s.,

(iv′) uT = �, dP ⊗ dx-a.e.

In Section 2.4, we explain the rigorous sense of the relation (iii′) which is based
on the quasi-continuity of u. The main result of our paper is Theorem 4 which
ensures the existence and uniqueness of the solution of the obstacle problem for
(1). The method of proof is based on the penalization procedure and the doubly
stochastic calculus which is essential, although the definition of the solution and
the statement of the result avoids the doubly stochastic framework.

Similarly to the case treated in El Karoui et al. [9], the most difficult point is
to show that the approximating sequence converges uniformly on the trajectories
over the coincidence set {u = v}. This is proven in Lemma 7. The existence and
uniqueness of the solution for equation (1) (without obstacle) has already been
proven in [7]. An essential ingredient in the treatment of the quasilinear part is
the probabilistic representation of the divergence term obtained in [17] as well as
the doubly stochastic representation corresponding to the divergence term of the
stochastic PDE in [7]. We must mention the work of Nualard and Pardoux [15] and
Donati-Martin and Pardoux [8] who studied a particular class of obstacle problem
for stochastic PDE driven by some space–time white noise by using a different
techniques.

Finally, we would like to thank our friend Vlad Bally for a stimulating discus-
sion on the obstacle problem we had “la Gare de Montparnasse” and the referee
for helping us to improve the presentation.

2. Preliminaries. The basic Hilbert space of our framework is L2(Rd), and
we employ the usual notation for its scalar product and its norm,

(u, v) =
∫

Rd
u(x)v(x) dx, ‖u‖2 =

(∫
Rd

u2(x) dx

)1/2

.

In general, we shall use the notation

(u, v) =
∫

Rd
u(x)v(x) dx,

where u, v are measurable functions defined in R
d and uv ∈ L1(Rd).
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Our evolution problem will be considered over a fixed time interval [0, T ] and
the norm for a function L2([0, T ] × R

d) will be denoted by

‖u‖2,2 =
(∫ T

0

∫
Rd

|u(t, x)|2 dx dt

)1/2

.

Another Hilbert space that we use is the first order Sobolev space H 1(Rd) =
H 1

0 (Rd). Its natural scalar product and norm are

(u, v)H 1(Rd ) = (u, v) + (∇u,∇v), ‖u‖H 1(Rd ) = (‖u‖2
2 + ‖∇u‖2

2)
1/2,

where we denote the gradient by ∇u(t, x) = (∂1u(t, x), . . . , ∂du(t, x)).
Of special interest is the subspace F̃ ⊂ L2([0, T ];H 1(Rd)) consisting of all

functions u(t, x) such that t �→ ut = u(t, ·) is continuous in L2(Rd). The natural
norm on F̃ is

‖u‖T = sup
0≤t≤T

‖ut‖2 +
(∫ T

0
‖∇ut‖2 dt

)1/2

.

The Lebesgue measure in R
d will be sometimes denoted by m. The space of

test functions which we employ in the definition of weak solutions of the evolution
equations (1) or (2) is DT = C∞([0, T ])⊗ C∞

c (Rd), where C∞([0, T ]) denotes the
space of real functions which can be extended as infinite differentiable functions
in the neighborhood of [0, T ] and C∞

c (Rd) is the space of infinite differentiable
functions with compact support in R

d .

2.1. The probabilistic interpretation of the divergence term. The operator ∂t +
1
2�, which represents the main linear part in the equation (1), is probabilistically
interpreted by the Brownian motion in R

d . We shall view the Brownian motion as
a Markov process, and therefore we next introduce some detailed notation for it.
The sample space is �′ = C([0,∞);R

d), the canonical process (Wt)t≥0 is defined
by Wt(ω) = ω(t), for any ω ∈ �′, t ≥ 0 and the shift operator, θt :�′ → �′, is
defined by θt (ω)(s) = ω(t + s), for any s ≥ 0 and t ≥ 0. The canonical filtration
F 0

t = σ(Ws; s ≤ t) is completed by the standard procedure with respect to the
probability measures produced by the transition function

Pt(x, dy) = qt (x − y)dy, t > 0, x ∈ R
d,

where qt (x) = (2πt)−d/2 exp(−|x|2/2t) is the Gaussian density. Thus, we get
a continuous Hunt process (�′,Wt , θt , F , Ft ,P

x). We shall also use the back-
ward filtration of the future events F ′

t = σ(Ws; s ≥ t) for t ≥ 0. P
0 is the Wiener

measure, which is supported by the set �′
0 = {ω ∈ �′,w(0) = 0}. We also set

�0(ω)(t) = ω(t) − ω(0), t ≥ 0, which defines a map �0 :�′ → �′
0. Then � =

(W0,�0) :�′ → R
d × �′

0 is a bijection. For each probability measure on R
d , the
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probability P
μ of the Brownian motion started with the initial distribution μ is

given by

P
μ = �−1(μ ⊗ P

0).

In particular, for the Lebesgue measure in R
d , which we denote by m = dx, we

have

P
m = �−1(dx ⊗ P

0).

These relations are saying that W0 is independent of �0. It is known that each
component (Wi

t )t≥0 of the Brownian motion, i = 1, . . . , d , is a martingale under
any of the measures P

μ. The next lemma shows that (Wi
t−r , F ′

t−r ), r ∈ (0, t], is a
backward local martingale under P

m.

LEMMA 1. Let 0 < s < t . If A ∈ σ(Wt) is such that E
m[|Wt |;A] < ∞, then

one has E
m[|Ws |;A] < ∞. Moreover, for each B ∈ F ′

t , and i = 1, . . . , d , one has

E
m[Wi

s ;A ∩ B] = E
m[Wi

t ;A ∩ B].
PROOF. We note that Wt is uniformly distributed, and consequently for each

c > 0, the set Ac = {|Wt | ≤ c} satisfies

E
m[|Wt |;Ac] < ∞.

This shows that the class of the sets to which applies the statement is rather large.
The vector (W0,Ws −W0,Wt −Ws) has the distribution m⊗ N (0, s)⊗ N (0, t −

s), under the measure P
m. Then one deduce that (Ws,Wt −Ws) has the distribution

m ⊗ N (0, t − s) and we may write, for ϕ1, ϕ2 ∈ Cc(R
d),

E
m[ϕ1(Wt − Ws)ϕ2(Wt)] =

∫
Rd

∫
Rd

ϕ1(y)ϕ2(x + y)qt−s(y) dy dx

=
(∫

Rd
ϕ2(x) dx

)(∫
Rd

ϕ1(y)qt−s(y) dy

)
.

This relation shows that the vector (Wt − Ws,Wt) has the distribution N (0, t −
s)⊗m, under P

m.Then the obvious inequality |Ws | ≤ |Wt |+|Wt −Ws |(1{|Wt |≤1} +
|Wt |) allows one to deduce the first assertion of the lemma.

In order to check the second assertion of the lemma, we write

E
m[Wi

s ;A ∩ B] = E
m[Wi

t ;A ∩ B] − E
m[Wi

t − Wi
s ;A ∩ B]

and all that it remains to check is that the last term is null. In order to show this,
one first observes that the distribution of the vector (Wt −Ws,Wt,Wt1 −Wt,Wt2 −
Wt1, . . . ,Wtn −Wtn−1) is N (0, t − s)⊗m⊗ N (0, t1 − t)⊗· · ·⊗ N (0, tn − tn−1),
for each system s < t < t1 < · · · < tn. Then one has, for each B ∈ σ(Wt1 −
Wt, . . . ,Wtn − Wtn−1),

E
m[Wi

t − Wi
s ;A ∩ B] = E

0[Wi
t − Wi

s ]m(A)P0(B) = 0,
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which implies the assertion of the lemma. �

Now let us assume that f and |g| belong to L2([0, T ] × R
d) and u ∈ F̃ is a

solution of the deterministic equation (2). Let us denote by∫ t

s
gr ∗ dWr =

d∑
i=1

(∫ t

s
gi(r,Wr) dWi

r +
∫ t

s
gi(r,Wr)

←−
dWi

r

)
.(5)

Then one has the following representation (Theorem 3.2 in [17]).

THEOREM 1. The following relation holds P
m-a.s. for each 0 ≤ s ≤ t ≤ T :

ut(Wt) − us(Ws) =
d∑

i=1

∫ t

s
∂iur(Wr) dWi

r −
∫ t

s
fr(Wr) dr − 1

2

∫ t

s
gr ∗ dWr.(6)

In [17], one uses the backward martingale
←−
Mμ,i defined under an arbitrary P

μ,
with μ a probability measure in R

d , in order to express the integral
∫ t
s gr ∗ dWr .

Though formally the definition looks different, one easily sees that it is the same
object.

2.2. Regular measures. In this section, we shall be concerned with some facts
related to the time–space Brownian motion, with the state space [0, T [×R

d, cor-
responding to the generator ∂t + 1

2�. Its associated semigroup will be denoted
by (P̃t )t>0. We may express it in terms of the Gaussian density of the semigroup
(Pt )t>0 in the following way:

P̃tψ(s, x) =
⎧⎨⎩

∫
Rd

qt (x, y)ψ(s + t, y) dy, if s + t < T ,

0, otherwise,

where ψ : [0, T [×R
d → R is a bounded Borel measurable function, s ∈ [0, T [, x ∈

R
d and t > 0. So we may also write (P̃tψ)s = Ptψt+s if s + t < T . The cor-

responding resolvent has a density expressed in terms of the density qt too, as
follows:

Ũαψ(t, x) =
∫ T

t

∫
Rd

e−α(s−t)qs−t (x − y)ψ(s, y) dy ds

or

(Ũαψ)t =
∫ T

t
e−α(s−t)Ps−tψs ds.

In particular, this ensures that the excessive functions with respect to the time–
space Brownian motion are lower semicontinuous. In fact, we will not use directly
the time space process, but only its semigroup and resolvent. For related facts
concerning excessive functions, the reader is referred to [4] or [6]. Some further
properties of this semigroup are presented in the next lemma.
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LEMMA 2. The semigroup (P̃t )t>0 acts as a strongly continuous semi-
group of contractions on the spaces L2([0, T [×R

d) = L2([0, T [;L2(Rd)) and
L2([0, T [;H 1(Rd)).

