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RELATIONS BETWEEN INVASION PERCOLATION AND
CRITICAL PERCOLATION IN TWO DIMENSIONS

BY MICHAEL DAMRON1, ARTËM SAPOZHNIKOV2 AND BÁLINT VÁGVÖLGYI3

Courant Institute, EURANDOM and Vrije Universiteit Amsterdam

We study invasion percolation in two dimensions. We compare connec-
tivity properties of the origin’s invaded region to those of (a) the critical per-
colation cluster of the origin and (b) the incipient infinite cluster. To exhibit
similarities, we show that for any k ≥ 1, the k-point function of the first so-
called pond has the same asymptotic behavior as the probability that k points
are in the critical cluster of the origin. More prominent, though, are the differ-
ences. We show that there are infinitely many ponds that contain many large
disjoint pc-open clusters. Further, for k > 1, we compute the exact decay rate
of the distribution of the radius of the kth pond and see that it differs from that
of the radius of the critical cluster of the origin. We finish by showing that the
invasion percolation measure and the incipient infinite cluster measure are
mutually singular.

1. Introduction. Self-organized criticality has become a subject of great in-
terest in recent years. Although there is no general definition for it, we can say
that a system or model has this property if the definition of the model requires
no parameter, yet some characteristics of the model resemble those at criticality
of a parametric model with a phase transition. One such model is invasion per-
colation, a stochastic growth model that mirrors aspects of the critical Bernoulli
percolation picture without tuning any parameter. The invasion model was intro-
duced independently by two groups ([2] and [11]), who studied it numerically. The
first mathematically rigorous study of invasion percolation appeared in [4]. Con-
nections between the invasion cluster and critical Bernoulli percolation have been
established in, for instance, [4, 6, 18, 21] and [22], using both heuristics and rig-
orous arguments. These results indicated so many parallels between the invaded
region and the incipient infinite cluster that a question naturally arose: to what
extent are these objects similar? This question was studied on the regular tree in
[1]. It was shown that, although the invaded region and the incipient infinite clus-
ter are locally similar, globally, they differ significantly. In this paper, we prove
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local similarities between critical Bernoulli clusters and certain invaded clusters
(the ponds) in the plane. We also show that, globally, the invaded region and the
incipient infinite cluster are essentially different.

In the remainder of this section, we define the invasion percolation model and,
using results of [4], we introduce the ponds of the invasion. We then review results
concerning relations between invasion percolation and critical Bernoulli percola-
tion. Finally, we state the main results of the paper.

1.1. The model. For simplicity, we restrict ourselves here to the square lattice.
Invasion percolation can be similarly defined on other two-dimensional lattices and
the results of this paper still hold for lattices which are invariant under reflection
in one of the coordinate axes and under rotation about the origin by some angle in
(0, π). In particular, this includes the triangular and honeycomb lattices.

Although our results concern invasion in the plane, we give the definition of
invasion percolation for Z

d . Consider the hypercubic lattice Z
d with its set of

nearest neighbor bonds E
d . We denote edges by their endpoints, that is, we write

e = 〈x, y〉 if the two endpoints of e are x and y. Letting G = (V ,E) be an arbitrary
subgraph of (Zd,E

d), we define the outer edge boundary �G of G as follows:

�G = {e = 〈x, y〉 ∈ E
d : e /∈ E(G),but x ∈ G or y ∈ G}.

The first step is to assign independent random variables, uniformly distributed in
[0,1], to each bond e ∈ E

d . We denote these variables by τe. Using them, we
recursively define an increasing sequence G0,G1,G2, . . . of connected subgraphs
of the lattice. G0 only contains the origin, with no edges. Once Gi = (Vi,Ei)

is defined, we select the edge ei+1 that minimizes τ on �Gi . We take Ei+1 =
Ei ∪ {ei+1} and let Gi+1 be the graph induced by the edge set Ei+1. The graph
Gi is called the invaded region at time i, and the graph S = ⋃∞

i=0 Gi is called the
invasion percolation cluster (IPC). Let E∞ = ⋃∞

i=0 Ei .
Since we would like to compare Bernoulli percolation to the invasion, we use a

well-known analogous definition of Bernoulli percolation that makes the coupling
of the two models immediate. For any p ∈ [0,1], we say that an edge e ∈ E

d is
p-open if τe < p. It is obvious that the resulting random graph of p-open edges
has the same distribution as the one obtained by declaring each edge of E

d open
with probability p and closed with probability 1 − p, independently of the states
of all other edges. The percolation probability θ(p) is the probability that the
origin is in the infinite cluster of p-open edges. There is a critical probability
pc = inf{p : θ(p) > 0} ∈ (0,1). For general background on Bernoulli percolation,
we refer the reader to [5].

It was shown in [4] that for all p > pc, the invasion intersects the infinite p-
open cluster with probability 1. In the case d = 2, this result immediately follows
from the Russo–Seymour–Welsh theorem (see Section 11.7 in [5]). Furthermore,
the definition of the invasion mechanism implies that if the invasion reaches the
p-open infinite cluster for some p, then it will never leave this cluster. Combining
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these facts yields that if ei is the edge added at time i, then lim supi→∞ τei
= pc.

From now on, we consider only d = 2. In this case, it is well known that θ(pc) = 0,
which implies that for every t > 0, there is an edge e(t) such that e(t) is invaded
after step t and τe(t) > pc. The last two results give that τ̂1 = max{τe : e ∈ E∞}
exists and is greater than pc. Let ê1 denote the edge at which the maximum value
of τ is taken and assume that ê1 is invaded at step i1 +1. Following the terminology
of [15], we call the graph Gi1 the first pond of the invasion and denote it V̂1.
The edge ê1 is called the first outlet. The second pond of the invasion is defined
similarly. Note that the same argument as above implies that τ̂2 = max{τei

: ei ∈
E∞, i > i1} exists and is greater than pc. If we assume that τ̂2 is taken on the edge
ê2 at step i2 + 1, we call the graph Gi2 \ Gi1 the second pond of the invasion and
denote it V̂2. The further ponds V̂k can be defined analogously.

The following interpretation gives a natural meaning to the ponds. Consider
an infinite piece of land divided into square parcels. These parcels are separated
by dikes whose heights are given by the values of independent random variables,
uniformly distributed on [0,1]. One of the parcels, called the parcel of the origin,
contains an infinite source of water. First, the water level in the parcel of the origin
rises until it reaches the height of the lowest adjacent dike and then spills over into
the parcel on the other side of this dike. Next, the water level rises in both parcels
until it reaches the height of the lowest dike on the boundary of the union of the
two parcels, at which time a new parcel floods. The process continues indefinitely
and, as time approaches infinity, an infinite region of land will flood. Consider the
dual lattice of Z

2, each dual edge having the τ value of its corresponding edge in
the original lattice, identifying the dual edges with the dikes and the origin with
the source of water. Each vertex of Z

2 corresponds to exactly one parcel of land.
It is evident from the invasion mechanism and from the way the flood spreads on
the land that a parcel is flooded if and only if the corresponding vertex of Z

2 is
invaded. We now explain the meaning of the first pond in the flood setting. At
step i1, when the first outlet is invaded, the minimal τ value on the boundary of
Gi1 is that of ê1. However, this is the edge with the largest τ value ever added to
the invasion. This means that the invasion will never return to Gi1 , that is, no edge
on �Gi1 , other than ê1, will be invaded. Therefore, after some time, all water will
flow over the dike corresponding to ê1 and the water level in each parcel of the first
pond will be constant and equal to τ̂1. The same argument shows that after some
time, the water level in the second pond will become, and remain, τ̂2, and so on.

Now that our model is defined, we review a few results that established con-
nections between the invasion and the critical percolation models. To the best of
our knowledge, the first paper with mathematically rigorous results in this area
was [4], where it was shown, among other things, that the empirical distribution of
the τ value of the invaded edges converges to the uniform distribution on [0,pc].
Results on the fractal nature of the invaded region were also obtained in [4]. The
authors showed that the region has zero volume fraction, given that there is no per-
colation at criticality, and that it has boundary-to-volume ratio (1 − pc)/pc. This
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corresponds to the asymptotic boundary-to-volume ratio for large critical clusters
(see [10] and [14]). The above results indicate that a large proportion of the edges
in the IPC belong to big pc-open clusters.

