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INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE
MODEL WITH UNBOUNDED CONDUCTANCES

BY M. T. BARLOW1 AND J.-D. DEUSCHEL2

University of British Columbia and Technische Universität Berlin

We study a continuous time random walk X in an environment of i.i.d.
random conductances μe ∈ [1,∞). We obtain heat kernel bounds and prove
a quenched invariance principle for X. This holds even when Eμe = ∞.

1. Introduction. We consider the Euclidean lattice Z
d with d ≥ 2. Let Ed ,

the set of nonoriented nearest neighbour bonds, and, writing e = {x, y} ∈ Ed , let
(μe, e ∈ Ed) be nonnegative r.v., defined on a probability space (�,P). Through-
out this paper we will assume that (μe) is stationary and ergodic, and that its law is
invariant under symmetries of Z

d . We write μxy = μ{x,y} = μyx , and let μxy = 0
if x �∼ y. Set

μx = ∑
y

μxy, P (x, y) = μxy

μx

.(1.1)

There are two natural continuous time random walks associated with μ. Both jump
according to the transitions P(x, y). The first (the constant speed random walk or
CSRW) waits at x for an exponential time with mean 1 while the second (the
variable speed random walk or VSRW) waits at x for an exponential time with
mean 1/μx . Write LC and LV for their generators, given by

LCf (x) = μ−1
x

∑
y

μxy

(
f (y) − f (x)

)
,(1.2)

LV f (x) = ∑
y

μxy

(
f (y) − f (x)

)
.(1.3)

Set

E (f, g) = 1

2

∑
x∈Zd

∑
y∈Zd

μxy

(
f (x) − f (y)

)(
g(x) − g(y)

)
.
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Let νx = 1, x ∈ Z
d . It is easy to check that if f , g have finite support, then

E (f, g) = −∑
x

g(x)
∑
y

μxy

(
f (y) − f (x)

)
,(1.4)

and so

E (f, g) = −〈LV f,g〉ν = −〈LCf,g〉μ.(1.5)

Thus the VSRW is the Markov process associated with the Dirichlet form
(E , D(E )) on L2(ν) and has stationary measure ν while the CSRW is the Markov
process associated with the Dirichlet form (E , D(E )) on L2(μ) and has stationary
measure μ.

Let X = (Xt , t ≥ 0,P x
ω , x ∈ Z

d) be either the CSRW or the VSRW. Write L for
its generator, θ for its invariant measure (so either θ = ν or θ = μ) and let

qω
t (x, y) = P x

ω(Xt = y)

θy

(1.6)

be the transition density of X (or heat kernel associated with L). This model, of a
reversible (or symmetric) random walk in a random environment, is often called
the random conductance model or RCM, particularly in the special case when
(μe) are i.i.d. We are interested in the long-range behavior of X and, in particular,
in obtaining heat kernel bounds for qω

t (x, y) and a quenched or P-a.s. invariance
principle for X. When Eμe < ∞, an averaged invariance principle is obtained
in [17].

We begin by discussing the case when (μe) are i.i.d. If μe = 0 then X never
jumps across e. So if p+ = P(μe > 0) is less than pc(d), the critical probability
for bond percolation in Z

d , then X is P × P x
ω -a.s. confined to a finite set. Thus we

restrict to the case p+ > pc. A number of different authors have studied this model
under various restrictions on the support of μe. If μe ∈ {0,1} then this problem
reduces to that of a random walk on (supercritical) percolation clusters (see [1]
for heat kernel bounds, and [10, 29, 34] for quenched invariance principles). More
generally it is useful to consider the following special cases:

Case 0. c−1 ≤ μe ≤ c for some c ≥ 1;
Case 1. 0 ≤ μe ≤ 1;
Case 2. 1 ≤ μe < ∞.
For case 0, heat kernel bounds follow from the results in [18, 19], and a

quenched invariance principle is proved in [34]. Case 1 is treated in [11, 12, 30].
(The papers [11, 12] consider a discrete time random walk.) These papers prove
an invariance principle, with a strictly positive diffusion constant σ 2. Further, [11]
shows that Gaussian heat kernel bounds do not hold in general in this case.

In this paper we will look at case 2. There is not a great difference between
the CSRW and VSRW in case 1, but in case 2, and in particular when Eμe = ∞,
the VSRW and CRSW do have different behaviors. Also, while the discrete time
random walk with jump probabilities P(x, y) given by (1.1) behaves in a similar
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fashion to the CSRW, there is no simple discrete time analogue of the VSRW in
case 2. We remark that our result for the CSRW also gives an invariance principle
for the discrete time random walk with jump probabilities P(x, y).

Let

X
(ε)
t = εXt/ε2, t ≥ 0.(1.7)

Our first main result is the following quenched functional central limit theorem
(QFCLT):

THEOREM 1.1. Let d ≥ 2. Suppose that (μe) are i.i.d., and μe ≥ 1 P-a.s.
(a) Let X be the VSRW. Then P-a.s. X(ε) converges (under P 0

ω) in law to a
Brownian motion on R

d with covariance matrix σ 2
V I where σV > 0 is nonrandom.

(b) Let X be the CSRW. Then P-a.s. X(ε) converges (under P 0
ω) in law to a

Brownian motion on R
d with covariance matrix σ 2

CI where

σ 2
C =

{
σ 2

V /(2dEμe), if Eμe < ∞,
0, if Eμe = ∞.

We also have heat kernel bounds for the VSRW.

THEOREM 1.2. Let d ≥ 2. Suppose that (μe) are i.i.d. and μe ≥ 1 P-a.s. Let
qω
t (x, y) be the heat kernel for the VSRW. Let η ∈ (0,1). There exist r.v. Ux,x ∈ Z

d ,
such that

P
(
Ux(ω) ≥ n

) ≤ c1 exp(−c2n
η)(1.8)

and constants ci (depending on d and the distribution of μe) such that the follow-
ing hold.

(a) For all x, y, t

qω
t (x, y) ≤ c3t

−d/2.(1.9)

(b) If |x − y| ∨ t1/2 ≥ Ux , then

qω
t (x, y) ≤ c3t

−d/2e−c4|x−y|2/t when t ≥ |x − y|,(1.10)

qω
t (x, y) ≤ c3 exp

(−c4|x − y|(1 ∨ log(|x − y|/t)
))

(1.11)
when t ≤ |x − y|.

(c) Let x, y ∈ Z
d , t > 0. Then

qω
t (x, y) ≥ c5t

−d/2e−c6|x−y|2/t if t ≥ U2
x ∨ |x − y|1+η.(1.12)

(d) Let x, y ∈ Z
d and t ≥ c7 ∨ |x − y|1+η. Then

c8t
−d/2e−c9|x−y|2/t ≤ Eqω

t (x, y) ≤ c10t
−d/2e−c11|x−y|2/t .(1.13)
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Using Theorems 1.1 and 1.2 we can obtain a parabolic Harnack inequality (PHI)
for qω

t (for the VSRW) by the same arguments as in [3] (see Theorem 4.7). Since
the CSRW is a time change of the VSRW, harmonic functions and Green’s func-
tions are the same for both processes. The PHI for the VSRW implies an ellip-
tic Harnack inequality (see Corollary 4.8) which therefore holds for both CSRW
and VSRW. Combining the invariance principle and the PHI, we obtain, using the
methods of [3], a local limit theorem for the VSRW (see Theorem 5.14).

When d ≥ 3 the calculations in Section 6 of [3] then give bounds on the Green’s
function gω(x, y) defined by

gω(x, y) =
∫ ∞

0
qω
t (x, y) dt.(1.14)

THEOREM 1.3. Let d ≥ 3, and suppose that (μe) are i.i.d. and μe ≥ 1 P-a.s.
(a) There exist constants c1, . . . , c4 and r.v. Ux , x ∈ Z

d such that

P(Ux ≥ n) ≤ c1 exp(−c2n
1/3)(1.15)

and
c3

|x − y|d−2 ≤ gω(x, y) ≤ c4

|x − y|d−2 if |x − y| ≥ Ux ∧ Uy.(1.16)

(b) Let C = 	(d
2 − 1)/(2πd/2σ 2

V ). For any ε > 0 there exists M = M(ε,ω) with
P(M < ∞) = 1 such that

(1 − ε)C

|x|d−2 ≤ gω(0, x) ≤ (1 + ε)C

|x|d−2 for |x| > M(ω).(1.17)

(c) We have, P-a.s.,

lim|x|→∞|x|2−dgω(0, x) = lim|x|→∞|x|2−d
Egω(0, x) = C.(1.18)

REMARK 1.4. (b) and (c) in Theorem 1.3 use the QFCLT, which in turn uses
the ergodic theorem. As we do not have any rate of convergence in the QFCLT this
means that [unlike the r.v. Ux in (a)] we have no control on the tail of the r.v. M

in (b).

The main difference between the RCM and the percolation case is the possibility
of traps. Suppose e = {x, y} is a bond with μe = K  1, and that all the other
bonds e′ adjacent to x and y have μe′ � 1. Then P(x, y) � 1 − c/K , so X will
jump between x and y O(K) times before leaving {x, y}, and thus the CSRW will
be trapped for a time of order K in {x, y}. However, for the VSRW each jump
takes only O(K−1), so the total time spent in {x, y} is only O(1). A similar effect
will arise from finite clusters of bonds of high conductivity.

The presence of traps of this kind is why we have, when Eμe = ∞, that the
diffusion constant σ 2

C for the CSRW is zero. In this case it is natural to ask if
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a different scaling will give a nontrivial limit. There is a connection here with
“aging” (see [6–8]), and in [2] it is proved that if the tail distribution P(μe > t) ∼
t−α , then εαXt/ε2 converges to the “fractional kinetic” motion with parameter α

(see [8]).
While we have written this paper for the case of i.i.d. conductances μe, our ar-

guments do not require the full strength of this. In case 0, when the conductances
are bounded (both above and below), then uniform upper and lower Gaussian heat
kernel estimates, as in Theorem 1.2, are well known (see [18]). It follows (see Re-
mark 6.3) that Theorem 1.1. holds for any stationary ergodic environment. On the
other hand, in the unbounded case 2, there exist stationary ergodic environments
such that the VSRW can explode in finite time; for an example, see Remark 6.6
below.

For the Gaussian bounds in Theorem 1.2 we need to control the sizes of the
clusters of high conductivity which is done by comparison between the graph met-
ric d(x, y) and a new metric d̃ (introduced by Davies in [15, 16]) which is adapted
to the structure of the random walk and satisfies d̃(x, y) ≤ μ

−1/2
xy when x ∼ y.

This new metric is constructed by a first passage percolation procedure, and in this
paper we have used first passage percolation arguments to compare the two met-
rics (see Lemma 4.2). These arguments use estimates from [25] which in turn use
the fact that μe are i.i.d. However, we could also have used a direct argument as
in [12], Lemma 3.1 or [30], Lemma 5.3. Once we have the Gaussian bounds (with
sufficiently good control on the tails of the r.v. Ux in Theorem 1.2), the quenched
invariance principle follows with no further hypotheses on {μe, e ∈ Ed} other than
that it is stationary, symmetric and ergodic. Theorem 6.1 summarizes the general
situation.

The structure of this paper is as follows. In Sections 2 and 3 we study a de-
terministic graph 	 = (G,E) with edge weights μxy . Under certain conditions
(which are P-a.s. satisfied by the VSRW on the i.i.d. RCM) we obtain heat kernel
bounds in this setup. Our approach uses similar methods to those used in [1] for
percolation clusters. However, in [1] the Carne–Varopoulos “long-range” bounds
played an essential role at various points. These bounds do not hold for the VSRW,
and instead we use more general upper bounds obtained by Davies [15, 16], which
are in terms of the metric d̃(x, y). The same metric d̃ is also needed to control
P x

ω(d̃(Xt , x) ≥ λt1/2) which is the key step in obtaining general Gaussian upper
bounds. Similar bounds, in the context of weighted Laplacians on manifolds, are
obtained by Grigor’yan [24]; here the metric d̃ is the Riemannian metric. Very re-
cently, and independently, Mourrat [31] has obtained upper bounds for the VSRW
which in certain cases improve on those in Theorem 1.2.

