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LARGE DEVIATIONS OF THE FRONT IN A ONE-DIMENSIONAL
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We investigate the probabilities of large deviations for the position of the
front in a stochastic model of the reaction X + Y → 2X on the integer lattice
in which Y particles do not move while X particles move as independent
simple continuous time random walks of total jump rate 2. For a wide class
of initial conditions, we prove that a large deviations principle holds and we
show that the zero set of the rate function is the interval [0, v], where v is
the velocity of the front given by the law of large numbers. We also give
more precise estimates for the rate of decay of the slowdown probabilities.
Our results indicate a gapless property of the generator of the process as seen
from the front, as it happens in the context of nonlinear diffusion equations
describing the propagation of a pulled front into an unstable state.

1. Introduction. We consider a microscopic model of a one-dimensional
reaction-diffusion equation, with a propagating front representing the passage from
an unstable equilibrium to a stable one. It is defined as an interacting particle sys-
tem on the integer lattice Z with two types of particles: X particles, that move as
independent, continuous time, symmetric, simple random walks with total jump
rate DX = 2; and Y particles, which are inert and can be interpreted as random
walks with total jump rate DY = 0. Initially, each site x = 0,−1,−2, . . . bears a
certain number η(x) ≥ 0 of X particles [with at least one site x such that η(x) ≥ 1],
while each site x = 0,1, . . . bears a fixed number a of particles of type Y (with
1 ≤ a < +∞). When a site x = 1,2, . . . is visited by an X particle for the first
time, all the Y particles located at site x are instantaneously turned into X parti-
cles, and start moving. The front at time t is defined as the rightmost site that has
been visited by an X particle up to time t , and is denoted by rt , with the conven-
tion r0 := 0. This model can be interpreted as an infection process, where the X

and Y particles represent ill and healthy individuals, respectively. It can also be
interpreted as a combustion reaction, where the X and Y particles correspond to
heat units and reactive molecules, respectively, modeling the combustion of a pro-
pellant into a stable stationary state. We will denote this model the X + Y → 2X
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front propagation process with jump rates DX and DY . Within the physics litera-
ture, a number of studies have been done both numerically and analytically of this
process for different values of DX and DY and of corresponding variants where the
infection of a Y particle by an X particle at the same site is not instantaneous, draw-
ing analogies with continuous space–time nonlinear reaction-diffusion equations
having uniformly traveling wave solutions [9, 14–16, 18, 22]. A particular well-
known example is the F-KPP equation studied by Fisher [11] and Kolmogorov,
Petrovsky and Piscounov [13].

Mathematically not too much is known. For the case DY = 0, when∑
x≤0 exp(θx)η(x) < +∞ for a small enough θ > 0, a law of large numbers with a

deterministic speed 0 < v < +∞ not depending on the initial condition is satisfied
(see [5], Section 4.1, page 7):

lim
t→+∞ t−1rt = v a.s.(1)

In [5] (Theorems 1 and 2), it was proved that the fluctuations around this speed
satisfy a functional central limit theorem and that the marginal law of the particle
configuration as seen from the front converges to a unique invariant measure as
t → ∞. Furthermore, a multi-dimensional version of this process on the lattice Zd ,
with an initial configuration having one X particle at the origin and one Y particle
at every other site was studied in [1, 21], proving an asymptotic shape theorem as
t → ∞ for the set of visited sites (Theorems 1.1 in [1] and [21]). A similar result
was proved by Kesten and Sidoravicius [12] (Theorem 1) for the case DX = DY >

0 with a product Poisson initial law. In particular, in dimension d = 1 they prove a
law of large numbers for the front as in (1). For the case DX �= DY > 0, even the
problem of establishing whether the front is ballistic or not in dimension d = 1,
remains open (see [12]).

Within a certain class of one-dimensional nonlinear diffusion equations having
uniformly traveling wave solutions describing the passage from an unstable to a
stable state, it has been observed that for certain initial conditions the velocity of
the front at a given time has a rate of relaxation toward its asymptotic value which
is algebraic (see [9, 18] and the physics literature references therein). These are the
so called pulled fronts, whose speed is determined by a region of the profile lin-
earized about the unstable solution. For the F-KPP equation, Bramson [3] proved
that the speed of the front at a given time is below its asymptotic value and that the
convergence is algebraic. In general, the slow relaxation is due to a gapless prop-
erty of a linear operator governing the convergence of the centered front profile
toward the stationary state. A natural question is whether such a behavior can be
observed in the X + Y → 2X front propagation type processes. Deviations from
the law of large numbers of a larger size than those given by central limit theorem
should shed some light on such a question: in particular it would be reasonable
to expect a large deviations principle with a degenerate rate function, reflecting a
slow convergence of the particle configuration as seen from equilibrium toward the
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unique invariant measure [5] (page 2, line –3). In this paper, we investigate for the
case DY = 0 the large time asymptotics of the distribution of rt/t ,

P

[
rt

t
∈ ·
]
.

Our main result is that a full large deviations principle holds, with a degenerate
rate function on the interval [0, v], when the initial condition satisfies the following
growth condition.

ASSUMPTION (G). For all θ > 0,∑
x≤0

exp(θx)η(x) < +∞.(2)

THEOREM 1 (Large deviations principle). There exists a rate function I : [0,

+∞) → [0,+∞) such that, for every initial condition satisfying (G),

lim sup
t→+∞

1

t
log P

[
rt

t
∈ C

]
≤ − inf

b∈C
I (b) for C ⊂ [0,+∞) closed,

and

lim inf
t→+∞

1

t
log P

[
rt

t
∈ G

]
≥ − inf

b∈G
I (b) for G ⊂ [0,+∞) open.

Furthermore, I is identically zero on [0, v], positive, convex and increasing on
(v,+∞).

It is interesting to notice that the rate function I is independent of the initial
configuration of X particles within the class (G): the large deviations of the em-
pirical distribution function of the process as seen from the front appear to exhibit
a uniform behavior for such initial conditions. Furthermore, this result seems to
be in agreement with the phenomenon of slow relaxation of the velocity in the so-
called pulled reaction diffusion equations. In [9], a nonlinear diffusion equation of
the form

∂tφ = ∂2
xφ + f (φ)(3)

is studied where f is a function chosen so that φ = 0 is an unstable state and the
equation develops pulled fronts. It is argued that for steep enough initial condi-
tions, the velocity relaxes algebraically toward the asymptotic speed, providing an
explicit expansion up to order O(1/t2). Such a nonexponential decay is explained
by the fact that the linearization of (3) around the uniformly translating front, gives
a linear equation for the perturbation governed by a gapless Schrödinger operator.
The position of the front in the X + Y → 2X particle system can be decomposed
as rt = ∫ t0 Lg(ηs) ds +Mt , where L is the generator of the centered dynamics, g is
an explicit function and Mt is a martingale. The fact that under Assumption (G)
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the zero set of the large deviations principle of Theorem 1 is the interval [0, v] is
an indication that the symmetrization of L is a gapless operator.

The second result of this paper gives more precise estimates for the probability
of the slowdown deviations. Let

U(η) := lim sup
x→−∞

1

log |x| log

(
x∑

y=0

η(y)

)
, u(η) := lim inf

x→−∞
1

log |x| log

(
x∑

y=0

η(y)

)

and

s(η) := min(1,U(η)).

For the statement of the following theorem, we will write U,u, s instead of
U(η),u(η), s(η).

THEOREM 2 (Slowdown deviations estimates). Let η be an initial condition
satisfying (G). Then the following statements are satisfied.

(a) For all 0 ≤ c < b < v, as t goes to infinity,

P

[
c ≤ rt

t
≤ b

]
≥ exp

(−t s/2+o(1)).(4)

(b) In the special case where η(x) ≥ a for all x ≤ 0, one has that, for every 0 ≤
b < v, as t goes to infinity,

P

[
rt

t
≤ b

]
≤ exp

(−t1/3+o(1)).(5)

(c) When u < +∞, as t goes to infinity,

exp
(−tU/2+o(1))≤ P[rt = 0] ≤ exp

(−tu/2+o(1)).(6)

In the case of a homogeneous initial configuration, like d− ≤ η(y) ≤ d+ for
all y ≤ 0, with 1 ≤ d− ≤ d+ < +∞, or when (η(y))y≤0 forms a realization of an
i.i.d. family of random variables with finite positive expectation, the above results
take a simpler form since u = U = s = 1. As a consequence, exp(−t1/2) turns out
to be the actual order of magnitude for P[rt = 0], and a lower bound for P[c ≤
rt
t

≤ b] when 0 ≤ c < b < v. Note that even in such a homogeneous case, there
is a discrepancy between the lower bound (4) and the upper bound (5) (more on
this question at the end of Section 5). On the other hand, one may notice that the
slowdown probabilities considered in (4) and in (6) exhibit distinct behaviors when
u > 1. Furthermore, the results contained in Theorems 1 and 2 should be compared
with the case of the random walk in random environment with positive or zero drift
[19, 20].

A natural question is whether it is possible to relax (G) in Theorem 1. It appears
that even if (G) is but mildly violated, the slowdown behavior is not in accordance
with that described by Theorem 1. Moreover, if (G) is strongly violated, the law of
large numbers with asymptotic velocity v breaks down, so that the speedup part of
Theorem 1 cannot hold either.
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THEOREM 3. The following properties hold:

(i) Assume there is a θ > 0, such that

lim inf
x→−∞η(x) exp(θx) = +∞.

Then there exists b > 0 such that

lim sup
t→+∞

1

t
log P

[
rt

t
≤ b

]
< 0.

(ii) There exists θ ′ > 0 and v′ > v such that, when

lim inf
x→−∞η(x) exp(θ ′x) = +∞,

then

P

[
lim inf
t→+∞

rt

t
≥ v′
]

= 1.

It is important to stress that the proof of Theorem 1 would not be much sim-
plified if we considered initial conditions with only a finite number of particles.
Indeed, condition (G) is an assumption which delimits sensible initial data. To
prove Theorem 1, we first establish that for initial conditions consisting only of a
single particle at the origin, for all b ≥ 0, the limit

lim
t→+∞ t−1 log P(rt ≥ bt)(7)

exists. The proof of this fact relies on a soft argument based on the sub-additivity
property of the hitting times. On the other hand, it is not difficult to show that for b

large enough the decay of P(rt ≥ bt) is exponentially fast. Nevertheless, showing
this for b arbitrarily close to but larger than the speed v is a subtler problem. For
example, it is not clear how the standard sub-additive arguments could help. Our
main tool to tackle this problem is the regeneration structure of the process defined
in [5], Section 3.1 To overcome the fact that the regeneration times and positions
have only polynomial tails, we couple the original process with one where the X

particles have a small bias to the right, so that they jump to the right with probabil-
ity 1/2+ ε for some small ε > 0, and the position of the front in the biased process
dominates that of the front in the original process. We then use the regeneration
structure to study the biased model and how it relates to the original one as ε tends
to zero. In particular, if vε is the speed of the biased front, we establish via uniform
bounds on the moments of the regeneration times and positions that

lim
ε→0+ vε = v.

Furthermore, we show that the regeneration times and positions of the biased
model have exponentially decaying tails. Combining these arguments, proves that
the limit in (7) is positive for any b > v. We then establish that this limit exists and

1There is an error in the presentation of the regeneration structure in [5]. Here we explain how to
correct it.
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has the same value for all initial conditions satisfying (G) by exploiting a compar-
ison argument.

To show that the rate function vanishes on [0, v] [and more precisely (5)], we
first consider initial conditions having a uniformly bounded number of particles
per site. In this case, it is essentially enough to observe that the probability that the
front remains at zero up to time t is bounded from below by (1/

√
t)t

1/2+o(1)
, since

there are at most of the order of t1/2+o(1) random walks that yield a nonnegligible
contribution to this event. Similar estimates on hitting times of random walks are
used to prove (6) and Theorem 3, while more refined arguments are needed to
establish (4) for arbitrary initial conditions within the class (G). On the other hand,
the proof of the upper bound for the slowdown probabilities (5) in Theorem 2
is more involved, and relies on arguments using the sub-additivity property and
the positive association of the hitting times, together with estimates on their tails
and their correlations, refining an idea already used in [21] (page 10, line –5) in a
similar context.

The rest of the paper is organized as follows. In Section 2, we give a formal
definition of the model and introduce its basic structural properties, including sub-
additivity and monotonicity of hitting times. In Section 3, we explain how Theo-
rem 1 is proved, building on results proved in other sections. Section 4 is devoted
to the proof of the fact that speedup large deviations events have exponentially
small probabilities. Section 5 contains our estimates on slowdown probabilities,
with the proofs of Theorems 2 and 3. Several appendices contain proofs that are
not included in the core of the paper.

2. Construction and basic properties. Throughout the sequel, we will use
the convention inf ∅ = +∞.

2.1. Construction of the process.

2.1.1. Configuration space. Any Y particle in the initial configuration of the
system may be labeled by a pair (x, i) ∈ Z×[[1, a]], where x stands for the location
of the particle, and i for the index of the particle among the a particles of type Y

located at x. Then, to each X particle produced from the later transformation of
one of these Y particles into an X, we attach the label (x, i) of the corresponding
Y particle, and call it the birthplace of the X particle. As for particles which are
already of type X in the initial configuration, we think of them as having been
produced in the past from the transformation a Y particle which too bore a label
(x, i) ∈ Z × [[1, a]] with the same meaning as above, so that these X particles too
have a birthplace.

Using birthplaces to index X particles, we see that a configuration of X particles
achieved at some point during the evolution of our system, may be represented as a
triple w = (F, r,A), where r ∈ Z, A is a nonempty subset of Z × [[1, . . . , a]] such
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that max{x; (x, i) ∈ A} ≤ r , and F :A →]]−∞, . . . , r]] is a map. The set A stands
for the set of birthplaces of X particles which are present in the configuration. The
number r stands for the rightmost position ever visited by a particle of type X, and
this explains the requirement that r has to be larger than the rightmost location at
which an X particle was born. Then, F(x, i) stands for the current position of the
X particle born at (x, i).

Such a configuration carries more information than just the number of X par-
ticles at each site, and any distribution of X particles on ]]−∞,0]] with a finite
number of particles at each site can be encoded by a triple w = (F, r,A).

Given such a triple w, let η be the map defined on ]]−∞, r]] so that η(x) is the
number of particles at site x of the configuration w. Hence,

η(x) := #{(y, i) ∈ A;F(y, i) = x}.
For every θ > 0, let

fθ (w) := ∑
(x,i)∈A

exp
(
θ
(
F(x, i) − r

))=∑
x≤r

η(x) exp
(
θ(x − r)

)
.

Let then

L := {w;fθ (w) < +∞}.
We turn L into a metric space by using the distance defined as follows: for

w = (F, r,A) and w′ = (F ′, r ′,A′),
d(w,w′) := |r − r ′| + ∑

(x,i)∈Z×[[1,a]]

∣∣1((x, i) ∈ A
)

exp
(
θ
(
F(x, i) − r

))

− 1
(
(x, i) ∈ A′) exp

(
θ
(
F ′(x, i) − r ′))∣∣.

The metric space (L, d) is a Polish space. We let D denote the space of càdlàg
functions from [0,+∞) to L equipped with the Skorohod topology and the corre-
sponding Borel σ -field.

2.1.2. Explicit construction of the process. For our purposes, we have to de-
fine on the same probability space not only the original model, but also mod-
els including random walks with an arbitrary bias defined through a parameter
ε ∈ [0,1/2).

In the sequel, we assume that we have a reference probability space (�, F ,P)

giving us access to an i.i.d. family of random variables

[(τn(u, i),Wn(u, i));n ≥ 1, u ∈ Z,1 ≤ i ≤ a],
such that, for all (n,u, i), τn(u, i) has an exponential(2) distribution, and Wn(u, i)

has the uniform distribution on [0,1], and τn(u, i) and Wn(u, i) are independent.
For every n ≥ 1, (x, i) ∈ Z × [[1, a]] and ε ∈ [0,1/2), we let

εn(x, i, ε) := 2
(
1
(
Wn(x, i) ≤ 1/2 + ε

))− 1.
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Let (Y ε
t (x, i))t≥0 be the continuous-time random walk started at Y ε

0 (x, i) := 0,
whose sequence of time steps is (τn(x, i))n≥1, and whose sequence of space incre-
ments is (εn(x, i, ε))n≥0.

Now, for every ε ∈ [0,1/2) and w = (F, r,A) ∈ L, we define on (�, F ,P) a
collection of random variables (Xt)t≥0 = (Ft , rt ,At )t≥0, which describes the time-
evolution of the configuration of particles starting from an initial configuration
given by w, and using the random walks Y ε defined above. Most often in the
sequel, the dependence with respect with w and ε is not explicitly mentioned when
there is no ambiguity. When we have to stress this dependence, we use notation
such as Xε

t , Xt(w), or Xε
t (w), and accordingly for Ft , rt and At .

The construction of the process is done inductively on intervals of the form
[T (u), T (u + 1)), where T (u) denotes the hitting time of u ∈ Z by the front. Let
us first consider the initial condition and the trajectories of particles of type X that
are present in it. By definition, the initial value of the front is given by r0 := r , and
the set of (birthplaces of) X particles in the initial condition by A0 := A. By con-
vention, we set T (r0) := 0, and, for every (x, i) ∈ A0, the trajectory after time zero
of the X particle with birthplace (x, i) is given by Ft(x, i) := F(x, i) + Y ε

t (x, i)

for all t ≥ 0. Given u ≥ r0, assume that we have already defined the time T (u), the
set AT (u) of (birthplaces of) X particles present in the system at time T (u), and the
trajectories of these particles. We then let T (u+1) denote the hitting time of u+1
by the front of X particles present in the system at time T (u), or, more formally:

T (u + 1) := inf
{
t > T (u); there is an (x, i) ∈ AT (u) such that Ft(x, i) = u + 1

}
.

Between time T (u) and T (u + 1), no new X particle appears, and the position
of the front does not move, so that we set rt := rT (u) and At := AT (u) for t ∈
(T (u), T (u + 1)). Then, at time T (u + 1), the front hits u + 1, so that rT (u+1) :=
u + 1, and the Y particles present at site u + 1 are instantaneously turned into
X particles. These newly born X particles have to be added into the set AT (u+1),
so that we set AT (u+1) := AT (u) ∪ {u + 1} × [[1, a]], and the trajectories after time
T (u+1) of these particles are then defined by Ft(u+1, i) := (u+1)+Y ε

t (u+1, i)

for all t ≥ T (u + 1).
From the results in [5] (Section 6)—where only the case ε = 0 is treated, but it

is immediate to adapt them to the present setting—the following results hold. For
any ε ∈ [0,1/2) and w ∈ L, almost surely with respect to P:

• for every u ≥ 0, T (u) < T (u + 1) < +∞, and there is exactly one X particle
hitting u at time T (u);

• limu→+∞ T (u) = +∞;
• for all t ≥ 0, the configuration Xt of particles at time t , belong to the set L;
• the map t �→ Xt belongs to the set D of càdlàg functions on L.

In the sequel, we use the notation Qε
w to denote the probability distribution of

the random process (Xε
t )t≥0 starting from the initial configuration w, viewed as a

random element of D. Again, as in [5] (Corollary 7), we can prove that:
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PROPOSITION 1. For any ε ∈ [0,1/2) and θ > 0, the family of probability
measures (Qε

w)w∈L defines a strong Markov process on L.

In the sequel, we use E to denote expectation with respect to P of random vari-
ables defined on (�, F ). The notation Eε

w is used to denote the expectation with
respect to Qε

w of random variables defined on D equipped with its Borel σ -field.

2.2. Properties of hitting times. For w = (F, r,A) ∈ L, ε ∈ [0,1/2) and u ≥ r ,
the random variable T (u) = T ε

w(u) has been defined in the previous section as the
first time that the front touches site u, given that the initial condition is w. The
definition was by induction, but one can check as well that, P-a.s., one has

T ε
w(u) := inf{t > 0; rε

t = u}.
For all u, v ∈ Z such that u < v, 1 ≤ i ≤ a, and ε ∈ [0,1/2), let

A(u, i, v) := inf

{
m∑

k=1

τk(u, i);u +
m∑

k=1

εk(u, i, ε) = v,m ≥ 1

}
.(8)

This represents the first time that the random walk born at (u, i) hits site v (assum-
ing that the walk starts at u at time zero).

PROPOSITION 2. Let w = (F, r,A) ∈ L.

(i) For all u > r and ε ∈ [0,1/2), P-a.s.

T ε
w(u) = inf

L−1∑
j=1

A(xj , ij , xj+1),

where the infimum is taken over all finite sequences with L ≥ 2, x1, . . . , xL ∈ Z

and i1, . . . , iL−1 such that x1 = F(y1, i1) for some (y1, i1) ∈ A, r < x2 < · · · <

xL−1 < u,xL = u, i2, . . . , iL−1 ∈ [[1, a]].
(ii) For all u > r and ε ∈ [0,1/2), the following identity holds P-a.s.:

T ε
w(u) = inf

w′ T ε
w′(u),

where the infimum runs over all configurations w′ consisting2 of a single particle
chosen among those in w.

(iii) For all r < u < v and ε ∈ [0,1/2), the following sub-additivity property
holds P-a.s.:

T ε
w(v) ≤ T ε

w(u) + T ε
w′(v),

2More formally, these are the configurations of the form (F ′, r ′,A′) with A′ = {(x, i)}, F ′(x, i) =
F(x, i), r ′ = r and (x, i) ∈ A.
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where w′ is the configuration obtained by adding to w all the X particles born
between time 0 and T (u), located at their original birthplaces.3

(iv) For any 0 ≤ ε1 ≤ ε2 < 1/2, and all u > r , P-almost surely, T ε1
w (u) ≥

T ε2
w (u).