An object that turns out to be closely related to the invaded region is the incipient
infinite cluster (IIC). Loosely speaking, one can say that the IIC is the “infinite
open cluster at criticality.” The IIC can be constructed by conditioning on the origin
being connected to a site at distance n from the origin in critical percolation and by
considering the cluster of the origin. If we let n → ∞, an infinite cluster is obtained
and this cluster is called the incipient infinite cluster. (Later in this paper, we will
give the precise definition. For detailed results on the IIC, we refer the reader to
[8].) Let Sn be the number of invaded sites within a distance of at most n from
the origin. The scaling of the moments of Sn as n goes to infinity was obtained in
[6] and [22], and it turned out to coincide with the scaling of the corresponding
moments for the IIC. Another similarity established in [6] is concerned with the
invasion picture far away from the origin: the invasion measure was shown to be
locally the same as the IIC measure.

The diameter and volume of the first pond of the invasion were studied in [18,
19]. It was shown that the decay rates of their distributions coincide, respectively,
with the decay rates of the distributions of the diameter and the volume of the
critical cluster of the origin in Bernoulli percolation.

To the best of knowledge, the only paper to date concerned with the differences
between the invasion model and critical percolation is [1]. The authors consider
invasion percolation on regular trees. The scaling behavior of the r-point function
and the volume of the invaded region at and below a given height can be explicitly
computed. It is found that while the power laws of the scaling are the same for
the invaded region and for the incipient infinite cluster, the scaling functions differ
and, consequently, the two clusters behave differently. In fact, their laws are found
to be mutually singular. Even though the arguments of [1] do not work for invasion
in the plane, their results give a strong indication that, in spite of the presence of
many similarities, the two objects are indeed different.

In this paper, we compare connectivity properties of the origin’s invaded re-
gion to those of the critical percolation cluster of the origin and the IIC. In Theo-
rems 1.1 and 1.2, we give the asymptotic behavior for the k-point function of the
first pond. We continue to study the relation between the IPC and large pc-open
clusters in Theorems 1.3 and 1.4. We show that, for any K and N , there are infi-
nitely many ponds that contain at least K disjoint pc-open clusters of size at least
N . We also show that, provided the radius of the first pond is larger than N , the
first pond contains at least K disjoint pc-open clusters of size at least N with prob-
ability bounded from below by a positive constant independent of N . For k > 1,
we compute the exact decay rate of the distribution of the radius of the kth pond
in Theorem 1.5. Unlike the decay rate of the distribution of the radius of the first
pond [18], it is strictly different from that of the radius of the critical cluster of the
origin. Finally, in Theorem 1.8, we show that the IPC measure and the IIC measure
are mutually singular.
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1.2. Notation. In this section, we set out most of the notation and definitions
used in the paper.

For a ∈ R, we write |a| for the absolute value of a and, for a site x = (x1, x2) ∈
Z

2, we write |x| for max(|x1|, |x2|). For n > 0 and x ∈ Z
2, let B(x,n) = {y ∈

Z
2 : |y − x| ≤ n} and ∂B(x,n) = {y ∈ Z

2 : |y − x| = n}. We write B(n) for
B(0, n) and ∂B(n) for ∂B(0, n). For m < n and x ∈ Z

2, we define the annulus
Ann(x;m,n) = B(x,n) \ B(x,m). We write Ann(m,n) for Ann(0;m,n).

We consider the square lattice (Z2,E
2), where E

2 = {(x, y) ∈ Z
2 × Z

2 : |x −
y| = 1}. Let (Z2)∗ = (1/2,1/2) + Z

2 and (E2)∗ = (1/2,1/2) + E
2 be the vertices

and the edges of the dual lattice. For x ∈ Z
2, we write x∗ for x + (1/2,1/2). For

an edge e ∈ E
2, we denote its ends, left (resp., right) or bottom (resp., top), by

ex, ey ∈ Z
2. The edge e∗ = (ex + (1/2,1/2), ey − (1/2,1/2)) is called the dual

edge to e. Its ends, bottom (resp., top) or left (resp., right), are denoted by e∗
x

and e∗
y . Note that, in general, e∗

x and e∗
y are not the same as (ex)

∗ and (ey)
∗. For a

subset K ⊂ Z
2, let K∗ = (1/2,1/2) + K. We say that an edge e ∈ E

2 is in K ⊂ Z
2

if both of its ends are in K.
Let (τe)e∈E2 be independent random variables, uniformly distributed on [0,1],

indexed by edges. We call τe the weight of an edge e. We define the weight of an
edge e∗ as τe∗ = τe. We denote the underlying probability measure by P and the
space of configurations by ([0,1]E2

, F ), where F is a natural σ -field on [0,1]E2
.

We say that an edge e is p-open if τe < p and p-closed if τe > p. An edge e∗ is
p-open if e is p-open and it is p-closed if e is p-closed. The event that two sets of

sites K1, K2 ⊂ Z
2 are connected by a p-open path is denoted by K1

p←→ K2 and
the event that two sets of sites K∗

1, K∗
2 ⊂ (Z2)∗ are connected by a p-closed path

in the dual lattice is denoted by K∗
1

p∗
←→ K∗

2.
For positive integers m < n, k and p ∈ [0,1], let An,p be the event that there is

a p-open circuit around the origin of diameter at least n and let Bn,p be the event
that there is a p-closed circuit around the origin in the dual lattice of diameter at
least n. Let Am,n,p be the event that there is a p-open circuit around the origin in
the annulus Ann(m,n) and let Bm,n,p be the event that there is a p-closed circuit
around the origin in the annulus Ann(m,n)∗. Let Ak

m,n,p be the event that there are
k disjoint p-open paths connecting B(m) to ∂B(n).

For p ∈ [0,1], we consider a probability space (�p, Fp,Pp), where �p =
{0,1}E

2
, Fp is the σ -field generated by the finite-dimensional cylinders of �p

and Pp is a product measure on (�p, Fp), Pp = ∏
e∈E2 μe, where μe is given by

μe(ωe = 1) = 1−μe(ωe = 0) = p for vectors (ωe)e∈E2 ∈ �p . We say that an edge
e is open or occupied if ωe = 1, and e is closed or vacant if ωe = 0. We say that
an edge e∗ is open or occupied if e is open, and it is closed or vacant if e is closed.
The event that two sets of sites K1, K2 ⊂ Z

2 are connected by an open path is de-
noted by K1 ↔ K2 and the event that two sets of sites K∗

1, K∗
2 ⊂ Z

2 are connected

by a closed path in the dual lattice is denoted by K∗
1

∗↔ K∗
2.
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For positive integers m < n and k, let An be the event that there is an occupied
circuit around the origin of diameter at least n and let Bn be the event that there
is a vacant circuit around the origin in the dual lattice of diameter at least n. Let
Am,n be the event that there is an occupied circuit around the origin in the annulus
Ann(m,n) and let Bm,n be the event that there is an vacant circuit around the origin
in the annulus Ann(m,n)∗. Let Ak

m,n be the event that there are k disjoint occupied
paths connecting B(m) to ∂B(n).

For two functions g and h from a set X to R, we write g(z) � h(z) to indicate
that g(z)/h(z) is bounded away from 0 and ∞, uniformly in z ∈ X . Throughout
this paper, we write “log” for log2. We also write Pcr for Ppc . All of the con-
stants (Ci) in the proofs are strictly positive and finite. Their exact values may be
different from proof to proof.

1.3. Main results.

1.3.1. Probability for k points in the first pond.

THEOREM 1.1. Let C(0) be the cluster of the origin in Bernoulli bond perco-
lation. For any k > 0,

P(x1, . . . , xk ∈ V̂1) � Pcr

(
x1, . . . , xk ∈ C(0)

)
, x1, . . . , xk ∈ Z

2.(1)

REMARK 1. The lower bound follows from the observation that the pc-open
cluster of the origin is a subset of V̂1.

The reader may ask whether there is a universal constant c such that, for all
k ≥ 1 and x1, . . . , xk ∈ Z

2,

P(x1, . . . , xk ∈ V̂1) ≤ cPcr

(
x1, . . . , xk ∈ C(0)

)
.

In the next theorem, we show that the answer to the above question is negative.

THEOREM 1.2.

lim
n→∞

P(B(n) ⊂ V̂1)

Pcr (B(n) ⊂ C(0))
= ∞.