Once one has upper bounds, lower bounds follow by the same arguments as
in [1], Section 5 (see Section 3). In Section 4 we then prove Theorem 1.2.

Section 5 proves the invariance principle. We begin with the VSRW. The basic
technique in the proof (as in many previous papers such as [10, 12, 17, 27–29]) is
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to associate with Xt a process Zt on � = [1,∞]Ed
which is the environment seen

from the random walk. More precisely, for each x ∈ Z
d , let Tx :� → � be given

by

Tx(ω)(z,w) = ω(z + x,w + x).

Assuming that X0 = 0 we define

Zt(ω) = TXt (ω)(ω).(1.19)

One seeks to use the process Z to construct the “corrector,” that is, a map χ :� ×
Z

d → R
d such that

Mt(ω) = Xt(ω) − χ(ω,Xt(ω)), t ≥ 0,(1.20)

is a P 0
ω-martingale. Once one has constructed the corrector, showing the invariance

principle for the rescaled martingale εMt/ε2 is standard, and using results from [12,
34], the heat kernel estimates in Theorem 1.2, together with the sublinear growth
of χ , imply that

lim
ε→0

εχ(ω,Xt/ε2) = 0 in P 0
ω-probability.(1.21)

However, the standard construction of the corrector is based on L2(P) calculus,
which requires finiteness of the first moment of the conductance (see [17], pa-
ge 816). In our case we wish to handle the case when Eμe = ∞, and so we need
an alternative approach. (We remark that if Eμe = ∞ then it is not easy to find
suitable function spaces on � which give a core for the Dirichlet form associated
with Z.)

Our solution relies on discretization. We define X̂n = Xn, n ∈ Z+, and consider
the process

X̂
(ε)
t = εX̂�t/ε2�.(1.22)

We can control supt≤T |X(ε)
t − X̂

(ε)
t | (see Lemma 4.12), so an invariance principle

for X(ε) will follow from one for X̂(ε). The process X̂ does not have bounded
jumps—in fact it jumps anywhere in Z

d with positive probability. However, the
long-range bounds on qω

t (x, y) in (1.11) give good control on these jumps, and, in
particular, the bounds on qω

1 (x, y) imply that

EE0
ω|X1|2 < ∞,(1.23)

which is the key L2 condition on X̂ for the construction of the corrector. As we will
see in Section 5, looking at the discrete time process does actually introduce some
simplifications in the construction of the corrector χ . In the end (see Remark 5.15)
it will turn out that the “discrete time” corrector χ also satisfies (1.20).

Finally, a short Section 6 makes some remarks on more general environments,
and gives an example (a one-sided spanning tree) where the process X fails to be
conservative, and so the invariance principle fails.
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2. Transition density upper bounds on a fixed graph. Let 	 = (G,E) be an
infinite (deterministic) graph, μe, e ∈ E, be bond conductances and ν be a measure
on G. We make the following assumptions on (G,E), μ and ν.

ASSUMPTION 2.1. (1) 	 is connected.
(2) The vertex degree is uniformly bounded,

|{y :y ∼ x}| ≤ CD for all x ∈ G.(2.1)

(3) μe > 0 for all e ∈ E.
(4) There exists CM ≥ 1 such that

C−1
M ≤ νx = ν({x}) ≤ CM for all x ∈ G.(2.2)

The results of this section do not explicitly require a strictly positive lower
bound on μe; however, a later assumption [see Assumption 2.6(2)] will impose
some control on the edges e with μe small.

We write μxy for μ{x,y}, and set μxy = 0 if x �∼ y. Let d(x, y) be the usual
graph distance on G, and write

B(x, r) = {y :d(x, y) < r}.(2.3)

Let CA < ∞. We now construct, by a first passage percolation procedure, a second
metric d̃ on G satisfying

(C−2
A ∨ μyy′)|d̃(x, y) − d̃(x, y′)|2 ≤ 1 for every x ∈ G,y ∼ y′.(2.4)

We write B̃(x, r) = {y : d̃(x, y) < r} for balls in the metric d̃ . (In this paper we
can take CA = 1, but for possible future extensions we treat the general case.) To
construct d̃ we assign waiting times

t (e) = CA ∧ μ−1/2
e , e ∈ E,(2.5)

and then take d̃(x, y) to be the shortest journey time between x and y. More pre-
cisely,

d̃(x, y) = inf

{
n∑

i=1

t (ei)

}
,(2.6)

where the infimum is taken over paths (e1, . . . , en) from x to y. Since we do not
have a strictly positive uniform lower bound on t (e), in general there may not be a
minimizing path. However, such paths will a.s. exist when t (ei) are i.i.d. positive
random variables.

LEMMA 2.2. The metric d̃ constructed above satisfies (2.4).
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PROOF. Let e = {y, z}; then d̃(x, z) ≤ d̃(x, y) + t (e), and using (2.5) gives
(2.4). �

Recall that

E (f, g) = 1

2

∑
x

∑
y∼x

μxy

(
f (y) − f (x)

)(
g(y) − g(x)

)
.

Let μx = ∑
y∼x μxy , and extend μ to a measure on G. Then E (f, g) is defined for

f,g ∈ L2(G,μ).
Let X = (Xt , t ∈ [0,∞),P x, x ∈ G) be the continuous time Markov chain on

G with generator

Lf (x) = ν−1
x

∑
y

μxy

(
f (y) − f (x)

)
.

At this point we cannot exclude the possibility that X may explode, and we write
ζ for the lifetime of X. Let

‖f ‖2
E1

= E (f, f ) + ‖f ‖2
L2(ν)

and F be the closure of the set of functions on G with finite support with respect
to ‖f ‖E1 . Then X is the Markov process associated with the Dirichlet form (E , F )

on L2(G, ν) (see [22]). Let qt (x, y) be the transition density (heat kernel) of X

with respect to ν:

qt (x, y) = P x(Xt = y)

νy

.

We begin by using the results of Davies [15, 16] to obtain long-range bounds
on qt . By Proposition 5 of [15], we have

qt (x, y) ≤ (νxνy)
−1/2 inf

ψ∈L∞(G)
exp

(
ψ(y) − ψ(x) + �(ψ)t

)
,(2.7)

where �(ψ) = supx b(ψ,x), and

b(ψ,x) = 1

2νx

∑
y∼x

μxy

(
eψ(x)−ψ(y) + eψ(y)−ψ(x) − 2

)
.(2.8)

THEOREM 2.3. Assume (G,E) and μ satisfy Assumption 2.1. There exist con-
stants c1, . . . , c4 (depending only on CA,CD,CM ) such that the following hold.

(a) If x, y ∈ G and D̃ = d̃(x, y) ≤ c1t , then

qt (x, y) ≤ c2 exp(−c3D̃
2/t).(2.9)

(b) If x, y ∈ G and D̃ = d̃(x, y) ≥ c1t , then

qt (x, y) ≤ c2 exp
(−c4D̃

(
1 ∨ log(D̃/t)

))
.(2.10)
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PROOF. Fix x0, y0 ∈ G, let t > 0, and write D̃ = d̃(x0, y0). Let λ > 0 and set

ψλ(x) = −λ
(
D̃ ∧ d̃(x0, x)

)
, b(λ) = sup

x
b(ψλ, x).

Let x ∈ G, y ∼ x and write μ̃xy = C−2
A ∨ μxy ,

Jxy = μxy

(
eψλ(x)−ψλ(y) + eψλ(y)−ψλ(x) − 2

)
.

Then as |ψλ(x) − ψλ(y)| ≤ λμ̃
−1/2
xy , and cosh(x) is increasing on [0,∞),

Jxy ≤ 2μxy

(
cosh(λμ̃−1/2

xy ) − 1
) ≤ 2μ̃xy

(
cosh(λμ̃−1/2

xy ) − 1
)
.(2.11)

Using the power series for cosh we have that the right-hand side of (2.11) is de-
creasing in μ̃xy , so

Jxy ≤ C−2
A (eCAλ + e−CAλ − 2).

Hence

b(ψλ, x) ≤ 1
2CMCDC−2

A (eCAλ + e−CAλ − 2).

Let f (x) = ex + e−x − 2; then b(λ) ≤ c7f (CAλ). Thus by (2.7), and writing y =
CAλ,

qt (x0, y0) ≤ CM inf
λ

exp
(−λD̃ + c7tf (CAλ)

)
(2.12)

≤ CM exp
(

D̃

CA

(
inf
y>0

(
−y + CAc7t

D̃
f (y)

)))
.

So if

F(s) = inf
y>0

(−y + (2s)−1(ey + e−y − 2)
)
,

then

qt (x0, y0) ≤ CM exp
(

D̃

CA

F

(
D̃

2CAc7t

))
(2.13)

and it remains to bound F .
We have (see [15], page 70) that

F(s) = s−1(
(1 + ss)1/2 − 1

) − log
(
s + (1 + s2)1/2)

and also that F(s) ≤ −s/2(1 − s2/10) for s > 0. Hence, if s ≤ 3, then F(s) ≤
−s/20 while if s ≥ e, then

F(s) ≤ 1 − log(2s) = − log(2s/e).

Substituting in (2.13) completes the proof. �
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REMARK 2.4. Note that if D̃ = ct then both (2.9) and (2.10) give a bound of
the form ce−t/c.

Since μe are not bounded above, the process X may explode. The following
condition is enough to exclude this.

LEMMA 2.5. Suppose there exists x ∈ G and θ > 0 such that∑
y∈G

exp(−θd̃(x, y))νy < ∞.(2.14)

Then X is conservative.

PROOF. Let ζ be the lifetime of X. Then as 	 is connected it is easy to see that
either P y(ζ = ∞) = 1 for all y ∈ G, or else P y(ζ < t) > 0 for all y ∈ G, t > 0.

For n ≥ C−2
A let μ

(n)
xy = n ∧ μxy , X(n) be the process associated with the con-

ductances μ(n), and q
(n)
t (x, y) be the transition density of X(n) with respect to ν.

We have qt (x, y) = limn→∞ q
(n)
t (x, y). Note that each X(n) is conservative, and

that the bounds in Theorem 2.3 hold (with the same constants ci ) for each q(n).
With (2.2) the condition (2.14) implies that B̃(x,R) is finite for each R > 0.

Let t > 0. With constants ci as in Theorem 2.3, choose r large enough so that
r > c1t and c4(1 ∨ log(r/t)) ≥ θ . So, if R ≥ r , using (2.10),∑

y∈B̃(x,R)c

q
(n)
t (x, y)νy ≤ ∑

y∈B̃(x,R)c

c2 exp(−θd̃(x, y))νy < ∞.(2.15)

Let ε > 0; then we can take R large enough so that the right-hand side of (2.15) is
less than ε. Thus, as X(n) is conservative, for all n,∑

y∈B̃(x,R)

q
(n)
t (x, y)νy > 1 − ε.

So,

P x(ζ > t) ≥ ∑
y∈B̃(x,R)

qt (x, y)νy = lim
n→∞

∑
y∈B̃(x,R)

q
(n)
t (x, y)νy ≥ 1 − ε.

Therefore P x(ζ > t) = 1 for all t , proving that X is conservative. �

We now make further assumptions on the graph 	 and the conductances μ. As
we will see in Section 4, it is easy to check these for the random conductance
model on Z

d when μe ≥ 1.

ASSUMPTION 2.6. (1) There exists d ≥ 1 and CV < ∞ such that

ν(B(x, r)) ≤ CV rd for all x ∈ G,r ≥ 1.(2.16)
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(2) There exists a constant CN such that the following Nash inequality holds. If
f ∈ L1(G, ν) ∩ L2(G, ν), then, writing ‖f ‖p for norms in Lp(G,ν),

E (f, f ) ≥ CN‖f ‖2+4/d
2 ‖f ‖−4/d

1 .(2.17)

REMARK 2.7. Note that (2) above does place some restrictions on the edges
e with μe small. For example, taking x ∈ G and f = 1x , (2.17) gives∑

y

μxy ≥ CNν1−2/d
x .