PROOF. Obviously, it is enough to check the following relations:

lim
r→0

(∫ T −r

0
‖Prut+r − ut‖2

2 dt +
∫ T

T −r
‖ut‖2

2 dt

)
= 0,

lim
r→0

(∫ T −r

0
‖∇(Prut+r − ut )‖2

2 dt +
∫ T

T −r
‖∇ut‖2

2 dt

)
= 0.

First, we note that for each function u ∈ L2([0, T [×R
d) and r > 0, one has

lim
r→0

∫ T −r

0
‖ut+r − ut‖2

2 dt = 0.

This property is obvious for a function u ∈ Cc([0, T [×R
d) and then it is obtained

by approximation for any function in L2([0, T [×R
d). Then the relation

lim
r→0

∫ T −r

0
‖Prut+r − ut‖2

2 dt = 0,

easily follows. From it, one deduces the strong continuity of (P̃t )t>0 on L2([0, T [×
R

d).

In order to prove the same property in the space L2([0, T [;H 1(Rd)), one should
start with the relation

lim
r→0

∫ T −r

0
‖∇(ut+r − ut)‖2

2 dt = 0,

which holds for each u ∈ C∞
c ([0, T [×R

d) and then repeat, with obvious modifica-
tions, the previous reasoning. �

The next definition restricts our attention to potentials belonging to F̃ , which is
the class of potentials appearing in our parabolic case of the obstacle problem.

DEFINITION 1. (i) A function ψ : [0, T ] × R
d → R is called quasicontinuous

provided that for each ε > 0, there exists an open set, Dε ⊂ [0, T ] × R
d, such that

ψ is finite and continuous on Dc
ε and

P
m({ω ∈ �′|∃t ∈ [0, T ] s.t. (t,Wt(ω)) ∈ Dε}) < ε.

(ii) A function u : [0, T ] × R
d → [0,∞] is called a regular potential, provided

that its restriction to [0, T [×R
d is excessive with respect to the time–space semi-

group, it is quasicontinuous, u ∈ F̃ and limt→T ut = 0 in L2(Rd).
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Observe that if a function ψ is quasicontinuous, then the process (ψt (Wt))t∈[0,T ]
is continuous. Next, we will present the basic properties of the regular potentials.
Do to the expression of the semigroup (P̃t )t>0 in terms of the density, it follows
that two excessive functions which represent the same element in F̃ should coin-
cide.

THEOREM 2. Let u ∈ F̃ . Then u has a version which is a regular potential if
and only if there exists a continuous increasing process A = (At )t∈[0,T ] which is
(Ft )t∈[0,T ]-adapted and such that A0 = 0, E

m[A2
T ] < ∞ and

(i) ut (Wt) = E[AT |Ft ] − At P
m-a.s.

for each t ∈ [0, T ]. The process A is uniquely determined by these properties.
Moreover, the following relations hold:

(ii) ut (Wt) = AT − At −
d∑

i=1

∫ T

t
∂ius(Ws) dWi

s P
m-a.s.,

(iii) ‖ut‖2
2 +

∫ T

t
‖∇us‖2

2 ds = E
m(AT − At)

2,

(iv) (u0, ϕ0) +
∫ T

0

(
1

2
(∇us,∇ϕs) + (us, ∂sϕs)

)
ds

=
∫ T

0

∫
Rd

ϕ(s, x)ν(ds dx)

for each test function ϕ ∈ DT , where ν is the measure defined by

(v) ν(ϕ) = E
m

∫ T

0
ϕ(t,Wt) dAt , ϕ ∈ Cc([0, T ] × R

d).

PROOF. We first remark that the uniqueness of the increasing process in the
representation (i) follows from the uniqueness in the Doob–Meyer decomposition.

Let us now assume that u is a regular potential which is a version of u. We
will use an approximation of u constructed with the resolvent. By the resolvent
equation, one has

αŨαu = αŨ0(u − αŨαu).

Let us set f n = n(u − nŨnu) and un = nŨnu = Ũ0f
n. Since u is excessive, one

has f n ≥ 0 and un,n ∈ N
∗, is an increasing sequence of excessive functions with

limit u. In fact un,n ∈ N
∗, are potentials and their trajectories are continuous.

On the other hand, the trajectories t → ut (Wt) are continuous on [0, T [ by the
quasi-continuity of u. The process (ut (Wt))t∈[0,T [ is a super-martingale, and be-
cause limt→T ut = 0 in L2, it is a potential and the trajectories have null limits
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at T . Therefore, this approximation also holds uniformly on the trajectories, on
the closed interval [0, T ],

lim
n→∞ sup

0≤t≤T

|un
t (Wt) − ut (W)| = 0 P

m-a.s.

The function un solves the equation (∂t +L)un+f n = 0 with the condition un
T = 0

and its backward representation is

un
t (Wt) =

∫ T

t
f n

s (Ws) ds −
d∑

i=1

∫ T

t
∂iu

n
s (Ws) dWi

s .

If we set An
t = ∫ t

0 f n
s (Ws) ds, after conditioning, this representation gives

un
t (Wt) = An

T − An
t −

d∑
i=1

∫ T

t
∂iu

n
s (Ws) dWi

s = E
m[An

T /Ft ] − An
t .(∗)

In particular, one deduces

un
0(W0) = E

m[An
T /F0] = An

T −
d∑

i=1

∫ T

0
∂iu

n
s (Xs) dWi

s .

Also from the relation (∗), it follows that

E
m(An

T − An
t )

2 = E
m

(
un

t (Wt) +
d∑

i=1

∫ T

t
∂iu

n
s (Ws) dWi

s

)2

(∗∗)

= ‖un
t ‖2

2 +
∫ T

t
‖∇un

s ‖2
2 ds.

A similar relation holds for differences, in particular one has

E
m(An

T − Ak
T )2 = ‖un

0 − uk
0‖2 + 2

∫ T

0
‖∇(un

s − uk
s )‖2

2 ds.

On the other hand, the preceding lemma ensures that limα→∞ αŨα = I, in the
space L2([0, T [;H 1(Rd)), which implies

lim
n→0

∫ T

0
‖∇(un

t − ut )‖2
2 dt = 0.

These last relations imply that there exists a limit limn An
T =: AT in the sense of

L2(Pm).

Let us denote by Mn = (Mn
t )t∈[0,T ],M = (Mt)t∈[0,T ] the martingales given by

the conditional expectations Mn
t = E

m[An
T /Ft ],Mt = E

m[AT /Ft ]. Then one has
limn→∞ Mn = M, in L2(Pm), and hence

lim
n→∞ E

m sup
0≤t≤T

|Mn
t − Mt |2 = 0.



1152 A. MATOUSSI AND L. STOICA

Then the relation un
t (Wt) = Mn

t − An
t shows that the processes An,n ∈ N

∗, also
converge uniformly on the trajectories to a continuous process A = (At )t∈[0,T ].
The inequality

sup
0≤t≤T

|An
t − At | ≤ AT + |An

T − AT |

ensures the conditions to pass to the limit and get

lim
n→∞ E

m sup
0≤t≤T

|An
t − At |2 = 0.

Passing to the limit in the relations (∗) and (∗∗) one deduces the relations (i), (ii)
and (iii).

In order to check the relation (iv) from the statement, we observe that the rela-
tion is fulfilled by the functions un,

(un
0, ϕ0) +

∫ T

0

(
1

2
(∇un

s ,∇ϕs) + (un
s , ϕs)

)
ds =

∫ T

0

∫
Rd

ϕ(s, x)f n(s, x) ds dx

= E
m

∫ T

0
ϕ(s,Ws) dAn

s ,

where ϕ is arbitrary in DT . In order to get the relation (iv), it would suffice to pass
to the limit with n → ∞ in this relation. The only term which poses problems is
the last one. The uniform convergence on the trajectories implies that, P

m-a.s., the
measures dAn

t weakly converge to dAt . Therefore, one has

lim
n→∞

∫ T

0
ϕt(Wt) dAn

t =
∫ T

0
ϕt(Wt) dAt P

m-a.s.

On the other hand, one has∣∣∣∣∫ T

0
ϕt(Wt) dAn

t

∣∣∣∣ ≤ sup
0≤t≤T

ϕ2
t (Wt ) + A2

T + |An
T − AT |2.

By Itô’s formula and Doob’s inequality, one has

E
m

(
sup

0≤t≤T

ϕ2(t,Wt)
)

≤ 4‖ϕ0‖2 + 4E
m

(∫ T

0
|∂tϕ(t,Wt)|dt

)2

+ 16E
m

∫ T

0
|∇ϕ|2(t,Wt) dt

+ 2E
m

(∫ T

0
|�ϕ|(t,Wt) dt

)2

≤ 4‖ϕ0‖2 + 4T

∫ T

0
‖∂tϕt‖2

2 dt + 16
∫ T

0
‖∇ϕt‖2

2 dt

+ 2T

∫ T

0
‖�ϕt‖2

2 dt < ∞.
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The preceding estimate ensures the possibility of passing to the limit and deducing
that

lim
n

E
m

∫ T

0
ϕ(s,Ws) dAn

s = E
m

∫ T

0
ϕ(s,Ws) dAs,

and thus we obtain the relation (iv).
Let us now consider the converse. Assume that u ∈ F̃ and A is a continuous

increasing process adapted to (Ft )t∈[0,T ] and satisfying the relation (i). In order to
simplify the subsequent notation, it is convenient to extend our given function by
putting ut = 0 for t > T . Now, we shall show that

Pr(ut+r ) ≤ ut , t ∈ [0, T ], r > 0.(7)

By the Markov property, one gets

Prut+r (Wt) = E
Wt [ut+r (Wr)] = E

m[ut+r (Wr+t )|Ft ]
= E

m[
E

m[AT |Ft+r ] − At+r |Ft

] = E
m[AT |Ft ] − At+r ,

where the last line comes from the relation (i). This shows that

Prut+r (Wt) ≤ ut(Wt) P
m-a.s.

and as the distribution of Wt under P
m is m, we deduce the inequality (7). More-

over, this inequality shows by iteration that if r ≤ r ′, then

Pr ′ut+r ′ ≤ Prut+r .(8)

By the properties of the semigroup density and since t → ut is continuous with
values in L2, it follows that, for each r > 0, Prut+r , t ∈ [0, T ], has a continuous
version in [0, T ] × R

d defined by

ur(t, x) =
∫

Rd
qr(x, y)ut+r (y) dy.