1.3.2. Ponds and pc-open clusters. We now state two theorems which say that
invasion ponds can contain several large pc-open clusters. Let K ≥ 2,N ≥ 1, and
let U (m,K,N) be the event that the mth pond contains at least K disjoint pc-open
clusters of size at least N .
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THEOREM 1.3. With probability one, there exist infinitely many values of m

for which U (m,K,N) holds.

THEOREM 1.4. There exists ε > 0, independent of N but dependent on K ,
such that

P
(

U (1,K,N)|R̂1 ≥ N
) ≥ ε,

where R̂1 is the radius of the first pond.

1.3.3. Radii of the ponds. We define R̂j to be the radius of the graph Gij , that

is, R̂j = max{|x| :x ∈ Gij }. We refer the reader to Section 1.1 for the definitions

of ij and Gij . In the next theorem, we give the asymptotics for the radii R̂j .

THEOREM 1.5. For any k ≥ 1,

P(R̂k ≥ n) � (logn)k−1
Pcr

(
0 ↔ ∂B(n)

)
.(2)

REMARK 2. Let {0 ↔k ∂B(n)} be the event that there is a path connecting
the origin to the boundary of B(n) such that at most k of its edges are closed. If
this event holds, then we say that the origin is connected to ∂B(n) by an open path
with k defects. It is a consequence of the Russo–Seymour–Welsh (RSW) theorem
(see [17], Proposition 18) that

Pcr

(
0 ↔k ∂B(n)

) � (logn)kPcr

(
0 ↔ ∂B(n)

)
.

Therefore, Theorem 1.5 implies that, for any k ≥ 1,

P(R̂k ≥ n) � Pcr

(
0 ↔k−1 ∂B(n)

)
.

REMARK 3. For k = 1, the statement (2) follows from Theorem 1 in [18].
Note that in the case k = 1, the lower bound immediately follows from the fact
that C(0) ⊂ V̂1, where C(0) is the pc-open cluster of the origin for Bernoulli bond
percolation. However, in the case k ≥ 2, the lower bound is not trivial.

Let R̄k be the diameter of the kth pond, R̄k = max{|x − y| :x, y ∈ V̂k}. Note
that (R̄k) are related to (R̂k) via the simple inequalities R̂1 ≤ R̄1 ≤ 2R̂1 and R̂k −
R̂k−1 − 1 ≤ R̄k ≤ 2R̂k for k ≥ 2. The next theorem immediately follows from
Theorem 1.5 and the fact that Pcr (0 ↔ ∂B(n)) � Pcr (0 ↔ ∂B(2n)).

THEOREM 1.6. For every k ≥ 1,

P(R̄k ≥ n) � (logn)k−1
Pcr

(
0 ↔ ∂B(n)

)
.
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1.3.4. Mutual singularity of IPC and IIC. First, we recall the definition of the
incipient infinite cluster from [8]. It is shown in [8] that the limit

ν(E) = lim
N→∞ Pcr

(
E|0 ↔ ∂B(N)

)
exists for any event E that depends on the state of finitely many edges in E

2.
The unique extension of ν to a probability measure on configurations of open and
closed edges exists. Under this measure, the open cluster of the origin is a.s. infi-
nite. It is called the incipient infinite cluster (IIC). Recall the definition of the IPC

S from Section 1.1. The next statement is [6], Theorem 3.

THEOREM 1.7. For any finite K ⊂ E
2 and x ∈ Z

2, let K(x) = x + K ⊂ E
2,

EK = {K ⊂ S} and E′
K = {K ⊂ C(0)}. Then,

lim|x|→∞ P
(
EK(x)|x ∈ S

) = ν(E′
K).

The above theorem says that, asymptotically, the distribution of invaded edges
near x is given by the IIC measure. In this paper, we show that, globally, the IPC
measure and the IIC measure are entirely different.

THEOREM 1.8. The laws of IPC and IIC are mutually singular.

1.4. Structure of the paper. We define the correlation length and state some of
its properties in Section 2. We prove Theorem 1.1 in Section 3 and Theorem 1.2 in
Section 4. The proofs of Theorems 1.3 and 1.4 are given in Section 5. In Section 6,
we prove Theorem 1.5. Theorem 1.8 is proved in Section 7. After Sections 1 and 2,
the remainder of the paper may be read in any order. For the notation in Sections
3–7, we refer the reader to Section 1.2.

2. Correlation length and preliminary results. In this section, we define the
correlation length that will play a crucial role in our proofs. The correlation length
was introduced in [3] and further studied in [9].

2.1. Correlation length. For positive integers m,n and p ∈ (pc,1], let

σ(n,m,p) = Pp(there is an open horizontal crossing of [0, n] × [0,m]).
Given ε > 0, we define

L(p, ε) = min{n :σ(n,n,p) ≥ 1 − ε}.(3)

L(p, ε) is called the finite-size scaling correlation length and it is known that
L(p, ε) scales like the usual correlation length (see [9]). It was also shown in [9]
that the scaling of L(p, ε) is independent of ε, given that it is small enough, that is,
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there exists ε0 > 0 such that for all 0 < ε1, ε2 ≤ ε0, we have L(p, ε1) � L(p, ε2).
For simplicity, we will write L(p) = L(p, ε0) for the entire paper. We also define

pn = sup{p :L(p) > n}.
It is easy to see that L(p) → ∞ as p → pc and L(p) = 1 for p close to 1. In
particular, the probability pn is well defined. It is clear from the definitions of
L(p) and pn, and from the RSW theorem, that for positive integers k and l, there
exists δk,l > 0 such that for any positive integer n and for all p ∈ [pc,pn],

Pp

(
there is an open horizontal crossing of [0, kn] × [0, ln)

)
> δk,l

and

Pp

(
there is a closed horizontal dual crossing of

([0, kn] × [0, ln)
)∗)

> δk,l.

By the FKG inequality and a standard gluing argument [5], Section 11.7, we get
that, for positive integers n and k ≥ 2, and for all p ∈ [pc,pn],

Pp

(
Ann(n, kn) contains an open circuit around the origin

)
> (δ2k,k−1)

4

and

Pp

(
Ann(n, kn)∗ contains a closed dual circuit around the origin

)
> (δ2k,k−1)

4.

2.2. Preliminary results. For any positive l, we define log(0) l = l and
log(j) l = log(log(j−1) l) for all j ≥ 1, provided the right-hand side is well defined.
For l > 10, let

log∗ l = min
{
j > 0 : log(j) l is well defined and log(j) l ≤ 10

}
.(4)

Our choice of the constant 10 is quite arbitrary; we could take any other large
enough positive number instead of 10. For l > 10, let

pl(j) =

⎧⎪⎪⎨
⎪⎪⎩

inf
{
p > pc :L(p) ≤ l

C∗ log(j) l

}
, if j ∈ (0, log∗ l),

pc, if j ≥ log∗ l,
1, if j = 0.

(5)

The value of C∗ will be chosen later. Note that there exists a universal constant
L0(C∗) > 10 such that pl(j) are well defined if l > L0(C∗) and nonincreasing
in l. The last observation follows from the monotonicity of L(p) and the fact that
the functions l/ log(j) l are nondecreasing in l for j ∈ (0, log∗ l) and l ≥ 3.

We give the following results without proofs:

1. (Reference [6], (2.10).) There exists a universal constant D1 such that, for every
l > L0(C∗) and j ∈ (0, log∗ l),

C∗ log(j) l ≤ l

L(pl(j))
≤ D1C∗ log(j) l.(6)
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2. (Reference [9], Theorem 2.) There exists a constant D2 such that, for all p > pc,

θ(p) ≤ Pp[0 ↔ ∂B(L(p))] ≤ D2Pcr [0 ↔ ∂B(L(p))],(7)

where θ(p) = Pp(0 ↔ ∞) is the percolation function for Bernoulli percolation.
3. (Reference [16], Section 4.) There exists a constant D3 such that, for all n ≥ 1,

Ppn

(
B(n) ↔ ∞) ≥ D3.(8)

4. (Reference [9], (3.61).) There exists a constant D4 such that, for all positive
integers r ≤ s,

Pcr (0 ↔ ∂B(s))

Pcr (0 ↔ ∂B(r))
≥ D4

√
r

s
.(9)

5. Recall that Bn is the event that there is a closed circuit around the origin in the
dual lattice with diameter at least n. There exist positive constants D5 and D6
such that, for all p > pc,

Pp(Bn) ≤ D5 exp
{
−D6

n

L(p)

}
.(10)

This follows from, for example, [6], (2.6) and (2.8) (see also [17], Lemma 39
and Remark 40).