By [14] we have:

LEMMA 2.8. Suppose (2.17) holds. Then

qt (x, y) ≤ ct−d/2, x, y ∈ G, t > 0.(2.18)

To obtain better control of qt (x, y) when d(x, y) is large we need to compare
the metrics d and d̃ . Note first that d̃(x, y) ≤ CA ∧ μ

−1/2
xy ≤ CA when x ∼ y, so

d̃(x, y) ≤ CAd(x, y), x, y ∈ G.(2.19)

DEFINITION 2.9. Let λ ≥ 1, η ∈ (0,1). Let x ∈ G, r ∈ [1,∞). We say (x, r)

is λ-good if B̃(x, n/λ) ⊂ B(x,n) for all n ≥ r , n ∈ N. We say (x,R0) is λ-very
good if for all R ≥ R0, (y, r) is λ-good for all y ∈ B(x,R), r ≥ Rη, r ∈ N. Note
that if (x,R0) is λ-very good then (x,R1) is λ-very good for all R1 ≥ R0. For
x ∈ G let Vx = Vx(λ) be the smallest integer such that (x,Vx) is λ-very good.

Note. Unlike the definitions in [1], the event that (x, r) is λ-good depends on
the structure of 	 “at infinity.”

LEMMA 2.10. Suppose (x,R) is λ-good.
(a) If d(x, y) ≥ R,

λ−1d(x, y) ≤ d̃(x, y) ≤ CAd(x, y).(2.20)

(b) If R′ ≥ (2R) ∨ 2(1 + CAλ)d(x, x′), then (x′,R′) is 2λ-good.

PROOF. (a) The upper bound is given in (2.19). For the lower bound, let s =
d(x, y) ≥ R. Then y /∈ B(x, s), so y /∈ B̃(x, s/λ) and thus d̃(x, y) ≥ s/λ.

(b) Let r̃ = d̃(x, x′), r = d(x, x′), and s ≥ R′. Then as s/2 ≥ R,

B̃(x′, s/2λ) ⊂ B̃(x, r̃ + s/2λ) ⊂ B(x,λr̃ + s/2).

So, using (2.20), B̃(x′, s/2λ) ⊂ B(x′, (1 + λCA)r + s/2) ⊂ B(x′, s). �
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LEMMA 2.11. Let x ∈ G, θ > 0, r ≥ 1. If (x, r) is λ-good, then∑
y∈B(x,r)c

exp(−θd̃(x, y))νy ≤
{

c(λ)rde−crθ , if rθ ≥ 1,
c(λ)θ−d, if rθ < 1.

(2.21)

In particular, X is conservative.

PROOF. Write I for the left-hand side of (2.21), and Dn = B(x,2nr) − B(x,

2n−1r). Then

I ≤
∞∑

n=1

∑
y∈Dn

exp
(−θd(x, y)/λ

)
νy ≤

∞∑
n=1

CV (2nr)d exp(−2n−1rθ/λ).(2.22)

If α > 0, d ≥ 1 then there exists c1 = c1(d) such that
∞∑

n=1

2nde−α2n ≤
{

c1e
−α, if α ≥ 1,

c1α
−d, if α < 1,

and using these bounds in (2.22) completes the proof. �

LEMMA 2.12. Let x ∈ G and suppose that (x, r) is λ-good. If t ∈ (0,1), then

Exd(x,Xt)
p ≤ c(λ)rp+d .(2.23)

PROOF. Using the bound (2.10) a similar calculation to that in Lemma 2.11
gives

Exd(x,Xt)
p ≤ rp +

∞∑
n=1

CV (2nr)d+pe−cd̃(x,y)

≤ rp + crd+p
∞∑

n=1

2n(d+p) exp(−c′2nr/λ) ≤ crd+p.
�

We now follow the arguments in [1], Section 3 (the “Bass–Nash method”) to
obtain Gaussian upper bounds on qt (x, y). As in Lemma 2.5 for 1 ≤ n ≤ ∞, let
μ

(n)
xy = μxy ∧ n, X(n) be the associated VSRW, and q(n)(x, y) be the transition

density of X(n). Let x0 ∈ G, and set

Mn(t) = Mn(x0, t) = Ex0 d̃
(
x0,X

(n)
t

) = ∑
y

d̃(x0, y)q
(n)
t (x0, y)νy,(2.24)

Qn(t) = Qn(x0, t) = −∑
y

q
(n)
t (x0, y) logq

(n)
t (x0, y)νy.(2.25)

The following three inequalities lead, by Nash’s argument [32], to upper bounds on
Mn(t) which are uniform in n. [We remark that we only need the approximations
X(n) to justify an interchange of sums in part (c) of the following lemma.]
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LEMMA 2.13. Let x0 ∈ G and r ≥ 1. Suppose (x0, r) is λ-good, and 1 ≤ n <

∞. There exist constants ci , independent of n, such that the following hold.
(a) We have, for t > 0,

Qn(x0, t) ≥ c1 + 1
2d log t.(2.26)

(b)

Mn(x0, t) ≥ c2e
Qn(x0,t)/d provided either Mn(x0, t) ≥ r or t ≥ c3r

2.(2.27)

(c) For t > 0,

Q′
n(t) ≥ c4M

′
n(t)

2.(2.28)

PROOF. We write Qn(t), Mn(t) for Qn(x0, t), Mn(x0, t). (a) is immediate
from (2.18) and the fact that since X(n) is conservative,

∑
y q

(n)
t (x0, y)νy = 1.

(b) The proof is similar to those in [1, 4, 32]. First note that (2.16) and Lem-
ma 2.8 give that

Mn(t) ≥ r provided t ≥ c3r
2.(2.29)

By Lemma 2.11, provided ar ≤ 1,∑
y∈G

e−ad̃(x0,y)νy ≤ ∑
y∈B(x0,r)

e−ad̃(x0,y)νy + ∑
y /∈B(x0,r)

e−ad̃(x0,y)νy

≤ crd + ca−d ≤ ca−d .

Now u(logu + θ) ≥ −e−1−θ for u > 0. So, setting θ = ad̃(x0, y) + b, where a ≤
1/r ,

−Qn(t) + aMn(t) + b = ∑
y∈G

q
(n)
t (x0, y)

(
logq

(n)
t (x0, y) + ad̃(x0, y) + b

)
νy

≥ − ∑
y∈G

e−1−ad̃(x0,y)−bνy

≥ −e−1−b
∑
y∈G

e−ad̃(x0,y)νy ≥ −c5e
−ba−d .

Setting a = 1/Mn(t) and eb = Mn(t)
d = a−d , we obtain

−Qn(t) + 1 + d logMn(t) ≥ −c6

and rearranging gives (b).
(c) Set ft (x) = q

(n)
t (x0, x), and let bt (x, y) = ft (x) + ft (y). We have, using

(2.4),

M ′
n(t) = ∑

y

d̃(x0, y)
∂ft (y)

∂t
νy = ∑

y

d̃(x0, y)L(n)ft (y)νy

= −1

2

∑
x

∑
y

μxy

(
d̃(x0, y) − d̃(x0, x)

)(
ft (y) − ft (x)

);
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the final interchange of sums can be justified using (2.9) and (2.10) and the fact
that μ(n) is uniformly bounded. So using (2.4),

M ′
n(t) ≤ 1

2

∑
x

∑
y∼x

(
μ1/2

xy |d̃(x0, y) − d̃(x0, x)|bt (x, y)1/2)(
μ1/2

xy

|ft (y) − ft (x)|
bt (x, y)1/2

)

≤ 1

2

∑
x

∑
y∼x

(bt (x, y)1/2)

(
μ1/2

xy

|ft (y) − ft (x)|
bt (x, y)1/2

)

≤ 1

2

(∑
x

∑
y∼x

bt (x, y)

)1/2(∑
x

∑
y

μxy

(ft (y) − ft (x))2

bt (x, y)

)1/2

.

Now ∑
x

∑
y∼x

bt (x, y) = 2
∑
x

∑
y∼x

ft (x) ≤ 2CDCM

∑
x

ft (x)νx = 2CDCM.(2.30)

So,

M ′
n(t)

2 ≤ c
∑
x

∑
y

μxy

(ft (y) − ft (x))2

ft (x) + ft (y)
.

Since we have, for u, v > 0,

(u − v)2

u + v
≤ (u − v)(logu − logv),

we deduce

M ′
n(t)

2 ≤ c
∑
x

∑
y

μxy

(
ft (y) − ft (x)

)(
logft (y) − logft (x)

)
.

Thus

Q′
n(t) = −∑

y

(
1 + logft (y)

)
L(n)ft (y)νy

= 1

2

∑
x

∑
y

μxy

(
logft (y) − logft (x)

)(
ft (y) − ft (x)

)
(2.31)

≥ cM ′
n(t)

2;
where again the interchange of sums uses (2.9) and (2.10) and the fact that μ(n) is
uniformly bounded. �

PROPOSITION 2.14. Let x0 ∈ G, r ≥ 1 and (x0, r) be λ-good. Then

c1t
1/2 ≤ M∞(x0, t) ≤ c2t

1/2 for t ≥ c3r
2.(2.32)
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PROOF. Note that the lower bound is immediate from Lemma 2.8. For the
upper bound let first n < ∞. Set Rn(t) = d−1(Qn(t) − c1 − 1

2d log t), so that
Rn(t) ≥ 0 by (2.26). Then

Mn(t) =
∫ t

0
M ′

n(s) ds ≤ c

∫ t

0
Q′

n(s)
1/2 ds ≤ c

∫ t

0

(
R′

n(s) + 1

2s

)1/2

ds.

Using the inequality (a + b)1/2 ≤ b1/2 + a/(2b)1/2 and integrating by parts we
obtain

Mn(t) ≤ ct1/2 + c

∫ t

0
s1/2R′

n(s) ds

≤ ct1/2 + c
(
1 + Rn(t)t

1/2) ≤ ct1/2(
1 + Rn(t)

)
.

By (2.27) we also have Mn(t) ≥ t1/2eRn(t) for t > cr2. Thus Rn(t) is bounded for
t > cr2 and this implies that

c1t
1/2 ≤ Mn(x0, t) ≤ c2t

1/2 for t ≥ c3r
2.(2.33)

Since the constants in Lemma 2.13 are independent of n, the constants ci in (2.33)
are also independent of n. Since M∞(t) ≤ lim infn→∞ Mn(t), (2.32) then follows.