The inequality (8) shows in fact that ur is supermedian with respect to (P̃t )t>0 and,
because of continuity, in fact it is excessive. Then u = limr→0 ur is also excessive
and since limr→0 Prut+r = ut , in L2, clearly u is a version of u. The process
(ut (Wt))t∈[0,T ] is a cdlg supermartingale, and more precisely a potential. By the
relation (i), this process admits a continuous version. It follows that itself is con-
tinuous and, as a consequence, one has the following convergence, uniformly on
the trajectories:

lim
r→0

sup
0≤t≤T

|ur
t (Wt) − ut (Wt)| = 0 P

m-a.s.

On the other hand, by the representation (i) one has

E
m sup

0≤t≤T

|ut (Wt)|2 < ∞,
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which leads to

lim
r→0

E
m sup

0≤t≤T

|ur
t (Wt) − ut (W)|2 = 0.

This relation implies that u is quasicontinuous, and hence it is a regular potential,
completing the proof. �

It is known in the probabilistic potential theory that the regular potentials are
associated to continous additive functionals (see [4], Section IV.3 or [10], The-
orem 5.4.2). In the above theorem, the additive aspect is not evident. In fact, it
is hidden in the relation (i) of Theorem 2. This relation implies that, for t ≤ s,

As − At is measurable with respect to the completion of σ(Wr/r ∈ [t, s]). This
can directly be proven but it also follows from the approximation of A by An. For
the processes An,n ∈ N, this measurability property obviously holds. And this
measurability ensures the fact that A corresponds to an additive functional for the
time–space process, which we are not explicitly using.

The measure ν from the theorem, expressed in the relation (v), is also com-
pletely determined by the relation (iv), because the test functions are dense in
Cc([0, T ] × R

d). A natural question now is whether one Radon measure on
[0, T ]× R

d can be associated via the relation (iv) from the theorem to two distinct
potentials. The answer is that there is only one such potential and more precisely
it can be directly expressed with the density qt (x, y) in terms of the measure, as
one can see from the next lemma.

LEMMA 3. Let u be a regular potential and ν a Radon measure on [0, T ]×R
d

such that relation (iv) holds. Then one has

(φ,ut ) =
∫ T

t

∫
Rd

(∫
Rd

φ(x)qs−t (x − y)dx

)
ν(ds dy)

for each φ ∈ L2(Rd) and t ∈ [0, T ].

PROOF. We first remark that the relation (iv) is in fact equivalent to the fol-
lowing more explicit one

(ut , ϕt ) +
∫ T

t

(
1

2
(∇us,∇ϕs) + (us, ∂sϕs)

)
ds =

∫ T

t

∫
Rd

ϕ(s, x)ν(ds dx),

with any ϕ ∈ DT and t ∈ [0, T ].
Clearly, it is sufficient to prove the lemma for φ ∈ Cc(R

d) such that φ ≥ 0.

Then we set ψ(s, y) = ∫
Rd φ(x)qs−t (x − y)dx, for s ∈ [t, T ] and y ∈ R

d . Then
ψs = Ps−tφ and the map s → ψs is in C 1(]t, T ];L2(Rd)) and ∂sψ = 1

2�ψs. Let
η ∈ Cc(R+) be a decreasing function such that η = 1 on the interval [0,1] and
η = 0 for x ≥ 2. Set ηn(x) = η(

|x|
n

), so that (ηn)n∈N is an increasing sequence in
Cc(R

d) with limit 1Rd . For each fixed n, the function ηnψ can be approximated
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by convolution with smooth functions and then by test functions from DT , and
consequently we may write the relation (iv) in the form

(ut , ηnψt) +
∫ T

t

(
1

2
(∇us,∇(ηnψs)) + (us, ηn ∂sψs)

)
ds

=
∫ T

t

∫
Rd

ηn(x)ψ(s, x)ν(ds dx).

Then it is easy to see that we may pass to the limit with n → ∞, in this relation
too. Then we get

(ut ,ψt ) +
∫ T

t

(
1

2
(∇us,∇ψs) + (us, ∂sψs)

)
ds =

∫ T

t

∫
Rd

ψ(s, x)ν(ds dx),

which becomes the relation asserted by the lemma, on account of the relation
∂sψ = 1

2�ψs. �

We now introduce the class of measures which intervene in the notion of solu-
tion to the obstacle problem.

DEFINITION 2. A nonnegative Radon measure ν defined in [0, T ] × R
d is

called regular provided that there exists a regular potential u such that the relation
(iv) from the above theorem is satisfied.

As a consequence of the preceding lemma, we see that the regular measures are
always represented as in the relation (v) of the theorem, with a certain increas-
ing process. We also note the following properties of a regular measure, with the
notation from the theorem.

1. A set B ∈ B([0, T ] × R
d) satisfies the relation ν(B) = 0 if and only if∫ T

0 1B(t,Wt) dAt = 0 P
m-a.s.

2. If a set B ∈ B(]0, T [×R
d) is polar, in the sense that

P
m({ω ∈ �′|∃t ∈ [0, T ], (t,Wt(ω)) ∈ B}) = 0,

then ν(B) = 0.

3. If ψ1,ψ2 : [0, T ] × R
d → R are Borel measurable and such that ψ1(t, x) ≥

ψ2(t, x), dt ⊗ dx-a.e., and the processes (ψi
t (Wt))t∈[0,T ], i = 1,2, are a.s. con-

tinuous, then one has ν(ψ1 < ψ2) = 0.

2.3. Hypotheses. Let B = (Bt )t≥0 be a standard d1-dimensional Brownian
motion on a probability space (�, F B,P). So Bt = (B1

t , . . . ,Bd1

t ) takes values in

R
d1

. Over the time interval [0, T ] we define the backward filtration (F B
s,T )s∈[0,T ]

where F B
s,T is the completion in F B of σ(Br − Bs; s ≤ r ≤ T ).
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We denote by HT the space of H 1(Rd)-valued predictable and F B
t,T -adapted

processes (ut )0≤t≤T such that the trajectories t → ut are in F̃ a.s. and

‖u‖2
T < ∞.

In the remainder of this paper, we assume that the final condition � is a given
function in L2(Rd) and the functions appearing in equation (1),

f : [0, T ] × � × R
d × R × R

d → R,

g = (g1, . . . , gd) : [0, T ] × � × R
d × R × R

d → R
d,

h = (h1, . . . , hd1) : [0, T ] × � × R
d × R × R

d → R
d1

,

are random functions predictable with respect to the backward filtration
(F B

t,T )t∈[0,T ]. We set

f (·, ·, ·,0,0) := f 0, g(·, ·, ·,0,0) := g0 = (g0
1, . . . , g0

d)

and

h(·, ·, ·,0,0) := h0 = (h0
1, . . . , h

0
d1)

and assume the following hypotheses.

ASSUMPTION (H). There exist nonnegative constants C,α,β such that

(i) |f (t,ω, x, y, z) − f (t,ω, x, y′, z′)| ≤ C(|y − y′| + |z − z′|).
(ii) (

∑d1

j=1 |hj (t,ω, x, y, z) − hj (t,ω, x, y′, z′)|2)1/2 ≤ C|y − y′| + β|z − z′|.
(iii) (

∑d
i=1 |gi(t, x, y, z) − gi(t,ω, x, y′, z′)|2)1/2 ≤ C|y − y′| + α|z − z′|.

(iv) The contraction property (as in [7]): α + β2

2 < 1
2 .

ASSUMPTION (HD2).

E(‖f 0‖2
2,2 + ‖g0‖2

2,2 + ‖h0‖2
2,2) < ∞.

ASSUMPTION (HO). The obstacle v(t,ω, x) is a predictable random function
with respect to the backward filtration (F B

t,T ). We also assume that t �→ v(t,ω,Wt)

is P ⊗ P
m-a.s. continuous on [0, T ] and satisfies

v(T , ·) ≤ �(·).
We recall that a usual solution (nonreflected one) of the equation (1) with final

condition uT = �, is a processus u ∈ HT such that for each test function ϕ ∈ DT

and any ∀t ∈ [0, T ], we have a.s.∫ T

t

[
(us, ∂sϕs) + 1

2
(∇us,∇ϕs) + (gs,∇ϕs)

]
ds − (�,ϕT ) + (ut , ϕt )

(9)

=
∫ T

t
(fs, ϕs) ds +

∫ T

t
(hs, ϕs) · ←−

dBs.
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By Theorem 8 in [7], we have existence and uniqueness of the solution. Moreover,
the solution belongs to HT . We denote by U (�,f, g,h) this solution.

REMARK 1. Let L = ∑
ij ∂ia

ij ∂j be an elliptic operator in divergence form,
with the matrix a = (aij ) : Rd → R

d × R
d being symmetric, measurable and such

that

λ|ξ |2 ≤ ∑
ij

aij (x)ξ iξ j ≤ �|ξ |2

for any x, ξ ∈ R
d . If instead of the operator 1

2� in our equation (1), we had the
operator L, then the contraction condition (iv) of Assumption (H) would be re-

placed by α + β2

2 < λ (this ensures the contraction condition as formulated in [7]).
Then the time change t → 1

2�
t ′ yields a one to one correspondence between the

solutions u of the equation

dut + [Lut + ft (ut ,∇ut) + divgt (ut ,∇ut)]dt + ht (ut ,∇ut) · ←−
dBt = 0,

over [0, T ] and the solutions ût = u1/(2�)t satisfying the equation

dût + [1
2�ût + f̂t (ût ,∇ût ) + div ĝt (ût ,∇ût )

]
dt + ĥt (ût ,∇ût ) · ←−

dB̂t = 0,

over the interval [0,2�T ], with the transformed coefficients

f̂ (t, x, y, z) = 1

2�
f

(
1

2�
t,x, y, z

)
, ĥ(t, x, y, z) = 1

(2�)1/2 h

(
1

2�
t,x, y, z

)
,

ĝi(t, x, y, z) = 1

2�

(
gi

(
1

2�
t,x, y, z

)
+ ∑

j

aij (x)zj − �zi

)
, i = 1, . . . , d,

and the transformed Brownian motion B̂t = (2�)1/2B1/(2�)t , t ∈ [0,2�T ]. This
can be checked just by direct calculations using the above definition of a solution.
Moreover, if one writes L in the form Lu = ��u − div(γ∇u), where γ = (γ ij )

is a matrix with the entries γ ij (x) = �δij − aij (x), i, j = 1, . . . , d, then one has

0 ≤ γ = �I − a ≤ (� − λ)I,

in the sense of the order induced by the cone of nonnegative definite matrices. This
implies that one has

|γ (x)ξ | ≤ (� − λ)|ξ |
for any x, ξ ∈ R

d . Then it easy to deduce that ĝt (x, y, z) = 1
2�

(g1/(2�)t (x, y, z) +
γ (x)z) fulfils condition (iii) of Assumption (H) with a constant α̂ = 1

2�
(α + (� −

λ)). On the other hand, one can see that ĥ satisfies condition (ii) with β̂ = 1
(2�)1/2 β,

so that the condition α + β2

2 < λ, ensures α̂ + β̂2

2 < 1
2 , which is condition (iv) of

our Assumption (H). Therefore, we conclude that our framework covers the case
of an equation that involves an elliptic operator like L, because the properties of
the solution u are immediately obtained from those of the solution û.
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2.4. Quasi-continuity properties. In this section, we are going to prove the
quasi-continuity of the solution of the linear equation, that is, when f,g,h do not
depend of u and ∇u. To this end, we first extend the double stochastic Itô’s formula
to our framework. We start by recalling the following result from [7] (stated for
linear SPDE).