PROOF. The proof of (i) is quite similar to that of Lemma 2.1 in [21], and so
is the proof that (iii) is a consequence of (i). Then (ii) is a consequence of (i).

As for (iv), this is a consequence of the characterization in (i) and of the fact
that, for every (x, i) ∈ Z × [[1, a]] and n ≥ 1, εn(x, i, ε1) ≤ εn(x, i, ε2). �

A consequence of (iv) in the above proposition is the following result.

COROLLARY 1. For any w ∈ L, 0 ≤ ε1 ≤ ε2 < 1/2, P-almost surely, for all
t ≥ 0, r

ε1
t (w) ≤ r

ε2
t (w).

3. Proof of the large deviations principle for t−1rt . In this section, we al-
ways have ε = 0, and the notation Tw , rw , etc. are used to denote the corresponding
T 0

w , r0
w , etc. without further mention.

We shall repeatedly deal with configurations consisting of a single particle at
a site, so we introduce the following notation: for u ∈ Z, δu is the configuration
formed by a single particle located at its birthplace (u,1). More formally, δu :=
(F, r,A) with A := {(u,1)}, r := u, F(u,1) := u.

PROPOSITION 3. There exists a convex function J : (0,+∞) → [0,+∞) such
that, for all b ∈ (0,+∞),

lim
n→+∞n−1 log P

(
Tδ0(n) ≤ bn

)= −J (b).

PROOF. For any b > 0, and all n ≥ 1, one can check that P(Tδ0(n) ≤ bn) > 0.
Then let un(b) := log P(Tδ0(n) ≤ bn). Observe that, by subadditivity [part (iii) of
Proposition 2], Tδ0(n+m) ≤ Tδ0(n)+Tw′(n+m), where w′ is obtained by adding
to δ0 all the particles born between time 0 and Tδ0(n), located at their original
birthplaces. Now, by part (ii) of Proposition 2, Tw′(n + m) ≤ Tδn(n + m), since
the infimum characterizing Tw′(n + m) runs over a larger set than the infimum
characterizing Tδn(n + m). As a consequence, Tδ0(n + m) ≤ Tδ0(n) + Tδn(n + m).
We deduce that, for all m,n ≥ 1, and all b, c > 0,

{Tδ0(n) ≤ bn} ∩ {Tδn(n + m) ≤ cm} ⊆ {Tδ0(n + m) ≤ bn + cm}.(9)

3More formally, this means that w′ is of the form (F ′, r ′,A′) with A′ := A ∪ [[r + 1, r + u]] ×
[[1, a]], r ′ := r + u, and F ′(x, i) := F(x, i) when (x, i) ∈ A, and F ′(x, i) := x, otherwise.
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Now, observe that Tδ0(n) and Tδn(n + m) are independent random variables,
since their definitions involve disjoint sets of independent random walks. As a
consequence,

P
({Tδ0(n) ≤ bn} ∩ {Tδn(n + m) ≤ cm})

(10)
= P
(
Tδ0(n) ≤ bn

)
P
(
Tδn(n + m) ≤ cm

)
.

From the above two relations (9), (10), and the fact that, by translation invariance
of the model, Tδ0(m) and Tδn(n + m) possess the same distribution, we deduce
that, for all m,n ≥ 1, and all b, c > 0,

un+m

(
bn + cm

n + m

)
≥ un(b) + um(c).(11)

Applying inequality (11) above with c = b, we deduce that the sequence
(un(b))n≥1 is super-additive. Since un(b) ≤ 0 for all n ≥ 1, we deduce from the
standard subadditive lemma that there exists a nonnegative real number J (b) such
that limn→+∞ n−1un(b) = −J (b). Moreover, by definition, b �→ un(b) is nonde-
creasing, and so b �→ J (b) is nonincreasing.

To establish that J is convex, consider b, c, such that 0 < b < c, t ∈ (0,1),
k ≥ 1, and apply (11) with nk := �kt� and mk := �k(1 − t)�. For large enough k,
bnk+cmk

nk+mk
≤ tb + (1 − t)c, so that unk+mk

(tb + (1 − t)c) ≥ unk
(b)+ umk

(c). Taking
the limit as k goes to infinity, we deduce that J (tb + (1 − t)c) ≤ tJ (b) + (1 −
t)J (c). �

PROPOSITION 4. The function J defined in Proposition 3 is identically zero
on [v−1,+∞), positive and decreasing on (0, v−1).

The proof of the above proposition makes use of the following result, which is
the main result of Section 4.

PROPOSITION 5. If we start with an initial condition with r = 0 and exactly
a particles at each site x ≤ 0, then, for any c > v,

lim sup
t→+∞

t−1 log P(rt ≥ ct) < 0.

PROOF PROPOSITION 4. We shall use the notation I0 to denote a specific
initial condition with a particles at each site left of the origin: let I0 be of the form
(F, r,A) with r := 0, A := ]]−∞,0]] × [[1, a]], F(x, i) := x for each (x, i) ∈ A.
For n ≥ 1, (ii) of Proposition 2 implies that TI0(n) ≤ Tδ0(n) P-a.s. In view of the
identity {T (n) ≤ bn} = {rbn ≥ n}, we deduce that

P
(
Tδ0(n) ≤ bn

)≤ P
(
rbn(I0) ≥ n

)
.

From Proposition 5, we deduce that J is positive on (0, v−1). On the other hand,
by the law of large numbers (1), we see that J must be identically 0 on (v−1,+∞).
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The function J being convex on (0,+∞), it is also continuous, so that J (v−1) = 0.
Moreover, as we have already noted, J is nonincreasing. These facts imply that J

is decreasing on (0, v−1). �

Let I be defined by I (b) := bJ (b−1) for b > 0 and I (0) := 0. From the previous
results on J , one can deduce the following.

COROLLARY 2. The function I is identically zero on [0, v], positive, increas-
ing and convex on (v,+∞).

PROOF. Only the convexity of I is not obvious. Note that, since J is convex,
b �→ J (b−1) is convex on (0,+∞) as the composition of two convex functions.
Then, since b �→ J (b−1) is also increasing and positive, the convexity of b �→
bJ (b−1) on (0,+∞) follows. �

PROPOSITION 6. Assume that the initial condition w satisfies r = 0 and (G).
Then, for all b > 0,

lim
n→+∞n−1 log P

(
Tw(n) ≤ bn

)= −J (b),

where J is the function defined in Proposition 3.

The proof of the proposition makes use of the following lemma.

LEMMA 1. Let w = (F, r,A) ∈ L. For all t ≥ 0, and all γ > 0,

P
(

max
(x,i)∈A

sup
s∈[0,t]

Fs(x, i) ≥ r + γ t
)

≤ fθ (w) exp[−gγ (θ)t],

where

gγ (θ) := γ θ − 2(cosh θ − 1).

PROOF. For all K ∈ [[−∞,0]], let

GK := ⋃
(x,i)∈A;F(x,i)≥K

{
sup

s∈[0,t]
Fs(x, i) > r + γ t

}
.

Clearly, K1 ≤ K2 implies that GK2 ⊂ GK1 , and
⋃

K∈]]−∞,0]] GK = G−∞, whence
P(G−∞) = limK→−∞ P(GK). Now observe that, given K , the process (Ms)s≥0
defined by

Ms := ∑
(x,i)∈A;F(x,i)≥K

exp
(
θ
(
Fs(x, i) − r

)− 2(cosh θ − 1)s
)



LARGE DEVIATIONS FOR A ONE-DIMENSIONAL MODEL OF X + Y → 2X 967

is a càdlàg martingale. Then note that GK ⊂ {sups∈[0,t] Ms ≥ exp(gγ (θ)t}, and
apply the martingale maximal inequality to deduce that

P
(

sup
s∈[0,t]

Ms ≥ exp(gγ (θ)t)
)

≤ ∑
(x,i)∈A;F(x,i)≥K

exp
[
θ
(
F(x, i) − r

)− gγ (θ)t
]
.

The right-hand side of the above inequality is bounded above, for every value of K ,
by fθ(w) exp[−gγ (θ)t]. The conclusion follows. �

PROOF OF PROPOSITION 6. Consider 0 < b < v−1, and fix θ > 0. Choose
γ > 0 large enough so that

gγ (θ)b > J(b).

Denote by w = (F, r,A) the initial condition, and consider the set Bn := {(x,

i);F(x, i) ≤ −�γ bn�}. Let mn := ∑(x,i)∈Bn
exp(θ(F (x, i) − �γ bn�). Now let

n := inf{s ≥ 0; ∃(x, i) ∈ Bn,Fs(x, i) = 0}. We see that n ≤ bn implies that
sup(x,i)∈Bn

sups∈[0,bn] Fs(x, i) ≥ 0. Thanks to Lemma 1 and translation invariance
of the model, we deduce that

P(n ≤ bn) ≤ mn exp(−gγ (θ)bn).(12)

From the fact that w satisfies (G), we obtain that, for all ϕ > 0, y ≤ 0, #{(x, i) ∈
A;F(x, i) = y} ≤ fϕ(w) exp(−ϕy). As a consequence, whenever ϕ < θ , we have
that

mn ≤ fϕ(w)
(
1 − exp(ϕ − θ)

)−1 exp(ϕ�γ bn�).(13)

Now consider (x, i) ∈ A \ Bn, so that F(x, i) > −�γ bn�. Let w′ denote the con-
figuration consisting in a single particle located at (x, i), or, more formally, let w′
be of the form (F ′, r ′,A′) with r ′ := x, A′ := {(x, i)}) and F ′(x, i) := (x, i). By a
coupling argument, we see that, since F(x, i) ≤ 0,

P(Tw′ ≤ bn) ≤ P(Tδ0 ≤ bn).(14)

Moreover, according to (G),

#A \ Bn ≤ fϕ(w) exp(ϕ�γ bn�).(15)

Now, by (ii) of Proposition 2,

{n > bn} ∩ {Tw(n) ≤ bn} ⊂
{
inf
w′ Tw′ ≤ bn

}
,

where the infimum runs over all configurations w′ formed by a single particle
located at some (x, i) ∈ A \ Bn. We deduce from (12), (13), (14), (15) and the
union bound that

P
(
Tw(n) ≤ bn

)
(16)

≤ fϕ(w)eϕ�γ bn�[(1 − e(ϕ−θ))−1 exp(−gγ (θ)bn) + P(Tδ0 ≤ bn)
]
.
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Now, according to Proposition 3,

lim
n→+∞n−1 log P

(
Tδ0(n) ≤ bn

)= −J (b).

Since we have chosen γ so that gγ (θ)b > J(b), we deduce from (16) that

lim sup
n→+∞

n−1 log P
(
Tw(n) ≤ bn

)≤ −J (b) + ϕγ b.

Since ϕ > 0 is arbitrary, we deduce that

lim sup
n→+∞

n−1 log P
(
Tw(n) ≤ bn

)≤ −J (b).(17)

On the other hand, consider a given (x, i) ∈ A, and let again w′ denote the config-
uration with a single particle located at (x, i). Clearly,

P
(
Tw(n) ≤ bn

)≥ P
(
Tw′(n) ≤ bn

)
.

Now consider τ̃ = inf{s ≥ 0;Fs(x, i) = 0}. Clearly, τ̃ is a.s. finite, and, conditional
upon τ̃ , Tw′(n) − τ̃ has the (unconditional) distribution of Tδ0(n). Choosing any
M such that P(τ̃ ≤ M) > 0, one has that P(Tw′(n) ≤ bn) ≥ P(τ̃ ≤ M)P(Tδ0(n) ≤
bn − M). Taking an arbitrary c > b, we deduce that

lim inf
n→+∞n−1 log P

(
Tw(n) ≤ bn

)≥ −J (c).

By continuity of J , we conclude that

lim inf
n→+∞n−1 log P

(
Tw(n) ≤ bn

)≥ −J (b).

The above inequality, together with (17), concludes the proof. �

PROOF OF THEOREM 1. Consider a nonempty closed subset F ⊂ [0,+∞),
and let b := infF . Assume that b ≤ v. We have that infF I = 0, so the upper
bound of the LDP for F is always satisfied. Assume now that b > v. One has
that P(t−1rt ∈ F) ≤ P(rt ≥ �tb�) = P(T (�tb�) ≤ t). Proposition 6 entails that
limt→+∞ t−1 log P(T (�tb� ≤ t) ≤ −I (b), so that the upper bound of the LDP
holds for F since I is nondecreasing.

Consider now an open set G ⊂ (v,+∞). For every b ∈ G, there exists
an interval [b, c) ⊂ G. By the large deviations upper bound, we know that
lim supt→+∞ t−1 log P(rt ≥ bt) ≤ −I (b) and that lim supt→+∞ t−1 log P(rt ≥
ct) ≤ −I (c). By strict monotonicity of I on (v,+∞), we have that I (b) < I (c),
so we can conclude that lim inft→+∞ t−1 log P(bt ≤ rt < ct) ≥ −I (b). As a con-
sequence, lim inft→∞ 1

t
P(t−1rt ∈ G) ≥ −I (b). Since this holds for an arbitrary

b ∈ G, the lower bound of the LDP for G follows.
Consider now a nonempty open set G ⊂ [0,+∞) such that G ∩ [0, v] �= ∅.

Then infG I = 0. On the other hand, there is a nonempty interval of the form
[c, b) ⊂ G ∩ [0, v]. In Section 5, we prove that, under (G),

lim inf
t→∞ t−1 log P

[
c ≤ rt

t
≤ b

]
= 0.(18)
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Applying inequality (18), we see that lim inf t−1 log P(t−1rt ∈ G) = 0, so that the
lower bound of the LDP holds. �

4. Speedup probabilities. The main result in this section is Proposition 5:
when ε = 0, starting from an initial condition with exactly a particles at each site
x ≤ 0,

for any b > v lim sup
t→+∞

t−1 log P(rt ≥ bt) < 0.(19)

In the following discussion, we always assume that we are under such an initial
condition, without explicitly mentioning this assumption.

Our strategy for proving Proposition 5 is to exploit the renewal structure already
used in [5] to prove the CLT. However, this renewal structure leads to random vari-
ables (renewal time κ , and displacement of the front at a renewal time rκ , see
the precise definitions below) whose tails have polynomial decay, and asymptotic
exponential bounds such as (19) cannot be derived from such random variables.
Whether it is possible to modify the definition of the renewal structure so as to
obtain random variables enjoying an exponential decay of the tails, as required for
a direct proof of Proposition 5, is unclear, and instead we make use of a different
idea. Indeed, we apply the renewal structure defined in [5] (Section 3) to a pertur-
bation of the original model, one in which the random walks have a small bias to
the right. Again, a law of large numbers holds.

PROPOSITION 7. For all small enough ε ≥ 0, there exists 0 < vε < +∞ such
that

lim
t→∞ t−1rε

t = vε, P-a.s. and in L1(P).

The interest of introducing a bias to the right is that, reworking the estimates of
[5] (Section 5) in this context, we can show that for any small value of the bias
parameter ε > 0, exponential decay of the tail of the renewal times holds, so that
the following result can be proved.

PROPOSITION 8. There exists ε0 > 0 such that, for any ε ∈ (0, ε0], for any
b > vε ,

lim sup
t→+∞

t−1 log P(rε
t ≥ bt) < 0.

On the other hand, it is shown in Corollary 1 above that, as expected, biasing
the random walks to the right cannot decrease the position of the front, so that at
each time t , a comparison holds between the position of the front in the original
model and in the model with a bias. We deduce that:
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PROPOSITION 9. For any ε ∈ [0,1/2) and t ≥ 0, and all x ∈ {1,2, . . .},
P(r0

t ≥ x) ≤ P(rε
t ≥ x).

As a consequence, we can prove that (19) holds for all b such that there exists
an ε ∈ (0, ε0] for which vε < b. Noting that vε is a nondecreasing function of ε,
we see that the following result would make our strategy work for all b > v.

PROPOSITION 10.

lim
ε→0+vε = v.(20)

It is indeed natural to expect such a continuity property to hold, but proving it
seems to require substantial work.

Indeed, write

vε = lim
t→+∞ t−1E(rε

t ),

(21)
v = lim

t→+∞ t−1E(r0
t ).

For fixed t , it is possible (using the dominated convergence theorem) to prove that

lim
ε→0+ E(rε

t ) = E(r0
t ).(22)

Hence, to prove identity (20), it is enough to prove that

lim
ε→0+ lim

t→+∞ t−1E(rε
t ) = lim

t→+∞ lim
ε→0+ t−1E(rε

t ).

Our strategy for proving Proposition 10 is based on the observation that, if some
sort of uniformity with respect to ε ∈ [0, ε0] is achieved in (21), then the limits
with respect to ε → 0+ and to t → +∞ in (21) and (22) can be exchanged. It was
proved in [5] (Section 5) that the second moments of the random variables defined
by the renewal structure (renewal time κ , and displacement of the front at a renewal
time rκ , see the precise definitions below) are finite in the case ε = 0. Reworking
these estimates, we obtain uniform upper bounds (with respect to ε ∈ [0, ε0]) for
the second moments of these variables, and are thus able to prove that the required
uniformity in (21) holds.

4.1. Random variables on D. It will be convenient in Sections 4.3, 4.4 and
Appendix C to work with random variables defined on the canonical space of
càdlàg trajectories D, rather than on �. In fact, each random variable (generically
denoted by L in this discussion) on � introduced in Section 2 for the definition
of the process, can be written as L = L̂((Xε

t (w))t≥0), where L̂ is a correspond-
ing random variable on D. To avoid unduly complicated notation, we shall use
the same notation to denote L and L̂. This should not introduce ambiguities, for
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our notation concerning probabilities on � and D are distinct, and for, except in
Lemma 4 below, we make exclusive use of random variables defined on D.

Specifically, we define the random variables Xt , Ft , rt and At on D by writing
a generic càdlàg trajectory on L under the form (Xt)t≥0, with Xt = (Ft , rt ,At ) for
all t ≥ 0. Moreover, for u ∈ Z, we let T (u) := inf{s ≥ 0; rs = u} if y ≥ r0 + 1,
and T (u) := 0, otherwise. For (x, i) ∈ Z × [[1, a]], we also define Yt (x, i) :=
FT (x)+t (x, i) − FT (x) if T (x) < +∞, and Yt (x, i) := 0, otherwise.

As a consequence of these definitions, the probability distributions of Xt ,
Ft(x, i), rt , At , T (u) with respect to the probability measure Qε

w , are, respectively,
the same as the probability distributions of Xε

t (w), Fε
t (w)(x, i), rε

t (w), Aε
t (w),

T ε
w(u), Y ε

t (x, i) with respect to P. In particular, with respect to Qε
w , the processes

(Yt (x, i))t≥0 form a family of independent nearest-neighbor random walks on Z

with jump rate 2 and step distribution (1/2 + ε)δ+1 + (1/2 − ε)δ−1.
For z ∈ Z, and w = (F, r,A) ∈ L, define φz(w) by

φz(w) := ∑
(x,i)∈A∩]]−∞,z]]×[[1,a]]

exp
(
θ
(
F(x, i) − r

))

and for z1 < z2 ∈ Z, let

mz1,z2(w) := ∑
(x,i)∈A∩[[z1+1,z2]]×[[1,a]]

1
(
F(x, i) ∈ [[z1 + 1, z2]]).

We use the notation θs to denote the canonical time-shift on D. We denote by
(F ε

t )t≥0 the usual augmentation of the natural filtration on D with respect to the
Markov family (Qε

w)w∈L.

4.2. An elementary speedup estimate. The following lemma is stated in [5]
(Lemma 10) in the case ε = 0, and its adaptation to the more general case ε ∈
[0,1/2) is straightforward.

LEMMA 2. Let λ(ε) := 2(cosh θ − 1) + 4ε sinh θ + a(1 + 2ε) exp θ and
cγ (ε) := γ θ − λ(ε). For all ε ∈ [0,1/2), w ∈ L, and t ≥ 0,

Qε
w(rt − r0 ≥ γ t) ≤ φr0(w) exp(−cγ (ε)t).

4.3. Definition of the renewal structure. We follow the definition of the re-
newal structure in [5] (Section 3). Consider a parameter

M := 4(a + 9).(23)

Let ν0 := 0 and ν1 be the first time one of the random walks (r0 +Ys(r0, i))s≥0; i ∈
[[1, a]], hits the site r0 +1 [the random walks (Ys(x, i)) are defined in Section 4.1].
Next, define ν2 as the first time one of the random walks (z + Ys(z, i))s≥0; z ∈
[[r0, r0 + 1]], i ∈ [[1, a]], hits the site r0 + 2. In general, for k ≥ 2, we define νk
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as the first time one of the random walks (z + Ys(z, i))s≥0; z ∈ [[r0 ∨ (r0 + k −
M), r0 + k − 1]], i ∈ [[1, a]], hits the site r0 + k. For n ∈ N, let

r̃t := r0 + n if
n∑

k=0

νk ≤ t <

n+1∑
k=0

νk.

The construction corresponding to r̃t with M = ∞ will be denoted by r̄t . Note that
r̃t ≤ rt . The following proposition (see Lemma 1 from [5]) shows that the so-called
auxiliary front r̃t can be used to estimate the position of the front rt .

PROPOSITION 11. For every ε ∈ [0,1/2), θ > 0 and w ∈ L, the following
holds Qε

w-almost surely:

for every t ≥ 0 r̃t ≤ rt .

Now, observe that for any w = (F, r,A) such that r ×[[1, a]] ⊂ A and F(r, i) =
r for all i ∈ [[1, a]], with respect to Qε

w , for each j ∈ [[1,M − 1]], the random
variables (νi)i≥1 are a.s. finite, and that the random variables {νMk+j :k ≥ 1} are
i.i.d. and have finite expectation since4 M ≥ 3. We deduce that a.s. (see also [4],
Lemmas 1 and 6)

lim
t→∞ r̃t /t =: α(ε) > 0.