�

LEMMA 2.15. Let x ∈ G, r ≥ 1 and (x, r) be λ-good. Then

c1t
1/2 ≤ Exd(x,Xt) ≤ c2t

1/2 for t ≥ c3r
2.(2.34)

PROOF. Since d(x,Xt) ≥ C−1
A d̃(x,Xt), the first inequality is clear. Let c3 be

as in Proposition 2.14, and t = c3R
2
1 , so R1 ≥ r . Then if A = B(x,R1)

c, using
(2.20),

Exd(x,Xt) ≤ λR1 + Ex(
d(x,Xt);Xt ∈ A

)
≤ λR1 + Ex(

λd̃(x,Xt);Xt ∈ A
)

≤ λR1 + λc4t
1/2 ≤ c5t

1/2. �

The next few results follow quite closely along the lines of [1]. Let

τ(x, r) = inf{t :d(x,Xt) ≥ r}.
LEMMA 2.16. There exist constants c1, c2, c3 such that if R ≥ c1 and

(y, c2R) is λ-good for all y ∈ B(x,R),(2.35)

then if t0 = R2/(2c3)

P x(
τ(x,R/2) ≤ t0

) ≤ 1
2(2.36)

and hence for t ≥ 0,

P x(
τ(x,R) ≤ t

) ≤ 1

2
+ c3t

R2 .(2.37)
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PROOF. Write τ = τ(x,R/2), and c′
i for the constants ci in Lemma 2.15. Let

c3 = 64(c′
2)

2. Choose c2 so that r = c2R satisfies c′
3r

2 = t0, and c1 so that r ≥ 1.
Then as (2.35) holds we can use Lemma 2.15 to bound Eyd(y,Xs) for s ≥ t0,
y ∈ B(x,R). So,

c′
2(2t0)

1/2 ≥ Exd(x,X2t0) ≥ Ex(
d(x,Xt0∧τ ) − d(Xt0∧τ ,X2t0)

)
≥ Ex1(τ≤t0)d(x,Xτ ) − sup

y∈B(x,R)

sup
0≤s≤t0

Eyd(y,X2t0−s)

≥ P x(τ ≤ t0)R/2 − c′
2(2t0)

1/2,

and rearranging we obtain (2.36).
Inequality (2.37) now follows easily; if t ≤ t0, P x(τ(x,R) ≤ t) ≤ P x(τ(x,R/

2) ≤ t0) ≤ 1
2 while if t > t0, then the right-hand side of (2.37) is greater than 1. �

To obtain the Gaussian upper bound on qt (x, y) we need to prove that the
process X does not move too rapidly across a ball B(x,R). We choose r � R,
and use the fact that if X moves across B(x,R) in the time interval [0, t], then it
has to move across many smaller balls of side r in the same period; the estimate
(2.37) is enough to bound the probability of this. Our argument uses the following
easily proved estimate:

LEMMA 2.17 (See [5], Lemma 1.1). Let ξ1, ξ2, . . . , ξn, V be nonnegative r.v.
such that V ≥ ∑n

1 ξi . Suppose that for some p ∈ (0,1), a > 0,

P
(
ξi ≤ t |σ(ξ1, . . . , ξi−1)

) ≤ p + at, t > 0.(2.38)

Then

logP(V ≤ t) ≤ 2
(

ant

p

)1/2
− n log(1/p).(2.39)

PROPOSITION 2.18. There exists constants c1, . . . , c4 such that if x ∈ G, R ≥
c1, t ≥ c1R and

(z, c2t/R) is λ-good for all z ∈ B(x,R),(2.40)

then

P x(
τ(x,R) < t

) ≤ c3e
−c4R

2/t .(2.41)

PROOF. Let 1 ≤ m < R/2, and set r = R/2m. Define stopping times

S0 = 0, Si = inf{t ≥ Si−1 :d(XSi−1,Xt) ≥ r}, i ≥ 1.

Set τi = Si − Si−1, and write Ft = σ(Xs, s ≤ t) for the filtration of X. As
d(XSi

,XSi+1) ≤ r + 1 < 2r , we have Sm ≤ τ(x,R) and XSi
∈ B(x,R) for 0 ≤

i ≤ m − 1.
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Suppose for the moment that m is such that we can apply Lemma 2.16 to control
each τi . Then

P x(τi ≤ u|FSi−1) ≤ 1

2
+ c5u

r2 , u > 0,1 ≤ i ≤ m,(2.42)

so writing p = 1
2 , a = c5/r2 and using (2.39), we obtain

logP x(
τ(x, r) < t

) ≤ logP x

(
m∑
1

τi < t

)

≤ 2(amt/p)1/2 − m logp−1

(2.43)

≤ −c6m

(
2 −

(
c7tm

R2

)1/2)
= −c6m

(
2 − (m/κ)1/2)

,

where κ = R2/(c7t). If κ is such that we can choose m ∈ N with κ ≤ m < 2κ , and
so that (2.42) holds, then (2.43) implies (2.41).

We can choose c1 so that κ < R/2 − 1. If κ ≤ 1 then, adjusting the constant c3
appropriately, (2.41) is immediate. If 1 < κ < R/2 − 1 then let m = �κ� + 1 ≤ 2κ .
Then 1

4c6(t/R) ≤ r ≤ 1
2c6(t/R), and so choosing c2 suitably, (2.40) and Lem-

ma 2.16 imply (2.42). �

Recall that Vx is the smallest R such that (x,R) is λ-very good.

THEOREM 2.19. Let x, y ∈ G, and write D = d(x, y). Suppose that either
D ≥ c1 ∨ Vx or t ≥ D2.

(a) If c2D ≤ t , then

qt (x, y) ≤ c3t
−d/2e−c4d(x,y)2/t .(2.44)

(b) If c2D ≥ t , then

qt (x, y) ≤ c3 exp
(−c4D

(
1 ∨ log(D/t)

))
.(2.45)

PROOF. We need to consider various cases. First, if t ≥ D2, then (2.44) fol-
lows from (2.18). So we can suppose D ≥ Vx . Note that by (2.20) d̃(x, y) ≥ λ−1D.

If t ≤ c2D, then (2.45) follows from (2.10). If c2D ≤ t ≤ c6D
2/ logD, then

Theorem 2.3 gives

qt (x, y) ≤ c8 exp(−2c7D
2/t).

Choosing c6 small enough we have exp(−c7D
2/t) ≤ t−d/2 and (2.44) follows.

It remains to consider the case c6D
2/ logD ≤ t ≤ D2. Let Ax = {z :d(x, z) ≤

d(y, z)}, Ay = G − Ax , t ′ = t/2, D′ = D/2. Note that B(x,D′) ⊆ Ax . Then

νxP
x(Xt = y) = νxP

x(Xt = y,Xt ′ ∈ Ay) + νxP
x(Xt = y,Xt ′ ∈ Ax).(2.46)
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To bound the first term in (2.46), and writing τ = τ(x,D′), we have

P x(Xt = y,Xt ′ ∈ Ay)

= P x(τ < t ′,Xt ′ ∈ Ay,Xt = y)

≤ Ex(
1{τ<t ′}P Xτ (Xt−τ = y)

)
(2.47)

≤ P x(
τ(x,D′) < t ′

)
sup

z∈∂B(x,D′),u≤t/2
qt−u(z, y)νy

≤ ct−d/2P x(
τ(x,D′) < t/2

)
.

Similarly, using symmetry, for the second term in (2.46) we have

νxP
x(Xt = y,Xt ′ ∈ Ax) = νyP

y(Xt = x,Xt ′ ∈ Ax)
(2.48)

≤ ct−d/2P y(
τ(y,D′) < t/2

)
.

It remains to verify that we can use Proposition 2.18 to bound the terms P z(τ (z,

D′) < t/2) for z = x, y. Writing c′
i for the constants ci in Proposition 2.18, taking

c1 large enough we have D′ ≥ c′
1, and t ′ ≥ c′

1D
′. As (x,Vx) is λ-very good, and

D ≥ Vx , we have that (z, r) is λ-good for z ∈ B(x,2D), and r ≥ (2D)η. We have
c′

2t
′/D′ ≥ (2D)η provided t ≥ c8D

1+η, and since t ≥ c6D
2/ logD this holds by

adjusting the constant c1. So

P z(τ(w,D′) < t/2
) ≤ c exp(−c′D2/t) for z = x, y,(2.49)

and combining the estimates (2.46)–(2.49) completes the proof. �

REMARK 2.20. This theorem does not give any bound for qt (x, y) when D <

c1 ∨ Vx and t < D2. In this case we still have the global upper bound (2.18).
In addition the “long-range” bounds in Theorem 2.3, bound qt (x, y) in terms of
d̃(x, y), but we do not have a bound in terms of D.

The final result of this section is that, under fairly mild additional conditions,
functions which are harmonic for the discrete time process Xn,n ∈ Z+ are also
harmonic for the continuous time process Xt, t ∈ R+. At the end of Section 5 we
will use this remark to note that the corrector constructed using the discrete time
process also gives us a corrector for the continuous time process Xt .

Let X̂ be the discrete time process given by X̂n = Xn, n ∈ Z+. Write

L̂f (x) = ∑
y

q1(x, y)νy

(
f (y) − f (x)

)
.(2.50)

We say h is L̂ harmonic if the sum in (2.50) converges absolutely for all x, and
L̂h(x) = 0 for all x. This implies that (h(X̂n), n ∈ Z+) is a P x -martingale for each
x ∈ G.

For x ∈ G let κx = μx/νx be the jump rate out of x by X. Set

A(K) = {y ∈ G :κy ≤ K}.(2.51)
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LEMMA 2.21. Let 	 satisfy Assumption 2.6. In addition suppose that there
exist (x0, r0) such that (x0, r0) is λ-good, and that there exist R0, K such when
R ≥ R0 then every self avoiding path γ from x0 to B(x0,R)c contains at least R1/2

points in A(K). Let h :G → R be L̂ harmonic, and satisfy the growth condition

|h(x)| ≤ C1 + C1d(x0, x)p(2.52)

for some p ∈ [1,∞). Then Lh = 0, so that h is harmonic for X.

PROOF. By Lemma 2.10(b) we have that (x, r) is 2λ-good if r/2 = r0 ∨ (1 +
CAλ)d(x0, x). So by Lemma 2.12 there exists C2 (depending on C1 and λ) so that
if s ∈ [0,1],

Ex |h(Xs)| ≤ crd+p ≤ C2
(
r
p+d
0 + d(x0, x)p

);(2.53)

it follows that Exh(Xt) is well defined for any t ≥ 0. Set for s ∈ [0,∞)

hs(x) = Exh(Xs).

To prove the lemma, it is sufficient to prove that h = hs for every s; this implies
that h(Xt) is a continuous time martingale and hence that Lh = 0. We have

hs+1(x) = Ex(EXsh(X1)) = Ex(h(Xs)) = hs(x),

so s → hs has period 1. We extend hs by periodicity to s ∈ R. Since Exhs(X1) =
Exh(X1+s) = hs(x), each hs is L̂-harmonic. Let

k(x) = sup
0≤s1≤s2≤1

|hs2(x) − hs1(x)|;

note that by (2.53) we have

k(x) ≤ 2 sup
s≤1

Ex |h(Xs)| ≤ 2C2
(
rp+d + d(x0, x)p

)
.(2.54)

Fix x ∈ G, and write κ = κx . Write Pxy = μxy/μx for the jump probabilities
of X. Then by conditioning on the time of the first jump of X, if it occurs in [0,1],
we obtain

hs(x) = e−κhs(x) + ∑
y

Pxy

∫ 1

0
κe−κuhs−u(y) du.

So

hs(x)(1 − e−κ)

= ∑
y

Pxy

(
κ

∫ 1

0
e−κhs−u(y) du +

∫ 1

0
κ(e−κu − e−κ)hs−u(y) du

)
(2.55)

= ∑
y

Pxy

(
κ

∫ 1

0
e−κhu(y) du +

∫ 1

0
κ(e−κu − e−κ)hs−u(y) du

)
.
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Then (2.55) implies that

k(x)(1 − e−κx ) ≤ ∑
y

Pxyk(y)
(
1 − (1 + κx)e

−κx
)
.(2.56)

So if k(x) > 0, then there exists y ∼ x with k(y) > k(x). Further, if κx ≤ K , then
there exists δ > 0 (depending only on CM and K) such that

k(y) ≥ (1 + δ)k(x) for some y ∼ x.(2.57)

Suppose now that there exists x1 with k(x1) > 0. Then there exists a noninter-
secting infinite path γ1 starting at x1 on which k is strictly increasing. Let γ2 be
a shortest path from x0 to a closest point y on γ to x0, and let D be the length
of γ2. Combining γ2 and the infinite segment of γ1 starting at y, we obtain a path
γ = (x0, z1, . . .) for which k(zn) > 0 for all n > D. Let R > R0, and let wR be the
first point in γ ∩ B(x0,R)c ∩ A(K). Then R1 = d(x0,wR) ≥ R. So, using (2.54),
(2.57) and the condition on A(K),

2C2(r
p+d
0 + R

p
1 ) ≥ k(wR) ≥ (1 + δ)R

1/2
1 −Dk(x1),

which is a contradiction if R is large enough. �

3. Lower bounds and Harnack inequalities. Unlike the papers [10, 12, 34]
we will need to make explicit use of heat kernel lower bounds in our proof of the
invariance principle Theorem 1.1 (see Lemma 5.9).