THEOREM 3. Let u ∈ HT be a solution of the equation

dut + 1
2�ut dt + (ft + divgt ) dt + ht

←−
dBt = 0,

where f,g,h are predictable processes such that

E

∫ T

0
[‖ft‖2

2 + ‖gt‖2
2 + ‖ht‖2

2]dt < ∞ and ‖�‖2
2 < ∞.

Then, for any 0 ≤ s ≤ t ≤ T , one has the following stochastic representation, P ⊗
P

m-a.s.,

u(t,Wt) − u(s,Ws) = ∑
i

∫ t

s
∂iu(r,Wr) dWi

r −
∫ t

s
fr(Wr) dr

(10)

− 1

2

∫ t

s
g ∗ dW −

∫ t

s
hr(Wr) · ←−

dBr.

We remark that FT and F B
0,T are independent under P⊗P

m and therefore in the

above formula the stochastic integrals with respect to dWt and
←−
dWt act indepen-

dently of F B
0,T and similarly the integral with respect to

←−
dBt acts independently of

FT .
In particular, the process (ut (Wt))t∈[0,T ] admits a continuous version which we

usually denote by Y = (Yt )t∈[0,T ] and we introduce the notation Zt = ∇ut(Wt).
As a consequence of this theorem, we have the following result.

COROLLARY 1. Under the hypothesis of the preceding theorem, one has the
following stochastic representation for u2, P ⊗ P

m-a.e., for any 0 ≤ t ≤ T ,

u2
t (Wt) − �2(WT ) = 2

∫ T

t

[
usfs(Ws) − 1

2
|∇us |2(Ws)

− 〈∇us, gs〉(Ws) + 1

2
|hs |2(Ws)

]
ds

(11)

+
∫ T

t
(urgr)(Wr) ∗ dWr − 2

∑
i

∫ T

t
(ur∂iur)(Wr) dWi

r

+ 2
∫ T

t
(urhr)(Wr) · ←−

dBr.
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Moreover, one has the estimate

EE
m

(
sup

t≤s≤T

|Ys |2
)

+ E

[∫ T

t
‖∇us‖2

2 ds

]
(12)

≤ c

[
‖φ‖2

2 + E

∫ T

t
[‖fs‖2

2 + ‖gs‖2
2 + ‖hs‖2

2]ds

]
for each t ∈ [0, T ].

REMARK 2. With the notation introduced above, one can write the relation
(11) as

|Yt |2 +
∫ T

t
|Zr |2 dr = |YT |2 + 2

∫ T

t
Yrfr(Wr) dr − 2

∫ T

t
〈Zr, gr(Wr)〉dr

+
∫ T

t
Yrgr(Wr) ∗ dWr − 2

∑
i

∫ T

t
YrZi,r dWi

r(13)

+ 2
∫ T

t
Yrhr(Wr) · ←−

dBr +
∫ T

t
|hr |2(Wr) dr.

PROOF OF COROLLARY 1. Assume first that g is uniformly bounded and be-
longs to (HT )d , so that E

∫ T
0 ‖divgt‖2

2 dt < ∞. Then we may represent the solu-
tion in the form

ut (Wt) − us(Ws) = ∑
i

∫ t

s
∂iur(Wr) dWi

r −
∫ t

s
[fr(Wr) + divgr(Wr)]dr

−
∫ t

s
hr(Wr) · ←−

dBr.

By Lemma 1.3 of [16], we may write

u2
t (Wt ) − u2

s (Ws) = −2
∫ t

s
[ur(fr + divgr)(Wr) − |∇ur |2(Wr) − |hr |2(Wr)]dr

+ 2
∑
i

∫ t

s
(ur ∂iur)(Wr) dWi

r − 2
∫ t

s
(urhr)(Wr) · ←−

dBr.

On the other hand, by Lemma 3.1 of [17], one has

−2
∫ t

s
div(urgr)(Wr) dr =

∫ t

s
urgr(Wr) ∗ dWr,

so that the preceding relation immediately leads to the relation (11). Then the stan-
dard calculations of BDSDE involving Young’s inequality, BDG inequality and
Gronwall’s lemma give the estimate (12).

Finally, to obtain the result with general g one proceeds by approximation. �
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In the deterministic case, it was proven in [17] that the solution of a quasilinear
equation has a quasicontinuous version. Here, we shall prove the same property
for the solution of an SPDE as is stated in the next proposition.

PROPOSITION 1. Under the hypothesis of Theorem 3, there exists a function
�u : [0, T ]×�×R

d → R which is a quasicontinuous version of u, in the sense that
for each ε > 0, there exits a predictable random set Dε ⊂ [0, T ] × � × R

d such
that P-a.s. the section Dε

ω is open and �u(·,ω, ·) is continuous on its complement
(Dε

ω)c and

P ⊗ P
m(

(ω,ω′)|∃t ∈ [0, T ] s.t. (t,ω,Wt(ω
′)) ∈ Dε) ≤ ε.

In particular, the process (ut (Wt))t∈[0,T ] has continuous trajectories, P ⊗ P
m-a.s.

PROOF. Let us choose k ∈ N with k > d
2 , so that the Sobolev space Hk(Rd) is

continuously imbedded in the space of Hölder continuous functions Cγ (Rd), with
γ = 1 + [d

2 ] − d
2 . We first assume that φ ∈ Hk(Rd) and f , g1, . . . , gd , h1, . . . , hd1

belong to L2([0, T ] × �;Hk(Rd)). By Theorem 8 in [7], applied with respect to
the Hilbert space Hk(Rd), one deduces that the solution u = U (�,f, g,h) has
the trajectories t → ut(ω, ·) continuous in Hk(Rd) which implies that they are
in C[[0, T ] × R

d). On the other hand, we have from (12) the following general
estimate

EE
m

(
sup

0≤t≤T

u(t,Wt)
2
)

≤ cE

[
‖�‖2

2 +
∫ T

0
(‖ft‖2

2 + ‖gt‖2
2 + ‖ht‖2

2) dt

]
.

Now, for general (�,f, g,h), one chooses an approximating sequence of data
(�n,f n, gn,hn) which are Hk(Rd)-valued and such that

E

(
‖�n − �n+1‖2 +

∫ T

0
[‖f n

t − f n+1
t ‖2

2 + ‖gn
t − gn+1

t ‖2
2 + ‖hn

t − hn+1
t ‖2

2]dt

)
≤ 1

2n
.

Let un be the sequence of P-a.s. continuous solutions of the equation associated to
(�n,f n, gn,hn). Then set Eε

n = {|un − un+1| > ε} and Dε
k = ⋃

n≥k Eε
n. Then we

have

ε2
P ⊗ P

m(
(ω,ω′)|∃t ∈ [0, T ] s.t. (t,ω,Wt(ω

′)) ∈ Eε
n

)
≤ EE

m
[

sup
0≤t≤T

(
un

t (Wt) − un+1
t (Wt)

)2
]
≤ c

2n
.

Further, one takes ε = 1
n2 to get

P ⊗ P
m(

(ω,ω′)|∃t ∈ [0, T ] s.t. (t,ω,Wt(ω
′)) ∈ Dε

k

) ≤
∞∑

n=k

cn4

2n
.
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This shows the statement. �

We also need the quasicontinuity of the solution associated to a random regular
measure, as stated in the next proposition. We first give the formal definition of
this object.

DEFINITION 3. We say that u ∈ HT is a random regular potential provided
that u(·,ω, ·) has a version which is a regular potential, P(dω)-a.s. The random
variable ν :� → M([0, T ] × R

d) with values in the set of regular measures on
[0, T ]×R

d is called a regular random measure, provided that there exits a random
regular potential u such that the measure ν(ω)(dt dx) is associated to the regular
potential u(·,ω, ·), P(dω)-a.s.

The relation between a random measure and its associated random regular po-
tential is described by the following proposition.

PROPOSITION 2. Let u be a random regular potential and ν be the associated
random regular measure. Let u be the excessive version of u, that is, u(·,ω, ·) is
a.s. an (P̃t )t>0-excessive function which coincides with u(·,ω, ·), dt dx-a.e. Then
we have the following properties:

(i) For each ε > 0, there exists a (F B
t,T )t∈[0,T ]-predictable random set Dε ⊂

[0, T ]×�×R
d such that P -a.s. the section Dε

ω is open and u(·,ω, ·) is continuous
on its complement (Dε

ω)c and

P ⊗ P
m(

(ω,ω′)|∃t ∈ [0, T ] s.t. (t,ω,Wt(ω)) ∈ Dε
ω

) ≤ ε.

In particular, the process (ut (Wt))t∈[0,T ] has continuous trajectories, P ⊗ P
m-a.s.

(ii) There exists a continuous increasing process A = (At )t∈[0,T ] defined on
� × �′ such that As − At is measurable with respect to the P ⊗ P

m-completion
of F B

t,T ∨ σ(Wr/r ∈ [t, s]), for any 0 ≤ s ≤ t ≤ T , and such that the following
relations are fulfilled a.s., with any ϕ ∈ D and t ∈ [0, T ]:

(a) (ut , ϕt ) + ∫ T
t (1

2(∇us,∇ϕs) + (us, ∂sϕs)) ds = ∫ T
t

∫
Rd ϕ(s, x)ν(ds dx),

(b) ut (Wt) = E[AT |Ft ∨ F B
t,T ] − At ,

(c) ut (Wt) = AT − At − ∑d
i=1

∫ T
t ∂ius(Ws) dWi

s ,
(d) ‖ut‖2

2 + ∫ T
t ‖∇us‖2

2 ds = E
m(AT − At)

2,
(e) ν(ϕ) = E

m
∫ T

0 ϕ(t,Wt) dAt .