First, note that α(ε) does not depend on θ nor on w since the distribution of the
random walks (Ys(x, i))s≥0 with respect to Qε

w does not. Moreover, α(ε) is a non-
decreasing function of ε by a coupling argument.

Now consider ε0 < 1/2, θ > 0, α1, α2 > 0 such that⎧⎨
⎩

0 < α1 < α2 < α(0),

θ−1(2(cosh θ − 1) + 4ε0 sinh θ
)
< α1,

4ε0 < α1.

(24)

In the sequel, we always assume that ε ∈ [0, ε0].
Let us define the following random variables on D:5⎧⎪⎪⎨

⎪⎪⎩
U := inf{t ≥ 0; r̃t − r0 < �α2t�},
V := inf

{
t ≥ 0; max

z∈[[r0−L+1,r0−1]]Ft(z, i) > �α1t� + r0

}
,

W := inf
{
t ≥ 0;φr0−L(Xt) ≥ eθ(�α1t�−(rt−r0))

}
.

4The hitting time of a site by a single symmetric random walk has a tail decaying roughly as

t−1/2. Taking into account M independent such random walks yields a tail decaying as t−M/2,
which corresponds to an integrable random variable as soon as M ≥ 3.

5In [5], U was defined in terms of r̃t instead of r̄t , rendering the event {U = ∞} not measurable
with respect to the information up to time κ .
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Note that, for all ε, U,V,W are stopping times with respect to (F ε
t )t≥0, and

that they are mutually independent with respect to Qε
w .

Let

D := min(U,V,W).

Now let p > 0 be such that

p exp(θ) < 1

and L such that L1/4 is an integer and

L1/4 ≥ M + 1 and a exp(−Lθ)
(
1 − exp(−θ)

)−1
< p.(25)

For x ∈ Z, define Jx as the smallest integer j ≥ 1 such that the following two
conditions are satisfied:

• φx+(j−1)L(XT (x+jL)) ≤ p;
• mx+jL−L1/4,x+jL(XT (x+jL)) ≥ aL1/4/2.

Let S0 := 0 and D0 := 0. Then define for k ≥ 0,

Sk+1 := T (rDk
+ JrDk

L), Dk+1 := D ◦ θSk+1 + Sk+1.

Finally, let K := inf{k ≥ 1 :Sk < ∞,Dk = ∞}, and define the regeneration time

κ := SK.

Note that κ is not a stopping time with respect to (F ε
t )t≥0.

4.4. Properties of the renewal structure. Throughout this section, we assume
that θ,α1, α2, ε0 satisfy the assumptions listed in Section 4.3. We use the notation
aδ0 to denote an initial configuration consisting in exactly a particles at site x = 0,
and I0 to denote an initial configuration with exactly a particles at each site x ≤ 0.

PROPOSITION 12. The following properties hold:

(i) There exist 0 < C,L∗ < +∞ not depending on ε (but possibly depending
on the choice of θ,α1, α2, ε0) such that, for L := L∗, and all ε ∈ [0, ε0],

Eε
I0

(κ2) ≤ C, Eε
aδ0

(κ2|U = +∞) ≤ C,

Eε
I0

(r2
κ ) ≤ C, Eε

aδ0
(r2

κ |U = +∞) ≤ C.

(ii) For all 0 < ε ≤ ε0, there exist 0 < C′,L′, t < +∞, depending on ε, such
that for L := L′,

Eε
I0

(
exp(tκ) ≤ C′,Eε

aδ0
(exp(tκ))|U = +∞)≤ C′,

Eε
I0

(exp(trκ)) ≤ C′Eε
aδ0

(
exp(trκ)|U = +∞)≤ C′.
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Proposition 12 provides the key estimates needed for the proof of the main
results in this section. Most of the technical work needed to prove it consists in a
reworking of the estimates in [5] (Section 5), either proving that, for each positive
value of the bias parameter ε, exponential estimates can be obtained instead of the
polynomial ones derived in [5], or that the polynomial estimates already obtained
in [5] can be made uniform with respect to ε ∈ [0, ε0]. The proofs go along the
lines of [5], and are deferred to Appendix C. In the sequel, we always assume
that L := L∗ or L := L′. As a consequence of Proposition 12 we see that for all
ε ∈ [0, ε0], Qε

I0
(0 < κ < +∞) = 1 and Qε

aδ0
(0 < κ < +∞|U = +∞) = 1.

We then define inductively the whole sequence of renewal times (κi)i≥0 by
κ1 := κ and for i ≥ 1, κi+1 := κi + κ ◦ θκi

.
As in [5] (Corollary 1), the following proposition can be proved.

PROPOSITION 13. The following properties hold:

(i) Under Qε
I0

, κ1, κ2 − κ1, κ3 − κ2, . . . are independent, and κ2 − κ1, κ3 −
κ2, . . . are identically distributed with law identical to that of κ under Qε

aδ0
(·|U =

+∞).
(ii) Under Qε

I0
, rκ1, rκ2 −rκ1, rκ3 −rκ2, . . . are independent, and rκ2 −rκ1, rκ3 −

rκ2, . . . are identically distributed with law identical to that of rκ under Qε
aδ0

(·|U =
+∞).

We now give the proofs of Propositions 7, 8 and 10.

PROOF OF PROPOSITION 7. First, note that the P-a.s. convergence stated in
Proposition 7 follows from the integrability of renewal times by a standard argu-
ment. To prove that the convergence also takes place in L1(P), we note that, from
Lemma 2 above, it stems that Eε

I0
(rt ) < +∞ for all t and that the family of random

variables (t−1rt )t≥1 is uniformly integrable with respect to Qε
I0

. The convergence

in L1(P) then follows from the P-a.s. convergence. �

PROOF OF PROPOSITION 8. Fix 0 < ε ≤ ε0, and let L := L′. For all t ≥ 0,
define a(t) := sup{n ≥ 1;κn ≤ t}, with the convention that sup ∅ = 0. From
Propositions 12 and 13, we deduce that, a(t) < +∞ a.s. for all t ≥ 0 and that
limt→+∞ a(t) = +∞ a.s. Using the fact that the map t �→ rt is nondecreasing, we
have that rt ≤ rκa(t)+1 . Now observe that, for any 0 < ε ≤ ε0, any b > vε , and any
0 < c < +∞, by the union bound,

Qε
I0

(rt ≥ bt) ≤ Qε
I0

(
a(t) ≥ �ct�)+ Qε

I0

(
rκ�ct�+1 ≥ bt

)
.

Note that Qε
I0

(a(t) ≥ �ct�) ≤ Qε
I0

(κ�ct� ≤ t), and observe that, by Cramér’s
theorem (see, e.g., [6], Theorem 2.2.3) for the i.i.d. nonnegative sequence
(κi+1 − κi)i≥1 and Proposition 12 for κ1, whenever c−1 < Eε

aδ0
(κ|U = +∞),

lim supt→+∞ t−1 log Qε
I0

(κ�ct� ≤ t) < 0. On the other hand, writing rκ�ct�+1 =
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rκ1 +∑�ct�+1
i=1 (rκi+1 − rκi

), and using Proposition 12 and Cramér’s theorem as
above, we have that, as soon as b/c > Eε

aδ0
(rκ |U = +∞), lim supt→+∞ t−1 ×

log Qε
I0

(rκ�ct�+1 ≥ bt) < 0.
The proof of the law of large numbers for rε

t given above (proof of Proposi-
tion 7) used Kingman’s subadditive ergodic theorem. However, from the existence
of a renewal structure for which κ and rκ have finite expectation (Propositions 12
and 13), we can deduce that the asymptotic speed in the law of large numbers is in
fact given by

vε = Eε
aδ0

(rκ |U = +∞)

Eε
aδ0

(κ|U = +∞)
.(26)

As a consequence, if b > vε , we see that we can choose a c > 0 such that c−1 <

Eε
aδ0

(κ|U = +∞) and b/c > Eε
aδ0

(rκ |U = +∞). �

LEMMA 3. There exists 0 < c < +∞ such that, for all ε ∈ [0, ε0],
Eε

aδ0
(κ|U = +∞) ≥ c.

PROOF. Use the fact that, by definition, κ ≥ T (1), so that Eε
aδ0

(κ|U =
+∞) ≥ Eε

aδ0
(T (1)1(U = +∞)). Now, by coupling, Qε

aδ0
(U = +∞) ≥ Q0

aδ0
(U =

+∞) for all ε ∈ [0, ε0]. By coupling again, for all u > 0, Qε
aδ0

(T (1) ≥ u) ≥
Q

ε0
aδ0

(T (1) ≥ u). Now, since Q
ε0
aδ0

(T (1) > 0) = 1, we can find u > 0 small enough

so that Q
ε0
aδ0

(T (1) ≥ u) ≥ 1 − (1/2)Q0
aδ0

(U = +∞). Putting the previous in-

equalities together, we see that, for all ε ∈ [0, ε0], Q0
aδ0

(T (1) ≥ u,U = +∞) ≥
(1/2)Q0

aδ0
(U = +∞). The conclusion follows. �

The following proposition contains the uniform convergence estimate that is
required for the proof of Proposition 10. Broadly speaking, the idea is to control the
convergence speed with second moment estimates on the renewal structure, so that
uniform estimates on these moments yield uniform estimates on the convergence
speed.

PROPOSITION 14. For all ζ > 0, there exists tζ ≥ 0 such that, for all t ≥ tζ
and all ε ∈ [0, ε0],

vε ≤ Eε
I0

(t−1rt ) + ζ.

PROOF. Assume that L := L∗. Let 0 < λ < 1 be given, and let

m(t, ε) := ⌊(1 − λ)t
(
Eε

aδ0
(κ|U = +∞)

)−1⌋
.

In the rest of the proof, we write m instead of m(t, ε) for the sake of readability.
Note that, in view of Proposition 12, for all ε ∈ [0, ε0], Eε

aδ0
(κ|U = +∞) ≤ C1/2,

so that m ≥ 1 as soon as t ≥ C1/2(1 − λ)−1, which does not depend on ε.
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We now reuse the random variables a(t) defined in the proof of Proposition 8
above. Using the fact that t �→ rt is nondecreasing, we see that rt ≥ rκa(t)

. More-
over, rκa(t)

≥ rκa(t)
1(a(t) ≥ m), and rκa(t)

1(a(t) ≥ m) ≥ rκm1(a(t) ≥ m) when
m ≥ 1. Taking expectations, we deduce that, when m ≥ 1,

Eε
I0

(t−1rt ) ≥ Eε
I0

(t−1rκm) − Eε
I0

(
t−1rκm1

(
a(t) < m

))
.(27)

Consider the first term in the right-hand side of (27) above, and observe that

Eε
I0

(rκm) = Eε
I0

(rκ) + (m − 1)Eε
aδ0

(rκ |U = +∞).

From Proposition 12, Eε
I0

(rκ) ≤ C1/2 for all ε ∈ [0, ε0]. Moreover, from iden-

tity (26), (Eε
aδ0

(rκ |U = +∞))(Eε
aδ0

(κ|U = +∞))−1 = vε . We deduce that, as t

goes to infinity, uniformly with respect to ε ∈ [0, ε0],
Eε

I0
(rκm) = (1 − λ)tvε + O(1).(28)

Consider now the second term in the right-hand side of (27). By Schwarz’s
inequality,

Eε
I0

(
t−1rκm1

(
a(t) < m

))≤ (Eε
I0

[(t−1rκm)2])1/2Qε
I0

(
a(t) < m

)1/2
.(29)

From Propositions 12 and 13, one can check that

Eε
I0

[r2
κm

] ≤ Cm2.(30)

On the other hand, one has that Qε
I0

(a(t) < m) ≤ Qε
I0

(κm ≥ t). From Proposi-
tions 12 and 13, the variance of κm with respect to Qε

I0
is bounded above by Cm,

so that we can use the Bienaymé–Chebyshev’s inequality to prove that, whenever
t > Eε

I0
(κm),

Qε
I0

(
a(t) < m

)≤ Cm
(
t − Eε

I0
(κm)
)−2

.(31)

Now, using Proposition 12 as in the proof of (28) above, we can prove that, as t

goes to infinity, uniformly with respect to ε ∈ [0, ε0],
Eε

I0
(κm) = (1 − λ)t + O(1).

Putting the above identity together with (29), (30) and (31), we deduce that, as t

goes to infinity, uniformly with respect to ε ∈ [0, ε0],
Eε

I0

(
t−1rκm1

(
a(t) < m

))≤ Cm3/2(λt2 + O(t)
)−1

.

In view of Lemma 3, we have that m ≤ c−1t for all ε ∈ [0, ε0], so we can conclude
that, uniformly with respect to ε ∈ [0, ε0],

lim
t→+∞Eε

I0

(
t−1rκm1

(
a(t) < m

))= 0.(32)

Plugging (28) and (32) in (27), we finally deduce that, as t goes to infinity,
uniformly with respect to ε ∈ [0, ε0],

Eε
I0

(t−1rt ) ≥ (1 − λ)vε + o(1).

The conclusion of the proposition follows by noting that, since vε ≤ vε0 , (1 −
λ)vε ≥ vε − λvε0 . �
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LEMMA 4. For all t ≥ 0,

lim
ε→0+ E(rε

t ) = E(r0
t ).

PROOF. Consider a given t ≥ 0. By Proposition 16 in Appendix B, with
P probability one, we can find a (random) K ≤ 0 such that sup{Fε0

s (x, i); s ∈
[0, t]x < K, i ∈ [[1, a]]} ≤ 0, so that sup{Fε

s (x, i); s ∈ [0, t]x < K, i ∈ [[1, a]]} ≤
0 for all ε ∈ [0, ε0]. As a consequence, for all ε ∈ [0, ε0], with probability
one, rε

t (I0) = rε
t (w(K))s≥0), where w(K) is the configuration defined by A =

{K, . . . ,0} × [[1, a]], r = 0 and F(x, i) = x for all (x, i) ∈ A.
Since, for every ε ∈ [0, ε0], with probability one rε

t ≤ r
ε0
t , we see that the value

of rε
t is entirely determined by the trajectories up to time t of the random walks

born at sites (x, i) with K ≤ x ≤ r
ε0
t . With probability one again, we are dealing

with a finite number of random walks, and a finite number of steps. We now see
that, for all ε small enough, these trajectories are identical to what they are for
ε = 0, so that rε

t = r0
t . Since 0 ≤ rε

t ≤ r
ε0
t and r

ε0
t is integrable w.r.t. P, we can use

the dominated convergence theorem to deduce the conclusion. �

PROOF OF PROPOSITION 10. Let ζ > 0, and, following Proposition 14, con-
sider a tζ such that, for all t ≥ tζ and all ε ∈ [0, ε0],

vε ≤ Eε
I0

(t−1rt ) + ζ.

Consider now, thanks to Proposition 7, a t ≥ tζ such that E0
I0

(t−1rt ) ≤ v + ζ . Now,
thanks to Lemma 4, we know that, for all ε small enough,

Eε
I0

(t−1rt ) ≤ E0
I0

(t−1rt ) + ζ.

Putting together the above inequalities, we deduce that, for all ε small enough,
vε ≤ v + 3ζ . Since vε ≥ v, the conclusion follows. �

Now Proposition 5 follows from Propositions 8, 9 and 10, as explained in the
beginning of this section.

5. Slowdown large deviations. In all this section, we work under the assump-
tion that ε = 0, and the dependence of various quantities with respect to ε is thus
not explicitly mentioned.

Given an initial configuration w such that w = 0, remember that η(x) counts
the number of particles that are located at site x in the configuration, and let, for
x ≤ 0

H(x) :=
x∑

y=0

η(y).(33)
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For x ≥ 0 and t ≥ 0, let (ζt )t≥0 denote a continuous time simple symmetric
random walk starting at 0 with total jump rate 2. Let

Ḡt (x) := P
(

sup
s∈[0,t)

ζs < x
)
, Gt(x) := P(ζt ≥ x).

In the sequel, we will use the fact that for fixed t ≥ 0, Gt(·) is nondecreasing
and Ḡt (·) is nonincreasing, and that, thanks to the reflection principle,

1 − Ḡt (x) = 2Gt(x) − P(ζt = x).(34)

5.1. Proof of Theorem 2(a) and (c). We start with the proof of Theorem 2(c).
The fact that rt = 0 means that no particle in the initial configuration hits 1 before
time t . Both the upper and lower bounds can then be understood heuristically as
follows. Since we consider simple symmetric random walks, for large t , the con-
straint of not hitting 1 before time t has a cost only for particles within a distance
of order t1/2 of the origin. Now these particles perform independent random walks,
and their number has an order of magnitude lying between tu/2 and tU/2.

We start with the lower bound. When U = +∞, the inequality holds trivially,
so we assume in the sequel that U < +∞. The event t−1rt = 0, implies that none
of the random walks corresponding to particles in the initial condition w hit 1 be-
fore time t . By independence of the random walks, the corresponding probability
equals

−∞∏
x=0

Ḡt (−x + 1)η(x).

Now let b1 > 0 be such that 1 − 2s ≥ exp(−4s) for all 0 ≤ s ≤ b1. From (34),
we see that for any t ≥ 0 and y ≤ 0, Ḡt (−y+1) ≥ 1−2Gt(−y+1). By the central
limit theorem, we can find t0 and K > 0 such that, for all t ≥ t0 and y ≤ −Kt1/2,
Gt(−y + 1) ≤ b1.

Let kt := �Kt1/2�. Then, for all t ≥ t0,

−∞∏
x=−kt

Ḡt (−x + 1)η(x) ≥ exp

(
−4

−∞∑
x=−kt

η(x)Gt(−x + 1)

)
.

Now, by definition of Gt ,

−∞∑
x=0

η(x)Gt(−x + 1) = E

(−∞∑
x=0

η(x)1(ζt ≥ −x + 1)

)

= E

[
1(ζt ≥ 1)

(−ζt+1∑
x=0

η(x)

)]

= E
[
1(ζt ≥ 1)

(
H(−ζt + 1)

)]
.
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By assumption, H(x) ≤ |x|U+o(1). Hölder’s inequality yields that

E
[
1(ζt ≥ 1)

(
H(−ζt + 1)

)]≤ tU/2+o(1).

We deduce that for all t ≥ t0

−∞∏
x=−kt

Ḡt (x)η(x) ≥ exp
(−tU/2+o(1)).(35)

Now, for −kt < y ≤ 0, observe that Ḡt (−y + 1) ≥ Ḡt (1). As a consequence,

−kt+1∏
x=0

Ḡt (−x + 1)η(x) ≥ Ḡt (1)H(−kt+1).

But there exists c4 > 0, such that, for large enough t , Ḡt (1) ≥ c4t
−1/2. Us-

ing again the fact that H(x) ≤ |x|U+o(1), one can deduce that Ḡt (1)H(−kt+1) ≥
exp(−tU/2+o(1)), whence

−kt+1∏
x=0

Ḡt (−x + 1)η(x) ≥ exp
(−tU/2+o(1)).(36)

From (35) and (36), we deduce that

P(t−1rt ≤ 0) ≥ exp
(−tU/2+o(1)).

Now, let us prove the upper bound when u < +∞. Using an argument similar to
the one used in the proof of the lower bound above, we obtain that

P(t−1rt = 0) ≤ exp
(−E
[
1(ζt ≥ 1)

(
H(−ζt + 1)

)])
.

One can then deduce that

E
[
1(ζt ≥ 1)

(
H(−ζt + 1)

)]≥ tu/2+o(1)

and the upper bound follows.
We now turn to the proof of Theorem 2(a). The idea of the proof when s(η) = 1

is to combine the following two arguments. First, for b > 0, it costs nothing to
prevent all the particles in the initial condition from hitting �bt� up to time t .
Intuitively, this result comes from the fact that hitting �bt� before time t has an
exponential cost for any particle in the initial condition within distance O(t) of the
origin, and, due to (G), there is a subexponentially large number of such particles.

Second, in the worst case where all the particles attached to sites 1 ≤ x ≤ bt are
turned into X particles instantaneously at time zero, the cost of preventing all these
particles from hitting bt up to time t is of order exp(−t1/2+o(1)), due to the lower
bound in (6) proved above, The actual proof is in fact more complex since we want
to consider probabilities of the form P(ct ≤ rt ≤ bt), and not only P(rt ≤ bt), and
deal also with the case s(η) < 1.

We state two lemmas before giving the proof.
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LEMMA 5. Consider an initial condition w = (F,0,A) satisfying (G). Then,
for all b > 0, and all ϕ > 0,

P
[

max
(x,i)∈A

sup
0≤s≤t

Fs(x, i) ≥ bt
]
≤ fϕ(w) exp

[
t
(
cosh(2ϕ) − 1

)]
Gt(�bt�)1/2.

PROOF. The probability we are looking at is the probability that at least one
of the random walks corresponding to particles in w exceeds bt before time t . By
the union bound, this probability is smaller than

−∞∑
x=0

η(x)
(
1 − Ḡt (−x + �bt�))≤ −∞∑

x=0

2η(x)Gt(−x + �bt�).

Now observe that by definition of Gt ,
−∞∑
x=0

η(x)Gt(−x + �bt�) = E

(−∞∑
x=0

η(x)1(ζt ≥ −x + �bt�)
)

= E

[
1(ζt ≥ �bt�)

(−ζt+�bt�∑
x=0

η(x)

)]

= E
[
1(ζt ≥ �bt�)(H(−ζt + �bt�))].