6. (Reference [17], Proposition 34.) Fix e = 〈(0,0), (1,0)〉 and let A2,2
n be the

event that ex and ey are connected to ∂B(n) by open paths, and e∗
x and e∗

y are
connected to ∂B(n)∗ by closed paths. Note that these four paths are disjoint and
alternate. Then,

(pn − pc)n
2
Pcr (A

2,2
n ) � 1, n ≥ 1.(11)

3. Proof of Theorem 1.1. Before we prove Theorem 1.1, we give two lem-
mas that will be used in the proof. To simplify the notation, we write 0 = x0. For
positive integers m < n and x ∈ Z

2, we define the event

Am,n(x) = {there is an open circuit in the annulus Ann(x;m,n)}.(12)

LEMMA 3.1. Given a set of vertices {x1, . . . , xk} ∈ Z
2, let mi = min{|xi −

xj | : 0 ≤ j ≤ k, j �= i}, where x0 = 0 and let m = min{mi : 0 ≤ i ≤ k}. Further-
more, assume m = mk . There then exists a constant C1, independent of k, such
that for all p > pc, the probability

Pp(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)

is bounded from above by

C1Pp

(
xk ↔ ∂B(xk,m)

)
Pp(x1 ↔ ∞, . . . , xk−1 ↔ ∞,0 ↔ ∞).
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PROOF. The statement is trivial if m ≤ 4, so we assume that m > 4. By the
RSW theorem, there is a constant C2 independent of k and m such that, for all
p > pc, Pp(A[m/4],[m/2](xk)) ≥ 1/C2 and hence 1 ≤ C2Pp(A[m/4],[m/2](xk)). The
FKG inequality gives

Pp(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)

≤ C2Pp

(
A[m/4],[m/2](xk)

)
Pp(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)(13)

≤ C2Pp

(
A[m/4],[m/2](xk), x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)

.

The event on the right-hand side of (13) implies the following two events:

1. {xk ↔ ∂B(xk, [m/4])};
2. {x1 ↔ ∞, . . . , xk−1 ↔ ∞,0 ↔ ∞ outside B(xk, [m/4])}.
These two events are independent and therefore the right-hand side of (13) is
bounded from above by

C2Pp

(
xk ↔ ∂B(xk, [m/4]))

× Pp

(
x1 ↔ ∞, . . . , xk−1 ↔ ∞,0 ↔ ∞ outside B(xk, [m/4]))

≤ C2Pp

(
xk ↔ ∂B(xk, [m/4]))Pp(x1 ↔ ∞, . . . , xk−1 ↔ ∞,0 ↔ ∞),

where the last inequality follows from monotonicity. Finally, it follows from the
FKG inequality, RSW theorem and a standard gluing argument [5], Section 11.7,
that Pp(xk ↔ ∂B(xk, [m/4])) � Pp(xk ↔ ∂B(xk,m)) uniformly in p > pc. �

We recall the definition of the probabilities (pn(j)) in (5). We also recall
that these probabilities are well defined if n > L0(C∗), where C∗ is the constant
from (5). Later, we choose C∗ to be sufficiently large.

LEMMA 3.2. Given a set of vertices {x1, . . . , xk} ∈ Z
2, let n = max{|xi −

xj | : i, j = 0, . . . , k}, where x0 = 0. Furthermore, assume that n ≥ L0(C∗). There
is then a universal constant C3 such that, for all j ∈ (0, log∗ n),

Ppn(j)(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)
(14)

≤ (
C3 log(j) n

)(k+1)/2
Pcr

(
x1, . . . , xk ∈ C(0)

)
.

PROOF. We will use induction in k. First, we consider the case k = 1. To
simplify our notation, we write x1 = x. Note that, now, |x| = n = m, where m is
defined as in Lemma 3.1. From Lemma 3.1, it follows that

Ppn(j)(x ↔ ∞,0 ↔ ∞) ≤ C1θ(pn(j))Ppn(j)

(
0 ↔ ∂B(n)

)
.(15)

Since L(pn(j)) ≤ n, we obtain

Ppn(j)

(
0 ↔ ∂B(n)

) ≤ Ppn(j)

(
0 ↔ ∂B(L(pn(j)))

)
.
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Combined with (6), (7) and (9), the above inequality gives

C1θ(pn(j))Ppn(j)

(
0 ↔ ∂B(n)

) ≤ C4Pcr

(
0 ↔ ∂B(L(pn(j)))

)2

≤ C5
n

L(pn(j))
Pcr

(
0 ↔ ∂B(n)

)2 ≤ C6 log(j) nPcr

(
0 ↔ ∂B(n)

)2
.

The RSW theorem and the gluing argument show (see, e.g., [7], (4)) that

Pcr

(
0 ↔ ∂B(n)

)2 ≤ C7Pcr

(
x ∈ C(0)

)
(16)

for some constant C7. In particular, (14) follows for k = 1.
The general case is more involved. We assume that Lemma 3.2 is proved for any

set of vertices {y1, . . . , yk−1} ∈ Z
2. Then, for a set of vertices {x1, . . . , xk} ∈ Z

2,
we define m as in Lemma 3.1 and assume that m = mk = min{|xi − xk| : i < k}.
We also define n1 = max{|xi − xj | : i, j = 0, . . . , k − 1}, with x0 = 0. Then, by the
induction hypothesis,

Ppn1 (j)(x1 ↔ ∞, . . . , xk−1 ↔ ∞,0 ↔ ∞)
(17)

≤ (
C3 log(j) n1

)k/2
Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
.

Since n1 ≤ n and m ≤ n, we get pn(j) ≤ pm(j) and pn(j) ≤ pn1(j) (see Sec-
tion 2). Therefore,

Ppn(j)(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)

≤ C1Ppm(j)

(
xk ↔ ∂B(xk,m)

)
Ppn1 (j)(x1 ↔ ∞, . . . , xk−1 ↔ ∞,0 ↔ ∞)

≤ C1Ppm(j)

(
xk ↔ ∂B(xk,m)

)(
C3 log(j) n1

)k/2
Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
≤ (

C8 log(j) m
)1/2

Pcr

(
xk ↔ ∂B(xk,m)

)
× (

C3 log(j) n1
)k/2

Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
≤ C

1/2
8 C

k/2
3

(
log(j) n

)(k+1)/2
Pcr

(
xk ↔ ∂B(xk,m)

)
Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
,

where the first inequality follows from Lemma 3.1 and monotonicity, the second
inequality follows from (17) and the third inequality follows from (6) and (9).
Note that C8 is independent of k. It now suffices to show that there is a universal
constant C9 such that

Pcr

(
xk ↔ ∂B(xk,m)

)
Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
(18)

≤ C9Pcr

(
x1, . . . , xk ∈ C(0)

)
.

Assume that (18) is proved. We can then take C3 = max{C6C7,C8C
2
9}. The argu-

ment above shows that we can proceed to the next k using this value of C3. We
now show (18). We take xi such that m = |xk − xi |. Note that this vertex may be
the origin. We know that at least one such vertex exists. Recall the definition of
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events Am,n(x) from (12). By the RSW theorem, there is a constant C10 such that
1 ≤ C10Pcr (A[m/2],m(xi);A[m/2],m(xk)). Using the FKG inequality, we get

Pcr

(
xk ↔ ∂B(xk,m)

)
Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
≤ C10Pcr

(
A[m/2],m(xi);A[m/2],m(xk)

)
Pcr

(
xk ↔ ∂B(xk,m)

)
× Pcr

(
x1, . . . , xk−1 ∈ C(0)

)
≤ C10Pcr

(
A[m/2],m(xi);A[m/2],m(xk);
xk ↔ ∂B(xk,m);x1, . . . , xk−1 ∈ C(0)

)
.

We show that the event{
A[m/2],m(xi);A[m/2],m(xk);xk ↔ ∂B(xk,m);x1, . . . , xk−1 ∈ C(0)

}
implies the event {xi ↔ xk;x1, . . . , xk−1 ∈ C(0)}. Indeed, it follows from simple
observations:

1. Since the events {xk ↔ ∂B(xk,m)} and A[m/2],m(xk) hold, xk is connected to
the circuit lying in the annulus Ann(xk; [m/2],m).

2. Since the distance between xi and xk is m, the boxes B(xi, [m/2] + 1)

and B(xk, [m/2] + 1) intersect. This implies that the circuits in the annuli
Ann(xk; [m/2],m) and Ann(xi; [m/2],m) intersect.