PROOF. The proof of this proposition results from the approximation proce-
dure used in the proof of Theorem 2.

(i) Let r > 0. The process �ur = (�ur
t )t∈[0,T ], defined by �ur

t = Prut+r , has the
property that (t, x) →�ur

t is jointly continuous P-a.s. We also have

lim
r→0

EE
m sup

0≤t≤T

|�ur
t (Wt) −�ut (Wt)|2 = 0,
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by the arguments used at the end of the proof of Theorem 2. This one concludes as
in the proof of the preceding proposition.

(ii) The construction of the increasing process described in Theorem 2 holds
globally for a random regular potential producing on a.e. trajectory ω ∈ �, the
increasing process corresponding to u(·,ω, ·). �

We remark that, taking the expectation of the relation (i.i.d.) of this proposition
one gets

EE
m(A2

T ) = E

(
‖u0‖2

2 +
∫ T

0
‖∇ut‖2

2 dt

)
.

3. Existence and uniqueness of the solution of the obstacle problem.

3.1. The weak solution. We now precise the definition of the solution of our
obstacle problem. We recall that the data satisfy the hypotheses of Section 2.3.

DEFINITION 4. We say that a pair (u, ν) is a weak solution of the obstacle
problem for the SPDE (1) associated to (�,f, g,h, v), if:

(i) u ∈ HT and u(t, x) ≥ v(t, x), dP⊗dt ⊗dx a.e. and u(T , x) = �(x), dP⊗
dx a.e.,

(ii) ν is a random regular measure on (0, T ) × R
d ,

(iii) for each ϕ ∈ DT , and t ∈ [0, T ],∫ T

t

[
(us, ∂sϕs) + 1

2
(∇us,∇ϕs)

]
ds − (�,ϕT ) + (ut , ϕt )

=
∫ T

t
[(fs(us,∇us), ϕs) − (gs(us,∇us),∇ϕs)]ds(14)

+
∫ T

t
(hs(us,∇us), ϕs) · ←−

dBs +
∫ T

t

∫
Rd

ϕs(x)ν(ds, dx),

(iv) if u is a quasicontinuous version of u, then one has∫ T

0

∫
Rd

(
us(x) − vs(x)

)
ν(ds dx) = 0 a.s.

We note that a given solution u can be written as a sum u = u1 + u2, where u1
satisfies a linear equation u1 = U (�,f (u,∇u), g(u,∇u),h(u,∇u)) with f,g,h

determined by u, while u2 is the random regular potential corresponding to the
measure ν. By Propositions 1 and 2, the conditions (ii) and (iii) imply that the
process u always admits a quasicontinuous version, so that the condition (iv)
makes sense. We also note that if u is a quasicontinuous version of u, then the
trajectories of W do not visit the set {u < v}, P ⊗ P

m-a.s.
Here is the main result of our paper.



OBSTACLE PROBLEM FOR STOCHASTIC PDE’S 1163

THEOREM 4. Assume that the Assumptions (H), (HD2) and (HO) hold. Then
there exists a unique weak solution of the obstacle problem for the SPDE (1) asso-
ciated to (�,f, g,h, v).

In order to solve the problem, we will use the backward stochastic differential
equation technics. In fact, we shall follow the main steps of the second proof in
[9], based on the penalization procedure.

The uniqueness assertion of Theorem 4 results from the following comparison
result.

THEOREM 5. Let �′, f ′, v′ be similar to �,f, v and let (u, ν) be the solution
of the obstacle problem corresponding to (�,f, g,h, v) and (u′, ν′) the solution
corresponding to (�′, f ′, g, h, v′). Assume that the following conditions hold:

(i) � ≤ �′, dx ⊗ dP-a.e.
(ii) f (u,∇u) ≤ f ′(u,∇u), dt dx ⊗ P-a.e.

(iii) v ≤ v′, dt dx ⊗ P-a.e.

Then one has u ≤ u′, dt dx ⊗ P-a.e.

PROOF. The proof is identical to that of the similar result of El Karoui et al.
([9], Theorem 4.1).

One starts with the following version of Itô’s formula, written with some qua-
sicontinuous versions u,u′ of the solutions u,u′ in the term involving the regular
measures ν, ν′,

E‖(ut − u′
t )

+‖2
2 + E

∫ T

t
‖∇(us − u′

s)
+‖2

2 ds

= E‖(� − �′)+‖2
2 + 2E

∫ T

t

(
(us − u′

s)
+, fs(us,∇us) − f ′

s (u
′
s,∇u′

s)
)
ds

+ 2E

∫ T

t

∫
Rd

(us − u′
s)

+(x)(ν − ν′)(ds dx)

+ 2E

∫ T

t

(∇(us − u′
s)

+, gs(us,∇us) − gs(u
′
s,∇u′

s)
)
ds

+ E

∫ T

t
‖hs(us,∇us) − hs(u

′
s,∇u′

s)‖2
2 ds.

We remark that the inclusion {u > u′} ⊂ {u > v}∪ {v > v′} ∪ {v′ > u′} and the fact
that the set {v > v′} ∪ {v′ > u′} is not visited by W , imply that ν(u > u′) = 0, a.s.
Therefore, ∫ T

t

∫
Rd

(us − u′
s)

+(x)(ν − ν′)(ds dx) ≤ 0 a.s.

and then one concludes the proof by Gronwall’s lemma. �
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3.2. Approximation by the penalization method. For n ∈ N, let un be a solu-
tion of the following SPDE

dun
t (x) + 1

2�un
t (x) dt + f (t, x, un

t (x),∇un
t (x)) dt

+ n
(
un

t (x) − vt (x)
)−

dt + div(g(t, x, un
t (x),∇un

t (x))) dt(15)

+ h(t, x, un
t (x),∇un

t (x)) · ←−
dBt = 0

with final condition un
T = �.

Now set fn(t, x, y, z) = f (t, x, y, z) + n(y − vt (x))− and νn(dt, dx) :=
n(un

t (x) − vt (x))− dt dx. Clearly for each n ∈ N, fn is Lipschitz continuous
in (y, z) uniformly in (t, x) with Lipschitz coefficient C + n. For each n ∈ N,
Theorem 8 in [7] ensures the existence and uniqueness of a weak solution
un ∈ HT of the SPDE (15) associated with the data (�,fn, g,h). We denote by
Yn

t = un(t,Wt), Zn = ∇un(t,Wt) and St = v(t,Wt). We shall also assume that un

is quasi-continuous, so that Yn is P ⊗ P
m-a.e. continuous. Then (Y n,Zn) solves

the BSDE associated to the data (�,fn, g,h)

Y n
t = �(WT ) +

∫ T

t
fr(Wr,Y

n
r ,Zn

r ) dr + n

∫ T

t
(Y n

r − Sn
r )− dr

+ 1

2

∫ T

t
gr(Wr,Y

n
r ,Zn

r ) ∗ dW

(16)

+
∫ T

t
hr(Wr,Y

n
r ,Zn

r ) · ←−
dBr

− ∑
i

∫ T

t
Zn

i,r dWi
r .

We define Kn
t = n

∫ t
0 (Y n

s − Ss)
− ds and establish the following lemmas.

LEMMA 4. The triple (Y n,Zn,Kn) satisfies the following estimates

EE
m|Yn

t |2 + λεEE
m

∫ T

t
|Zn

r |2 dr

≤ cEE
m

[
|�(WT )|2 +

∫ T

t

(|f 0
s (Ws)|2 + |g0

s (Ws)|2 + |h0
s (Ws)|2)

ds

]
(17)

+ cεEE
m

∫ T

t
|Yn

r |2 dr + cδEE
m

(
sup

t≤r≤T

|Sr |2
)

+ δEE
m(Kn

T − Kn
t )2,

where λε = 1 − 2α − β2 − ε, cε, cδ are a positive constants and ε > 0, δ > 0 can
be chosen small enough such that λε > 0.
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PROOF. By using Itô’s formula (13) for (Y n,Zn), we get

|Yn
t |2 +

∫ T

t
|Zn

r |2 dr = |�(WT )|2 + 2
∫ T

t
Y n

s fs(Ws,Y
n
s ,Zn

s ) ds

+ 2
∫ T

t
Y n

s dKn
s − 2

∫ T

t
〈Zn

s , gs(Ws,Y
n
s ,Zn

s )〉ds

+
∫ T

t
Y n

s gs(Ws,Y
n
s ,Zn

s ) ∗ dW − 2
∑
i

∫ T

t
Y n

s Zn
i,s dWi

s(18)

+ 2
∫ T

t
Y n

s hs(Ws,Y
n
s ,Zn

s ) · ←−
dBs

+
∫ T

t
|hs(Ws,Y

n
s ,Zn

s |2 ds.

Using Assumption (H) and taking the expectation in the above equation under
P ⊗ P

m, we get

EE
m|Yn

t |2 + EE
m

∫ T

t
|Zn

s |2 ds

≤ E|�(WT )|2 + cεEE
m

∫ T

t
[|f 0

s (Ws)|2 + |g0
s (Ws)|2 + |h0

s (Ws)|2]ds

+ cεEE
m

∫ T

t
|Yn

s |2 ds + (2α + β2 + ε)EE
m

∫ T

t
|Zn

s |2 ds

+ 1

γ
EE

m
[

sup
t≤s≤T

|Ss |2
]
+ γ EE

m[(Kn
T − Kn

t )2],

where ε > 0, γ > 0 are a arbitrary constants and cε is a constant which can be
different from line to line. We have used the inequality

∫ T
t Y n

s dKn
s ≥ ∫ T

t Sn
s dKn

s

and then we have applied Schwartz’s inequality. We also have used the fact that
under the measure P

m the forward–backward integral
∫

Yn
r g(r,Wr,Y

n
r ,Zn

r ) ∗ dW

as well the other stochastic integrals with respect to the brownian terms have null
expectation under P⊗P

m. Finally, Gronwall’s lemma leads to the desired inequali-
ty. �

LEMMA 5.