From (G), we deduce that, for all ϕ > 0, H(x) ≤ fϕ(w) exp(−ϕx) for all x ≤ 0.
As a consequence, when ζt ≥ �bt�, H(−ζt + �bt�) ≤ H(−ζt ) ≤ fϕ(w) exp(ϕζt ).
Applying Schwarz’s inequality, we see that

E
[
1(ζt ≥ �bt�)(H(−ζt + �bt�))]≤ P(ζt ≥ �bt�)1/2fϕ(w)E[exp(2ϕζt )]1/2.

Now note that E[exp(2ϕζt )] = exp[2(cosh(2ϕ) − 1)t]. �

LEMMA 6. Consider an initial condition w = (F,0,A) satisfying (G). Then,
for all ϕ > 0

E

[ ∑
(x,i)∈At

exp
(
ϕ
(
Ft(x, i) − rt

))]≤ exp
[
2
(
cosh(ϕ) − 1

)
t
]
fϕ(w) + aE(rt ).

PROOF. Write
∑

(x,i)∈At
= ∑(x,i)∈A +∑(x,i)∈At\A. For (x, i) ∈ A, observe

that exp(ϕ(Ft (x, i)−rt )) ≤ exp(ϕFt (x, i)) and that E[exp(ϕFt (x, i))] = exp[ϕx+
2(cosh(ϕ) − 1)t]. As a consequence,

E

[ ∑
(x,i)∈A

exp
(
ϕ
(
Ft(x, i) − rt

))]≤ exp
[
2
(
cosh(ϕ) − 1

)
t
]
fϕ(w).(37)

On the other hand, observe that At \A = {1, . . . , rt}×{1, . . . , a}. Since it is always
true that Ft(x, i) ≤ rt , ∑

(x,i)∈At\A
exp
(
ϕ
(
Ft(x, i) − rt

))≤ art .(38)
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The result follows from putting together (37) and (38). �

PROOF OF THEOREM 2(a). Let α, δ ∈ (0,1) be such that c < v(1 − α) < b,
c < (1 − α)(1 − δ)v < (1 − α)(1 + δ)v < b, and define γ := b − (1 − α)(1 + δ)v,
β+ := (1 − α)(1 + δ) and β− := (1 − α)(1 − δ).

For each t > 0, define Bt := {β−vt ≤ r(1−α)t ≤ β+vt},
Ct := ⋃

(x,i)∈A(1−α)t

{
sup

s∈[(1−α)t,t]
Fs(x, i) ≤ r(1−α)t + γ t

}
,

Dt := ⋃
(x,i)∈[[r(1−α)t ,�bt�]]×[[1,a]]

{
sup

s∈[0,αt]
x + Ys(x, i) ≤ bt

}
.

Observe that

Bt ∩ Ct ∩ Dt ⊂ {ct ≤ rt ≤ bt}.(39)

Indeed, thanks to the choice of δ, Bt implies that r(1−α)t ≥ ct , so that rt ≥ ct .
On the other hand, since r(1−α)t < bt on Bt , the event Bt ∩ {rt > bt} implies that
either a particle born before time (1 − α)t at a position x ≤ r(1−α)t , or a particle
born between time (1 − α)t and t at a position r(1−α)t < x < bt , exceeds bt at a
time between t (1 − α) and t . The former possibility is ruled out by Bt ∩ Ct , since
on Bt ∩ Ct , rt ≤ r(1−α)t + γ t ≤ bt . The latter possibility is ruled out by Dt .

Now define

l(t) := exp
[
2
(
cosh(ϕ) − 1

)
(1 − α)t

]
fϕ(w) + aE

(
r(1−α)t

)
and

Ht :=
{ ∑

(x,i)∈A(1−α)t

exp
(
ϕ
(
F(1−α)t (x, i) − r(1−α)t

))≤ 2l(t)

}
.

By Lemma 6 and Markov’s inequality, for all t ≥ 0, P(Ht) ≥ 1/2. Moreover, by
the law of large numbers (1), limt→+∞ P(Bt ) = 1. We deduce that there exists a t0
such that, for all t ≥ t0, P(Bt ∩ Ht) ≥ 1/4. Let us call Ft the σ -algebra generated
by the history of the particle system up to time t . Observe that Bt and Ht belong
to F(1−α)t , and by Lemma 5, on Ht ,

P
(
Cc

t |F(1−α)t

)≤ 2l(t) exp
[
αt
(
cosh(2ϕ) − 1

)]
Gαt(�γ t�)1/2.

We deduce that

P(Bt ∩ Ht ∩ Cc
t ) ≤ 2l(t) exp

[
αt
(
cosh(2ϕ) − 1

)]
Gαt(�γ t�)1/2.(40)

Moreover, we see that, by coupling, if I0 denotes an initial configuration with
exactly a particles per site at the left of the origin,

P
(
Dt |F(1−α)t

)≥ P
(
rαt (I0) = 0

)
,
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so that

P(Bt ∩ Ht ∩ Dt) ≥ (1/4)P
(
rαt (I0) = 0

)≥ exp
(−t1/2+o(1)),(41)

where the last inequality is due to the lower bound in (6). By standard large de-
viations bounds for the simple random walk, there exists ζ(α, γ ) > 0 depending
only on γ and α such that, as t goes to infinity, lim inft→+∞ t−1 logGαt(�γ t�) =
−ζ(α, γ ). Furthermore, limt→+∞ t−1 log(2l(t) exp[αt(cosh(2ϕ)−1)]) = ξ(α,ϕ),
where ξ(α,ϕ) := α(cosh(2ϕ) − 1) + 2(cosh(ϕ) − 1)(1 − α). We see that, choos-
ing ϕ small enough, ξ(α,ϕ) < ζ(α, γ )/2. For such a ϕ, (40) and (41) show
that P(Bt ∩ Ht ∩ Cc

t ) = o(P(Bt ∩ Ht ∩ Dt)), so that P(Bt ∩ Ht ∩ Dt ∩ Ct) ≥
exp(−t1/2+o(1)). It then follows from (39) that P(ct ≤ rt ≤ bt) ≥ exp(−t1/2+o(1)),
so we are done when s(η) = 1.

Now, let us consider (x, i) ∈ A. Define τ = inf{s ≥ 0;Fs(x, i) = 0}, and let
w′ denote the configuration consisting in a single particle located at (x, i), or,
more formally, let w′ be of the form (F ′, r ′,A′) with r ′ := x, A′ := {(x, i)}) and
F ′(x, i) := (x, i). Remember the notation β+ and β− introduced at the beginning
of the present proof, then let

Kt := {(1 − β+)t ≤ τ ≤ (1 − β−)t},
Lt := {ct ≤ rβ−t+τ (w

′) ≤ rβ+t+τ (w
′) ≤ bt},

L′
t := {ct ≤ rβ−t (δ0) ≤ rβ+t (δ0) ≤ bt},

Mt := {for all (y, j) ∈ A \ {(x, i)} and all s ∈ [0, t],Fs(y, j) ≤ 0
}
.

Observe that, on Mt , rt (w) = rt (w
′). Moreover, Kt ∩ Lt ⊂ {ct ≤ rt (w

′) ≤ bt}. As
a consequence,

Mt ∩ Kt ∩ Lt ⊂ {ct ≤ rt (w) ≤ bt}.(42)

But according to the lower bound of Theorem 2(b), P(Mt) ≥ exp(−tU/2+o(1)). On
the other hand, conditional upon τ , rs+τ (w

′) has the (unconditional) distribution of
rs(δ0), for all s ≥ 0. As a consequence, P(Kt ∩Lt) = P(Kt)P(L′

t ), and, by the law
of large numbers (1), limt→+∞ P(L′

t ) = 1. Moreover, it is seen from elementary
estimates on hitting times by a simple symmetric continuous time random walk
that lim inft→+∞ t−1/2P(Kt) > 0. Finally, Mt being defined in terms of random
walks that do not enter the definition of Kt and Lt , we deduce that Mt is indepen-
dent from Kt ∩ Lt . We finally deduce that P(Mt ∩ Kt ∩ Lt) ≥ exp(−tU/2+o(1)),
and the result follows from (42). �

5.2. Proof of Theorem 3. Exactly as in the proof of the the upper bound (6) of
Theorem 2(c) given above, we can prove that

P
(
t−1rt (w) ≤ bt

)≤ exp
(−E[1(ζt ≥ �bt�)H(−ζt + �bt�)]).
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One can check that, for small enough b > 0,

lim inf
t→+∞ t−1 logE

[
1(ζt ≥ �bt�) exp

(
θ(ζt − �bt�))]> 0.(43)

This proves (i). We now prove (ii). Again, one can check that, for all b > 0, there
exists θ > 0 such that (43) holds. Choosing b > v, the result follows.

5.3. Proof of Theorem 2(b). Note that by coupling, it is enough to prove the
result with an initial condition consisting of exactly a particles per site x ≤ 0.
We shall need to consider translated versions of such an initial condition, so we
define, for all u ∈ Z, the configuration Iu to be of the form (F, r,A) with r := u,
A := ]]−∞, u]]×[[1, a]], F(x, i) := x for each (x, i) ∈ A. Hence, we will establish
that for all 0 < b < v, and all α > 0, as t → +∞,

P[rt (I0) ≤ bt] ≤ exp
(−t1/3+o(1)).

Using the fact that P(TI0(�bt�) ≥ t) ≤ P(rt (I0) ≤ bt) ≤ P(TI0(�bt�) ≥ t), one can
see that (5) is equivalent to the following result.

PROPOSITION 15. For every c > v−1, as n goes to infinity,

P
(
TI0(n) ≥ cn

)≤ exp
(−n1/3+o(1)).

Our strategy for proving Proposition 15 can be sketched as follows. Given
m ≥ 1, let χj := TImj

(m(j + 1)). By subadditivity, we have that

TI0(n) ≤
�n/m�∑
j=0

χj ,

so that

P
(
TI0(n) ≥ cn

)≤ P

(�n/m�∑
j=0

χj ≥ (mc)�n/m�
)
.(44)

Now, by translation invariance, for all j ≥ 0, χj and χ0 = TI0(m) have the same
distribution, and it can be shown that

lim
m→+∞m−1E(TI0(m)) = v−1.

Hence, given c > v−1 we can always find m ≥ 1 such that mc > E(χ0), so that the
right-hand side of (44) is the probability of a large deviation above the mean for the
sum
∑�n/m�

j=0 χj . We then seek to apply large deviations bounds for i.i.d. variables
in order to estimate this probability. Of course, the random variables (χj ; j ≥ 0)

are not independent, but the dependency between (χj ; j ≤ j1) and (χj ; j ≥ j2) is
weak when j2 −j1 is large. Indeed, for given j , χj mostly depends on the behavior
of the random walks born at sites close to mj . We implement this idea by using a
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technique already exploited in [21] (page 10, line –5) in a similar context. Given
� ≥ 1, we define a family (χ ′

j ; j ≥ 0) of hitting times as follows: χ ′
j uses the same

random walks as χj for particles born at sites (x, i) with mj −m� < x < m(j +1),
but uses fresh independent random walks for particles born at sites (x, i) with
x ≤ mj − m�. We can then prove that the following properties hold:

(a) for all j ≥ 0, the family (χ ′
j+p(�+1);p ≥ 0) is i.i.d.;

(b) when � is large, the probability that χ ′
j = χj is close to 1.

We can thus obtain estimates on the right-hand side of (44) by estimating sep-
arately the probability that χ ′

j = χj for all j ∈ [[0, �m/n�]], and the probability

that
∑�n/m�

j=0 χ ′
j ≥ (mc)�n/m�. Now, thanks to property (a) above, this last sum

can be split evenly into � + 1 subsums of i.i.d. random variables distributed as
χ0 = TI0(m). Controlling the tail of TI0(m) then allows us to apply large deviation
bounds for i.i.d. variables separately to each of these subsums. In fact, the proof of
(5) is a bit more subtle, since it also makes use of a positive association property,
but we do not go into the details here (see Remark 3 below).

5.4. Proof of Proposition 15. Observe that the subadditivity property [part
(iii)] of Proposition 2 reads as:

for all n,m ≥ 0 TI0(n + m) ≤ TI0(n) + TIn(m).

We deduce that, for c > v−1,

P
(
TI0(n) ≥ cn

)≤ P

(�n/m�∑
j=0

χj ≥ cn

)
.

In Steps 1 and 2 below, m and � denote fixed positive integers, while α denotes
a fixed real number 0 < α < 1. For the sake of readability, the dependence with
respect to these numbers is usually not mentioned explicitly in the notation. Only
in Step 3 have the values of m,� and α to be specified.

5.4.1. Step 1: Comparison with a sum of i.i.d. random variables. Assume that
the probability space (�, F ,P) is such that we have access to an i.i.d. family of
random variables[

(τ
j
k (u, i), ε

j
k (u, i)); j ≥ 0, k ≥ 1, u ∈ Z, i ∈ [[1, a]]],

independent from the random variables[
(τk(u, i), εk(u, i,0));k ≥ 1, u ∈ Z, i ∈ [[1, a]]],

used in the construction of the process (see Section 2), and such that, for all
j, k, u, i, τ j

k (u, i) has an exponential(2) distribution while P(ε
j
k (u, i) = ±1) equals

1/2, and τ
j
k (u, i) and W

j
k (u, i) are independent.
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Now, for all and j ≥ 0, all u, v ∈ Z such that u < v, and i ∈ [[1, a]], define a
random variable Bj (u, i, v) in the same way as A(u, i, v) in (8) of Section 2, but

using (τ
j
k (u, i), ε

j
k (u, i)) instead of (τk(u, i), εk(u, i,0)). Specifically, let

Bj (u, i, v) := inf

{
m∑

k=1

τ
j
k (u, i);u +

m∑
k=1

ε
j
k (u, i) = v,m ≥ 1

}
.

Let also

Cj (u, i, v) :=
{

Bj (u, i, v), if u ≤ mj − m�,
A(u, i, v), if u > mj − m�.

We then proceed to define χ ′
j in the same way as χj = TImj

(m(j +1)) is character-
ized in Proposition 2(i), but using Cj (u, i, v) instead of A(u, i, v). Since we deal
several times in the sequel with variants of such a construction, we now introduce
the following general definition: a sequence (x, i) = (x1, . . . , xL, i1, . . . , iL−1) with
L ≥ 2, x1, . . . , xL ∈ Z and i1, . . . , iL−1 ∈ [[1, a]], is said to be (u, v)-admissible if
L ≥ 2, x1 ≤ u, u < x2 < · · · < xL−1 < v, and xL = v. Given such a sequence (x, i)
and a map D = D(x, i, y) (such as D = A or Cj ), we define the notation

D(x, i) :=
L−1∑
g=1

D(xg, ig, xg+1).

When applied to χj , Proposition 2(i) reads as

χj = inf A(x, i),

where the infimum is taken over all finite (mj,m(j + 1))-admissible sequences.
Accordingly, we let

χ ′
j := inf Cj (x, i),

where the infimum is taken over all finite (mj,m(j + 1))-admissible sequences.
Clearly, χ ′

j and χj have the same distribution. Moreover, we have the following
lemma, whose proof is immediate.

LEMMA 7. For every j ≥ 0, the family of random variables (χ ′
j+p(�+1);

p ≥ 0) is i.i.d.

We now study the event {χ ′
j = χj }. To this end, let

Jj := inf Cj (x, i), Kj := inf A(x, i),

where in both cases the infimum is taken over all finite (mj,m(j + 1))-admissible
sequences that satisfy the additional assumption x1 ≤ mj − m�. Let also

Lj := inf A(x, i),
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where the infimum is taken over all finite (mj,m(j + 1))-admissible sequences
that satisfy the additional assumption x1 > mj − m�.

Observe that, χ ′
j = min(Jj ,Lj ) and that χj = min(Kj ,Lj ). As a consequence,

{min(Jj ,Kj ) ≥ Lj } ⊂ {χ ′
j = χj }.

For α > 0, we now define

D(j) := {min(Jj ,Kj ) < α(m�)2}
and

ϒ(j) := {Lj ≥ α(m�)2},
so that

ϒ(j)c ∩ D(j)c ⊂ {χ ′
j = χj }.(45)

LEMMA 8. There exist λ1, λ2, λ3 > 0, not depending on m,�,α, such that

P(D(j)) ≤ λ1 exp(−λ2α(m�)2) + λ3α(m�)2Gα(m�)2(m�) =: λ.

PROOF. Consider the random walks born at sites (x, i) for x ≤ mj − α(m�)2.
By Lemma 1 choosing γ = 1 and θ > 0 small enough so that gγ (θ) > 0, we ob-
tain the existence of λ1 > 0 and λ2 > 0 such that the probability that any of the
walks born at a site (x, i) with x ≤ mj − α(m�)2 hits mj before time α(m�)2 is
≤ λ1 exp(−λ2α(m�)2). On the other hand, for mj − α(m�)2 < x ≤ mj − m�, the
probability that a walk started at x hits mj before time α(m�)2 is less than the cor-
responding probability for the walk started at mj − m�, that is, 1 − Ḡα(m�)2(m�).
In turn, this probability is less than 2Gα(m�)2(m�). A union bound over all the
corresponding events yields the result. �

LEMMA 9. There exist V1,V2 > 0, not depending on �,α, but depending
on m, such that for all j ,

P(ϒ(j)) ≤ V1 exp(−V2α
1/2�).

PROOF. By translation invariance, we can assume that j = 0. Let t = α(m�)2.
Since ϒ(0) implies that no random walk born at a site −m� + 1 ≤ x ≤ 0 hits 1
before time α(m�)2, one has that P(ϒ(0)) = ∏0

x=−m�+1 Ḡt (1 − x)a . Since 0 ≤
α ≤ 1, we see that t1/2 ≤ m�, so that P(ϒ(0)) ≤∏0

x=−�t1/2�+1 Ḡt (1 − x)a . Using

monotonicity of Ḡt , we deduce that P(ϒ(0)) ≤ Ḡt (�t1/2�)a�t1/2�.
By the central limit theorem, limt→+∞ Gt(�t1/2�) > 0, so that, since Ḡt ≤ 1 −

Gt , lim supt→+∞ Ḡt (�t1/2�) < 1. As a consequence, we can find c > 0, and t0 ≥ 0
such that, for all t ≥ t0, Ḡt (�t1/2�) ≤ 1 − c. For t ≥ t0, we deduce that P(ϒ(0)) ≤
(1 − c)a�t1/2�. For t ≤ t0, we see that we can find a large enough V1 such that
P(ϒ(0)) ≤ V1(1 − c)a�t1/2�, using only the trivial bound P(ϒ(0)) ≤ 1. �
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LEMMA 10. For all t ≥ 0, the events {∑�n/m�
j=0 χj ≥ cn} and

⋃�n/m�
j=0 D(j) are

negatively associated.

PROOF. For any integer N ≥ 1, let

AN(u, i, v) := inf

{
m∑

k=1

τk(u, i);u +
m∑

k=1

εk(u, i, ε) = v,1 ≤ m ≤ N

}
.

Similarly, let

BN
j (u, i, v) := inf

{
m∑

k=1

τ
j
k (u, i);u +

m∑
k=1

ε
j
k (u, i) = v,1 ≤ m ≤ N

}

and let

CN
j (u, i, v) :=

{
BN

j (u, i, v), if u ≤ mj − m�,

AN(u, i, v), if u > mj − m�.

Now let χj,N := inf AN(x, i), where the infimum is taken over all finite
(mj,m(j + 1))-admissible sequences that satisfy the additional assumption
x1 ≥ −N . Similarly, let Jj,N := inf CN

j (x, i), and Kj,N := inf AN(x, i), where in
both cases the infimum is taken over all finite (mj,m(j +1))-admissible sequences
that satisfy the additional assumptions x1 > mj − m� and x1 ≥ −N .

Observe that P-almost surely, for all j ≥ 0, the sequence (χj,N)N≥1 is P-a.s.
constant after a certain rank, and that its limiting value is χj . Similarly, P-almost
surely, the sequences (Jj,N)N≥1 and (Kj,N)N≥1 are P-a.s. constant after a certain
rank, and their respective limits are Jj and Kj .

Then let Sq,N :=∑q
p=0 χp(�+1),N and D(j,N) := {min(Jj,N ,Kj,N) < α(m ×

�)2}. Now let g1 := 1(Sq ≥ t), g2 := 1(
⋃q

p=0 D(p(� + 1))), and g1,N := 1(Sq,N ≥
t) and g2,N := 1(

⋃q
p=0 D(p(� + 1),N)).

Note that (g1,N )N≥1 is a bounded sequence of random variables, that is, P-a.s.
constant after a certain rank, and converging to g1 as K goes to infinity. The same
holds for (g2,N )N≥1 and g2. Now, for every N , g1,N and g2,N are functions of a
finite number of the random variables (−εn(x, i),−ε

j
n(x, i,0), τ (x, i), τ j (x, i);

n ≥ 1, x ∈ Z, i ∈ [[1, a]]). Moreover, one can check from the definitions that,
with respect to these random variables, g1,N is nonincreasing, while g2,N is
nondecreasing. Since these random variables are independent, we deduce that
E(−g1,Ng2,N ) ≥ E(−g1,N )E(g2,N ) (see, e.g., [10], Theorem 2.1). Taking the limit
as N → +∞, and using the dominated convergence theorem, we obtain the result.

�

Now let us define three events X,Y,Z by

X :=
�n/m�⋃
j=0

D(j), Y :=
�n/m�⋂
j=0

(
D(j)c ∩ ϒ(j)c

)
, Z :=

�n/m�⋃
j=0

ϒ(j)
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and observe that � ⊂ X ∪ Y ∪ Z. Let then

� :=
{�n/m�∑

j=0

χj ≥ cn

}
.