In this section we specialize to the case when 	 is the d-dimensional Euclidean
lattice, and μe are bond conductances with μe ≥ 1. We continue to assume that
Assumptions 2.1 and 2.6 hold. Note that balls and distance are with respect to the
graph distance on Z

d .
We can follow the arguments in Section 5 of [1] fairly closely. First, as μxy ≥ 1

when x ∼ y, by comparison with the standard Dirichlet form E0 on Z
d we have a

weighted Poincaré inequality as in [1], Theorem 4.8.

THEOREM 3.1. Let B = B(x0,R), ρB(y) = d(y,Bc) and ϕ(x) = R2(R ∧
ρB(y))2. Then if f :B → R,

inf
a

∑
x∈B

(
f (x)− a

)2
ϕ(x)νx ≤ CR2

∑
x,y∈B

(
f (x)−f (y)

)2
ϕ(x)∧ϕ(y)μxy.(3.1)

Using this, and the method of Fabes and Stroock [21] we obtain a lower bound
of the form qt (x, y) ≥ ct−d/2 when x, y are close enough together.

PROPOSITION 3.2. Let x0 ∈ Z
d and R ≥ c1. Then provided

(z, c2R) is λ-good for all z ∈ B(x0,R),(3.2)

we have

qt (x1, x2) ≥ c1t
−d/2 for x1, x2 ∈ B(x0,R/2), 1

8R2 ≤ t ≤ R2.(3.3)
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PROOF. This can be proved using the argument in [1], Proposition 5.1, with
only minor changes. Note that we need to show that P

x1(Xt /∈ B(x0,2R/3)) ≤ 1
2

when t = θR2 and θ is sufficiently small (see (5.2) and (5.9) in [1]). [There is
a missing minus sign in exponential in the last line of (5.2).] This is done using
Lemma 2.16, and so to satisfy (2.40) we need (3.2). �

THEOREM 3.3. Let x, y ∈ Z
d , t > 0, and write D = d(x, y). Suppose that

t ≥ c1 ∨ V 2
x ∨ D1+η.(3.4)

Then

qt (x, y) ≥ c2t
−d/2e−c3d(x,y)2/t .(3.5)

PROOF. The proof as in [1], Lemma 5.2, Theorem 5.3, follows by a standard
chaining argument. We just give the details of the conditions on Vx , D and t needed
to make this argument work.

First, if D2 < t then the lower bound in (3.5) is just t−d/2, so we can use Propo-
sition 3.2. We set R = ct1/2. Then t ≥ V 2

x implies R ≥ Vx , so B(x,R) is λ-very
good, and so as cR ≥ Rη, (3.2) holds.

If D2 ≥ t then we set R = 2D, r = ct/D. We apply Proposition 3.2 in a chain
of balls Bi = B(zi, r) linking x and y. (See [1], Lemma 5.2, or [21] for details of
the calculations.) Since D ≥ t1/2 ≥ Vx , we have that (x,R) is λ-very good, and
hence that (z, cr ′) is λ-good for all r ′ ≥ Rη, z ∈ B(x,R). As r = ct/D ≥ c′Rη,
(3.2) holds for all the balls Bi . �

REMARK 3.4. 1. Note that the lower bounds do not extend to the range when
t � D. The difficulty is that if t � D, then we need Proposition 3.2 for a chain
of balls of radius O(1) connecting x and y. The hypothesis “very good” is not
enough to ensure this.

However, the chaining argument does not need (3.2) for all points in B(x0,R),
but just for a suitable chain connecting x and y. In [1] this fact was used to obtain
full Gaussian lower bounds. It is likely that the same approach will work for the
random conductance model, but we do not pursue this point, since the bounds in
Theorem 3.3 are enough for most applications.

2. A well-known theorem (see [23, 33]) states that for Brownian motion on a
manifold Gaussian bounds are equivalent to two conditions: volume doubling plus
a family of Poincaré inequalities. This theorem was extended to graphs in [18].
Since we have volume doubling (for ν) and the Poincaré inequalities hold (since
μe ≥ 1), one might therefore ask if Theorems 2.19 and 3.3 follow immediately
from known results.

However, it is clear that some conditions on μe are needed before Theorem 2.19
holds—one has to prevent X from moving a long distance in a very short time. In
fact, examination of the theorems in [18, 23, 33] shows that in each case there
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is a “hidden” additional assumption which prevents the process from moving too
quickly. For example, [18] considers a discrete time nearest neighbour random
walk.

For B ⊂ Z
d let qB

t (x, y) be the transition density for the processes X killed on
exiting from B .

LEMMA 3.5. Let (x0,R) be λ-very good. Then

q
B(x0,R)
t (x, y) ≥ c1t

−d/2, x, y ∈ B(x0,3R/4), c2R
2 ≤ t ≤ R2.(3.6)

PROOF. Using Theorem 2.19 and Proposition 3.2, this follows, as in [1], Lem-
ma 5.8, by the argument in [21], Lemma 5.1. �

We now give a parabolic Harnack inequality (PHI) for X. The statement requires
a little extra notation. If A ⊂ Z

d we write ∂A = {y :y ∼ x for some x ∈ A} for the
exterior boundary of A, and A = A ∪ ∂A. We call a function u(t, x) caloric in a
space–time region Q = A×(0, T ) ⊂ [0,∞)×Z

d if u is defined on Q = A×[0, T ]
and

∂

∂t
u(t, x) = LV u(t, x), (t, x) ∈ Q.

Write Q(x,R,T ) = B(x,R) × (0, T ], Q−(x,R,T ) = B(x, 1
2R) × [1

4T , 1
2T ] and

Q+(x,R,T ) = B(x, 1
2R) × [3

4T ,T ].

DEFINITION 3.6. We say the parabolic Harnack inequality (PHI) holds with
constant CP for Q = Q(x,R,T ) if whenever u = u(t, x) is nonnegative and
caloric on Q, then

sup
(t,x)∈Q−(x,R,T )

u(t, x) ≤ CP inf
(t,x)∈Q+(x,R,T )

u(t, x).(3.7)

THEOREM 3.7 (Parabolic Harnack inequality). There exists a constant CP

such that if (x,R) is λ-very good. Then the PHI holds with constant CP in
Q(x,R,R2).

PROOF. Using the heat kernel bounds in Theorems 2.19 and 3.5, and Lem-
ma 3.5, this follows by the same argument as in [3], Theorem 3.1. �

4. Heat kernel bounds for the RCM. In this section we prove Theorem 1.2.
Let Ed be the edges of the Euclidean lattice Z

d , and let � = [1,∞]Ed . Let P be a
probability measure on � which makes the coordinates i.i.d. with a law on [1,∞).
We set μe(ω) = ω(e) for e ∈ Ed , and for each ω ∈ � we consider the random walk
X on the graph (Zd,Ed) with conductances μe(ω).
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Using the notation of Section 2 we take νx = 1 for all x, so that we can take
CM = 1. We write P x

ω for the law of X started at x, and

qω
t (x, y) = P x

ω(Xt = y)

for the transition density of X.

LEMMA 4.1. The graph (Zd,Ed), conductances μe and random walk X sat-
isfy Assumptions 2.1 and 2.6 with P-probability 1.

PROOF. Assumption 2.1 is immediate; note we can take CD = 2d . Setting
CV = 2d Assumption 2.6(1) is also immediate.

Since we have μ(e) ≥ 1 for all edges in Z
d , if E0 is the Dirichlet form of the

standard continuous time random walk on Z
d , then E (f, f ) ≥ E0(f, f ), so that

the standard Nash inequality on Z
d (see [14]) implies Assumption 2.6(2) with a

constant CN depending only on d . �

In what follows we set CA = 1; thus none of the constants CD,CA,CM,CN,CV

depend on the law of μe (apart from the fact that P(μe ∈ [1,∞)) = 1).
Let d(x, y) be the graph metric on (Zd,Ed), and d̃ = d̃(ω) be the metric given

by (2.6); as in the previous sections we write B̃(x, r) for balls in the d̃ metric. Write
BE(x, r) = {y ∈ R

d : |x − y| < r} for the Euclidean ball center x and radius r .

LEMMA 4.2. There exists a constant λ0 > 0 such that

P
(
B̃(0, r) ⊂ BE(0, λ0r)

) ≥ 1 − c1e
−c2r .(4.1)

PROOF. We use results on first passage percolation from [25]. As in [25] let
b0,n be the first time B̃(0, t) reaches the hyperplane {x1 = n}. Using [25], The-
orem 2.18, there exists μ0 such that limn n−1b0,n = μ0, a.s. and in L1. By [25],
Theorem 1.15, we have μ0 > 0. By [25], Theorem 5.2, there exist c3, c4 > 0 such
that

P
(
b0,n < 1

2nμ0
) ≤ c3e

−c4n, n ≥ 0.(4.2)

The times for B̃(0, t) to hit each hyperplane {xi = ±n}, for i = 1, . . . , d have the
same law as b0,n, so we deduce

P
(
B̃

(
0, 1

2μ0n
) ⊂ [−n,n]d) ≥ 1 − 2dc3e

−c4n, n ≥ 0,(4.3)

and (4.1) follows easily. �

Note that λ0 does depend on the law of μe. We fix η ∈ (0,1), and define good
and very good as in Section 2, with λ replaced by λ0; and we write Vx for the
smallest integer such that (x,Vx) is very good.
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THEOREM 4.3. (a)

P
(
(x, r) is not good

) ≤ ce−cr , r ≥ r0.

(b)

P(Vx ≥ n) ≤ c exp(−cnη).(4.4)

PROOF. Let G(y, r) = {(y, r) is good}, and F(R) = {(y, r) is good for all
y ∈ B(0,2R), r ≥ Rη}. Then

P(G(y, r)c) ≤
∞∑

n=r

ce−cn ≤ ce−cr .

So,

P(F (R)c) ≤ cRd
∞∑

k=Rη

c3e
−c2k ≤ c exp(−cRη),

and since {V0 ≥ n} = ⋃∞
n F (k)c, (b) follows. �

Using Lemma 2.11 we obtain the following:

COROLLARY 4.4. X is conservative with P-probability 1.

COROLLARY 4.5. Let x ∈ Z
d . Then

lim
M→∞ lim

t→∞P 0
ω

(|Xt | ≥ M
√

t
) = 0, P-a.s.(4.5)

PROOF. By Lemma 2.15, for t ≥ cV 2
0 (ω),

P 0
ω

(|Xt | ≥ M
√

t
) ≤ cM−1t−1/2E0

ωd(0,Xt) ≤ cM−1,

and (4.5) follows. �

THEOREM 4.6. There exist r.v. Ux,x ∈ Z
d , such that

P
(
Ux(ω) ≥ n

) ≤ c1 exp(−c2n
η),(4.6)

and if |x − y| ∨ t1/2 ≥ Ux , then

qω
t (x, y) ≤ c3t

−d/2e−c4|x−y|2/t when t ≥ |x − y|,(4.7)

qω
t (x, y) ≤ c3 exp

(−c4|x − y|(1 ∨ log(|x − y|/t)
))

when t ≤ |x − y|.(4.8)

Further,

qω
t (x, y) ≥ c6t

−d/2e−c7|x−y|2/t if t ≥ U2
x ∨ |x − y|1+η.(4.9)
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PROOF. We take Ux = c8(Vx +1) where c8 ≥ 1. The bounds then follow from
Theorems 2.19 and 3.3. [Note that the bounds (4.7) and (4.8) are of the same
form if d(x, y) ≤ t ≤ cd(x, y).] We use the constant c8 to adjust between the the
Euclidean metric |x −y| and the graph metric d(x, y), and to absorb the conditions
d(x, y) ≥ c and t ≥ c into (4.6). �

THEOREM 4.7. There exists a constant CP and r.v. Ux,x ∈ Z
d with

P
(
Ux(ω) ≥ n

) ≤ c1 exp(−c2n
η),(4.10)

such that if R ≥ Ux then a PHI with constant CP holds for Q(x,R,R2).

PROOF. This is immediate from Theorem 3.7 and (4.4). �

The PHI implies an elliptic Harnack inequality (EHI), which holds for the
CSRW as well as the VSRW. A function h is harmonic on A ⊂ Z

d if it is defined
on A and LV h(x) = 0 [or equivalently LCh(x) = 0] for x ∈ A.