EE
m[(Kn

T − Kn
t )2] ≤ c′[EE

m|Yn
t |2 + ‖�‖2

2]

+ cε

[
EE

m
∫ T

t
[|Yn

s |2 + |Zn
s |2]ds(19)

+ E

∫ T

t
[‖f 0

s ‖2
2 + ‖g0

s ‖2
2 + ‖h0

s‖2
2]ds

]
.
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PROOF. Let now (ũn)n∈N be the weak solutions of the following linear type
equations

dũn
t + 1

2�ũn
t + divgt (u

n
t ,∇un

t ) dt + ht (u
n
t ,∇un

t ) · ←−
dBt = 0,

with final condition ũn
T = 0. Set Ỹ n

t = ũn(t,Wt) and Z̃n = ∇ũn(t,Wt). Then by
the estimate (12), one has

EE
m

[
|Ỹ n

t |2 +
∫ T

0
|Z̃n

s |ds

]
≤ c̃�,(20)

where � = EE
m

∫ T
0 [|gs(Ws,Y

n
s ,Zn

s )|2 + |hs(Ws,Y
n
s ,Zn

s )|2]ds. Since un − ũn

verifies the equation

∂t (u
n
t − ũn

t ) + 1
2�(un − ũn

t ) + ft (u
n
t ,∇un

t ) + n(un
t − vt )

− dt = 0,

we have the stochastic representation

Yn
t − Ỹ n

t = �(WT ) +
∫ T

t
fr(Wr,Y

n
r ,Zn

r ) dr + Kn
T − Kn

t

− ∑
i

∫ T

t
(Zn

i,r − Z̃n
i,r ) dWi

r

from which one easily obtains the estimate

EE
m[(Kn

T − Kn
t )2]

≤ cEE
m

[
|Yn

t |2 + |Ỹ n
t |2 + |�(WT )|2

+
∫ T

t
(|f 0

s (Ws)|2 + |Yn
s |2 + |Zn

s |2) ds +
∫ T

t
|Z̃n

s |2 ds

]
.

Hence, using (20), we get

EE
m[(Kn

T − Kn
t )2]

≤ c′
EE

m[|Yn
t |2 + |�(WT )|2]

+ c′
εEE

m

[∫ T

t
(|Yn

s |2 + |Zn
s |2) ds

+
∫ T

t
[|f 0

s (Ws)|2 + |g0
s (Ws)|2 + |h0

s (Ws)|2]ds

]
,

which gives our assertion. �

LEMMA 6. The triple (Y n,Zn,Kn) satisfies the following estimate

EE
m

(
sup

0≤s≤T

|Yn
s |2

)
+ EE

m
∫ T

0
|Zn

s |2 ds + EE
m(Kn

T )2

≤ c

[
‖�‖2

2 + EE
m

(
sup

0≤s≤T

|Ss |2
)

+ E

∫ T

0
[‖f 0

s ‖2
2 + ‖g0

s ‖2
2 + ‖h0

s‖2
2]ds

]
,
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where c > 0 is a constant.

PROOF. From (17) and (19), we get

(1 − δc′)EE
m|Yn

s |2 + (1 − 2α − β2 − ε − δc′
ε)EE

m
∫ T

s
|Zn

r |2 dr

≤ (1 + c′δ)‖�‖2
2 + (cε + δc′

ε)� + (cε + δc′
ε)EE

m
∫ T

s
|Yn

r |2 ds

+ cδEE
m

(
sup

t≤r≤T

|Sr |2
)
,

where � = EE
m

∫ T
t [|f 0

s (Ws)|2 + |g0
s (Ws)|2 + |h0

s (Ws)|2]ds. It then follows from
Gronwall’s lemma that

sup
0≤s≤T

EE
m(|Yn

s |2) + EE
m

∫ T

s
|Zn

r |2 dr + EE
m(Kn

T )2

≤ c1

[
‖�‖2

2 + EE
m

(
sup

0≤r≤T

|Sr |2
)

+ E

∫ T

s
[‖f 0

r ‖2
2 + ‖g0

r ‖2
2 + ‖h0

r‖2
2]dr

]
.

Coming back to the equation (16) and using Bukholder–Davis–Gundy inequality
and the last estimates, we get our statement. �

In order to prove the strong convergence of the sequence (Y n,Zn,Kn), we shall
need the following result.

LEMMA 7 (The essential step).

lim
n→∞ EE

m
[

sup
0≤t≤T

(
(Y n

t − St )
−)2

]
= 0.(21)

PROOF. Let (un)n∈N be the sequence of solutions of the penalized SPDE de-
fined in (15). From Lemma 6, it follows that the sequence (f (un,∇un), g(un,

∇un), h(un,∇un))n∈N is bounded in L2([0, T ] × � × R
d;R

1+d+d1
). We may

choose then a subsequence which is weakly convergent to a system of predictable
processes (f̄ , ḡ, h̄) and, on account of the Lemma 13 in the Appendix, we obtain
a sequence of families of coefficients of convex combinations, (ak)k∈N, such that
the sequences

f̂ k = ∑
i∈Ik

αk
i f (ui,∇ui), ĝk = ∑

i∈Ik

αk
i g(ui,∇ui)

and

ĥk = ∑
i∈Ik

αk
i h(ui,∇ui)
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converge strongly, that is,

lim
k→∞E

∫ T

0
‖f̂ k

t − f̄t‖2
2 dt = 0

and similarly for ĝk , ḡ and ĥk , h̄.
Now for i ≥ n, we denote by ui,n the solution of the equation

du
i,n
t + [1

2�u
i,n
t − nu

i,n
t + nvt + ft (u

i,∇ui) + divgt (u
i,∇ui)

]
dt

(22)
+ ht (u

i,∇ui) · ←−
dBt = 0

with final condition u
i,n
T = vT . By comparison (Theorem 5), we have that ui,n ≤ ui .

Further, we set ûk = ∑
i∈Ik

αk
i u

i,nk , where nk = inf Ik and we deduce that

ûk ≤ ∑
i∈Ik

αk
i u

i ≤ lim
n→∞un,(23)

where the last inequality comes from the monotonicity of the sequence un. More-
over, we observe that ûk is a solution of the equation

dûk
t + [1

2�ûk
t − nkû

k
t + nkvt + f̂ k

t + div ĝk
t

]
dt + ĥk

t · ←−
dBt = 0(24)

with final condition ûk
T = vT .

Now we are going to take the advantage of the fact that the equations satisfied by
the sequence of solutions ûk have strongly convergent coefficients. Let us denote
by Ŷ k the continuous version on [0, T ] of the process (ûk(Wt))t∈[0,T ], for any
k ∈ N. We will prove now that there exists a subsequence such that

lim
k→∞ sup

0≤t≤T

|Ŷ k
t − St | = 0 P ⊗ P

m-a.s.(25)

Since the equation (24) is linear, the solution decomposes as a sum of four terms
each corresponding to one of the coefficients f̂ k, ĝk, ĥk, v. So it is enough to treat
separately each term.

(a) In the case where f ≡ 0, g ≡ 0, h ≡ 0 one obtains the term corresponding
to v. Then the relation (25) is a direct consequence of the Lemma 11.

(b) In the case where v ≡ 0, g ≡ 0, h ≡ 0, the representation of Ŷ k is given by

Ŷ k
t =

∫ T

t
e−nk(s−t)f̂ k

s (Ws) ds −
d∑

i=1

∫ T

t
e−nk(s−t) ∂i û

k
r (Ws) dWi

s .

Thus, we have∣∣∣∣∫ T

t
e−nk(s−t)f̂ k

s (Ws) ds

∣∣∣∣ ≤ 1√
2nk

(∫ T

t
(f̂ k

s (Ws))
2 ds

)1/2

.
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This shows that limk→∞ sup0≤t≤T | ∫ T
t e−nk(s−t)f̂ k

s (Ws) ds| = 0,P ⊗ P
m-a.s., on

some subsequence. For the second term in the expression of Ŷ k , we make an inte-
gration by parts formula to get∫ T

t
e−nk(s−t) ∂i û

k
s (Ws) dWi

s = e−nk(T −t)U
i,k
T − U

i,k
t + nk

∫ T

t
Ui,k

s e−nk(s−t) ds,

where Ui,k
s = ∫ s

0 ∂iû
k
r (Wr) dWi

r . By the Corollary 3 of Section 4, we know that the
martingales Ui,k, k ∈ N, converges to zero in L2, and hence on a subsequence we
have limk→∞ sup0≤t≤T |Ui,k

t | = 0,P ⊗ P
m-a.s. Then by Lemma 12, we see that

for that subsequence

lim
k→∞ sup

0≤t≤T

∣∣∣∣∫ T

t
e−nk(s−t) ∂i û

k
s (Ws) dWi

s

∣∣∣∣ = 0 P ⊗ P
m-a.s.

Therefore, the desired result (25) holds also in this case. This time we get
limk→∞ sup0≤t≤T |Ŷ k

t | = 0,P ⊗ P
m-a.s.

(c) In the case where f ≡ 0, h ≡ 0, v ≡ 0, the representation of Ŷ k is given by

Ŷ k
t =

∫ T

t
e−nk(s−t)ĝk

s ∗ dW −
d∑

i=1

∫ T

t
e−nk(s−t) ∂i û

k
r (Ws) dWi

s

= ∑
i

∫ T

t
e−nk(s−t)ĝk

s (Ws) dWi
s + ∑

i

∫ T

t
e−nk(s−t)ĝk

s (Ws)
←−
dWi

s

−
d∑

i=1

∫ T

t
e−nk(s−t) ∂i û

k
r (Ws) dWi

s .

Now the proof is similar to that of the preceding case. We treat only the second
term in the last expression. We set

←−
U i,k

s = ∫ T
s ĝk

r (Wr)
←−
dWm,i

r . Integration by parts
formula gives∫ T

t
e−nk(s−t) d

←−
U i,k

s = ←−
U

i,k
t − e−nk(T −t)←−U i,k

T − nk

∫ T

t

←−
U i,k

s e−nk(s−t) ds.