By the union bound, P(�) ≤ P(� ∩ X) + P(� ∩ Y) + P(� ∩ Z). Now, according
to Lemmas 8 and 10 we see that

P(� ∩ X) ≤ P(�) × (�n/m� + 1)λ.

From (45), we see that

P(� ∩ Y) ≤ P

(�n/m�∑
j=0

χ ′
j ≥ cn

)
.

From Lemma 9, we see that,

P(� ∩ Z) ≤ (�n/m� + 1)V1 exp(−V2α
1/2�).

This leads to the following bound:

ρ(n)P(�) ≤ P

(�n/m�∑
j=0

χ ′
j ≥ cn

)
+ (�n/m� + 1)V1 exp(−V2α

1/2m�).(46)

where ρ(n) := 1 − (�n/m� + 1)λ.
Using the independence properties of the random variables χ ′

j (Lemma 7), and
the union bound, we see that the following inequality holds:

P

(�n/m�∑
j=0

χ ′
j ≥ cn

)
≤ (� + 1)P

(
R1 + · · · + Rk(n) ≥ cn

� + 1

)
,

where R1,R2, . . . denote i.i.d. copies of χ0, and where k(n) := 1 + �n/m−1
�+1 �.

5.4.2. Step 2: Large deviations estimates for i.i.d. random variables. We start
with a bound on the tail of χ0.

LEMMA 11. There exist β1, β2 > 0 (depending on m) such that, for all t ≥ 0,

P(χ0 ≥ t) ≤ β1 exp(−β2�t1/2�).
PROOF. Observe that the event χ0 ≥ t implies that none of the random walks

born at a site (x, i) with x ≤ 0 has hit m before time t . As a consequence, P(χ0 ≥
t) ≤ ∏−�t1/2�

x=0 Ḡt (−x + m)a . Using monotonicity of Ḡt , we deduce that P(χ0 ≥
t) ≤ Gt(m + �t1/2�)−a�t1/2�). Reusing the notation of the proof of Lemma 9, we
see that, for all t ≥ t0, P(χ0 ≥ t) ≤ (1 − c)−a�t1/2�). Now, for t ≤ t0, we can find
β1 such that, using only the trivial bounds −�t1/2� ≥ 0 and P(χ0 ≥ t) ≤ 1, P(χ0 ≥
t) ≤ β1(1 − c)−a�t1/2� for all t ∈ [0, t0]. �
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REMARK 1. The lower bound (4) shows that the upper bound of Lemma 11
yields the right order of magnitude for the tail of χ0.

The probabilities of large deviations above the mean for sums of i.i.d. ran-
dom variables with an exp(−t1/2) decay of the tail are described by the following
lemma, whose proof is deferred to Appendix A.

LEMMA 12. Let (Rj )j≥1 be a sequence of i.i.d. nonnegative random vari-
ables with common distribution μ. Let M := ∫ x dμ(x). Assume that there exist
β1, β2 > 0 such that for every x ≥ 0

μ([x,+∞)) ≤ β1 exp(−β2x
1/2).(47)

Then M < +∞ and for all f > M , there exists h > 0 and n0 such that if n ≥ n0

P
(
n−1(R1 + · · · + Rn) ≥ f

)≤ exp(−hn1/2).

5.4.3. Step 3: Conclusion. Lemma 12 above can be applied to probabilities of
large deviations of the form P(R1 +· · ·+Rk ≥ kb), where b > E(χ0), and our goal
is to control probabilities of the form P(R1 + · · · + Rk(n) ≥ cn

�+1), where c > v−1.
First, one can check from the definition that

cn

� + 1
≥ k(n)cm

(
1 + m(� + 1)

n

)−1

.(48)

Then, observe that Kingman’s subadditive ergodic theorem (see, e.g., [8], Theo-
rem 6.4.1) can be applied to the sequence of random variables (TIu(v))u≤v . Indeed,
these variables are nonnegative, integrable (Lemma 11), and satisfy the required
distributional translation invariance properties. We deduce that

lim
m→+∞m−1E(TI0(m)) = v−1.

As a consequence, for all c > v−1, we can find m ≥ 1 large enough so that

cm > E(TI0(m)) = E(χ0).(49)

In the sequel, we assume that m is chosen such that (49) holds. Now let us choose
� := �n = n1/3. Taking into account Lemmas 11, 12, (48) and (49), we now see
that, as n goes to infinity, there exists a constant h1 > 0 such that

P

(
R1 + · · · + Rk(n) ≥ cn

� + 1

)
= O(exp(−h1n

1/3)).(50)

Now, for 0 < ζ < 1/2, let us choose α := αn = n−ζ , and consider inequal-
ity (46). With our definitions, α

1/2
n (m�n) = mn1/3−ζ/2 while m�n = mn1/3. As a

consequence, a moderate deviations bound for the simple random walk (see, e.g.,
[6], Theorem 3.7.1) yields that Gαn(m�n)2(m�n + 1) = O(exp(−h2n

ζ )) for some
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constant h2 > 0, whence the fact that ρ(n) = 1 + o(1). Using (50), we see that
inequality (46) entails that, for large n,

P(�) ≤ O(exp(−h3n
1/3−ζ/2)).

Since ζ can be taken arbitrarily small, the conclusion of Proposition 15 follows.

REMARK 2. In view of (4) and (5), we see that our upper and lower bounds
on slowdown probabilities do not match. One may wonder whether it is possible
to improve upon either of these bounds so as to find the exact order of magnitude
of slowdown large deviations probabilities. What we can prove (the details are not
given here) is that the exp(−n1/3+o(1)) bound in Proposition 15 gives the best or-
der of magnitude that can be reached by following our proof strategy based on
subadditivity. Indeed, despite the fact that each χj has a tail decaying roughly as
exp(−t1/2), so that the probabilities of large deviations above the mean would be
of order exp(−n−1/2) if these random variables were independent, the positive de-
pendence between these variables makes such large deviations much more likely,
with probabilities of order exp(−n1/3).

REMARK 3. One may wonder whether the use of association (see Lemma 10)
is really needed in the proof. Indeed, a simpler approach would be to bound the
probability of the event X by P(

⋃�n/m�
j=0 D(j)). By properly choosing αn and �n,

we could make this probability of the order of exp(−n1/3+o(1)), compared to the
exp(−h2n

−ζ ) obtained in the proof of Proposition 15. However, such a choice
interferes with the other bounds used in the proof [making αn smaller increases
the probability of ϒ(j)]. The best order of magnitude we could obtain with that
simpler method is exp(−n2/7+o(1)).

APPENDIX A: LARGE DEVIATIONS OF I.I.D. RANDOM VARIABLES
WITH exp(−t1/2) TAILS

Neither the result stated in Lemma 12 nor the idea of its proof are new, but we
could not find a reference providing both a statement suited to our purposes and a
short proof, so we chose to give the details here.

We refer to the papers [7, 17] for a review of results concerning large deviations
of random variables with subexponential tails, and to Theorem 4.1 in [2] for an
example of a result from which Lemma 12 may be derived.

LEMMA 13. For every ν > 0, as x → +∞,∫ +∞
x

exp(−νu1/2) du = O[exp(−(ν/2)x1/2)].

PROOF. Observe that there exists d1 > 0 such that, for every u ≥ 1, u1/2 ×
exp(−(ν/2)u1/2) ≤ d1. As a consequence, exp(−νu1/2) ≤ d1u

−1/2 exp(−(ν/2) ×
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u1/2), so that∫ +∞
x

exp(−νu1/2) du ≤ d1

∫ +∞
x

u−1/2 exp(−(ν/2)u1/2) du.

The right-hand side of the above inequality is then equal to d1(4/ν) exp(−(ν/2)×
x1/2). �

PROOF OF LEMMA 12. Let A and c be as in the statement of the lemma. And
let G be defined by G(x) := μ([x,+∞)).

Let An be the following event: An := ⋂1≤i≤n{Ri ≤ n}. By the union bound,
P(Ac

n) ≤ nμ([n,+∞)), so that, by assumption (47) above and Lemma 13 below,

P(Ac
n) = O[n exp(−(β2/2)n1/2)].(51)

We now apply the Cramér bound for i.i.d. random variables possessing finite
exponential moments (see, e.g., [6], Theorem 2.2.3) to the i.i.d. bounded random
variables Ri,n defined by Ri,n := min(Ri, n). For every λ > 0, the following in-
equality holds:

P
(
n−1(R1,n + · · · + Rn,n) ≥ f

)≤ exp[−nλf ][E exp(λR1,n)]n.(52)

Let λn := (β2/3)n−1/2 and Kn := n1/4. By definition E exp(λnR1,n) =∫
[0,n) exp(λnx) dμ(x) + exp(λnn)μ([n,+∞)). Let us split the above integral into∫
[0,n) = ∫[0,Kn) +

∫
[Kn,n). Fix a real number α > 0. Since λnKn goes to zero as n

goes to infinity, we have, for all large enough n (depending on α), an inequality of
the following form: for every x ∈ [0,Kn), exp(λnx) ≤ 1 + (1 + α)λnx. Taking the
integral in this inequality, we obtain that, for all large enough n,∫

[0,Kn)
exp(λnx) dμ(x) ≤ μ([0,Kn)) + (1 + α)λn

∫
[0,Kn)

x dμ(x).

Since α is arbitrary in the above argument, we see that∫
[0,Kn)

exp(λnx) dμ(x) ≤ μ([0,Kn)) + (1 + o(1)
)
λn

∫
[0,Kn)

x dμ(x).(53)

By definition, M = ∫[0,Kn) x dμ(x) + ∫[Kn,+∞) x dμ(x). Integration by parts
yields that

∫
[Kn,+∞) x dμ(x) = −[xG(x)]+∞

Kn
+ ∫[Kn,+∞) G(x) dx. Assumption

(47) above says that G(x) ≤ A exp(−β2x
1/2). As a consequence, −[xG(x)]+∞

Kn
≤

AKn exp(−β2K
1/2
n ). Moreover, Lemma 13 yields that

∫
[Kn,+∞) G(x) dx =

O[exp(−(β2/2)K
1/2
n )].

Putting the above estimates together, and using the definitions of λn and Kn,
the above estimates clearly imply that

∫
[Kn,+∞) x dμ(x) = o(λn). Similarly,

μ([Kn,+∞)) = o(λn). As a consequence, inequality (53) above yields that∫
[0,Kn)

exp(λnx) dμ(x) ≤ 1 + (1 + o(1)
)
Mλn.



992 J. BÉRARD AND A. F. RAMÍREZ

We now study
∫
[Kn,n) exp(λnx) dμ(x). Integration by parts says that∫

[Kn,n) exp(λnx) dμ(x) = −[exp(λnx)G(x)]nKn
+ ∫ nKn

λn exp(λnx)G(x)dx. Ob-
serve that, with our definitions of λn and Kn, for every x ∈ [[0, n]], λnx ≤
(β2/3)x1/2. As a consequence, exp(λnx)G(x) ≤ A exp(−(2β2/3)x1/2). This esti-
mate, together with Lemma 13, yields that, as n goes to infinity,

∫ n
Kn

exp(λnx) ×
G(x)dx = o(1). Similarly, [exp(λnx)G(x)]nKn

= o(λn). As a consequence, as
n goes to infinity,

∫
[Kn,n) exp(λnx) dμ(x) = o(λn). Similarly, exp(λnn)μ([n,

+∞)) = o(λn).
Finally, we obtain the following estimate: E exp(λnR1,n) = 1 +λnm(1 + o(1)).

As n goes to infinity, an expansion yields that [E exp(λnR1,n)]n = exp(nMλn(1 +
o(1))) From Cramér’s inequality (52), we obtain that

P
(
n−1(R1,n + · · · + Rn,n) ≥ f

)≤ exp
(−nλn(f − M)

(
1 + o(1)

))
.(54)

Now, on the event An, Ri = Ri,n for all 1 ≤ i ≤ n.
As a consequence, P(n−1(R1 + · · · + Rn) ≥ f ) ≤ P(n−1(R1,n + · · · + Rn,n) ≥

f ) + P(Ac
n).

The statement of the lemma now follows from the bound (51) on P(Ac
n) and the

large deviations bound (54) for R1,n + · · · + Rn,n. �

APPENDIX B: NEGLIGIBILITY OF REMOTE PARTICLES

PROPOSITION 16. For any w ∈ L, ε ∈ [0,1/2), and any t ≥ 0, with P proba-
bility one,

lim
K→−∞ sup

s∈[0,t]

∑
(x,i)∈A;x≤r+K

exp
(
θ
(
Fs(x, i) − r

))= 0.

PROOF. For all x, i, t , let Cx,i,t := exp(θ(Ft (x, i)− r)). For k ∈ [[−∞,0]], let
also

HK,k(s) := ∑
(x,i)∈A;r+K+k<x≤r+K

Cx,i,s .

Now let γ := [2(cosh θ − 1) + 4ε sinh θ ], and observe that, for every (x, i) ∈ A,
(Cx,i,s exp(−γ s))s≥0 is a càdlàg martingale. As a consequence, so is (HK,k(t) ×
exp(−γ t))t≥0 for all k ∈]]−∞,0]], and we have the following inequality, valid for
all λ > 0:

P
(

sup
s∈[0,t]

HK,k(s) exp(−γ s) > λ
)

≤ λ−1E(HK,k(0)).

Since E(HK,k(0)) =∑(x,i)∈A;x∈]]r+K+k,r+K]] exp(θ(F (x, i)−r)), we deduce that

P
(

sup
s∈[0,t]

HK,k(s) > λ
)

(55)
≤ λ−1 exp(γ t)

∑
(x,i)∈A;x∈]]r+K+k,r+K]]

exp
(
θ
(
F(x, i) − r

))
.
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Now observe that, for every s, the sequence (HK,k(s))k=0,−1,... is nonde-
creasing since we are summing nonnegative terms. As a consequence,
P(sups∈[0,t] HK,−∞(s) > λ) equals P(

⋃−∞
k=0 sups∈[0,t] HK,k(s) > λ), which is the

probability of the union of a nondecreasing sequence of events, and so is equal to
limk→−∞ P(sups∈[0,t] HK,k(s) > λ). As a consequence, by (55),

P
(

sup
s∈[0,t]

HK,−∞(s) > λ
)

(56)
≤ λ−1 exp(γ t)

∑
(x,i)∈A;x≤r+K

exp
(
θ
(
F(x, i) − r

))
.

Now observe that, for every s, the sequence (
∑

(x,i)∈A;x≤r+K Cx,i,s)K=0,−1,...

is nonincreasing, since we are summing nonnegative terms. As a consequence,
limK→−∞ sups∈[0,t] HK,−∞(s) exists, and P(limK→−∞ sups∈[0,t] HK,−∞(s) > λ)

equals P(
⋂

K≤0 sups∈[0,t] HK,−∞(s) > λ), which is the probability of the in-
tersection of a nonincreasing sequence of events, and so is equal to the limit
limK→−∞ P(sups∈[0,t] HK,−∞(s)) > λ). From inequality (56), we see that this last
expression equals zero. �

APPENDIX C: ESTIMATES ON THE RENEWAL STRUCTURE

In this section, we work with random variables defined on the space of trajecto-
ries D, as explained in Section 4.1. The definitions related to the renewal structure
are given in Section 4.3. In the sequel, every constant Ci or δi appearing in the es-
timates is implicitly assumed to depend on the quantities a, θ, ε0, α1, α2,p,L, ε

(see Section 4.3), unless there is a special mention that dependence with re-
spect to some of these parameters is absent. The notation (ξε

s )s≥0 stands for
a nearest-neighbor random walk on Z with jump rate 2 and step distribution
(1/2 + ε)δ+1 + (1/2 − ε)δ−1, started at zero. The probability measure govern-
ing (ξε

s )s≥0 is denoted by P . We use the shorthand M ′ := M/4 − 1, which is an
integer number according to (23). We also use the notation

L1 := {w = (F, r,A) ∈ L; r × [[1, a]] ⊂ A,F(r, i) = r for all 1 ≤ i ≤ a}.
For every x ∈ Z, let Mt(x, i) := sup0≤s≤t Fs(x, i). Let also, for z ∈ Z,

ψz(t) := ∑
(x,i);x≤z,(x,i)∈At

exp
(
θ
(
Mt(x, i) − rt

))
.(57)

Let με := θα1 − 2(cosh θ − 1) − 4ε sinh θ , and observe that, for all ε ∈ [0, ε0],
με ≥ με0 , and that, according to (24), με0 > 0.

LEMMA 14 (See Lemma 2 in [5]). There exists C1 < +∞ not depending on
ε or L such that, for all ε ∈ [0, ε0] and all w = (F, r,A) ∈ L,

Qε
w(t < W < +∞) ≤ C1φr−L(w) exp(−μεt).
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PROOF. Without loss of generality, we assume r = 0. Let us first note that

Qε
w[t < W < ∞] ≤ Qε

w

[∪s≥t

{
φ−L(Xs) ≥ eθ(�α1s�−rs)

}]
.

By the fact that s �→ Ms(x, i) is nondecreasing, and the union bound, we deduce
that

Qε
w[t < W < ∞] ≤

+∞∑
n=�t�

Qε
w

[ ∑
(x,i)∈A∩]]−∞,−L]]×[[1,a]]

eθMn+1(x,i) ≥ eθ�α1n�
]
.

Using the Markov inequality, we obtain that

Qε
w[t < W < ∞]

(58)

≤
+∞∑

n=�t�
exp(−θ�α1n�) ∑

(x,i)∈A∩]]−∞,−L]]×[[1,a]]
Eε

w

(
eθMn+1(x,i)).

For (x, i) ∈ A, write Fs(x, i) as the independent sum a symmetric nearest neigh-
bor random walk on Z with rate 2 − 4ε, and a Poisson process with rate 4ε.
Since the Poisson process is nondecreasing, the supremum of its values over
the time-interval [0, s] is just the value at time s. Consider now the symmet-
ric random walk part. Calling G1 the distribution function of the supremum
of its values over the time-interval [0, s], and G2 the distribution function of
the value at time s, the reflection principle entails that 1 − G1 ≤ 2(1 − G2).
Integration by parts then yields that

∫+∞
F(x,i) e

θz dG1(z) ≤ 2
∫+∞
F(x,i) e

θz dG2(z) =
2 exp(θF (x, i)) exp(2(cosh θ − 1)s). Since Ms(x, i) is bounded above by the sum
of the suprema of the Poisson process and of the symmetric random walk, these
two suprema being independent, we deduce that

Eε
w

(
eθMs(x,i))≤ 2 exp(θF (x, i)) exp

(
s[2(cosh θ − 1) + 4ε sinh θ ]).

Plugging the last identity into (58) and summing, we finish the proof of the lemma.
�

Define for t ≥ 0, and z ≤ r0,

Nz(t) := eθrt−[2(cosh θ−1)−4ε sinh θ ]tφz(Xt).(59)

LEMMA 15 (See Lemma 3 in [5]). For all ε ∈ [0, ε0], and all w = (F, r,A) ∈
L, the family (Nz(t))t≥0 is a càdlàg (F ε

t )t≥0-martingale with respect to Qε
w .

PROOF. Let us remark that

Nz(t) = ∑
(x,i)∈A,x≤z

eθFt (x,i)−[2(cosh θ−1)−4ε sinh θ ]t .
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Now, each one of the terms in the above sum is an (F ε
t )t≥0-martingale. Further-

more, since φz(w) < +∞, the martingales∑
(x,i)∈A,−n≤x≤z

eθFt (x,i)−[2(cosh θ−1)−4ε sinh θ ]t ,

converge in L1(Qε
w) to Nz(t) as n → ∞. Thus, (Nz(t))t≥0 is an (F ε

t )t≥0-martin-
gale. That the paths are càdlàg is a consequence of (Xs)s≥0 being càdlàg. �

LEMMA 16 (See Lemma 4 in [5]). For every ε ∈ [0, ε0] and w = (F, r,A) ∈ L,

Qε
w[W < ∞] ≤ exp(θ)φr−L(w).

PROOF. See [5]. �

LEMMA 17 (See Lemma 5 in [5]). There exist 0 < C2,C3 < +∞ not depend-
ing on ε or L such that, for all ε ∈ [0, ε0], w = (F, r,A) ∈ L and t ≥ 0,

Qε
w[t < V < ∞] ≤ LC2 exp(−C3t).

PROOF. Without loss of generality, assume that r = 0. Then Qε
w(t < V <

+∞) is bounded above by the probability that one of the random walks born at
a site between −L + 1 and −1 is at the right of �α1s� at some time s ≥ t . By
coupling, we see that the worst case is when all the walks start at zero, in which
case, by the union bound, the probability is less than aL times the probability
for a single random walk started at zero to exceed �α1s� at some time s ≥ t . Let
τ := inf{s ≥ t; ξε

s ≥ �α1s�}.
Using the fact that (exp(θξε

s − [2(cosh θ − 1) − 4ε sinh θ ]s))s≥0 is a martin-
gale, and applying Doob’s stopping theorem, we obtain the bound P(τ < +∞) ≤
exp(θ) exp(−μεt). The result follows. �

LEMMA 18 (See Lemma 6 in [5]). There exists δ1 > 0 not depending on ε

such that, for all ε ∈ [0, ε0] and w = (F, r,A) ∈ L,

Qε
w[V < ∞] ≤ 1 − δ1.