COROLLARY 4.8. There exists a constant CH and r.v. Ux,x ∈ Z
d with

P
(
Ux(ω) ≥ n

) ≤ c1 exp(−c2n
η),(4.11)

such that if R ≥ Ux , then an EHI with constant CH holds for B(x,R); if h ≥ 0 is
harmonic in B(x,R), then

sup
y∈B(x,R/2)

h(y) ≤ CH inf
y∈B(x,R/2)

h(y).(4.12)

We have the following averaged bounds:

THEOREM 4.9. (a) Let x, y ∈ Z
d and t ≥ c1 ∨ |x − y|1+η. Then

c2t
−d/2e−c3|x−y|2/t ≤ Eqω

t (x, y) ≤ c4t
−d/2e−c5|x−y|2/t .(4.13)

(b) We have

EE0
ω|Xt |2 ≤ c6t, t ≥ 1.(4.14)

PROOF. (a) Let D = |x − y|. Choose c1 so that P(Ux > c
1/2
1 ) < 1

2 . Then if
t ≥ c1 ∨ D1+η, by (4.9),

Eqω
t (x, y) ≥ E

(
qω
t (x, y);U2

x < c1
) ≥ 1

2ct−d/2e−cD2/t .

For the upper bound, let η′ = 1 − η, and R′
x be the r.v. given in Theorem 4.6 using

η′ instead of η. Then by (4.7) and (4.6),

Eqω
t (x, y) = E

(
qω
t (x, y);R′

x > D
) + E

(
qω
t (x, y);R′

x ≤ D
)

≤ ct−d/2e−cDη′ + ct−d/2e−cD2/t .



INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL 259

Since the second term is larger, the upper bound in (4.13) follows.
(b) We have

E0
ω|Xt |2 = ∑

x

|x|2qω
t (0, x).(4.15)

We split the sum in (4.15) into three parts. First,∑
|x|<U0

|x|2qω
t (0, x) ≤ U2

0 .(4.16)

Next, using (4.7),∑
U0<|x|<ct

|x|2qω
t (0, x) ≤ ∑

U0<|x|<ct

|x|2ct−d/2e−c|x|2/t ≤ ct.(4.17)

Finally, using (4.8), ∑
ct∨U0≤|x|

|x|2qω
t (0, x) ≤ ∑

ct≤|x|
|x|2ce−c|x| ≤ c′.(4.18)

Combining (4.15), (4.16) and (4.17) gives

E0
ω|Xt |2 ≤ ct + c′U2

0 ,

and as by (4.6) EU2
0 < ∞ and t ≥ 1, we obtain (4.14). �

REMARK 4.10. Combining Lemma 2.8, Theorems 4.6 and 4.9 completes the
proof of Theorem 1.2.

Now let

X
(ε)
t = εXt/ε2, 0 < ε ≤ 1.(4.19)

THEOREM 4.11. Let T > 0, δ > 0, r > 0. Then

lim
R→∞ sup

ε
P 0

ω

(
sup
s≤T

∣∣X(ε)
s

∣∣ > R
)

→ 0,(4.20)

lim
δ→0

lim sup
ε→0

P 0
ω

(
sup

|s1−s2|≤δ,si≤T

∣∣X(ε)
s2

− X(ε)
s1

∣∣ > r
)

= 0.(4.21)

PROOF. By Theorem 4.6, if R ≥ U0, then

P 0
ω

(
sup
s≤T

Xs ≥ R
)

≤ c exp(−cR2/T ).

So if R ≥ U0, then R/ε ≥ U0 and

P 0
ω

(
sup
s≤T

∣∣X(ε)
s

∣∣ > R
)

= P 0
ω

(
sup

s≤T/ε2
|Xs | ≥ R/ε

)
≤ c exp(−cR2/T ),
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proving (4.20).
To prove (4.21) write

p(T , δ, r) = P 0
ω

(
sup

|s1−s2|≤δ,si≤T

|Xs2 − Xs1 | > r
)
,(4.22)

so that

P 0
ω

(
sup

|s1−s2|≤δ,si≤T

∣∣X(ε)
s2

− X(ε)
s1

∣∣ > r
)

= p(T /ε2, δ/ε2, r/ε).

We begin by bounding p(T , δ, r) for fixed T , δ and r . Let κ ∈ (0, 1
2), U∗

R =
maxx∈B(0,R) Ux , and H(R) = {U∗

R ≤ Rκ}. Then

P(H(R)c) ≤ cRd exp(−cRκη),(4.23)

so by Borel–Cantelli there exists R0 = R0(ω) such that ω ∈ H(R) for all R ≥ R0.
Let

Zk = sup
0≤s≤δ

|Xkδ+s − Xkδ|.(4.24)

Then if K = �T/δ� and Z∗ = max0≤k≤K Zk , it is enough to control Z∗ since

sup
|s1−s2|≤δ,si≤T

|Xs2 − Xs1 | ≤ 2Z∗.

Let R ≥ 1. Then

P 0
ω(Z∗ ≥ r) ≤ P 0

ω

(
τ(0,R) ≤ T

) + P 0
ω

(
Z∗ ≥ r, τ (0,R) > T

)
.(4.25)

By Proposition 2.18 we have

P 0
ω

(
τ(0,R) ≤ T

) ≤ c exp(−cR2/T ),(4.26)

provided that (0,R) is very good. For this it is sufficient that R ≥ U0(ω). Now,

P 0
ω

(
Z∗ ≥ r, τ (0,R) > T

) ≤
K∑

k=0

P 0
ω

(
Zk ≥ r,Xkδ ∈ B(0,R)

)

≤
K∑

k=0

∑
y∈B(0,R)

P y
ω

(
τ(y, r) < δ

)
P 0

ω(Xkδ = y).

Again by Proposition 2.18, for y ∈ B(0,R),

P y
ω

(
τ(y, r) < δ

) ≤ c exp(−cr2/δ),(4.27)

provided r ≥ U∗
R . This will hold if R ≥ R0(ω) and r ≥ Rκ . Combining (4.25),

(4.26), (4.27), we obtain

P 0
ω(Z∗ ≥ r) ≤ c exp(−cR2/T ) + c(T /δ) exp(−cr2/δ),(4.28)

provided R ≥ R0(ω) and r ≥ Rκ .
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Hence

p(T /ε2, δ/ε2,2r/ε) ≤ c exp(−cR2/T ) + c(T /δ) exp(−cr2/δ),(4.29)

provided R > εR0 and r ≥ Rκε1−κ . For fixed r , δ choose R so that R ≥ R0 and
R2/T ≥ r2/δ. Then

p(T /ε2, δ/ε,2r/ε) ≤ cT δ−1 exp(−cr2/δ) when ε1−κ ≤ rR−κ .

Hence

lim sup
ε→0

p(T /ε2, δ/ε,2r/ε) ≤ cT δ−1 exp(−cr2/δ),

and (4.21) follows. �

For n ∈ N let X̂n = Xn, and set

X̂
(ε)
t = εX̂�t/ε2�, 0 < ε ≤ 1.(4.30)

LEMMA 4.12. For any u > 0,

lim
ε→0

P 0
ω

(
sup

0≤s≤T

∣∣X̂(ε)
s − X(ε)

s

∣∣ > u
)

= 0.(4.31)

PROOF. In the notation of the previous theorem, it is sufficient to bound
p(T /ε2,1, u/ε); using (4.29) we have

p(T /ε2,1, u/ε) ≤ cT ε−2 exp(−cu2/ε2),

provided there exists an R with R ≥ εR0(ω), R2 ≥ T u2ε−2 and u/ε ≥ Rκ . Setting
R = T 1/2u/ε, we need uT 1/2 ≥ ε2R0(ω), and u1−κ ≥ ε1−κT κ/2, so these bounds
hold for all sufficiently small ε. �

5. Invariance principle. In this section we prove the invariance principle
Theorem 1.1. We assume that the conductances μe are defined on the space (�,P)

where

� = [1,∞]Ed .

We write μe(ω) = ω(e) for the coordinate maps, and make the following assump-
tions on the environment (μe).

ASSUMPTION 5.1. (1) (μe) is stationary, ergodic, and invariant under sym-
metries of Z

d .
(2) μe ∈ [1,∞) for all e ∈ Ed , P-a.s.
(3) The conclusions of Theorem 1.2 hold for the VSRW associated with (μe).
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As explained in the Introduction, our basic approach is to construct the “correc-
tor” χ :� × Z

d → R
d so that, for P-a.a. ω the discrete time process

M̂n = X̂n − χ(ω, X̂n)(5.1)

is a P 0
ω-martingale with respect to the filtration F̂n = σ(X̂k,0 ≤ k ≤ n).

The key steps in the proof of the invariance principle are:

1. Tightness (a consequence of Theorem 3.5);
2. The invariance principle for the martingale part. This is standard and follows

from the ergodicity of our environment (see [29], proof of Theorem 2.6);
3. The almost sure control of the corrector, for which we use the the ergodicity of

the environment, the properties (4.11) and (4.12) and the quenched heat kernel
estimates in Theorem 1.2 (see [34], or [12], Theorem 2.3). Note that all we need
here is the ergodicity of the environment; ergodicity under the action of each
direction as stated in [34], Remark 1.3, is not required since one can use the
cocycle property of the corrector (see [13, 26]).

We now give the details. Let

�0 = {ω :ω(e) ∈ [1,∞) for all e}.
Since ω(e) satisfies Assumption 5.1 we have P(�0) = 1. We write ω = (ω(e), e ∈
Ed), and ω(x, y) = ω({x, y}). For x ∈ Z

d define Tx :� → � by

Tx(ω)(z,w) = ω(z + x,w + x).

Let X be the VSRW with generator LV given by (1.3), and qω
t (x, y) be the transi-

tion density of X. As νx ≡ 1 is the invariant measure for X,

qω
t (x, y) = P x

ω(Xt = y) = qω
t (y, x).

Write

Qxy(ω) = qω
1 (x, y), Q(n)

xy (ω) = qω
n (x, y), x, y ∈ Z

d;(5.2)

and note that Qxy ≤ 1 for all x, y, with
∑

y Qxy = 1. We have

Q(n)
xy ◦ Tz = Q

(n)
x+z,y+z, Q(n)

xy = Q(n)
yx .(5.3)

We define the process Z, which gives the “environment seen from the particle,” by

Zt = TXt ω, t ∈ [0,∞),(5.4)

and define the discrete time process Ẑ by Ẑn = Zn, n ∈ Z+.
Let Lp = Lp(�,P). For F ∈ L2 write Fx = F ◦ Tx . Then Ẑ has generator

L̂F (ω) = ∑
x∈Zd

Q0x(ω)
(
Fx(ω) − F(ω)

)
.

Set

Ê (F,G) = E

∑
x∈Zd

Q0x(F − Fx)(G − Gx).
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LEMMA 5.2. We have for F ∈ L1,

EF = EFx,(5.5)

E(Q0xFx) = E(Q0,−xF ).(5.6)

PROOF. Since P is invariant by Tx the first relation is immediate. As
(Q0,x)−x = Q−x,0 = Q0,−x by (5.3), E(Q0xFx) = E((Q0x)−xF ) = E(Q0,−xF ),
proving (5.5). �

LEMMA 5.3. If F,G ∈ L2, then Ê (F,F ) < ∞, Ê (F,G) is defined, and
L̂F ∈ L2.

PROOF. Let F ∈ L2. Then

Ê (F,F ) = E

∑
x∈Zd

Q0x(F − Fx)
2

≤ 2E

∑
x∈Zd

Q0x(F
2 + F 2

x )

= 2EF 2 + 2E

∑
x∈Zd

Q0xF
2
x

= 2EF 2 + 2E

∑
x∈Zd

Q0,−xF
2 = 4‖F‖2

2.