On the other hand, the convergence ĝk → ḡ implies that the backward martingale
(
←−
U

i,k
t )t∈[0,T ] converges to (

∫ T
t ḡi,r (Wr)

←−
dWm,i

r )t∈[0,T ] in L2(P ⊗ P
m). The other

terms in the above expression of Ŷ k may be handled similarly by integration by
parts and taking into account Corollary 4. Using again Lemma 12, as in the preced-
ing case, we get the relation (25) in the form limk→∞ sup0≤t≤T |Ŷ k

t | = 0,P ⊗ P
m-

a.s.
(d) In the case where f ≡ 0, g ≡ 0, v ≡ 0, the representation of Ŷ k is given by

Ŷ k
t = −

d∑
i=1

∫ T

t
e−nk(s−t) ∂i û

k
r (Ws) dWi

s +
∫ T

t
e−nk(s−t)ĥk

s · ←−
dBs.
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On account of Lemma 10, the same arguments used in the previous cases work
again.

Now it is easy to see that the relation (25) holds for the general case. On the
other hand, (23) and (25) clearly imply the relation

lim
n→∞ sup

0≤t≤T

(Y n
t − St )

− = 0 P ⊗ P
m-a.s.

and then, since Yn is bounded in L2, one gets the relation of our statement. �

We have also the following result.

LEMMA 8. There exists a progressively measurable triple of processes
(Yt ,Zt ,Kt)t∈[0,T ] such that

EE
m

[
sup

0≤s≤T

|Yn
t − Yt |2 +

∫ T

0
|Zn

t − Zt |2 dt

(26)

+ sup
0≤t≤T

|Kn
t − Kt |2

]
−→ 0 as n → ∞.

Moreover we have that (Yt ,Zt ,Kt)t∈[0,T ] satisfies Yt ≥ St ,∀t ∈ [0, T ] and∫ T
0 (Ys − Ss) dKs = 0, P ⊗ P

m-a.e.

PROOF. From the monotonicity of the sequence (fn)n∈N and the comparison
Theorem 5, we get that un(t, x) ≤ un+1(t, x), dt dx ⊗ P-a.e., therefore one has
Yn

t ≤ Yn+1
t , for all t ∈ [0, T ], P ⊗ P

m-a.s. Thus, there exists a predictable real
valued process Y = (Yt )t∈[0,T ] such that Yn

t ↑ Yt , for all t ∈ [0, T ] a.s. and by
Lemma 6 and Fatou’s lemma, one gets

EE
m

(
sup

0≤s≤T

|Yt |2
)

≤ c.

Moreover, from the dominated convergence theorem one has

EE
m

∫ T

0
|Yn

t − Yt |2 dt −→ 0 as n → ∞.(27)

The relation (13) gives, for n ≥ p,

|Yn
t − Y

p
t |2 +

∫ T

t
|Zn

s − Zp
s |2a ds

= 2
∫ T

t
(Y n

s − Yp
s )[fs(Ws,Y

n
s ,Zn

s ) − fs(Ws,Y
p
s ,Zp

s )]ds

+ 2
∫ T

t
(Y n

s − Yp
s ) d(Kn

s − Kp
s )(28)
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− 2
∫ T

t
〈Zn

s − Zp
s , gs(Ws,Y

n
s ,Zn

s ) − gs(Ws,Y
p
s ,Zp

s )〉ds

+
∫ T

t
(Y n

s − Yp
s )[gs(Xs,Y

n
s ,Zn

s ) − gs(Ws,Y
p
s ,Zp

s )] ∗ dW

− 2
∑
i

∫ T

t
(Y n

s − Yp
s )(Zn

i,s − Z
p
i,s) dWi

s

+ 2
∫ T

t
(Y n

s − Yp
s )[hs(Ws,Y

n
s ,Zn

s ) − hs(Ws,Y
p
s ,Zp

s )] · ←−
dBs

+
∫ T

t
|hs(Ws,Y

n
s ,Zn

s ) − hs(Ws,Y
p
s ,Zp

s )|2 ds.

By standard calculation, one deduces that

EE
m

∫ T

t
|Zn

s − Zp
s |2 ds ≤ cEE

m
∫ T

t
|Yn

s − Yp
s |2

+ 4EE
m

∫ T

t
(Y n

s − Ss)
− dKp

s(29)

+ 4EE
m

∫ T

t
(Y p

s − Ss)
− dKn

s .

Therefore from Lemma 7, (27) and (29) one gets

EE
m

∫ T

0
|Yn

t − Y
p
t |2 dt

(30)

+ EE
m

∫ T

0
|Zn

t − Z
p
t |2 dt −→ 0 as n,p → ∞.

The rest of the proof is the same as in El Karoui et al. ([9], pages 721–722), in par-
ticular we get that there exists a pair (Z,K) of progressively measurable processes
with values in R

d × R such that

EE
m

[
sup

0≤s≤T

|Yn
t − Yt |2 +

∫ T

0
|Zn

t − Zt |2 dt

+ sup
0≤t≤T

|Kn
t − Kt |2

]
−→ 0 as n → ∞.

It is obvious that (Kt)t∈[0,T ] is an increasing continuous process. On the other
hand, since from Lemma 7 we have limn→∞ EE

m[sup0≤t≤T ((Y n
t − St )

−)2] = 0,
then, P ⊗ P

m-a.s.,

Yt ≥ St ∀t ∈ [0, T ],(31)
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which yields that
∫ T

0 (Ys −Ss) dKs ≥ 0. Finally, we also have
∫ T

0 (Ys −Ss) dKs = 0
since on the other hand the sequences (Y n)n≥0 and (Kn)n≥0 converge uniformly
(at least for a subsequence), respectively, to Y and K and∫ T

0
(Y n

s − Ss) dKn
s = −n

∫ T

0

(
(Y n

s − Ss)
−)2

ds ≤ 0. �

As a consequence of the last proof, we obtain the following generalization of
the RBSDE introduced in [9].

COROLLARY 2. The limiting triple of processes (Yt ,Zt ,Kt)t∈[0,T ] is a solu-
tion of the following reflected backward doubly stochastic differential equation (in
short RBDSDE):

Yt = �(WT ) +
∫ T

t
fr(Wr,Yr,Zr) dr + KT − Kt

+ 1

2

∫ T

t
gr(Wr,Yr,Zr) ∗ dW(32)

+
∫ T

t
hr(Wr,Yr,Z

n
r ) · ←−

dBr − ∑
i

∫ T

t
Zi,r dWi

r

with Yt ≥ St ,∀t ∈ [0, T ], (Kt)t∈[0,T ] is an increasing continuous process, K0 = 0
and ∫ T

0
(Ys − Ss) dKs = 0.(33)

PROOF OF THEOREM 4. Since∫ T

0
(‖un

t − u
p
t ‖2

2 + ‖∇un
t − ∇u

p
t ‖2

2) dt = E
m

∫ T

0
(|Yn

t − Y
p
t |2 + |Zn

t − Z
p
t |2) dt,

by the preceding lemma one deduces that the sequence (un)n∈N is a Cauchy se-
quence in L2(�×[0, T ];H 1(Rd)) and hence has a limit u in this space. Also from
the preceding lemma, it follows that dKn

t weakly converges to dKt , P ⊗ P
m-a.e.

This implies that

lim
n

∫ T

0

∫
Rd

n(un − v)−ϕ(t, x) dt dx = lim
n

E
m

∫ T

0
ϕt(Wt) dKn

t

=
∫ T

0

∫
Rd

ϕ(t, x)ν(dt dx),

where ν is the regular measure defined by∫ T

0

∫
Rd

ϕ(t, x)ν(dt dx) = Em
∫ T

0
ϕt (Wt) dKt .
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Writing the equation (15) in the weak form and passing to the limit one ob-
tains the equation (14) with u and this ν. The arguments we have explained af-
ter Definition 4 ensure that u admits a quasicontinuous version �u. Then one de-
duces that (�ut (Wt))t∈[0,T ] should coincide with (Yt )t∈[0,T ], P ⊗ P

m-a.e. There-
fore, the inequality Yt ≥ St implies u ≥ v, dt ⊗ P ⊗ dx-a.e. and the relation∫ T

0 (Yt − St ) dKt = 0 implies the relation (iv) of Definition 4. �

4. Some technical lemmas.

LEMMA 9. Let f ∈ L2([0, T ] × R
d;R) and denote by (un)n∈N the sequence

of solutions of the equations(
∂t + 1

2�
)
un − nun + f = 0 ∀n ∈ N,

with final condition un
T = 0. Then we have∫ T

0
‖∇un

t ‖2
2 dt ≤ c

[
1

n

∫ T

0
‖ft‖2

2 dt +
∫ T

0
e−2n(T −t)‖ft‖2

2 dt

]
.(34)

PROOF. It is well known that the solution (un)n∈N is expressed in terms of the
semigroup Pt by

un
t =

∫ T

t
e−n(s−t)Ps−t fs ds.

A direct calculation shows that one has

n

∫ T

t
e−n(s−t)Ps−tu

0
s ds = u0

t − un
t ,

which leads to

un
t = e−n(T −t)u0

t + n

∫ T

t
e−n(s−t)(u0

t − Ps−tu
0
s ) ds.(35)

The function �un
t = e−n(T −t)u0

t is a solution of the equation (∂t + 1
2�)�un − n�un +

f̄ = 0 where f̄t = e(T −t)ft . Therefore, one has the following estimate for the gra-
dient of the first term in the expression of un∫ T

0
e−n(T −t)‖∇u0

t ‖2
2 dt ≤ c

∫ T

0
e−2n(T −t)‖ft‖2

2 dt(36)

(see Lemma 5 of [7] for details). In order to estimate the gradient of the second
term of the expression of un, we first remark that

u0
t − Ps−tu

0
s =

∫ s

t
Pr−t fr dr,
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so that one has∥∥∥∥n∇
∫ T

t
e−n(s−t)(u0

t − Ps−tu
0
s ) ds

∥∥∥∥
2
≤ n

∫ T −t

0
e−ns

∫ s

0
‖∇Prft+r‖2 dr ds

≤ nc

∫ T −t

0
e−ns

∫ s

0

1√
r
‖ft+r‖2 dr ds,

where we have used the well-known inequality

‖∇Prϕ‖2 ≤ c√
r
‖ϕ‖2 for ϕ ∈ L2.