PROOF. Without loss of generality, we can assume that r = 0. Note that
the probability Qε

w[V < ∞] is upper bounded by the probability that a random
walk within a group of aL independent ones all initially at site x = 0, at some
time t ≥ 0 is at the right of �α1t�. But this probability is 1 − f (ε)aL, where
f (ε) := P(for all s ≥ 0, ξ ε

s ≤ �α1s�). By coupling, observe that f is a nonincreas-
ing function of ε. For ε = ε0, the asymptotic speed of the walk is 4ε0. Since, from
(24) α1 > 4ε0, a consequence of the law of large numbers is that f (ε0) > 0. This
ends the proof. �
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LEMMA 19 (See Lemma 7 in [5] and [4]). There exists 0 < C4 < +∞ not
depending on ε or L such that for all ε ≤ ε0 and w = (F, r,A) ∈ L1, and all
t > 0,

Qε
w[t < U < ∞] ≤ C4t

−M ′
.

PROOF. The proof given in [4] for ε = 0 is based on tail estimates on the
random variables (νk)k≥0. By coupling, for all ε ∈ [0,1/2), and every s ≥ 0,
Qε

w(νk ≥ s) ≤ Q0
w(νk ≥ s). Thus, the estimate in [4] is in fact uniform over ε.

�

LEMMA 20. There exists 0 < C5 < +∞ not depending on ε or L such that
for all ε ∈ [0, ε0] and all t > 0,

Qε
I0

[⋃
s≥t

rs < �α1s�
]

≤ C5t
−M ′

.

PROOF. Since we start with the initial condition I0, we can define a mod-
ified auxiliary front (r̃ ′

s)s≥0 by replacing the random variables (νk)k≥0 used
in the definition of (r̃s)s≥0 by the random variables (ν′

k)k≥0 defined as fol-
lows. Let ν′

0 := 0 and, for k ≥ 1, ν′
k is the first time one of the random walks

{(z + Ys(z, i))s≥0; (r0 + k − M) ≤ z ≤ r0 + k − 1,1 ≤ i ≤ a}, hits the site r0 + k.
With this definition, r̃ ′

s ≤ rs for all s ≥ 0, and, for each 1 ≤ j ≤ M − 1, the random
variables {ν′

Mk+j :k ≥ 0} are i.i.d. with finite moment of order M/2, whereas this
is only true for {νMk+j :k ≥ 1}. The argument of [4] used to prove Lemma 19
can then be adapted to prove the present result. Alternatively, one can invoke
Lemma 38. �

LEMMA 21 (See Lemma 7 in [5] and [4]). For every ε ∈ (0,1/2], there exist
0 < C6(ε),C7(ε) < +∞ not depending on L such that, for every w = (F, r,A) ∈
L1, and every t > 0,

Qε
w[t < U < ∞] ≤ C6(ε) exp(−C7(ε)t).

PROOF. We observe that, for a given ε > 0, νk has an exponentially decaying
tail due to the positive bias of the random walks (Ys(x, i))s≥0. Using standard large
deviations estimates rather than moment estimates in the proof of Lemma 19, we
get the result. �

Using a similar argument, we can prove the following lemma.

LEMMA 22. For all ε ∈ (0, ε0], there exist 0 < C8(ε),C9(ε) < +∞ not de-
pending on L such that, for all t > 0,

Qε
I0

[⋃
s≥t

rs < �α1s�
]

≤ C8(ε) exp(−C9(ε)t).
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LEMMA 23 (See Lemma 7 in [5] and Lemma 11 in [4]). There exists δ2 > 0
not depending on ε such that, for all ε ∈ [0, ε0], w = (F, r,A) ∈ L1, and t > 0,

Qε
w[U < ∞] ≤ 1 − δ2.

PROOF. By coupling, we see that Qε
w[U < ∞] is a nonincreasing function

of ε. Thus, the estimate for ε = 0 proved in [4] is enough. �

LEMMA 24 (See Lemma 9 in [5]). Let β be such that 0 < β < α(0). Then
there exists 0 < C10 < ∞ not depending on ε or L such that, for all ε ∈ [0, ε0], the
following properties hold for all w = (F, r,A) ∈ L:

(a) If r = 0 and w ∈ L1, and n ≥ 1,

Qε
w[T (n) > n/β] ≤ C10n

−a/2.

(b) Assume that r = 0, m−L1/4,0(w) ≥ aL1/4/2 and n ≥ 1. Then

Qε
w[T (n) > n/β] ≤ (C10L

1/4n−1/2)aL1/4/2 + C10n
−M ′

.

(c) Assume that r = 0. For all k ≥ M and n ≥ 1, we have,

Qε
w[T (n + k) − T (k) > n/β] ≤ C10n

−M ′
.

PROOF. The proof given in [5] for ε = 0 is based on tail estimates for the
random variables (νk)k≥0 and for hitting times of symmetric random walks, so
that, by coupling, the estimates proved in [5] are in fact uniform over ε. �

LEMMA 25. Let β be such that 0 < β < α(0). Then there exists 0 < C11 < ∞
not depending on ε or L such that, for all ε ∈ [0, ε0], for all w = (F, r,A) ∈ L

such that r = 0 and m−L1/4,0(w) ≥ aL1/4/2, for all n ≥ 1,

Qε
w[T (nL) > nL/β] ≤ C11(nL1/2)−M ′

.

PROOF. Consequence of Lemma 24(b), using the first inequality in (25). �

LEMMA 26 (See Lemma 9 in [5]). For all ε ∈ (0,1/2) and β such that 0 <

β < α(0), there exist 0 < C12(ε),C13(ε) < ∞ not depending on L such that: for
every w = (F, r,A) ∈ L1, and n ≥ 1,

Qε
w[T (n) > n/β] ≤ C12(β, ε) exp(−C13(β, ε)n).

PROOF. Stems from the exponential decay of the tail of νk , as in Lemma 21.
�
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COROLLARY 3 (See Corollary 2 in [5]). There exists 0 < C14,C15 < ∞ not
depending on ε or L such that, for all ε ∈ [0, ε0], all w = (F, r,A) ∈ L1 such that
φr−L(w) ≤ p, and all t > 0,

Qε
w(t < D < ∞) ≤ C14

(
t−M ′ + L exp(−C15t)

)
.

COROLLARY 4 (See Corollary 2 in [5]). For every ε ∈ (0,1/2], there exist 0 <

C16(β, ε),C17(β, ε) < ∞ not depending on L such that, for all w = (F, r,A) ∈ L1
such that φr−L(w) ≤ p, and for all t > 0,

Qε
w(t < D < ∞) ≤ LC16(β, ε) exp(−C17(β, ε)t).

COROLLARY 5 (See Corollary 2 in [5]). There exists 0 < δ3 < ∞ such that,
for all ε ∈ [0, ε0], and all w = (F, r,A) ∈ L1 such that φr−L(w) ≤ p,

Qε
w(D < ∞) ≤ 1 − δ3.

PROOF OF COROLLARIES 3, 4 AND 5. See [5]. �

LEMMA 27 (See Lemma 11 in [5]). There exists 0 < C18,C19 < +∞ not
depending on ε or L such that, for all ε ∈ [0, ε0], all w = (F, r,A) ∈ L1 such that
φr−L(w) ≤ p, and all t > 0,

Qε
w(rD − r > t,D < +∞) ≤ C18

(
t−M ′ + L exp(−C19t)

)
.

LEMMA 28 (See Lemma 11 in [5]). For every ε ∈ (0, ε0], there exist 0 <

C20(ε),C21(ε) < +∞ not depending on L such that, for all w = (F, r,A) ∈ L1
such that φr−L(w) ≤ p, and for all t > 0,

Qε
w(rD − r > t,D < +∞) ≤ LC20(ε) exp(−C21(ε)t).

PROOFS OF LEMMAS 27 AND 28. Consider γ0 > 0 large enough so that

cγ0(ε0, θ) > 0.(60)

Observe that then cγ0(ε) ≥ cγ0(ε0) for all ε ∈ (0, ε0]. Now by the union bound
and the fact that (rs)s is nondecreasing, Qε

w(rD − r > t,D < +∞) ≤ Qε
w(r

tγ −1
0

−
r > t,D ≤ tγ −1

0 ) + Qε
w(tγ −1

0 < D < +∞). Moreover, note that, by definition,
φr(0) ≤ φr−L(0) + aL. Then apply Lemma 2 and Corollaries 3 and 4. �

LEMMA 29 (See Lemma 12 in [5]). Consider w = (F, r,A) ∈ L1 such that
φr−L(w) ≤ p. Then, for all ε ∈ [0, ε0], Qε

w-a.s. on the event {D < ∞} we have,

φr−L(D) ≤ eθ .

PROOF. See [5]. �
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COROLLARY 6 (See Corollary 3 in [5]). There exists 0 < C22 < +∞ not de-
pending on ε or L, such that, for all ε ∈ [0, ε0], and all w = (F, r,A) ∈ L1 satis-
fying φr−L(w) ≤ p,

Eε
w[φrD(D),D < ∞] ≤ C22L.

PROOF. See [5]. �

LEMMA 30 (See Lemma 13 in [5]). There is a constant 0 < C23 < +∞ not
depending on ε or L, such that, for all ε ∈ [0, ε0], and all w = (F, r,A) ∈ L1:

(a) Qε
w(mr,r+L1/4(XT (r+L1/4)) < aL1/4/2) ≤ C23L

−a/8;
(b) Qε

w(mrD+L−L1/4,rD+L(XT (rD+L)) < aL1/4/2) ≤ C23L
−aM ′/8(M ′+1).

PROOF. Without loss of generality, assume that r = 0. For the sake of read-
ability, let n := L1/4. We start with the proof of (a).

Choose 4ε0 < β < α(0). Then,

Qε
w

[
m0,n

(
XT (n)

)
<

an

2

]
≤ Qε

w

[
m0,n

(
XT (n)

)
<

an

2
, T (n) ≤ n

β

]
(61)

+ Qε
w

[
T (n) >

n

β

]
.

Note that the event {m0,n(XT (n)) < an/2, T (n) ≤ n/β} is contained in the event
that at least one particle born at any of the sites �n/2�, �n/2� + 1, . . . , n hits some
site x ≤ 0 in a time shorter than or equal to n/β . Hence, we can conclude that,

Qε
w

[
m0,n

(
XT (n)

)
<

an

2
, T (n) ≤ n

β

]
(62)

≤ a(n + 1 − �n/2�)P [�ε
n/β ≤ −�n/2�],

where �ε
t := inf0≤s≤t ξ

ε
s .

Noting that, by coupling, P [�ε
n/β ≤ −n/2] is nonincreasing as a function of ε,

we can assume that ε = 0.
Now, by the reflection principle, P [�0

n/β ≤ −n/2] ≤ 2P [ξ0
n/β ≤ −n/2]. Hence,

from inequality (62), we see that Qε
w[m0,n(XT (n)) < an/2, T (n) ≤ n

β
] is bounded

above by a(n + 1)P [ξ0
n/β ≤ −n/2]. By a standard large deviations argument, for

every t ≥ 0 and positive integer x, P [ξ0
t ≥ x] ≤ e−tg(x/t), where g(u) > 0 for all

u > 0. Hence, a(n+1)P [ξ0
n/β ≤ −n/2] ≤ a(n+1) exp{− n

β
g(β/2)}. Finally, using

part (a) of Lemma 24 to bound the second term of inequality (61) and using the
fact that a(n + 1) exp{− n

β
g(β/2)} ≤ 1/na/2 for n large enough, we conclude the

proof of (a).
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Now for (b), Pw[mrD+L−n,rD+L(XT (rD+L)) < an/2] is upper bounded by,∑
k : 1≤k≤m

Qε
w

[
mk+L−n,k+L

(
XT (k+L)

)
< an/2

]+ Qε
w[rD > m,D < ∞].

Letting m := La/(8(M ′+1)), and using part (a) and Lemma 27, we obtain the
result. �

Throughout the sequel, to shorten the expressions, we use D as an upper index
to denote quantities shifted by D. On the event {D < ∞}, let

T ′(nL) := T (rD + nL) − D, m′
z1,z2

:= mrD+z1,rD+z2,

ψ ′
z(t) := ψrD+z(t) ◦ θD, X′

t := XD+t ,

where θD denotes time-shifting of the trajectories by an amount of D.

LEMMA 31 (See Lemma 14 in [5]). For every 0 < β < α(0), there ex-
ists 0 < C24 < ∞ not depending on ε,L, such that for all ε ∈ [0, ε0], and all
w = (F, r,A) ∈ L such that mr−L1/4,r (w) ≥ aL1/4/2, and φr−L(w) ≤ p, and for
all natural n ≥ 1,

Qε
w

[
T ′(nL) >

nL

β
,D < ∞

]
≤ C24(nL1/2)−M ′+1.

PROOF. Without loss of generality, we can assume that initially r = 0. Note
that Qε

w[T ′(nL) > nL
β

,D < ∞] is upper-bounded by

∑
k : 1≤k≤L1/2n

Qε
w

[
T ′(nL) >

nL

β
, rD = k,D < ∞

]
(63)

+ Qε
w[rD > nL1/2,D < ∞].

Now, on the event {D < ∞} we have that T (rD) ≤ D so that T ′(nL) ≤ T (rD +
nL) − T (rD). Hence,

Qε
w

[
T ′(nL) >

nL

β
, rD = k,D < ∞

]
≤ Qε

w

[
T (k + nL) − T (k) >

nL

β

]
.

Now, by part (c) of Lemma 24, for all k ≥ M we have Qε
w[T (k + nL) − T (k) >

nL
β

] ≤ C10

(nL)M
′ . On the other hand, for 1 ≤ k ≤ M − 1, Qε

w[T (k + nL) − T (k) >

nL
β

] ≤ Qε
w[T (M + nL) > nL

β
].

Now let β < β ′ < α(0). Observe that, when nL1/2 ≥ M(β ′/β − 1)−1, (nL +
M)/β ′ ≤ nL/β , so that Qε

w[T (M + nL) > nL
β

] ≤ Qε
w[T (M + nL) > nL+M

β ′ ].
Thus, by Lemma 25, since mr−L1/4,r (w) ≥ aL1/4/2, we know that

Qε
w

[
T (M + nL) >

nL + M

β ′
]

≤ (C11(nL1/2)−M ′
).(64)
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When nL1/2 ≤ M(β ′/β − 1)−1, the same bound holds, with a possibly larger con-
stant, using only the trivial inequality Qε

w(·) ≤ 1. Using Lemma 27 to estimate the
second term of display (63), and combining with (64), we finish the proof. �

LEMMA 32 (See Lemma 14 in [5]). For every ε ∈ (0, ε0) and 0 < β < α(0),
there exist 0 < C25(β, ε),C26(β, ε) < ∞ not depending on L, such that for all
w = (F, r,A) ∈ L1 such that φr−L(w) ≤ p, for all natural n ≥ 1,

Qε
w

[
T ′(nL) >

nL

β
,D < ∞

]
≤ C25(β, ε) exp(−C26(β, ε)nL).

PROOF. Consider � > 0 such that β(1 + �) < α(0).
As in the proof of the previous lemma, Qε

w[T ′(nL) > nL
β

,D < ∞] is upper-
bounded by ∑

k : 1≤k≤��nL�
Qε

w

[
T ′(nL) >

nL

β
, rD = k,D < ∞

]
(65)

+ Qε
w[rD > ��nL�,D < ∞].

By Lemma 28, Qε
w[rD > ��nL�,D < ∞] ≤ LC20(ε) exp(−C21(ε)��nL�). On

the other hand, for 1 ≤ k ≤ ��nL�, Qε
w[T (k+nL)−T (k) > nL

β
] ≤ Qε

w[T (�nL(1+
�)�) > nL

β
]. By Lemma 26, Qε

w[T (�nL(1 + �)�) > nL
β

] ≤ C12(β(1 + �), ε) ×
exp(−C13(β(1 + �), ε)�nL(1 + �)�). �

Remember the definition of με := θα1 − 2(cosh θ − 1) − 4ε sinh θ , and the fact
that, for all ε ∈ [0, ε0], με ≥ με0 > 0. We shall have ample use in the sequel of the
notation h(n) := p−12n+1 exp(−με0nL/α1).

LEMMA 33 (See Lemma 16 in [5]). Consider w = (F, r,A) ∈ L such that
r = 0. Then for all ε ∈ [0, ε0], the following properties hold:

(a) For every n ≥ 1, we have

Qε
w[ψ0(T (n)) > 2−np,T (n) < nL/α1] ≤ φ0(w)h(n).(66)

(b) For every k ≥ 1 and n ≥ k, we have a.s.

Qε
w

[
ψk(T (n)) − ψk−L(T (n)) > 2−(n−k)p,

T (n) − T (k) < (n − k)L/α1|F ε
T (k)

]
≤ aLh(n − k).

PROOF. See [5]. �

COROLLARY 7 (See Corollary 4 in [5]). There exists 0 < C27 < +∞ not de-
pending on ε or L such that, for all w = (F, r,A) ∈ L, for all ε ∈ [0, ε0], λ > 0,
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n ≥ 1,

Qε
w[ψ ′

0(T
′
nL) > p2−n, T ′(nL) ≤ nL/α1,D < +∞] ≤ C27Lh(n).

PROOF. See [5]. �

COROLLARY 8 (See Corollary 5 in [5]). There exists 0 < C28 < +∞ not de-
pending on ε or L such that, for all ε ∈ [0, ε0], and all w = (F, r,A) ∈ L1 such
that mr−L1/4,r (w) ≥ aL1/4/2,

Qε
w

[{ψ ′
0(T

′(L)) > p} ∪ {m′
L−L1/4,L

(
X′

T ′(L)

)
< aL1/4/2

}
,D < +∞]

≤ C28L
−aM ′/(8(M ′+1)).

PROOF. See [5]. �

LEMMA 34 (See Lemma 15 in [5]). Let q ≥ 1 be an integer. Consider two
sequences (ak)k≥1 and (ck)k≥1 of nonnegative real numbers such that

∑∞
k=1 ak < 1

and such that

c1 ≤ a1,(67)

and for every m ≥ 2 we have that

cm ≤ am +
m−1∑
k=1

am−kck.(68)

For all integers q ≥ 0, let Aq :=∑+∞
k=1 akk

q and Cq :=∑+∞
k=1 ckk

q . For t ≥ 0, let
A(t) :=∑+∞

k=1 ak exp(tk) and C(t) :=∑+∞
k=1 ck exp(tk). The following properties

hold:

(a) Assume that q ≥ 1 is such that Aq < +∞. Then Ck < +∞ for all 1 ≤ k ≤ q ,
and

Cq ≤ (1 − A0)
−1

(
Aq +

q∑
k=1

(
q

k

)
Cq−kAk

)
.

(b) Assume that A(t0) < +∞ for some t0 > 0. Then A(t) < 1 for all small enough
t > 0 and, for all such t ,

C(t) ≤ (1 − A(t)
)−1A(t).

PROOF. Part (a) is proved in [5]. As for part (b), observe that the power se-
ries a(z) :=∑+∞

k=1 akz
k has a convergence radius ≥ exp(t0). As a consequence,

the map t �→ a(exp(t)) is well defined and continuous for t ≤ t0. For t = 0,
a(exp(t)) =∑+∞

k=1 ak < 1 by assumption. By continuity, a(exp(t)) < 1 for all t > 0
small enough.



LARGE DEVIATIONS FOR A ONE-DIMENSIONAL MODEL OF X + Y → 2X 1003

Summing (67) and (68), we see that, for all m ≥ 1 and t ≥ 0,
∑m

i=1 ci exp(ti) ≤
a1 exp(t) + ∑m

i=2(ai exp(ti) + ∑i−1
k=1 ai−kck exp(ti)), so that

∑m
i=1 ci exp(ti) ≤∑m

i=1 ai exp(ti) + ∑m−1
k=1 ck exp(tk)(

∑m
i=k+1 ai−k exp(t (i − k))). As a conse-

quence,
∑m−1

i=1 ci exp(ti) ≤ A(t) + A(t)
∑m−1

k=1 ck exp(tk)). When A(t) < 1, we
deduce that

∑m−1
i=1 ci exp(ti) ≤ (1 − A(t))−1A(t). Letting m go to infinity, we

conclude the proof. �

LEMMA 35. Let (O, H,T) be a probability space, and (Hn)n≥1 be a nonde-
creasing sequence of sub-σ -algebras of H. Let (Bn)n≥1, (An

k)n≥2,k∈[[0,n−1]] and
(B ′

n)n≥2 be sequences of events in H such that the following properties hold:

(i) for all n ≥ 1, Bn ∈ Hn

(ii) for all n ≥ 2, Bn ⊂ Bn−1 ∩ (B ′
n ∪ An

0 ∪ An
1 ∪ · · · ∪ An

n−1).

Now assume that we have defined a sequence (an)n≥1 of nonnegative real num-
bers enjoying the following properties:

1. T(B1) ≤ a1;
2. for all n ≥ 2, T(B ′

n|Hn−1) ≤ a1 a.s.;
3. for all n ≥ 3, T(An

n−1|Hn−2) ≤ a2 a.s.;
4. for all n ≥ 2, T(An

0) ≤ an/2 a.s.;
5. for all n ≥ 2, T(An

1) ≤ an/2 a.s.;
6. for all n ≥ 4 and all 2 ≤ k ≤ n − 2, T(An

k |Hk−1) ≤ an−k+1 a.s.;

then, letting cn := T(Bn) for all n ≥ 1, the inequalities (67) and (68) are satisfied
by the two sequences (an)n≥1 and (cn)n≥1.

PROOF. First, observe that inequality (67) is a mere consequence of assump-
tion (1). Assume now that n ≥ 2. By the union bound,

T(Bn) ≤
n−1∑
k=0

T(An
k,Bn−1) + T(B ′

n,Bn−1).(69)

Now, since Bn−1 ∈ Hn−1, assumption (2) entails that T(B ′
n,Bn−1) ≤ a1 ×

T(Bn−1).
On the other hand, (4) and (5) imply that T(An

0) + T(An
1) ≤ an.