3. Recall that m is the minimal distance in the graph with vertex set {0, x1, . . . , xk}.
Since k ≥ 2 and {x1, . . . , xk−1 ∈ C(0)}, there is a vertex xj �= xk (it may be the
origin) such that xj /∈ B(xi,m − 1) and xj is connected to xi . The last observa-
tion implies that xi is connected to the circuit lying in Ann(xi; [m/2],m) and
hence also to xk .

This proves (18). �

PROOF OF THEOREM 1.1. For {x1, . . . , xk} ∈ Z
2, we define, as in Lemma 3.2,

n = max{|xi − xj | : i, j = 0, . . . , k}. If n < L0(C∗), then Pcr (x1, . . . , xk ∈ C(0)) >

const(C∗). Theorem 1.1 immediately follows since P(x1, . . . , xk ∈ V̂1) ≤ 1. We
can therefore assume that n ≥ L0(C∗). In particular, the probabilities pn(j) are
well defined. The rest of the proof is similar to the proof of Theorem 1 in [18].
Recall that τ̂1 is the value of the outlet of the first pond. We decompose the event
{x1, . . . xk ∈ V̂1} according to the value of τ̂1. We write

P(x1, . . . , xk ∈ V̂1) =
log∗ n∑
j=1

P
(
x1, . . . , xk ∈ V̂1, τ̂1 ∈ [pn(j),pn(j − 1))

)
.(19)

Note that, for any p > pc,

(a) if τ̂1 < p, then any invaded site is in the infinite p-open cluster;
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(b) if a given set of vertices {x1, . . . , xk} is in the first pond, n is defined as in
Lemma 3.2 and τ̂1 > p, then there is a p-closed circuit around the origin with
diameter at least n.

We recall the definition of the event

Bn,p = {∃p-closed circuit around 0 in the dual with diameter at least n}.
We conclude that the probability P(x1, . . . , xk ∈ V̂1, τ̂1 ∈ [pn(j),pn(j − 1))) is
bounded from above by

P
(
x1

pn(j−1)←→ ∞, . . . , xk
pn(j−1)←→ ∞,0

pn(j−1)←→ ∞;Bn,pn(j)

)
.(20)

The FKG inequality implies that the probability (20) is not bigger than

Ppn(j−1)(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞)P
(
Bn,pn(j)

)
(21)

≤ C11
(
log(j−1) n

)−C12
Ppn(j−1)(x1 ↔ ∞, . . . , xk ↔ ∞,0 ↔ ∞),

where we use (6) and (10) to bound the probability of Bn,pn(j) by
C11(log(j−1) n)−C12 . The constant C12 can be made arbitrarily large provided that
C∗ is made large enough. We consider bounds for (21) separately for j = 1 and
for j > 1. If j > 1, we use Lemma 3.2 to bound (21) by

C13
(
log(j−1) n

)(k+1)/2−C12
Pcr

(
x1, . . . , xk ∈ C(0)

)
.

If j = 1, we bound (21) by

C11n
−C12 ≤ C14n

−1/2
Pcr

(
0 ↔ ∂B(n)

)2k ≤ C15n
−1/2

Pcr

(
x1, . . . , xk ∈ C(0)

)
.

The first inequality holds for C12 ≥ k + 1/2 since Pcr (0 ↔ ∂B(n)) > 1
2n−1/2

(see [5], (11.90)). The last inequality follows from (16), applied k times, and the
FKG inequality. Therefore, for all j , if C12 ≥ k + 1/2, then (21) is bounded by

C16
(
log(j−1) n

)−1/2
Pcr

(
x1, . . . , xk ∈ C(0)

)
.

We plug this bound into (19):

P(x1, . . . , xk ∈ V̂1) ≤ C16Pcr

(
x1, . . . , xk ∈ C(0)

) log∗ n∑
j=1

(
log(j−1) n

)−1/2

≤ C17Pcr

(
x1, . . . , xk ∈ C(0)

)
.

The last inequality follows from the fact that

sup
n>10

log∗ n∑
j=1

(
log(j−1) n

)−1/2
< ∞

(see, e.g., [6], (2.26)). �
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4. Proof of Theorem 1.2. In this section, we prove that

lim
n→∞

P(B(n) ⊂ V̂1)

Pcr (B(n) ⊂ C(0))
= ∞.

By RSW arguments [5], Section 11.7, the denominator is at most equal to

C1Pcr

(
B(n) ⊂ C(0) in B(2n)

)
for some C1 > 0. Recall that pn = sup{p :L(p) > n}. We can bound the numerator
from below: it is at least equal to

Ppn

(
B(n) ⊂ C(0) in B(2n) ∩ ∃ closed circuit around B(2n)

)
= Ppn

(
B(n) ⊂ C(0) in B(2n)

)
Ppn

(∃ closed circuit around B(2n)
)
.

By the definition of L(p), there exists C2 > 0 such that this probability is at least

C2Ppn

(
B(n) ⊂ C(0) in B(2n)

)
.

Therefore, to prove Theorem 1.2, it suffices to show that

lim
n→∞

Ppn(B(n) ⊂ C(0) in B(2n))

Pcr (B(n) ⊂ C(0) in B(2n))
= ∞.(22)

For this, we use Russo’s formula [5] (the definition of pivotal edges is also given
in [5]). Let n be the event which appears both in the numerator and in the denom-
inator of (22). Let p ∈ [ε,1 − ε] for some ε < 1

2 and, for any vertex v, let Ev be
the set of edges incident to v. We see that

d

dp
Pp(n) = ∑

e

Pp(e is pivotal for n)

≥ 1

2p

∑
v∈B(n)

∑
e∈Ev

Pp(e is pivotal for n;n)

≥ 1

2p

∑
v∈B(n)

Pp(∃e ∈ Ev pivotal for n;n)

≥ 1

2p

∑
v∈B(n)

min(p,1 − p)4
Pp(n)

≥ C3n
2
Pp(n).

In particular,

Ppn(n) ≥ Pcr (n)e
C4n

2(pn−pc)

for some C4 > 0. It follows from (11) and the fact that θ(pc) = 0 that n2(pn −
pc) → ∞. This completes the proof.
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5. Proofs of Theorems 1.3 and 1.4. First, we prove two lemmas (see Sec-
tion 1.2 for the definitions).

LEMMA 5.1. For each k ≥ 2, there exists ck such that, for all n,

P(A1
n,kn,pc

) ≤ ck,

where ck → 0 as k → ∞.

PROOF. Recall that Bn,2n = {there is a closed circuit in Ann(n,2n)∗}. Pick
c > 0 such that, for all N ≥ 1,

Pcr (BN,2N) ≥ c.

We split the annulus Ann(n, kn) into [log k] disjoint annuli Ann(2in,2i+1n):

P(A1
n,kn,pc

) ≤ (1 − c)log k−1.

This completes the proof. �

LEMMA 5.2. There exists C1 > 0 such that for all N and k,

P(AN,2N,pc ∩ AkN,2kN,pc ∩ A1
N,2kN,pN

) ≥ C1.

PROOF. By RSW arguments, there exists C2 > 0 such that for all N and k,

P(AN,2N,pc ∩ AkN,2kN,pc) ≥ C2.

If follows from (8) that there exists C3 > 0 such that for all N and k,

P(A1
N,2kN,pN

) ≥ PpN

(
B(N) ↔ ∞) ≥ C3.

The FKG inequality gives the result. �

We now prove the theorems.

PROOF OF THEOREM 1.3. We prove the theorem for K = 2. For other values
of K , the proof is similar. Let D(k,N) = AN,2N,pc ∩ AkN,2kN,pc ∩ A1

N,2kN,pN

and pick C1 from Lemma 5.2. Fix k such that the constant ck/2 from Lemma 5.1
satisfies ck/2 ≤ C1

2 . It follows that

P
(
D(k,N) ∩ {A1

2N,kN,pc
}c) ≥ C1

2
.

For any k ≥ 2, there exists C4 = C4(k) such that for all N ,

P(B2kN,4kN,pN
) ≥ C4.

Therefore, by independence,

P
(
D(k,N) ∩ {A1

2N,kN,pc
}c ∩ B2kN,4kN,pN

) ≥ C1C4

2
> 0.
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This statement, along with the Borel–Cantelli lemma, gives the theorem. �

PROOF OF THEOREM 1.4. Let A1
n,p = {0 ↔ ∂B(n) by a p-open path}. We

first note that [18] gives a constant C5 > 0 such that for all N ,

P(R̂1 ≥ N) ≤ C5P(A1
2N,pc

).