Hence Ê (F,G) is defined for F,G ∈ L2. Also, if F ∈ L2,

E|L̂F |2 = E

∑
x,y

Q0xQ0y(Fx − F)(Fy − F)

≤ E

[(∑
x,y

Q0xQ0y(Fx − F)2
)1/2(∑

x,y

Q0xQ0y(Fy − F)2
)1/2]

= Ê (F,F ) ≤ 4‖F‖2
2. �

LEMMA 5.4. Let F,G ∈ L2. Then

E(GL̂F ) = −Ê (F,G).(5.7)

PROOF. Using (5.5) we have

E
(
Q0,−xG(F−x − F)

) = E
(
Q0xGx(F − Fx)

)
.(5.8)
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So

E(GL̂F ) = ∑
x∈Zd

EGQ0x(Fx − F)

= 1

2

∑
x∈Zd

EGQ0x(Fx − F) + 1

2

∑
x∈Zd

EGQ0,−x(F−x − F)

= 1

2

∑
x∈Zd

EQ0x(GFx − GF + GxF − GxFx) = −Ê (F,G),

where we used (5.8) in the last line. �

Now we look at “vector fields.” We define for G = G(ω,x) :� × Z
d → R,

EG = ∑
x

EQ0xG(·, x).

DEFINITION. We say G(ω,x) has the cocycle property (see [13, 26]) if

G(Txω,y − x) = G(ω,y) − G(ω,x), P-a.s.(5.9)

Let H = L2 be the set of vector fields G with the cocycle property and ‖G‖2 =
EG2 < ∞.

LEMMA 5.5. Let G = G(ω,x) ∈ L2.
(a) G(ω,0) = 0, and G(Txω,−x) = −G(ω,x).
(b) If x0, x1, . . . , xn ∈ Z

d , then
n∑

i=1

G(Txi−1ω,xi − xi−1) = G(ω,xn) − G(ω,x0).(5.10)

PROOF. (a) follows immediately from the definition. For (b), as G has the
cocycle property

G(Txi−1ω,xi − xi−1) = G(ω,xi) − G(ω,xi−1),

giving (5.10). �

It is easy to check the following:

LEMMA 5.6. L2 is a Hilbert space.

For F ∈ L2 we set

∇F(ω,x) = F(Txω) − F(ω).

LEMMA 5.7. If F ∈ L2, then ∇F ∈ L2.



INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL 265

PROOF. First,

E|∇F |2 = ∑
x

EQ0x(Fx − F)2 = Ê (F,F ) < ∞.

Also,

∇F(Txω,y − x) = F(Ty−xTxω) − F(Txω)

= F(Tyω) − F(Txω) = ∇F(ω,y) − ∇F(ω,x),

so ∇F has the cocycle property. �

LEMMA 5.8. Let G ∈ L2. Then

E
∑
x

Q
(n)
0x G(ω,x)2 ≤ n‖G‖2

2.(5.11)

PROOF. Write a2
n for the left-hand side of (5.11). Then using (5.9),

a2
n = E

∑
x

∑
y

Q
(n−1)
0x Qxy

(
G(Txω,y − x) + G(ω,x)

)2
.(5.12)

We now expand the final square in (5.12) and compute the three terms separately.
We have

E
∑
x

∑
y

Q
(n−1)
0x (ω)Qxy(ω)G(Txω,y − x)2

= E

∑
x

∑
y

Q
(n−1)
−x,0 (Txω)Q0,y−x(Txω)G(Txω,y − x)2

= E

∑
x

∑
z

Q
(n−1)
−x,0 (ω)Q0,z(ω)G(ω, z)2

= E

∑
z

Q0,z(ω)G(ω, z)2 = ‖G‖2.

Also,

E

∑
x

∑
y

Q
(n−1)
0x (ω)Qxy(ω)G(ω,x)2 = E

∑
x

Q
(n−1)
0x (ω)G(ω,x)2 = a2

n−1.

Finally,

E
∑
x

∑
y

Q
(n−1)
0x (ω)Qxy(ω)G(ω,x)G(Txω,y − x)

= E

∑
x

∑
z

Q
(n−1)
0x (ω)Q0,z(Txω)G(ω,x)G(Txω, z)

≤
(

E

∑
x

∑
z

Q
(n−1)
0x (ω)Q0,z(Txω)G(ω,x)2

)1/2
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×
(

E

∑
x

∑
z

Q
(n−1)
0x (ω)Q0,z(Txω)G(Txω, z)2

)1/2

= an−1‖G‖.
Thus an ≤ an−1 + ‖G‖, and so an ≤ n‖G‖. �

Note that the following lemma uses the heat kernel lower bounds.

LEMMA 5.9. Let G ∈ L2 and 1 ≤ p < 2. Then there exists a constant cp < ∞
such that

(E|G(·, x)|p)1/p ≤ (cp|x|)‖G‖.(5.13)

It follows that, P-a.s.,

lim
n→∞ max|x|≤n

|G(ω,x)|
nd+4 = 0.(5.14)

PROOF. By (5.9) and the triangle inequality we have

(E|G(·, x)|p)1/p ≤ |x|(E|G(·, e1)|p)1/p;
so it is enough to bound E|G(·, e1)|p . By Theorem 1.2 there exists an integer
valued random variable W0 with W0 ≥ 1 such that P(W0 = n) ≤ c1 exp(−c2n

δ)

for some δ > 0 and qω
t (0, x) ≥ c3t

−d/2 for t ≥ W0. Write ξn = qω
n (0, e1). Then

E|G(·, e1)|p =
∞∑

n=1

E|G(·, e1)|p1(W0=n).(5.15)

Let α = 2/p, and let α′ = 2/(2 − p) be its conjugate index. Then using Hölder’s
inequality and (5.11),

E|G(·, e1)|p1(W0=n)

= E
(
ξ1/α
n |G(·, e1)|pξ−1/α

n 1(W0=n)

)
≤ (EξnG(·, e1)

2)1/α(
Eξ−α′/α

n 1(W0=n)

)1/α′

≤
(

E

∑
y

Q
(n)
0y G(0, y)2

)1/α(
(c3n

−d/2)−α′/αc1 exp(−c2n
δ)

)1/α′

≤ (n‖G‖2)1/αc4n
d/2α exp(−c5n

δ)

= c4n
(d+2)/2α exp(−c5n

δ)‖G‖p.

Summing the series in n we obtain (5.13).



INVARIANCE PRINCIPLE FOR THE RANDOM CONDUCTANCE MODEL 267

Using (5.13) with p = 1 we have

P

(
max|x|≤n

|G(ω,x)| > λn

)
≤ (2n)d max|x|≤n

P
(|G(ω,x)| > λn

)
≤ cndλ−1

n max|x|≤n
E|G(ω,x)| ≤ cnd+1λ−1

n ‖G‖.

Taking λn = nd+3 and using Borel–Cantelli gives (5.14). �

Following [29] we introduce an orthogonal decomposition of the space L2. Set

L2
p = cl{∇F,F ∈ L2} in H,

and let L2
s be the orthogonal complement of L2

p in H. (Here p stands for “poten-
tial” and s for “solenoidal.”)

LEMMA 5.10. Let G ∈ L2
p . Then for each x, EG(x,ω) = 0.

PROOF. Fix x ∈ Z
d . Note first that if G = ∇F , where F ∈ L2, then EG(ω,

x) = E(Fx − F) = EFx − EF = 0.
Now let G ∈ L2

p . Then there exist Fn ∈ L2 such that G = limn ∇Fn in L2.
Since P(Q0x > 0) = 1, it follows that ∇Fn(ω,x) converges to G(ω,x) in P-
probability. By Lemma 5.9, for each p ∈ [1,2) the sequence ∇Fn(ω,x) is bounded
in Lp(�,P), and therefore ∇Fn(ω,x) converges to G(ω,x) in L1(�,P). So
EG(ω,x) = limn E∇Fn(ω,x) = 0. �

We define the semi-direct product measure P
∗ = P × P 0

ω .

LEMMA 5.11. Let G ∈ L2
s . Then∑

x∈Zd

Q0x(ω)G(ω,x) = 0, P-a.s.(5.16)

Hence Mn = G(ω,Xn) is a P 0
ω-martingale for P-a.a. ω. Further, writing

‖G(ω, ·)‖2 = ∑
x

Q0,x(ω, x)G(ω,x)2,

we have

〈M〉n =
n−1∑
k=0

‖G(TX̂k
ω, ·)‖2 =

n−1∑
k=0

‖G(Ẑk, ·)‖2.(5.17)

Hence

E
∗(Mn)

2 = n‖G‖2.(5.18)



268 M. T. BARLOW AND J.-D. DEUSCHEL

PROOF. If F ∈ L2 and G ∈ L2, then using Lemma 5.5,∑
x∈Zd

EQ0xG(ω,x)Fx = ∑
x∈Zd

EQ0x(T−xω)G(T−xω, x)Fx(T−xω)

= ∑
x∈Zd

EQ0,−x(ω)
(−G(ω,−x)

)
F(ω)

= − ∑
x∈Zd

EQ0x(ω)G(ω,x)F (ω).

Thus ∑
x∈Zd

EQ0xG(·, x)(F + Fx) = 0.(5.19)

If G ∈ L2
s , then

0 = E(G∇F) = ∑
x

EQ0xG(·, x)(Fx − F),

and so E
∑

Q0xGF = 0. Since this holds for any F ∈ L2 we obtain (5.16).
To show that M is a martingale it is enough to prove that for any x,

E0
ω

(
G(ω,Xn+1) − G(ω,Xn)|Xn = x

) = 0.(5.20)

However, using (5.16),

E0
ω

(
G(ω,Xn+1) − G(ω,Xn)|Xn = x

)
= ∑

y

Qxy(ω)
(
G(ω,y) − G(ω,x)

)
= ∑

y

Q0,y−x(Txω)G(Txω,y − x) = 0.

Recall that 〈M〉 is the unique predictable process so that M2
n − 〈M〉n is a martin-

gale. We have

Ex
ω(M2

n+1 − M2
n |X̂n = y) = Ex

ω

(
(Mn+1 − Mn)

2|X̂n = y
)

= ∑
z

Qyz(ω)
(
G(ω, z) − G(ω,y)

)2

= ∑
z

Q0,z−y(Tyω)
(
G(z − y,ω)

)2

= ‖G(Tyω, ·)‖2,

and (5.17) follows.
Finally,

E
∗M2

n = E(E0
ωM2

n) = E(E0
ω〈M〉n) =

n−1∑
k=0

E‖G(TX̂k
ω, ·)‖2 = n‖G‖2. �
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Let � : Rd → R
d be the identity, and write �j for the j th coordinate of �.

Then �j(y − x) = �j(y) − �j(x), so �j has the cocycle property. Further by
(4.14),

E|�j |2 = E

∑
x

Q0x |xj |2 < ∞,

so �j ∈ H. So we can define χj ∈ L2
p and �j ∈ L2

s by

�j = χj + �j ∈ L2
p ⊕ L2

s ;
this gives our definition of the corrector χ = (χ1, . . . , χd) :� × Z

d → R
d . We

will sometimes write χ(x) for χ(·, x). Note that conventions about the sign of the
corrector differ—compare [34] and [12]. As the environment process is invariant
under isometries of Z

d , ‖�j‖ = ‖�1‖ for each j = 1, . . . , d .
The following proposition summarizes the properties of χ and �.

PROPOSITION 5.12. (a) M̂n = X̂n − χ(ω, X̂n) is a P 0
ω-martingale.

(b) For each x ∈ Z
d , χ(·, x) ∈ L1.

(c) For each j = 1, . . . , d

E

∑
x

Q0x(ω)|�j(ω,x)|2 = ‖�1‖2 < ∞.

(d) χ is sublinear on average; for each ε > 0

lim
n→∞n−d

∑
|x|≤n

1(|χ(ω,x)|>εn) = 0, P-a.s.(5.21)

PROOF. (a) and (b) are immediate from Lemmas 5.11 and 5.9, and (c) is im-
mediate from the definition of �j as a projection in L2. Let e1 be the unit vector
e1 = (1,0, . . . ,0). By Lemma 5.10 we have Eχ(·, e1) = 0. So since

χ(ω,ne1) =
n∑

k=1

χ
(
T(k−1)e1ω,e1

)
(5.22)

and as χ has the cocycle property, the ergodic theorem implies that limn n−1χ(ω,

ne1) = 0 P-a.s., and (d) then follows by the results in Section 6 of [26]. �

LEMMA 5.13. The processes Z and Ẑ are ergodic under the time shift on the
environment space �.