When n = 2, we deduce from (69) that T(Bn) ≤ T(An
0)+T(An

1)+T(B ′
n,Bn−1),

so that T(Bn) ≤ an + a1T(Bn−1), and so (68) is proved for n = 2.
Assume now that n ≥ 3. Since by assumption Bn−1 ⊂ Bn−2, T(An

n−1,Bn−1) ≤
T(An

n−1,Bn−2). Now, thanks to assumption (3) and to the fact that Bn−2 ∈ Hn−2,
T(An

n−1,Bn−2) ≤ a2T(Bn−2).
For n = 3, we deduce from (69) that T(Bn) ≤ T(An

0) + T(An
1) + T(An

n−1,

Bn−1)+T(B ′
n,Bn−1), so that T(Bn) ≤ an + a2T(Bn−2)+ a1T(Bn−1), and so (68)

is proved for n = 3.
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Assume now that n ≥ 4. For 2 ≤ k ≤ n − 2, the fact that Bn−1 ⊂ Bk−1 implies
that T(An

k,Bn−1) ≤ T(An
k,Bk−2). Since Bk−1 ∈ Hk−1, assumption (6) entails that

T(An
k,Bk−1) ≤ an−k+1T(Bk−1).

As a consequence, plugging the previous estimates into inequality (69), we ob-
tain that

T(Bn) ≤ an + a2T(Bn−2) + a1T(Bn−1) +
n−2∑
k=2

an−k+1T(Bk−1),

which is exactly (68). �

LEMMA 36 (See Lemma 17 in [5]). There exists 0 < L0 < +∞ not depending
on ε such that, for all L ≥ L0 there exists 0 < C29 < +∞ not depending on ε, such
that for all ε ∈ [0, ε0], the following properties hold:

(a) For all n ≥ 1, Qε
I0

(J0 ≥ n) ≤ C29n
3−M ′

.

(b) For all w = (F, r,A) ∈ L1 such that mr−L1/4,r (w) ≥ aL1/4/2, and φr−L(w) ≤
p, we have that, for all n ≥ 1, Qε

w(JrD ≥ n,D < +∞) ≤ C29n
3−M ′

.
(c) For all n ≥ 1, Qε

aδ0
(J0 ≥ n,U > T (nL)) ≤ C29n

3−M ′
.

In the sequel, we use Ft instead of F ε
t to alleviate notation.

PROOF OF PART (a). For all n ≥ 1, let

Bn :=
n⋂

i=1

{
ψ(i−1)L(T (iL)) > p

}∪ B ′
i ,

B ′
i := {miL−L1/4,iL

(
XT (iL)

)
< aL1/4/2

}
.

Since φz(Xt) ≤ ψz(t), the following inequality holds:

Qε
I0

(J0 > n) ≤ Qε
I0

(Bn).(70)

For n ≥ 2 and 1 ≤ k ≤ n − 1, let

�n
k := ψkL(T (nL)) − ψ(k−1)L(T (nL))

and let

An
0 := {ψ0(T (nL)) > 2−(n−1)p

}
, An

k := {�n
k > 2−(n−k)p

}
.

We now prove that the assumptions (i) and (ii) of Lemma 35 are satisfied, with
(O, H) being the space D equipped with the cylindrical σ -algebra, and probability
Qε

w , and Hn := FT (nL) for all n ≥ 1.
Assumption (i) is immediate. Note that, for n ≥ 2, ψ(n−1)L(T (nL)) = ψ0(T (n×

L)) +∑n−1
k=1 �n

k . Since 2−(n−1) +∑n−1
k=1 2−(n−k) = 1, we have that

{
ψ(n−1)L(T (nL)) > p

}⊂ {ψ0(T (nL)) > 2−(n−1)p
}∪
[

n−1⋃
k=1

{
�n

k > 2−(n−k)p
}]

,
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so that (ii) is established.
We now look for a sequence (an)n≥1 such that assumptions (1)–(6) of Lem-

ma 35 are satisfied. Assume that n ≥ 2. By the strong Markov property and Lem-
ma 24(c), using the fact that, by (25), L ≥ M , we have for any 1 ≤ k ≤ n − 1,
a.s.

Qε
I0

(
T (nL) − T (kL) ≥ (n − k)L/α1|FT ((k−1)L)

)≤ C10
(
(n − k)L

)−M ′
.

By the strong Markov property again, and Lemma 33(b),

Qε
I0

[
�n

k > 2−(n−k)p,T (nL) − T (kL) ≤ (n − k)L/α1|FT ((k−1)L)

]≤ aLh(n − k).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n − 1, a.s.

Qε
I0

(
An

k |FT ((k−1)L)

)≤ C10
(
(n − k)L

)−M ′ + aLh(n − k).(71)

Similarly, using Lemma 25, which is possible since m−L1/4,0(I0) ≥ aL1/4/2, we
have that

Qε
I0

(
T (nL) ≥ nL/α1

)≤ C11(nL1/2)−M ′
.

On the other hand, by Lemma 33(a), we have that

Qε
I0

[ψ0(T (nL)) > 2−np,T (nL) ≤ nL/α1] ≤ φ0(I0)h(n).

We deduce that

Qε
I0

(An
0) ≤ C11(nL1/2)−M ′ + φ0(I0)h(n).(72)

Now, for n ≥ 2, by part (a) of Lemma 30, the strong Markov property, the fact
that (n − 1)L ≤ nL − L1/4 and that there are at least a particles at the rightmost
visited site at time T (nL − L1/4), a.s.

Qε
I0

(
B ′

n|FT ((n−1)L)

)≤ C23L
−a/8.(73)

Finally, observe that, by the union bound, Qε
I0

(B1) is upper bounded by

Qε
I0

(
ψ0(T (L)) > p,T (L) ≤ L/α1

)+ Qε
I0

(
T (L) > L/α1

)
+ Qε

I0

(
mL−L1/4,L

(
XT (L)

)
< aL1/4/2

)
.

Thanks to Lemmas 24(a), 33(a) and 30(a), we obtain that

Qε
I0

(B1) ≤ φ0(I0)h(1) + C10L
−a/2 + C23L

−a/8.(74)

Now we see that, by inequalities (73) and (74), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := φ0(I0)h(1) + C10L
−a/2 + C23L

−a/8.

Now, for m ≥ 2, let

am := 2
[
C10
(
(m − 1)L

)−M ′ + aLh(m − 1) + C11(mL1/2)−M ′ + φ0(I0)h(m)
]
.
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Inequalities (71) and (72) entail assumptions (3), (4), (5), (6) of Lemma 35. Note
that the sequence (am)m≥1 depends on ε0 but not on ε. Moreover, observe that,
for large enough L (not depending on ε),

∑+∞
m=1 ammM ′−3 < +∞. On the other

hand, as L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying
each term in the definition of (am)m≥1. Part (a) of Lemma 36 then follows from
Lemma 34. �

PROOF OF PART (b). We use exactly the same strategy as for part (a).
For all n ≥ 1, let

Bn :=
n⋂

i=1

{
ψ ′

((i−1)L)(T
′(iL)) > p,D < +∞}∪ B ′

i ,

B ′
i := {m′

iL−L1/4,iL

(
X′

T ′(iL)

)
< aL1/4/2,D < +∞}.

Since φz(Xt) ≤ ψz(t), the following inequality holds:

Qε
w(JrD > n,D < +∞) ≤ Qε

w(Bn).(75)

For n ≥ 2 and 1 ≤ k ≤ n − 1, on {D < +∞}, let

�n
k := ψ ′

kL(T ′(nL)) − ψ ′
(k−1)L(T ′(nL))

and let

An
0 := {ψ ′

0(T
′(nL)) > 2−(n−1)p,D < +∞},

An
k := {�n

k > 2−(n−k)p,D < +∞},
for 1 ≤ k ≤ n − 1.

We now prove that the assumptions (i) and (ii) of Lemma 35 are satisfied, with
(O, H,T) being the space D equipped with the cylindrical σ -algebra, and proba-
bility Qε

w , and Hn := FT (rD+nL) =: F ′
T ′(nL) for all n ≥ 1.

Assumption (i) is immediate. Note that, for n ≥ 2, on {D < +∞}
ψ ′

(n−1)L(T ′(nL)) = ψ0(T
′(nL)) +∑n−1

k=1 �n
k . Since 2−(n−1) +∑n−1

k=1 2−(n−k) = 1,
we have that, on {D < +∞},
{
ψ ′

((n−1)L)(T
′(nL)) > p

}⊂ {ψ ′
0(T

′(nL)) > 2−(n−1)p
}∪
[

n−1⋃
k=1

{
�n

k > 2−(n−k)p
}]

,

so that (ii) is established.
We now look for a sequence (an)n≥1 such that assumptions (1)–(6) of Lem-

ma 35 are satisfied. Assume that n ≥ 2. By the strong Markov property and Lem-
ma 24(c), using the fact that, by (25), L ≥ M , we have for any 1 ≤ k ≤ n − 1, on
the event {D < +∞}, a.s.

Qε
w

(
T ′(nL) − T ′(kL) ≥ (n − k)L/α1|F ′

T ′((k−1)L)

)≤ C10
(
(n − k)L

)−M ′
.
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By the strong Markov property again, and Lemma 33(b), we have that, on {D <

+∞}, a.s.

Qε
w

[
�n

k > 2−(n−k)p,T ′(nL)−T ′(kL) ≤ (n−k)L/α1|F ′
T ′((k−1)L)

]≤ aLh(n−k).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n − 1, on {D < +∞}, a.s.

Qε
w

(
An

k |F ′
T ′((k−1)L)

)≤ C10
(
(n − k)L

)−M ′ + aLh(n − k).(76)

Similarly, using Lemma 31, which is possible since m−L1/4,0(w) ≥ aL1/4/2 and
φr−L(w) ≤ p, we have that

Qε
w

(
T ′(nL) ≥ nL/α1,D < +∞)≤ C24(nL1/2)−M ′+1.

On the other hand, by Corollary 7, we have that

Qε
w[ψ0(T

′(nL)) > 2−np,T ′(nL) ≤ nL/α1] ≤ C27Lh(n).

We deduce that

Qε
w(An

0) ≤ C24(nL1/2)−M ′+1 + C27Lh(n).(77)

Now, for n ≥ 2, by part (a) of Lemma 30, the strong Markov property, the fact
that (n − 1)L ≤ nL − L1/4, and that there are at least a particles at the rightmost
visited site at time T (rD + nL − L1/4), on {D < +∞}, a.s.

Qε
w

(
B ′

n|F ′
T ′((n−1)L)

)≤ C23L
−a/8.(78)

Finally, observe that, by Corollary 8,

Qε
w(B1) ≤ C28L

−aM ′/(8(M ′+1)).(79)

Now we see that, by inequalities (78) and (79), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := C23L
−a/8 + C28L

−aM ′/(8(M ′+1)).

Now, for m ≥ 2, let

am := 2
[
C10
(
(m − 1)L

)−M ′ + aLh(m − 1) + C24(mL1/2)−M ′+1 + C27Lh(m)
]
.

Inequalities (76) and (77) entail assumptions (3), (4), (5), (6) of Lemma 35.
Note that the sequence (am)m≥1 depends on ε0 but not on ε. Moreover, observe

that, for large enough L (not depending on ε),
∑+∞

m=1 ammM ′−3 < +∞. On the
other hand, as L goes to infinity,

∑+∞
m=1 am goes to zero, as can be checked by

studying each term in the definition of (am)m≥1. Part (b) of Lemma 36 then follows
from Lemma 34. �
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PROOF OF PART (c). For all n ≥ 1, let

Bn :=
n⋂

i=1

{
ψ(i−1)L(T (iL)) > p,U > T (iL)

}∪ B ′
i ,

B ′
i := {miL−L1/4,iL

(
XT (iL)

)
< aL1/4/2,U > T (iL)

}
.

Since φz(Xt) ≤ ψz(t), the following inequality holds:

Qε
w

(
J0 > n,U > T (nL)

)≤ Qε
I0

(Bn).(80)

For n ≥ 2 and 1 ≤ k ≤ n − 1, let

�n
k := ψkL(T (nL)) − ψ(k−1)L(T (nL))

and let

An
0 := {ψ0(T (nL)) > 2−(n−1)p,U > T (nL)

}
,

An
k := {�n

k > 2−(n−k)p,U > T (nL)
}

for 1 ≤ k ≤ n − 1.
We now prove that the assumptions (i) and (ii) of Lemma 35 are satisfied, with

(O, H) being the space D equipped with the cylindrical σ -algebra and probability
Qε

aδ0
, and Hn := FT (nL). Assumption (i) is immediate. Assumption (ii) is proved

as in (a).
We now look for a sequence (an)n≥1 such that assumptions (1)–(6) of Lem-

ma 35 are satisfied.
Assume that n ≥ 2. Exactly as in part (a), we can prove that, for n ≥ 2, and

1 ≤ k ≤ n − 1, a.s.

Qε
aδ0

(
An

k |FT ((k−1)L)

)≤ C10
(
(n − k)L

)−M ′ + aLh(n − k).(81)

Now, note that, on An
0, one has T (nL) ≤ (nL+1)/α2 since U > T (nL), whence

T (nL) ≤ nL/α1 when L ≥ α1/(α2 − α1).
On the other hand, by Lemma 33(a), we have that

Qε
aδ0

[ψ0(T (nL)) > 2−np,T (nL) ≤ nL/α1] ≤ φ0(aδ0)h(n).

We deduce that

Qε
aδ0

(An
0) ≤ φ0(aδ0)h(n).(82)

Exactly as in (a), a.s.

Qε
aδ0

(
B ′

n|FT ((n−1)L)

)≤ C23L
−a/8.(83)

Finally, observe that, by the union bound, Qε
aδ0

(B1) is upper bounded by

Qε
aδ0

(
ψ0(T (L)) > p,T (L) ≤ L/α1

)
+ Qε

aδ0

(
T (L) > L/α1

)+ Qε
I0

(
mL−L1/4,L

(
XT (L)

)
< aL1/4/2

)
.
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Thanks to Lemmas 24, 30(a) and 33(a), we obtain that

Qε
aδ0

(B1) ≤ φ0(aδ0)h(1) + C10L
−a/2 + C23L

−a/8.(84)

Now we see that, by inequalities (83) and (84), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := φ0(aδ0)h(1) + C10L
−a/2 + C23L

−a/8.

Now, for m ≥ 2, let

am := 2
[
C10
(
(m − 1)L

)−M ′ + aLh(m − 1) + φ0(aδ0)h(m)
]
.

Inequalities (81) and (82) entail assumptions (3), (4), (5), (6) of Lemma 35.
Note that the sequence (am)m≥1 depends on ε0 but not on ε. Moreover, observe

that, for large enough L (not depending on ε),
∑+∞

m=1 ammM ′−3 < +∞. On the
other hand, as L goes to infinity,

∑+∞
m=1 am goes to zero, as can be checked by

studying each term in the definition of (am)m≥1. Part (c) of Lemma 36 then follows
from Lemma 34. �

LEMMA 37 (See Lemma 17 in [5]). For every ε ∈ (0, ε0], there exists L1(ε) <

+∞ such that, for all L ≥ L1(ε), there exists 0 < C30(ε),C31(ε) < +∞ such that
the following properties hold:

(a) For all n ≥ 1, Qε
I0

(J0 ≥ n) ≤ C30(ε) exp(−C31(ε)n).

(b) For all w ∈ L1 such that mr−L1/4,r (w) ≥ aL1/4/2, and φr−L(w) ≤ p, we have
that, for all n ≥ 1, Qε

w(JrD ≥ n,D < +∞) ≤ C30(ε) exp(−C31(ε)n).
(c) For all n ≥ 1, Qε

aδ0
(J0 ≥ n,U > T (nL)) ≤ C30(ε) exp(−C31(ε)n).

PROOF OF PART (a). We use exactly the same definitions as in the proof of
part (a) of Lemma 36, except that we look for a different sequence (an)n≥1 such
that assumptions (1)–(6) of Lemma 35 are satisfied. Assume that n ≥ 2. By the
strong Markov property and Lemma 26, we have that, for any 1 ≤ k ≤ n − 1, a.s.

Qε
I0

(
T (nL)−T (kL) ≥ (n−k)L/α1|FT ((k−1)L)

)≤ C12(ε) exp
(−C13(ε)(n−k)L

)
.

As in the proof of Lemma 36, a.s.

Qε
I0

[
�n

k > 2−(n−k)p,T (nL) − T (kL) ≤ (n − k)L/α1|FT ((k−1)L)

]≤ aLh(n − k).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n − 1, a.s.

Qε
I0

(
An

k |FT ((k−1)L)

)≤ C12(ε) exp
(−C13(ε)(n − k)L

)+ aLh(n − k).(85)

By Lemma 26 again,

Qε
I0

(
T (nL) ≥ nL/α1

)≤ C12(ε) exp(−C13(ε)nL).

On the other hand, as in the proof of Lemma 36,

Qε
I0

[ψ0(T (nL)) > 2−np,T (nL) ≤ nL/α1] ≤ φ0(I0)h(n).
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We deduce that

Qε
I0

(An
0) ≤ C12(ε) exp(−C13(ε)nL) + φ0(I0)h(n).(86)

Now, for n ≥ 2, as in the proof of Lemma 36, a.s.

Qε
I0

(
B ′

n|FT ((n−1)L)

)≤ C23L
−a/8.(87)

Similarly,

Qε
I0

(B1) ≤ φ0(I0)h(1) + C10L
−a/2 + C23L

−a/8.(88)

Now we see that, by inequalities (87) and (88), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := φ0(I0)h(1) + C10L
−a/2 + C23L

−a/8.

Now, for m ≥ 2, let

am := 2
[
C12(ε) exp

(−C13(ε)(m − 1)L
)+ aLh(m − 1)

+ C12(ε) exp(−C13(ε)mL) + φ0(I0)h(m)
]
.

Inequalities (85) and (86) entail assumptions (3), (4), (5), (6) of Lemma 35. Now
observe that, for L large enough,

∑+∞
n=1 an exp(tn) < +∞ for t > 0 small enough.

As L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying each
term in the definition of (am)m≥1. Part (a) then follows from Lemma 34. �

PROOF OF PART (b). We reuse exactly the same definitions as in the proof
of part (b) of Lemma 36, except that we look for a different sequence (an)n≥1
such that assumptions (1)–(6) of Lemma 35 are satisfied. Assume that n ≥ 2. By
the strong Markov property and Lemma 26, we have for any 1 ≤ k ≤ n − 1, on
{D < +∞} a.s.

Qε
w

(
T ′(nL) − T ′(kL) ≥ (n − k)L/α1|F ′

T ′((k−1)L)

)
≤ C12(ε) exp

(−C13(ε)(n − k)L
)
.

As in Lemma 36, we have that, on {D < +∞} a.s.

Qε
w

[
�n

k > 2−(n−k)p,T ′(nL)−T ′(kL) ≤ (n−k)L/α1|F ′
T ′((k−1)L)

]≤ aLh(n−k).

We deduce that, for n ≥ 2, and 1 ≤ k ≤ n − 1, on {D < +∞}, a.s.

Qε
w

(
An

k |F ′
T ′((k−1)L)

)≤ C12(ε) exp
(−C13(ε)(n − k)L

)+ aLh(n − k).(89)

Similarly, using Lemma 32, which is possible since φr−L(w) ≤ p, we have that

Qε
w

(
T ′(nL) ≥ nL/α1,D < +∞)≤ C25(ε)L exp(−C26(ε)nL).

As in the proof of Lemma 36, we have that

Qε
w[ψ ′

0(T
′(nL)) > 2−np,T (nL) ≤ nL/α1] ≤ C27Lh(n).
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We deduce that

Qε
w(An

0) ≤ C25(ε)L exp(−C26(ε)nL) + C27Lh(n).(90)

Now, for n ≥ 2, as in Lemma 36 a.s.

Qε
w

(
B ′

n|F ′
T ′((n−1)L)

)≤ C23L
−a/8(91)

and

Qε
w(B1) ≤ C28L

−aM/(16(M+1)).(92)

Now we see that, by inequalities (91) and (92), (1) and (2) of Lemma 35 are
satisfied if we let

a1 := C23L
−a/8 + C28L

−aM/(16(M+1)).

Now, for m ≥ 2, let

am := 2
[
C12(ε) exp

(−C13(ε)(m − 1)L
)+ aLh(m − 1)

+ C25(ε)L exp(−C26(ε)nL) + C27Lh(m)
]
.

Inequalities (89) and (90) entail assumptions (3), (4), (5), (6) of Lemma 35. Now
observe that, for L large enough,

∑+∞
n=1 an exp(tn) < +∞ for t > 0 small enough.

As L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying each
term in the definition of (am)m≥1. Part (b) then follows from Lemma 34. �

PROOF OF PART (c). We use exactly the same definitions as in the proof of
Lemma 36(c), except that we look for a different sequence (an)n≥1 such that as-
sumptions (1)–(6) of Lemma 35 are satisfied.

Assume that n ≥ 2. Exactly as in the proof of part (a) of the present lemma, we
can prove that, for n ≥ 2, and 1 ≤ k ≤ n − 1, a.s.

Qε
I0

(
An

k |FT ((k−1)L)

)≤ C12(ε) exp
(−C13(ε)(n − k)L

)+ aLh(n − k).(93)

As in the proof of Lemma 36(c),

Qε
aδ0

(An
0) ≤ φ0(aδ0)h(n).(94)

Similarly, a.s.