It is obvious that P(R̂1 ≥ N ∩ U (1,2,N)) ≥ P(A1
2N,pc

∩ U (1,2,N)). Therefore, it
suffices to show that there is an ε > 0 such that for all N ,

P(U (1,2,N)|A1
2N,pc

) ≥ ε.

The rest of the proof is almost the same as the proof of Theorem 1.3. Let
D(k,N) be as in the proof of Theorem 1.3. Pick C1 from Lemma 5.2. By the
FKG inequality, we see that

P
(
D(k,N) ∩ A1

2N,pc

) ≥ C1P(A1
2N,pc

).

By independence and Lemma 5.1, we may fix k such that for all N ,

P(A1
2N,pc

∩ A1
2N,kN,pc

) ≤ ck/2P(A1
2N,pc

) ≤ C1

2
P(A1

2N,pc
).

For any k ≥ 2, there exists C4 = C4(k) such that for all N ,

P(B2kN,4kN,pN
) ≥ C4.

Independence now gives us

P
(
A1

2N,pc
∩ D(k,N) ∩ {A1

2N,kN,pc
}c ∩ B2kN,4kN,pN

) ≥ C1C4

2
P(A1

2N,pc
).

This concludes the proof. �

6. Proof of Theorem 1.5.

6.1. Upper bound. We give the proof for k = 2. The case k = 1 is considered
in [18] and the proof for k ≥ 3 is similar to the proof for k = 2.

We fix n and divide the box B(n) into [logn] + 1 annuli. We write

P(R̂2 ≥ n) = P(R̂1 ≥ n) +
[logn]+1∑

k=1

P

(
R̂2 ≥ n, R̂1 ∈

[
n

2k
,

n

2k−1

))
.(23)

Since [18], Theorem 1,

P(R̂1 ≥ n) ≤ C1Pcr

(
0 ↔ ∂B(n)

) ≤ C1 lognPcr

(
0 ↔ ∂B(n)

)
,

it remains to bound the typical term of the sum on the right-hand side of (23). It is
sufficient to show that there exists a constant C2 such that, for any m ∈ [0, n/2],

P(R̂2 ≥ n; R̂1 ∈ [m,2m]) ≤ C2Pcr

(
0 ↔ ∂B(n)

)
.(24)
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We only consider the case m ≥ L0(C∗). The proof for m < L0(C∗) is similar to the
proof for m ≥ L0(C∗), but much simpler. We omit the details. We now assume that
m ≥ L0(C∗). In particular, the probabilities (pm(i)) and (pn(j)) are well defined.

We decompose the event on the left-hand side according to the τ value of the
first and the second outlet. The probability P(R̂2 ≥ n; R̂1 ∈ [m,2m]) is bounded
from above by

log∗ m∑
i=1

log∗ n∑
j=1

P
(
R̂2 ≥ n; R̂1 ∈ [m,2m];

(25)
τ̂1 ∈ [pm(i),pm(i − 1)]; τ̂2 ∈ [pn(j),pn(j − 1)]).

Note that if the event {R̂1 ≥ m; τ̂1 ∈ [pm(i),pm(i − 1)]} occurs, then:

- there is a pm(i − 1)-open path from the origin to infinity;
- the origin is surrounded by a pm(i)-closed circuit of diameter at least m in the

dual lattice.

We also note that if the event {R̂1 ≤ 2m; R̂2 ≥ n; τ̂2 ∈ [pn(j),pn(j − 1)]} occurs,
then:

- there is a pn(j − 1)-open path from the box B(2m) to infinity;
- the origin is surrounded by a pn(j)-closed circuit of diameter at least n in the

dual lattice.

From the two observations above, the sum (25) is less than

log∗ m∑
i=1

log∗ n∑
j=1

P
(
0

pm(i−1)←→ ∂B(m);B(2m)
pn(j−1)←→ ∂B(n);Bm,pm(i);Bn,pn(j)

)
.(26)

The FKG inequality and the independence of the first two events together imply
that (26) is not larger than

log∗ m∑
i=1

log∗ n∑
j=1

Ppm(i−1)

(
0 ↔ ∂B(m)

)
Ppn(j−1)

(
B(2m) ↔ ∂B(n)

)
(27)

× P
(
Bm,pm(i);Bn,pn(j)

)
.

We use (6) and (10) to bound the probability of Bm,pm(i) by C3(log(i−1) m)−C4 ,
where C4 can be made arbitrarily large, provided that C∗ is made large enough.
Substitution gives a bound for the last term of (27):

P
(
Bm,pm(i);Bn,pn(j)

) ≤ min
[
C3

(
log(i−1) m

)−C4,C3
(
log(j−1) n

)−C4
]

= C3 max
[
log(i−1) m, log(j−1) n

]−C4(28)

≤ C3
(
log(i−1) m

)−C4/2(
log(j−1) n

)−C4/2
.
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The RSW theorem and the FKG inequality together imply that

Pp

(
0 ↔ ∂B(m)

)
Pp

(
B(2m) ↔ ∂B(n)

) ≤ C5Pp

(
0 ↔ ∂B(n)

)
,(29)

uniformly in p ≥ pc. Furthermore, using (6)–(9), we get

Ppm(i−1)

(
0 ↔ ∂B(m)

) ≤ C6
(
log(i−1) m

)1/2
Pcr

(
0 ↔ ∂B(m)

)
(30)

and

Ppn(j−1)

(
B(2m) ↔ ∂B(n)

) ≤ C7
(
log(j−1) n

)1/2
Pcr

(
B(2m) ↔ ∂B(n)

)
.(31)

In the last inequality, we also use (29). We apply the inequalities (28), (29), (30)
and (31) to (27). We obtain that the probability P(R̂2 ≥ n; R̂1 ∈ [m,2m]) is not
larger than

C8Pcr

(
0 ↔ ∂B(n)

) log∗ m∑
i=1

log∗ n∑
j=1

(
log(i−1) m

)−(C4−1)/2(
log(j−1) n

)−(C4−1)/2
.

We take C∗ large enough so that C4 is greater than 1. As in (2.26) of [6], it is easy
to see that there exists a universal constant C9 < ∞ such that for all n > 10,

log∗ n∑
j=1

(
log(j−1) n

)−(C4−1)/2 ≤ C9.

6.2. Lower bound. We first give the main idea of the proof. Recall from Re-
mark 2 that it is equivalent to prove that P(R̂k ≥ n) ≥ ckPcr (0 ↔k−1 ∂B(n)) for
some positive constants ck that do not depend on n. In the case k = 1, the event

{0 pc←→ ∂B(n)} obviously implies the event {R̂1 ≥ n}. However, for k ≥ 2, the

event {0 pc←→k−1 ∂B(n)} does not, in general, imply the event {R̂k ≥ n}. The

weights of some defected edges from the definition of the event {0 pc←→k−1 ∂B(n)}
can be large enough so that these edges are never invaded. We resolve this problem

by constructing a subevent of the event {0 pc←→k−1 ∂B(n)} which implies the event
{R̂k ≥ n} and, moreover, the probability of this new event is comparable with the

probability P(0
pc←→k−1 ∂B(n)). To construct such an event, we first extend re-

sults from [9] in Lemmas 6.2 and 6.3 below. We then construct events that will be
used in the proof of the lower bound in Theorem 1.5 and show that they satisfy the
desired properties (see, e.g., Corollary 6.2 below).

We begin with some definitions and lemmas.

LEMMA 6.1 (Generalized FKG). Let ξ1, . . . , ξn be i.i.d. real-valued random
variables. Let I1, I2, I3 be disjoint subsets of {1, . . . , n}. Let A1 ∈ σ(ξi : i ∈ I1 ∪ I2)

and A2 ∈ σ(ξi : i ∈ I2) be increasing in (ξi). Let B1 ∈ σ(ξi : i ∈ I1 ∪ I3) and B2 ∈
σ(ξi : i ∈ I3) be decreasing in (ξi). Then,

P(A2 ∩ B2|A1 ∩ B1) ≥ P(A2)P(B2).(32)
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PROOF. Inequality (32) for Pp (rather than P) is given in [9], Lemma 3,
or [17], Lemma 13. The main ingredient of that proof is the Harris–FKG inequality
for Pp (see [5], Theorem 2.4), which is also valid for P (see, e.g., [12], Theorem
5.13). Apart from that, the proof of (32) is analogous to the proofs of [9], Lemma 3,
and [17], Lemma 13, and so we omit it. �

Although we will not apply Lemma 6.1 to the following events, they serve as

simple examples. The events {0 p←→ ∂B(n)}, {B(m)
p←→ ∂B(n)} are decreas-

ing in (τe) and the events {0∗ p∗
←→ ∂B(n)∗}, {B(m)∗ p∗

←→ ∂B(n)∗} are increasing
in (τe).