PROOF. This is well known; see [17], Lemma 4.9, and Section 3 of [10] for a
careful proof in discrete time. �

PROOF OF THEOREM 1.1. We begin with the VSRW. The arguments are very
similar to those in [10, 12, 34], so we only mention the key points. We define

M̂n = �(ω, X̂n), M̂
(ε)
t = εM̂�t/ε2�, t ≥ 0,(5.23)
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so that

X̂
(ε)
t = εX̂�t/ε2� = M̂

(ε)
t + εχ

(
ω,ε−1X̂

(ε)
t

)
.(5.24)

Thus it is sufficient to prove that the martingale M̂(ε) converges to a multiple of
Brownian motion, and that for P-a.a. ω, the second term in (5.24) converges in
P 0

ω-probability to zero.
We start with the control of the corrector, and use [12], Theorem 2.4. This proves

that if the corrector χ has polynomial growth, and is sublinear on average, then
Gaussian upper bounds on the heat kernel imply pointwise sublinearity of χ . Thus,
using (1.10), (5.14) and (5.21) we have that for P-a.a. ω,

lim
n→∞ max|x|≤n

|χ(ω,x)|
n

= 0.(5.25)

Given (5.25) the Gaussian upper bounds then imply that, for P-a.a. ω,

εχ
(
ω, X̂�t/ε2�

) → 0 in P 0
ω-probability.(5.26)

For the convergence of M̂(ε), we proceed as in [10]. Let v ∈ R
d be a unit vector,

write M̂v
n = v · Mn, and let

FK(ω) = E0
ω(|M̂v

1 |2; |M̂v
1 | ≥ K).

Then FK is decreasing in K and

EFK ≤ EF0 ≤ d‖�1‖2.

In the notation of Lemma 5.11, F0(ω) = ‖v · �(ω, ·)‖2, and so by (5.17) the co-
variance process of M̂v is

〈M̂v〉n =
n−1∑
k=0

F0(Ẑk).

So by Lemma 5.13 we have n−1〈M̂v〉n → EF0, P 0
ω-a.s., for P-a.a. ω.

Using the same arguments as in [10], Theorem 6.2, it is straightforward to check
the conditions of the Lindeberg–Feller FCLT for martingales (see, e.g., [20], The-
orem 7.7.3), and deduce that v · M̂(ε) converges to a constant multiple of Brownian
motion. Hence M̂(ε) converges to an R

d -valued Brownian motion with nonrandom
covariance matrix D given by Dij = E�i�j . Since the law of the random vari-
ables ω(e) is invariant under symmetries of Z

d , we deduce that there exists σ 2
V ≥ 0

such that D = σ 2
V I , and that

σ 2
V = E�2

1.(5.27)

This establishes the convergence of X̂(ε); using Lemma 4.12 gives the convergence
of X(ε) to the same limit.
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The global upper bounds on qω
t (0, x) in Lemma 2.8 imply that if λ > 0 and

λt1/2 ≥ 1, then

P 0
ω(|Xt | ≤ λt1/2) ≤ ct−d/2|B(0, λt1/2)| ≤ c′λd.

Hence there exists λ > 0 such that for all large t ,

P 0
ω(|Xt | > λt1/2) ≥ 1

2 ,

which implies that σ 2
V > 0.

We now consider the CSRW. Recall from (1.1) the definition of μx(ω), set
F(ω) = μ0(ω), and

At =
∫ t

0
μXs ds =

∫ t

0
F(Zs) ds.(5.28)

Then if τt = inf{s ≥ 0 :As ≥ t} is the inverse of A, the time changed process

Yt = Xτt(5.29)

is the CSRW.
By the ergodic theorem for the process Z,

lim
t→∞ t−1At = EF = 2dEμe, P

∗-a.s.

So if Eμe < ∞ then τt/t → a a.s. where a = 1/2dEμe > 0. Let Y
(ε)
t = εYt/ε2 .

Then

Y
(ε)
t = X

(ε)
at + (

Y
(ε)
t − X

(ε)
at

)
(5.30)

and using Theorem 4.11 we have for any fixed t0 ≥ 0 that

sup
0≤t≤t0

∣∣Y (ε)
t − X

(ε)
at

∣∣(5.31)

converges in P 0
ω -probability to 0, for P-a.a. ω. Thus Y (ε) converges to σCB ′

t where
B ′ is a Brownian motion and σ 2

C = aσ 2
V > 0.

In the case when Eμe = ∞ we have that τt/t → 0, and hence Y (ε) converges to
a degenerate limit. �

We conclude this section by stating a local limit theorem for qt (x, y) (for the
VSRW). Write

kt (x) = (2πtσ 2
V )−d/2e−|x|2/2σ 2

V t

for the Gaussian heat kernel with diffusion constant σ 2
V where σ 2

V is as in Theo-
rem 1.1.
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THEOREM 5.14. Let X be the VSRW. Let T > 0. For x ∈ R
d write �x� =

(�x1�, . . . , �xd�). Then

lim
n→∞ sup

x∈Rd

sup
t≥T

|nd/2qω
nt (0, �n1/2x�) − kt (x)| = 0, P-a.s.(5.32)

PROOF. This is proved as in Section 4 of [3]. We have to verify Assumptions
4.1 and 4.4 in [3], but this is straightforward given the invariance principle and
heat kernel bounds in Theorems 1.1 and 1.2, and the PHI in Theorem 4.7.

Note that as ν is the invariant measure for X, in Assumption 4.1(d) all we need
is that ν(�n(x, r))/(2n1/2r)d converges, and as νx = 1 for all x; this is easy. (Here
�n(x, r) = (xn1/2 + [−rn1/2, rn1/2]d) ∩ Z

d .) �

REMARK 5.15. In this section we have constructed a corrector χ(ω,x) so
that the process

Mn = Xn − χ(ω,Xn), n ∈ Z+,(5.33)

is a (discrete time) martingale. It is natural to ask if χ(ω, ·) is also a corrector for
the continuous time process Xt .

For the RCM with i.i.d. conductances it is straightforward to check that the
condition in Lemma 2.21 involving the set A(K) holds P-a.s. (see [12], Lemma
3.1, for a similar argument). We can therefore use Lemma 2.21 with h(·) = χ(ω, ·)
to deduce that

Mt = Xt − χ(ω,Xt), t ∈ R+,(5.34)

is, for P-a.a. ω, a P 0
ω-martingale.

6. General ergodic environments. We conclude this paper with some re-
marks on more general ergodic random environments. First, note that the proof
of the invariance principle in Section 5 just uses the facts that the environment is
stationary, symmetric and ergodic, and that the heat kernel bounds in Theorem 1.2
hold.

In the proof of Theorem 1.2 the full strength of the assumption that μe were
i.i.d. was only used at one point, in Theorem 4.3, where we controlled the prob-
ability that a ball was not very good. The heat kernel upper bounds in Section 2
only require Assumptions 2.1 and 2.6, together with a comparison of the metrics
d̃(x, y) and d(x, y). Given these upper bounds, and using the fact that μe ≥ 1, no
additional hypotheses on μe were needed to obtain the lower bounds in Section 3.
We therefore have the following:

THEOREM 6.1. Let μe, e ∈ Ed be a stationary symmetric ergodic environ-
ment, satisfying for some c1 > 0,

μe ∈ [c1,∞) for all e ∈ Ed,P-a.s.(6.1)
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Let d̃ω(x, y) be the metric given by the first passage percolation construction
of (2.6), and (as in Definition 2.9) let Vx(λ) be the smallest integer such that
(x,Vx(λ)) is λ-very good. Suppose that there exists λ0 < ∞ and η ∈ (0,1) such
that

P
(
Vx(λ0) ≥ n

) ≤ c1e
−c2n

η

.(6.2)

Then the conclusions of Theorems 1.1, 1.2(a)–(c), 1.3, 4.7 and 5.14 all hold for the
environment (μe).

PROOF. We begin by considering the heat kernel bounds in Theorem 1.2. As
in Lemma 4.1, it is immediate that Assumptions 2.1 and 2.6 hold for (μe), P-a.s.
Using the hypothesis (6.2) instead of Theorem 4.3, the arguments in Section 4
[except for Theorem 4.9(a), for which see Remark 6.2 below] hold in this more
general context, and give Theorems 1.2 and 4.7.

Given Theorem 1.2, the arguments in Section 5 then give the invariance princi-
ple (Theorem 1.1) and local limit theorem (Theorem 5.14).

Combining these results gives the Green function estimates in Theorem 1.3. �

REMARK 6.2. The proof of Theorem 4.9 used the fact that the bounds in
Theorem 4.6 hold for 1 − η as well as for η. If we only have (6.2) then we obtain

Eqω
t (x, y) ≤ c1t

−d/2e−c2|x−y|2/t if t ≥ c3 ∨ |x − y|1+η,(6.3)

Eqω
t (x, y) ≥ c4t

−d/2e−c5|x−y|2/t if t ≥ c6 ∨ |x − y|2−η.(6.4)

REMARK 6.3. If μe is bounded and bounded away from 0, so there exist
0 < c1 ≤ c2 < ∞ such that P(μe ∈ [c1, c2]) = 1, then the metrics d(x, y) and
d̃(x, y) are comparable. So, taking λ0 large enough, (6.2) holds.

REMARK 6.4. See [12], Lemma 3.1, or [30], Lemma 5.3, for percolation ar-
guments which are more robust than Theorem 4.3 and which may be useful for
establishing (6.2) in more general contexts.

REMARK 6.5. If μe is stationary and ergodic, but not invariant with respect
to symmetries of Z

d , then if (6.2) holds, we still obtain Theorem 1.2, and the
convergence of X(n) to a Brownian motion with covariance matrix D. However,
D need not be diagonal.

REMARK 6.6. Unlike ergodic bounded conductance models, the results of
this paper certainly do not hold for all unbounded stationary symmetric ergodic
random environments. For example, let d = 2,3,4 and let T be a uniform spanning
tree on Z

d (see [9]). Then T is 1-sided, so from each x ∈ Z
d there is a unique

self-avoiding path γx to infinity. Let a(x) be the first point on this path. Then
a : Zd → Z

d and the path γx is {x, a(x), a2(x), . . .}.
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Let N(x) be the set of points in T which are disconnected from infinity by
deleting the bond {x, a(x)}, and let n(x) = |N(x)|. As x ∈ N(x), n(x) ≥ 1 for
all x. Let μe = 1 for edges e ∈ Ed which are not in T . Each edge e ∈ T is of the
form e = {x, a(x)} for some x, set

μ{x,a(x)} = n(x)en(x)2
.

Let Ti , i ≥ 1, be the jump times of the VSRW X. Then

P x
ω

(
XT1 �= a(x)

) =
∑

y �=a(x) μxy

μx,a(x) + ∑
y �=a(x) μxy

.(6.5)

Fix x, and let the neighbors of x in T be a(x), y1, . . . , yk . Then

∑
y �=a(x)

μxy = (2d − k − 1) +
k∑

i=1

n(yi)e
n(yi)

2
.

Since μx,a(x) = n(x)en(x)2
and n(x) = 1 + ∑

n(yi), it is easy to see that

p0(x) = P x
ω

(
XT1 �= a(x)

) ≤ 2de−n(x)2 +max
i

en(yi)
2−n(x)2 ≤ 2de−n(x)2 + e−n(x)/d .

So
∑

k p0(a
k(x)) < ∞, and it follows that ultimately the process X moves to in-

finity along a path γx for some x. Since
∑

k μ−1
ak(x),ak+1(x)

< ∞ this takes finite
time. Hence the quenched invariance principle Theorem 1.1 fails, as well as the
Gaussian bounds in Theorem 1.2.
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