Qε
aδ0

(
B ′

n|FT ((n−1)L)

)≤ C23L
−a/8(95)

and

Qε
aδ0

(B1) ≤ φ0(aδ0)h(1) + C10L
−a/2 + C23L

−a/8.(96)

Now we see that, by inequalities (95) and (96), (1) and (2) of Lemma 35 are satis-
fied if we let

a1 := φ0(aδ0)h(1) + C10L
−a/2 + C23L

−a/8.
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Now, for m ≥ 2, let

am := 2
[
C12(ε) exp

(−C13(ε)(m − 1)L
)+ aLh(m − 1) + φ0(aδ0)h(m)

]
.

Inequalities (93) and (94) entail assumptions (3), (4), (5), (6) of Lemma 35. Now
observe that, for L large enough,

∑+∞
n=1 an exp(tn) < +∞ for t > 0 small enough.

As L goes to infinity,
∑+∞

m=1 am goes to zero, as can be checked by studying each
term in the definition of (am)m≥1. Part (c) then follows from Lemma 34. �

LEMMA 38. Let (Yi)i≥1 be a sequence of random variables on a probability
space (O, H,T), and (Hi)i≥0 an nondecreasing sequence of sub-σ -algebras of H
such that H0 = {∅,O}. Assume that the following properties hold:

• for all i ≥ 1, Yi is measurable with respect to Hi ;
• there exists an integer q ≥ 1 and a constant 0 < c1(q) < +∞ such that a.s.

ET(Y
2q
i |Hi−1) ≤ c1(q).

Then there exists a constant 0 < c2(q) < +∞, depending only on q and c1(q),
such that for all t ≥ 0 and n ≥ 1,

T

(
sup
k≥n

k−1

∣∣∣∣∣Y1 + · · · + Yk −
k∑

i=1

ET(Yi |Hi−1)

∣∣∣∣∣≥ t

)
≤ c2(q)n−q t−2q .

PROOF. Observe that ET(Yi |Hi−1) exists and is finite for all i since ET(Y
2q
i |

Hi−1) < +∞. Now let Zi := Yi − ET(Yi |Hi−1). Observe that, with our as-
sumptions, ET(Zi |Hi−1) = 0 a.s. Moreover, thanks, e.g., to Jensen’s inequality,
ET(Z

2q
i |Hi−1) ≤ c3(q), where c3(q) depends only on q and c1(q).

We now prove by induction on � that, for all � ∈ [[0, q]] there exists a constant
0 < c4(�) < +∞, depending only on �, q and c1(q), such that, for all n ≥ 1,

ET

(
(Z1 + · · · + Zn)

2�)≤ c4(�)n
�.(97)

For � = 0, the result is trivially true for all n ≥ 1. Now consider � ∈ [[0, q − 1]],
assume that the result holds for �, and let us prove that it holds for � + 1. For all
n ≥ 1,

ET

(
(Z1 + · · · + Zn+1)

2�+2)= 2�+2∑
k=0

(
2� + 2

k

)
ET

(
(Z1 + · · · + Zn)

2�+2−kZk
n+1
)
.

With our assumptions, ET((Z1 + · · · + Zn)
2�+1Zn+1) = 0. Now, by Jensen’s in-

equality, ET(Z2
n+1|Hn) ≤ c3(q + 1)1/(q+1) a.s. By our induction hypothesis, we

see that ET((Z1 + · · · + Zn)
2�) ≤ c4(�)n

�, with c4(�) depending only on q, �, and
c1(q). As a consequence, ET((Z1 + · · · + Zn)

2�Z2
n+1) ≤ c4(�)c3(q)1/(q+1)nq . On

the other hand, by Jensen’s inequality, for k ≥ 3, ET|(Z1 + · · · + Zn)
2�+2−k| ≤

ET((Z1 + · · · + Zn)
2�)(2�+2−k)/2� ≤ (c4(�)n

�)(2�+2−k)/2�. Similarly, ET(|Zk
n+1||
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Hn) ≤ c3(q)k/2q a.s., so that |ET((Z1 + · · · + Zn)
2�+2−kZk

n+1)| ≤ c3(q)k/2q) ×
(c4(�)n

�)(2�+2−k)/2�. Putting these estimates together, we obtain that the differ-
ence

ET

(
(Z1 + · · · + Zn+1)

2�+2)− ET

(
(Z1 + · · · + Zn)

2�+2)
is bounded above by

(
2� + 2

2

)
c4(�)c3(q)1/qn� +

2�∑
k=3

(
2� + 2

2� + 2 − k

)
c3(q)k/2q(c4(�)n

�)(2�+2−k)/2�.

Since the are only terms of order n� or less in the right-hand side of the above
inequality, summing, we deduce that ET((Z1 + · · · + Zn)

2�+2) ≤ c4(� + 1)n�+1

for all n ≥ 1, with a constant c4(� + 1) depending only on �, q , and c1(q), so the
induction step from q to q + 1 is complete.

Now observe that the sequence (Mk)k≥0 defined by M0 := 0 and Mk :=
k−1(Z1 + · · · + Zk) is a martingale with respect to (Hk)k≥0. As a consequence,
using the maximal inequality for martingales and inequality (97), we see that, for
all integers n ≥ 1 and � ≥ 0,

T
(

sup
2�n≤k≤2�+1n

|Mk| ≥ t
)

≤ c4(q)(2�+1n)−qt−2q .

By the union bound,

T

(
sup
k≥n

k−1

∣∣∣∣∣Y1 + · · · + Yk −
k∑

i=1

ET(Yi |Hi−1)

∣∣∣∣∣≥ t

)

is bounded above by

+∞∑
�=0

T
(

sup
2�n≤k≤2�+1n

|Mk| ≥ t
)

and so by

+∞∑
�=0

c4(q)(2�+1n)−qt−2q .

The conclusion follows. �

LEMMA 39. Let (Yi)i≥1 be a sequence of nonnegative integer-valued random
variables on a probability space (O, H,T), and (Hi )i≥0 an nondecreasing se-
quence of sub-σ -algebras of H such that H0 = {∅,O}. Assume that the following
properties hold:

• for all i ≥ 1, Yi is measurable with respect to Hi ;
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• there exists 0 < c1, c2 < +∞ such that for all i ≥ 1 and k ≥ 0, T(Yi ≥
t |Hi−1) ≤ c1 exp(−c2k).

Then there exists c3 depending only on c1, c2 such that, for all t > c3, there
exist 0 < c5, c6 < +∞ such that, for all 1 ≤ n ≤ m, T(Y1 + · · · + Yn ≥ mt) ≤
c5 exp(−c6m).

PROOF. For 0 < λ < c2, one has a.s.

ET(exp(λYi)|Hi−1) ≤ 1 +
+∞∑
k=1

(
eλk − eλ(k−1))T(Yi ≥ k|Hi−1)

≤ 1 + c1(1 − e−λ)
eλ−c2

1 − eλ−c2
.

Letting j (λ) := c1(1 − e−λ) eλ−c2

1−eλ−c2
, we deduce that

ET

(
exp
(
λ(Y1 + · · · + Ym)

))≤ (1 + j (λ)
)m

.

Then, by Markov’s inequality,

T(Y1 + · · · + Ym ≥ mt) ≤ exp(−mλt)ET

(
exp
(
λ(Y1 + · · · + Ym)

))
,

so that

T(Y1 + · · · + Ym ≥ mt) ≤ exp
[−m
(
λt + log

(
1 + j (λ)

))]
.(98)

As λ goes to zero, we see that j (λ) = c3λ + o(λ), with c3 := e−c2

1−e−c2
. Choosing

λ small enough in (98) yields the result when n = m. For n ≤ m, observe that by
assumption Y1 + · · · + Yn ≤ Y1 + · · · + Ym. �

LEMMA 40. For L ≥ L0, there exists 0 < C32,C33 < +∞ such that, for all
ε ∈ [0, ε0], and all k ≥ 1,

(a) Qε
I0

(rSk
> kC33 + u,K > k) ≤ C32k

2u−4;

(b) Qε
aδ0

(rSk
> kC33 + u,U = +∞,K > k) ≤ C32k

2u−4.

PROOF. Fix L ≥ L0. Observe that, for any k ≥ 1, on {K > k},

rSk
= r0 + (rS1 − r0) +

k−1∑
j=1

(rSj+1 − rDj
+ rDj

− rSj
)1(K ≥ j).(99)

Observe that, for w = XrSj
with 1 ≤ j ≤ K , denoting w = (F, r,A), the three

conditions w ∈ L1, φr−L(w) ≤ p, and mr−L1/4,r (w) ≥ aL1/4/2 are satisfied. As a
consequence, by Lemma 27 and the strong Markov property, for all 1 ≤ j ≤ k − 1,
and all t > 0, a.s. Qε

I0
(rDj

− rSj
> t,K ≥ j |FSj

) ≤ C18(t
−M ′ + L exp(−C19t)).
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Now letting, for j ≥ 1, Yj := (rDj
− rSj

)1(K ≥ j), and Hj := FSj+1 , we see that
the assumptions of Lemma 38 are satisfied with q = 2, since M ′ ≥ a + 8.

Thanks to the above observation on w = XrSj
, and to the fact that, on {K ≥ j},

rSj+1 − rDj
= LJrDj

, we see that, by Lemma 36(b) and the strong Markov prop-
erty, for all 1 ≤ j ≤ k − 1, and all t > 0, a.s. Qε

I0
(rSj+1 − rDj

> t,K ≥ j |FSj
) ≤

C29(�L−1t�)3−M ′
. Similarly, thanks to Lemma 36(a), one also has that, for all

t > 0, a.s. Qε
I0

(rS1 − r0 > t,K ≥ j |FSj
) ≤ C29(�L−1t�)3−M ′

.
Now letting Y1 := rS1 − r0, and, for j ≥ 2, Yj := (rSj

− rDj−1)1(K ≥ j), and
Hj := FSj

, we see that the assumptions of Lemma 38 are again satisfied with
q = 2. Applying Lemma 38, we deduce the existence of two constants c, d not
depending on ε such that for all k ≥ 1 and u > 0,

Qε
I0

(
k−1∑
j=1

(rDj
− rSj

)1(K ≥ j) > kc + u,K > k

)
≤ dk2u−4

and

Qε
I0

(
rS1 − r0 +

k−1∑
j=1

(rSj+1 − rDj
)1(K ≥ j) > kc + u,K > k

)
≤ dk2u−4.

Part (a) of the lemma then follows from the two above inequalities, (99) and the
union bound.

To prove part (b), we note that, for all k ≥ 1, on {K > k,U = +∞},
rSk

= r0 + (rS1 − r0)1(U = +∞)
(100)

+
k−1∑
j=1

(rSj+1 − rDj
+ rDj

− rSj
)1(K ≥ j).

We can use the same argument as in the proof of part (a) to deal with
∑k−1

j=1(rDj
−

rSj
)1(K ≥ j) and

∑k−1
j=1(rSj+1 − rDj

)1(K ≥ j). To deal with the remaining term
(rS1 − r0)1(U = +∞), observe that rS1 − r0 = LJ0, and apply Lemma 36(c). �

LEMMA 41. For all ε ∈ (0, ε0], and L ≥ L1(ε), there exist 0 < C34(ε),
C35(ε), C36(ε) < +∞ such that, for all k ≤ m,

(a) Qε
I0

(rSk
> mC34(ε),K > k) ≤ C35(ε) exp(−C36(ε)m);

(b) Qε
aδ0

(rSk
> mC34(ε),U = +∞,K > k) ≤ C35(ε) exp(−C36(ε)m).

PROOF. Adapt the proof of Lemma 40, using Lemma 39 instead of Lemma 38,
and Lemma 37 instead of Lemma 36. �

PROPOSITION 17. For all L ≥ L0, there exists 0 < C37 < +∞ not depending
on ε such that, for all ε ∈ [0, ε0],
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(a) Eε
I0

(κ2) ≤ C37,Eε
I0

((rκ)2) ≤ C37;
(b) Eε

aδ0
(κ2|U = +∞) ≤ C37,Eε

aδ0
((rκ)2|U = +∞) ≤ C37.

PROOF. Observe that, for any integer � ≥ 1,

{κ > t} ⊂ {K > �} ∪
�⋃

k=1

{K = k, Sk > t},

whence

{κ > t} ⊂ {K > �} ∪
�⋃

k=1

{K = k, rSk
≥ �α1t�} ∪

{⋃
s≥t

rs < �α1s�
}
.(101)

By the union bound,

Qε
I0

(κ > t) ≤ Qε
I0

(K > �) +
�∑

k=1

Qε
I0

(rSk
≥ �α1t�,K = k)

(102)

+ Qε
I0

(⋃
s≥t

rs < �α1s�
)
.

Now remember δ3 defined in Corollary 5 and let � := −4 log((1 − δ3)
−1�t�).

By (25), φr−L(I0) ≤ p so that Qε
I0

(D < +∞) ≤ 1−δ3. Moreover, for all j ≥ 1, on
K ≥ j , φr−L(XrSj

), so that, by the strong Markov property, we have a.s. Qε
I0

(D <

+∞|FSj
) ≤ 1 − δ3. We deduce that

Qε
I0

(K > �) ≤ (1 − δ3)
� ≤ t−4.(103)

Now observe that, for large enough t (not depending on ε), �α1t� ≥ �C33 +
α1t/2. Using Lemma 40(a), we deduce that, for all 1 ≤ k ≤ �,

Qε
I0

(rSk
> �α1t�,K > k) ≤ C32k

2(α1t/2)−4.(104)

Finally, by Lemma 20,

Qε
I0

[⋃
s≥t

rs < �α1s�
]

≤ C5t
−M ′

.(105)

Plugging (103), (104) and (105) into (102), we deduce the conclusion of part
(a) regarding Eε

I0
(κ2). The conclusion for Eε

I0
((rκ)2) follows by an application of

Lemma 2.
As for part (b), observe that the estimate in (103) is still valid when I0

is replaced by aδ0. On the other hand, the estimate obtained in (104) follows
from Lemma 40(b). Then, by definition, the event U = +∞ rules out the event⋃

s≥t rs < �α1s�. Part (b) is then proved exactly as part (a), noting that, Qaδ0(U =
+∞) ≥ 1 − δ2. �
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PROPOSITION 18. For all ε ∈ (0, ε0], and L ≥ L1(ε), there exists 0 < C38(ε),
C39(ε) < +∞ such that:

(a) Eε
I0

(exp(−C38(ε)κ)) ≤ C39(ε),Eε
I0

(exp(−C38(ε)rκ) ≤ C39(ε);
(b) Eε

aδ0
(exp(−C38(ε)κ|U = +∞) ≤ C39(ε),Eε

aδ0
(exp(−C38(ε)rκ |U = +∞) ≤

C39(ε).

PROOF. The proof is very similar to the proof of Proposition 17, but this time,
we use � := �(1/2)C34(ε)

−1α1t�, so that the right-hand side of (103) now decays
exponentially as t → +∞.

We then use Lemma 41 instead of Lemma 40, noting that, for large enough t ,
�α1t� ≥ �C34(ε). Finally, we use Lemma 22 instead of Lemma 20, and the con-
clusion follows as in the proof of Proposition 17. �

It remains to note that Proposition 12 is a mere rephrasing of Propositions 17
and 18 above.

REFERENCES

[1] ALVES, O. S. M., MACHADO, F. P. and POPOV, S. Y. (2002). The shape theorem for the frog
model. Ann. Appl. Probab. 12 533–546. MR1910638

[2] BALTRUNAS, A., DALEY, D. J. and KLÜPPELBERG, C. (2004). Tail behaviour of the busy
period of a GI/GI/1 queue with subexponential service times. Stochastic Process. Appl.
111 237–258. MR2056538

[3] BRAMSON, M. (1983). Convergence of solutions of the Kolmogorov equation to travelling
waves. Mem. Amer. Math. Soc. 44 iv+190. MR705746

[4] COMETS, F., QUASTEL, J. and RAMÍREZ, A. F. (2007). Fluctuations of the front in a stochas-
tic combustion model. Ann. Inst. H. Poincaré Probab. Statist. 43 147–162. MR2303116

[5] COMETS, F., QUASTEL, J. and RAMÍREZ, A. F. (2009). Fluctuations of the front in a one
dimensional model of x + y → 2x. Trans. Amer. Math. Soc. 361 6165–6189.

[6] DEMBO, A. and ZEITOUNI, O. (1998). Large Deviations Techniques and Applications, 2nd
ed. Applications of Mathematics (New York) 38. Springer, New York. MR1619036

[7] DENISOV, D., DIEKER, A. B. and SHNEER, V. (2008). Large deviations for random walks un-
der subexponentiality: The big-jump domain. Ann. Probab. 36 1946–1991. MR2440928

[8] DURRETT, R. (1996). Probability: Theory and Examples, 2nd ed. Duxbury Press, Belmont,
CA. MR1609153

[9] EBERT, U. and VAN SAARLOOS, W. (2000). Front propagation into unstable states: Universal
algebraic convergence towards uniformly translating pulled fronts. Phys. D 146 1–99.
MR1787406

[10] ESARY, J. D., PROSCHAN, F. and WALKUP, D. W. (1967). Association of random variables,
with applications. Ann. Math. Statist. 38 1466–1474. MR0217826

[11] FISHER, R. A. (1937). The wave of advance of advantageous genes. Ann. Eugenics 7 355–369.
[12] KESTEN, H. and SIDORAVICIUS, V. (2005). The spread of a rumor or infection in a moving

population. Ann. Probab. 33 2402–2462. MR2184100
[13] KOLMOGOROV, A., PETROVSKY, I. and PISCOUNOV, N. (1937). Etude de l’équation de la

diffusion avec croissance de la quantité de matière et son application à un problème bi-
ologique. Bull. Univ. Etat Moscou Sér. Int. Sect. A Math. Mécan. 1 1–25.

[14] MAI, J., SOKOLOV, I. M. and BLUMEN, A. (1996). Front propagation and local ordering in
one-dimensional irreversible autocatalytic reactions. Phys. Rev. Lett. 77 4462–4465.

http://www.ams.org/mathscinet-getitem?mr=1910638
http://www.ams.org/mathscinet-getitem?mr=2056538
http://www.ams.org/mathscinet-getitem?mr=705746
http://www.ams.org/mathscinet-getitem?mr=2303116
http://www.ams.org/mathscinet-getitem?mr=1619036
http://www.ams.org/mathscinet-getitem?mr=2440928
http://www.ams.org/mathscinet-getitem?mr=1609153
http://www.ams.org/mathscinet-getitem?mr=1787406
http://www.ams.org/mathscinet-getitem?mr=0217826
http://www.ams.org/mathscinet-getitem?mr=2184100


1018 J. BÉRARD AND A. F. RAMÍREZ

[15] MAI, J., SOKOLOV, I. M. and BLUMEN, A. (2000). Front propagation in one-dimensional
autocatalytic reactions: The breakdown of the classical picture at small particle concen-
trations. Phys. Rev. E 62 141–145.

[16] MAI, J., SOKOLOV, I. M., KUZOVKOV, V. N. and BLUMEN, A. (1997). Front form and veloc-
ity in a one-dimensional autocatalytic a + b → 2a reaction. Phys. Rev. E 56 4130–4134.

[17] MIKOSCH, T. and NAGAEV, A. V. (1998). Large deviations of heavy-tailed sums with appli-
cations in insurance. Extremes 1 81–110. MR1652936

[18] PANJA, D. (2004). Effects of fluctuations in propagating fronts. Phys. Rep. 393 87–174.
[19] PISZTORA, A. and POVEL, T. (1999). Large deviation principle for random walk in a quenched

random environment in the low speed regime. Ann. Probab. 27 1389–1413. MR1733154
[20] PISZTORA, A., POVEL, T. and ZEITOUNI, O. (1999). Precise large deviation estimates for a

one-dimensional random walk in a random environment. Probab. Theory Related Fields
113 191–219. MR1676839

[21] RAMÍREZ, A. F. and SIDORAVICIUS, V. (2004). Asymptotic behavior of a stochastic combus-
tion growth process. J. Eur. Math. Soc. (JEMS) 6 293–334. MR2060478

[22] VAN SAARLOOS, W. (2003). Front propagation into unstable states. Phys. Rep. 386 29–222.

UNIVERSITÉ DE LYON

UNIVERSITÉ LYON 1
INSTITUT CAMILLE JORDAN CNRS UMR 5208
43, BOULEVARD DU 11 NOVEMBRE 1918
F-69622 VILLEURBANNE CEDEX

FRANCE

E-MAIL: jean.berard@univ-lyon1.fr

FACULTAD DE MATEMÁTICAS

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

VICUÑA MACKENNA 4860, MACUL

SANTIAGO

CHILE

E-MAIL: aramirez@mat.puc.cl

http://www.ams.org/mathscinet-getitem?mr=1652936
http://www.ams.org/mathscinet-getitem?mr=1733154
http://www.ams.org/mathscinet-getitem?mr=1676839
http://www.ams.org/mathscinet-getitem?mr=2060478
mailto:jean.berard@univ-lyon1.fr
mailto:aramirez@mat.puc.cl

	Introduction
	Construction and basic properties
	Construction of the process
	Configuration space
	Explicit construction of the process

	Properties of hitting times

	Proof of the large deviations principle for t-1rt
	Speedup probabilities
	Random variables on D
	An elementary speedup estimate
	Definition of the renewal structure
	Properties of the renewal structure

	Slowdown large deviations
	Proof of Theorem 2(a) and (c)
	Proof of Theorem 3
	Proof of Theorem 2(b)
	Proof of Proposition 15
	Step 1: Comparison with a sum of i.i.d. random variables
	Step 2: Large deviations estimates for i.i.d. random variables
	Step 3: Conclusion


	Appendix A: Large deviations of i.i.d. random variables with exp(-t1/2) tails
	Appendix B: Negligibility of remote particles
	Appendix C: Estimates on the renewal structure
	References
	Author's Addresses