Recall that the ends of an edge e ∈ E
2, left (resp., right) or bottom (resp., top),

are denoted by ex, ey ∈ Z
2 and the ends of its dual edge e∗, bottom (resp., top) or

left (resp., right), are denoted by e∗
x and e∗

y . We also write (1,0) for the edge with
ends (0,0), (1,0) ∈ Z

2.

DEFINITION 6.1. For any positive integer n, q1, q2 ∈ [0,1], z ∈ Z
2 and an

edge e ∈ B(z,n), we define Ae(z;n;q1, q2) as the event that there exist four dis-
joint paths P1–P4 such that:

- P1 and P2 are q1-open paths in B(z,n)\ {e}, the path P1 connects ex to ∂B(z,n)

and the path P2 connects ey to ∂B(z,n);
- P3 and P4 are q2-closed paths in B(z,n)∗ \ {e∗}, the path P3 connects e∗

x to
∂B(z,n)∗ and the path P4 connects e∗

y to ∂B(z,n)∗.

We write Ae(n;q1, q2) for Ae(0;n;q1, q2) and A(n;q1, q2) for A(1,0)(n;q1, q2).
For any two positive integers n < N , q1, q2 ∈ [0,1], z ∈ Z

2, we define
A(z;n,N;q1, q2) as the event that there exist four disjoint paths, two q1-open
paths in the annulus Ann(z;n,N) from B(z,n) to ∂B(z,N) and two q2-closed
paths in the annulus Ann(z;n,N)∗ from B(z,n)∗ to ∂B(z,N)∗, such that the
q1-open paths are separated by the q2-closed paths. We write A(n,N;q1, q2) for
A(0;n,N;q1, q2). The events Ae(n;q1, q2) and A(n,N;q1, q2) are illustrated in
Figure 1.

We will follow the ideas developed in [9]. For that, we need to define some
subevents of Ae(z;n;q1, q2) and A(z;n,N;q1, q2). For n ≥ 1, let Un = ∂B(n) ∩
{x2 = n}, Dn = ∂B(n) ∩ {x2 = −n}, Rn = ∂B(n) ∩ {x1 = n} and Ln = ∂B(n) ∩
{x1 = −n} be the sides of the box B(n). Let Un(z) = z + Un, Dn(z) = z + Dn,
Rn(z) = z + Rn and Ln(z) = z + Ln be the sides of the box B(z,n).

DEFINITION 6.2. For any positive integer n, q1, q2 ∈ [0,1], z ∈ Z
2 and an

edge e ∈ B(z,n), we define Āe(z;n;q1, q2) as the event that there exist four dis-
joint paths P1–P4 such that:

- P1 and P2 are q1-open paths in B(z,n) \ {e}, the path P1 connects ex or ey to
Un(z) and the path P2 connects the other end of e to Dn(z);
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FIG. 1. Events Ae(n;q1, q2) and A(n,N;q1, q2). The solid curves represent q1-open paths, and
the dotted curves represent q2-closed paths. The edge e does not have to be q1-open or q2-closed.

- P3 and P4 are q2-closed paths in B(z,n)∗ \ {e∗}, the path P3 connects e∗
x or e∗

y

to Rn(z)
∗ and the path P4 connects the other end of e∗ to Ln(z)

∗.

We define Āe(z;n;q1, ·) as the event that there exist two disjoint q1-open paths P1
and P2 in B(z,n) \ {e}, the path P1 connects ex or ey to Un(z) and the path P2
connects the other end of e to Dn(z).

We write Āe(n;q1, q2) for Āe(0;n;q1, q2), Ā(n;q1, q2) for Ā(1,0)(n;q1, q2)

and we use similar notation for the events Ae(z;n;q1, ·).
For any two positive integers n < N , q1, q2 ∈ [0,1] and z ∈ Z

2, we define
Ā(z;n,N;q1, q2) as the event that there exist four disjoint paths P1–P4 such that:

- P1 and P2 are q1-open paths in the annulus Ann(z;n,N), the path P1 connects
Un(z) to UN(z) and the path P2 connects Dn(z) to DN(z);

- P3 and P4 are q2-closed paths in the annulus Ann(z;n,N)∗, the path P3 connects
Rn(z)

∗ to RN(z)∗ and the path P4 connects Ln(z)
∗ to LN(z)∗.

We write Ā(n,N;q1, q2) for Ā(0;n,N;q1, q2).

We also need to define events similar to the events � in [9], Figure 8. For any
two positive integers n < N and z ∈ Z

2, we define Un,N(z) = z + [−n,n] × [n +
1,N], Dn,N(z) = z+[−n,n]×[−N,−n−1], Rn,N(z) = z+[n+1,N]×[−n,n]
and Ln,N(z) = z + [−N,−n − 1] × [−n,n].

DEFINITION 6.3. For any positive integer n, q1, q2 ∈ [0,1], z ∈ Z
2 and an

edge e ∈ B(z, [n/2]), we define Ãe(z;n;q1, q2) as the event that:

- the event Āe(z;n;q1, q2) occurs;
- the two q1-open paths P1 and P2 from the definition of Āe(z;n;q1, q2) satisfy

P1 ∩ Ann(z; [n/2], n) ⊂ U[n/2],n(z) and P2 ∩ Ann(z; [n/2], n) ⊂ D[n/2],n(z);
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FIG. 2. Event Ãe(n;q1, q2). The solid curves represent q1-open paths and the dotted curves rep-
resent q2-closed paths. The edge e does not have to be q1-open or q2-closed.

- the two q2-closed paths P3 and P4 from the definition of Āe(z;n;q1, q2) satisfy
P3 ∩Ann(z; [n/2], n)∗ ⊂ R[n/2],n(z)∗ and P4 ∩Ann(z; [n/2], n)∗ ⊂ L[n/2],n(z)∗;

- there exist q1-open horizontal crossings of U[n/2],n(z) and D[n/2],n(z) and there
exist q2-closed vertical crossings of L[n/2],n(z)∗ and R[n/2],n(z)∗.

We write Ãe(n;q1, q2) for Ãe(0;n;q1, q2) and Ã(n;q1, q2) for Ã(1,0)(n;q1, q2).
The event Ãe(n;q1, q2) is illustrated in Figure 2.

For any positive integers n,N such that 4n ≤ N , q1, q2 ∈ [0,1], z ∈ Z
2, we

define Ã(z;n,N;q1, q2) as the event that:

- the event Ā(z;n,N;q1, q2) occurs;
- the two q1-open paths P1 and P2 from the definition of Ā(z;n,N;q1, q2)

satisfy P1 ∩ Ann(z;n,2n) ⊂ Un,2n(z), P1 ∩ Ann(z; [N/2],N) ⊂ U[N/2],N (z),
P2 ∩ Ann(z;n,2n) ⊂ Dn,2n(z) and P2 ∩ Ann(z; [N/2],N) ⊂ D[N/2],N (z);

- the two q2-closed paths P3 and P4 from the definition of Ā(z;n,N;q1, q2) sat-
isfy P3 ∩ Ann(z;n,2n)∗ ⊂ Rn,2n(z)

∗, P3 ∩ Ann(z; [N/2],N)∗ ⊂ R[N/2],N (z)∗,
P4 ∩ Ann(z;n,2n)∗ ⊂ Ln,2n(z)

∗ and P4 ∩ Ann(z; [N/2],N)∗ ⊂ L[N/2],N (z)∗;
- there exist q1-open horizontal crossings of Un,2n(z), U[N/2],N (z), Dn,2n(z)

and D[N/2],N (z), and there exist q2-closed vertical crossings of Ln,2n(z)
∗,

L[N/2],N (z)∗, Rn,2n(z)
∗ and R[N/2],N (z)∗.
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We write Ã(n,N;q1, q2) for Ã(0;n,N;q1, q2).