Then we estimate the time integral of the norm of the gradient, which is the ex-
pression we are interested in,∫ T

0

∥∥∥∥n∇
∫ T

t
e−n(s−t)(u0

t − Ps−tu
0
s ) ds

∥∥∥∥2

2
dt

≤ c2
∫ T

0

[∫ T −t

0
ne−ns

∫ s

0

1√
r
‖ft+r‖2 dr ds

]2

dt

= c2
∫ T

0

∫ s

0

∫ T

0

∫ s′

0

∫ T −s∨s′

0
ne−nsne−ns′ 1√

r
‖ft+r‖2

× 1√
r ′ ‖ft+r ′‖2 dt dr ′ ds′ dr ds

≤
∫ T

0
‖ft‖2

2 dt

(∫ T

0

1

2

√
sne−ns ds

)2

≤ c

n

∫ T

0
‖ft‖2

2 dt.

This estimate together with (36) imply the statement (34). �

Obviously, the lemma implies that limn→∞
∫ T

0 ‖∇un
t ‖2

2 dt = 0. We need a
strengthened version of this relation, which is presented in the next corollary whose
proof is easy, so you omit it.

COROLLARY 3. Let f,f n ∈ L2([0, T ] × R
d;R), n ∈ N, be such that

limn→∞
∫ T

0 ‖f n
t − ft‖2

2 dt = 0. Then the solutions (un)n∈N of the equations(
∂t + 1

2�
)
un − nun + f n = 0,

with final condition un
T = 0, satisfy the relation limn→∞

∫ T
0 ‖∇un

t ‖2
2 dt = 0.

COROLLARY 4. Let gn, g ∈ L2([0, T ] × R
d;R

d) be such that
limn→∞

∫ T
0 ‖gn

t − gt‖2
2 dt = 0. Then the solutions (un)n∈N of the equations(

∂t + 1
2�

)
un − nun + divgn = 0,

with final condition un
T = 0, satisfy the relation limn→∞

∫ T
0 ‖∇un

t ‖2
2 dt = 0.
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PROOF. We regularize g by setting gε
i,t = Pεgi,t for i = 1, . . . , d, ε > 0, t ∈

[0, T ]. Then gε
i ∈ H 1

0 (Rd) and f ε = divgε is in L2([0, T ] × R
d;R). Moreover,

we have limε→0
∫ T

0 ‖gε
t − gt‖2

2 dt = 0. Let uε,n be the solution of the equation(
∂t + 1

2�
)
uε,n − nuε,n + f ε = 0,

with final condition u
ε,n
T = 0. By Lemma 5 of [7], one has∫ T

0
‖∇un

t − ∇u
ε,n
t ‖2

2 dt ≤ c

∫ T

0
‖gn

t − gε
t ‖2

2 dt

≤ c

∫ T

0
(‖gn

t − gt‖2
2 + ‖gε

t − gt‖2
2) dt.

On the other hand, Lemma 9 implies, for ε fixed, limn→∞
∫ T

0 ‖∇u
ε,n
t ‖2

2 dt = 0.
From these facts, one easily concludes the proof. �

LEMMA 10. Let h,hn,n ∈ N, be L2(Rd;R
d1

)-valued predictable processes
on [0, T ] with respect to (F B

t,T )t≥0 and such that

E

∫ T

0
‖ht‖2

2 dt < ∞, E

∫ T

0
‖hn

t ‖2
2 dt < ∞

and

lim
n→∞ E

∫ T

0
‖hn

t − ht‖2
2 dt = 0.

Let (un)n∈N be the solutions of the equations

dun
t + [1

2�un
t − nun

t

]
dt + hn

t · ←−
dBt = 0,

with final condition un
T = 0, for each n ∈ N. Then one has

lim
n→∞

∫ T

0
‖∇un

t ‖2
2 dt = 0.

PROOF. We regularize the process h by setting h̄ε
i,t = Pεhi,t for i = 1, . . . ,

d1, ε > 0, t ∈ [0, T ]. Then h̄ε
i,t ∈ H 1

0 (Rd) and E
∫ T

0 ‖∇h̄ε
t ‖2

2 dt < ∞ and

limε→0 E
∫ T

0 ‖h̄ε
t − ht‖2

2 dt = 0. Let uε,n be the solution of the equation

du
ε,n
t + 1

2�u
ε,n
t − nu

ε,n
t + h̄ε

t · ←−
dBt = 0

with final condition u
ε,n
T = 0, for each n ∈ N. The relation (iii) of Proposition 6 in

[7] written with respect to the Hilbert space H = H 1
0 (Rd) takes the form

E

[
‖∇u

ε,n
t ‖2

2 +
∫ T

t

∥∥∥∥1

2
�uε,n

s

∥∥∥∥2

ds + n

∫ T

t
‖∇uε,n

s ‖2
2 ds

]
= E

∫ T

t
‖∇h̄ε

s‖2
2 ds.



1176 A. MATOUSSI AND L. STOICA

In particular, one has ∫ T

t
‖∇uε,n

s ‖2 ds ≤ 1

n

∫ T

t
‖∇h̄ε

s‖2
2 ds.

Now we write the relation (iii) of Proposition 6 in [7] for the solution un − uε,n

with respect to the Hilbert space H = L2(Rd),

E

[
‖un

0 − u
ε,n
0 ‖2 +

∫ T

0
‖∇un

s − ∇uε,n
s ‖2

2 ds + n

∫ T

0
‖un

s − uε,n
s ‖2

2 ds

]

= E

∫ T

0
‖h̄n

s − h̄ε
s‖2

2 ds.

In particular, one obtains

E

∫ T

0
‖∇un

s − ∇uε,n
s ‖2

2 ds ≤ E

∫ T

0
‖h̄n

s − h̄ε
s‖2

2 ds.

From this and the preceding inequality, one deduces

lim sup
n→∞

E

∫ T

0
‖∇un

s ‖2
2 ds ≤ E

∫ T

0
‖h̄s − h̄ε

s‖2
2 ds.

Letting ε → 0, one deduces the relation from the statement. �

LEMMA 11. Let v : [0, T ] × R
d → R be a function such that the process

(vt (Wt))t∈[0,T ] admits a version S = (St )t∈[0,T ] with continuous trajectories on
[0, T ] and such that the random variable S∗ = sup0≤t≤T St satisfies the condition
E

m[S∗]2 < ∞. Let un be the solution of the equation(
∂t + 1

2�
)
un − nun + nv = 0,

with the terminal condition un
T = vT . Let Yn = (Y n

t )t∈[0,T ] be a continuous version
of the process (un

t (Wt))t∈[0,T ], for each n ∈ N. Then the following holds:

lim
n→∞ E

m
[

sup
0≤t≤T

|Yn
t − St |2

]
= 0.

PROOF. Let us set �un
t = e−ntun

t and observe that this function is a solution of
the equation (

∂t + 1
2�

)�un +�v = 0,

with �vt = e−ntvt and terminal condition �un
T = �vT . Writing the representation of

Theorem 3 with g = h = 0 for �un(Wt), one obtains

�un
t (t,Wt) = e−nT vT −

d∑
i=1

∫ T

t
∂i�un

r (Wr) dWi
r + n

∫ T

t
e−nrvr(Wr) dr,
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and this leads to the representation of our process Yn, given by

Yn
t = E

m

[
e−n(T −t)ST + n

∫ T

t
e−n(r−t)Sr dr

∣∣∣Ft

]
.

Then one has

|St − Yt | ≤ E
m

[∣∣∣∣St − e−n(T −t)ST − n

∫ T

t
e−n(r−t)Sr dr

∣∣∣∣∣∣∣Ft

]
.

Let us denote by

V n = sup
0≤t≤T

∣∣∣∣St − e−n(T −t)ST − n

∫ T

t
e−n(r−t)Sr dr

∣∣∣∣.
Obviously, one has V n ≤ 2S∗. On the other hand, one has for any fixed δ > 0,

V n ≤ sup
|t−s|≤δ

|St − Ss | + 2e−nδS∗.(37)

This follows from Lemma 12. From the inequality (37), one deduces that
limn→∞ V n = 0,P

m-a.s., and hence from the dominated convergence theorem,
one gets limn→∞ E

m[V n]2 = 0. Since

|St − Yn
t | ≤ E

m[V n|Ft ],
Doob’s theorem implies the assertion of the lemma. �

Finally, we mention the following calculus lemma.

LEMMA 12. Let ϕ ∈ C([0,1];R) and δ ∈ (0, T ), λ > 0. Then one has∣∣∣∣λ∫ δ

0
e−λtϕ(t) dt + e−λδϕ(δ) − ϕ(0)

∣∣∣∣ ≤ sup
0≤t≤δ

|ϕ(t) − ϕ(0)|

and ∣∣∣∣λ∫ T

t
e−λ(s−t)ϕ(s) ds + e−λ(T −t)ϕ(T ) − ϕ(t)

∣∣∣∣
≤ sup

|s−r|≤δ,s≥0
|ϕ(s) − ϕ(r)| + 2e−λδ‖ϕ‖∞.

PROOF. The first inequality follows from the relation λ
∫ δ

0 e−λt dt + e−λδ = 1.
In order to check the second relation, one dominates the expression of the left-hand
side by∣∣∣∣λ∫ t+δ

t
e−λ(s−t)ϕ(s) ds + e−λδϕ(t + δ) − ϕ(t)

∣∣∣∣
+ e−λδ

∣∣∣∣λ∫ T

t+δ
e−λ(s−(t+δ))ϕ(s) ds + e−λ(T −(t+δ))ϕ(T ) − ϕ(t + δ)

∣∣∣∣
and then apply the first relation to dominate the first term. �
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APPENDIX

The next lemma is a classical result in convex analysis, known as Mazur’s the-
orem (see [5], Remark 5, page 38). We state here the result with some notation
that is useful for our proof. Let X be a Banach space and (xn)n∈N a sequence
of elements in X. We call finite family of coefficients of a convex combination a
family a = {αi |i ∈ I } where I is a finite subset of N, αi > 0 for each i ∈ I and∑

i∈I αi = 1. The convex combination that corresponds to such a family of coeffi-
cients is the point expressed in terms of our sequence by

∑
i∈I αixi .

LEMMA 13. Let (xn)n∈N be a weakly convergent sequence of elements in X

with limit x. Then there exits a sequence (ak)k∈N of families of coefficients of
convex combinations, ak = {αk

i |i ∈ Ik}, such that the corresponding convex com-
binations xk = ∑

i∈Ik
αk

i xi , k ∈ N, converge strongly to x: limk→∞ ‖xk − x‖ = 0.
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