LEMMA 6.2. For any positive integers n,N such that 4n ≤ N and q1, q2 ∈
[pc,pN ],

P(A(n,N;q1, q2)) � P(Ā(n,N;q1, q2)) � P(Ã(n,N;q1, q2))(33)

and

P(A(N;q1, q2)) � P(Ā(N;q1, q2)) � P(Ã(N;q1, q2)),(34)

where the constants in (33) and (34) do not depend on n, N , q1 and q2.

PROOF. The case q1 = q2 is considered in [9], Lemma 4 (see also [17], Theo-
rem 11). The proof is based on Lemma 6.1 and the RSW theorem. The same proof
is valid for general q1 and q2. �

We need several corollaries of Lemmas 6.1 and 6.2. Their proofs are similar to
the proofs for q1 = q2 (see, e.g., Corollary 3 and Lemma 6 in [9] or Propositions 12
and 17 in [17]). We omit the details.

COROLLARY 6.1. 1. For any positive integers a, b and n < N such that an <

bN , for any q1, q2 ∈ [pc,pN ],
P(A(n,N;q1, q2)) � P(A(an, bN;q1, q2)),(35)

where the constants in (35) only depend on a and b.

2. For any positive integers n < m < N and q1, q2 ∈ [pc,pN ],
P(A(n,N;q1, q2)) � P(A(n,m;q1, q2))P(A(m,N;q1, q2)),(36)

where the constants in (36) do not depend on n, m, N , q1 and q2.
3. For any positive integer N , q1, q2 ∈ [pc,pN ] and edge e ∈ B([N/2]),

P(Ae(N;q1, q2)) � P(Āe(N;q1, q2)) � P(Ãe(N;q1, q2))
(37)

� P(A(N;q1, q2)),

where the constants in (37) do not depend on N , q1, q2 and e.

The proof of the lower bound in Theorem 1.5 is based on the following lemma.

LEMMA 6.3. For any positive integer N , q1, q2 ∈ [pc,pN ] and e ∈ B([N/2]),
P(Ae(N;q1, q2)) � P(A(N;pc,pc)),(38)

where the constants in (38) do not depend on N , q1, q2 and e.
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PROOF. The proof for q1 = q2 is given in [9], Lemma 8, and [17], Theorem 27.
In this case, the probability measure P can be replaced by the probability measure
Pq1 on configurations of open and closed edges. This is not the case when q1 �= q2,
which makes the proof of (38) more involved. Note that, by (34) and (37), it is
sufficient to show that, for q1, q2 ∈ [pc,pN ],

P(Ā(N;q1, q2)) � P(Ā(N;pc,pc)).

It is immediate from monotonicity in q1 and q2 that

P(Ā(N;pc, q2)) ≤ P(Ā(N;q1, q2)) ≤ P(Ā(N;q1,pc)).

Therefore, it remains to show that there exist constants D1 and D2 such that for
all q1, q2 ∈ [pc,pN ],

P(Ā(N;pc, q2)) ≥ D1P(Ā(N;pc,pc))

and

P(Ā(N;q1,pc)) ≤ D2P(Ā(N;pc,pc)).

Since the proofs of the above inequalities are similar, we only prove the first in-
equality. For that, we use a generalization of Russo’s formula [5]. We take a small
δ > 0. The difference P(Ā(N;pc,p)) − P(Ā(N;pc,p + δ)) can be written as the
sum

δ
∑

e∈B(N),e �=(1,0)

P(Ā(N;pc, ·), Āe(N;p, ·),De(N;p)) + O(δ2),

where De(N;p) is the event that there exist three p-closed paths P1 − P3 in
B(N)∗; the path P1 connects an end of the edge (1,0)∗ to an end of the edge e∗;
the path P2 connects the other end of the edge (1,0)∗ to R∗

N and the path P3 con-
nects the other end of the edge e∗ to L∗

N ; or the path P2 connects the other end
of the edge (1,0)∗ to L∗

N and the path P3 connects the other end of the edge e∗
to R∗

N . Letting δ tend to 0, we obtain

d

dp
P(Ā(N;pc,p)) = −∑

e

P(Ā(N;pc, ·), Āe(N;p, ·),De(N;p)).(39)

We write the right-hand side of (39) as

−
[N/2]∑
j=1

∑
e : |ex |=j

P(Ā(N;pc, ·), Āe(N;p, ·),De(N;p)),(40)

−
N∑

j=[N/2]+1

∑
e : |ex |=j

P(Ā(N;pc, ·), Āe(N;p, ·),De(N;p)).(41)
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By independence, the sum (40) is bounded from below by

−
[N/2]∑
j=1

∑
e : |ex |=j

P
(
A([j/2];pc,p)

)
P

(
A([3j/2],N;pc,p)

)
P

(
Ae(ex; [j/2];p,p)

)
.

We use (35), the bound �{e : |ex | = j} ≤ 16j and the fact that Lemma 6.3 is proved
for q1 = q2 to bound the above sums from below by

−C1

[N/2]∑
j=1

jP(A(j ;pc,p))P(A(j,N;pc,p))P(A(j ;pc,pc))

(42)

≥ −C2P(A(N;pc,p))

[N/2]∑
j=1

jP(A(j ;pc,pc)),

where the inequality follows from (36). We estimate the sum in (42) using the
relation

N∑
j=1

jP(A(j ;pc,pc)) � N2
P(A(N;pc,pc)).(43)

The relation (43) follows from (36) and the fact that P(A(j,N;pc,pc)) ≥
C3(j/N)2−C4 for some positive C3 and C4 that do not depend on j and N . This
fact follows, for example, from [17], Theorem 24, where the 5-arms exponent is
computed for site percolation on the triangular lattice. The same proof applies to
bond percolation on the square lattice.

Similarly to the proof of [20], Lemma 6.2, the sum (41) can be bounded from
below by

−C5N
2
P(A(N;pc,p))P(A(N;pc,pc)).

This follows from a priori estimates of probabilities of two arms in a half-plane. We
refer the reader to the proof of [20], Lemma 6.2, for more details. Again, although
the proof of [20], Lemma 6.2, is given for site percolation on the triangular lattice,
it also applies to bond percolation on the square lattice.

Putting together the bounds for the sums (40) and (41), and using (34), we obtain
that the right-hand side of (39) is bounded from below by

−C6N
2
P(Ā(N;pc,p))P(A(N;pc,pc)).

Therefore,

d

dp
log P(Ā(N;pc,p)) ≥ −C6N

2
P(A(N;pc,pc))(44)
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and

P(Ā(N;pc,p)) ≥ P(Ā(N;pc,pc))e
−C6(p−pc)N

2
P(A(N;pc,pc))

≥ P(Ā(N;pc,pc))e
−C6(pN−pc)N

2
P(A(N;pc,pc))

≥ C7P(Ā(N;pc,pc)).

In the last inequality, we use (11). �

DEFINITION 6.4. For any positive integers n ≤ m ≤ 2m ≤ N and edge e ∈
Ann(m,2m), we define Ce(n,N;m) as the event that:

- there exist two disjoint pc-open paths P1 and P2 inside Ann(n,N) \ {e}, the
path P1 connects ex or ey to B(n) and the path P2 connects the other end of e to
∂B(N); and

- there exists a pm-closed path P connecting e∗
x and e∗

y inside Ann(m,2m)∗ \ {e∗}
so that P ∪ {e∗} is a circuit around the origin in Ann(m,2m)∗.

Note that if event Ce(n,N;m) ∩ {τe ∈ (pc,pm)} occurs, then there is no pc-open
crossing of Ann(n,N) and no pm-closed circuit in Ann(m,2m)∗ (see Figure 3).

FIG. 3. Event Ce(n,N;m). The solid curves represent pc-open paths and the dotted curves repre-
sent pm-closed paths. The edge e does not have to be pc-open or pm-closed.
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DEFINITION 6.5. Let n, m and N be positive integers such that 2n ≤ m and
3m ≤ N . Let x = ([m/2], [3m/2]). For e ∈ B(x, [m/2]), we define C̃e(n,N;m) as
the event that:

- the event Ãe(x;m;pc,pm) occurs;
- there are two disjoint pc-open paths P5 and P6 such that P5 connects U[m/2](x)

to the boundary of B(N) inside Ann(2m − 1,N) and P6 connects D[m/2](x)

to the boundary of B(n) inside Ann(n,m). Moreover, P5 and P6 satisfy P5 ∩
Ann(x; [m/2],m) ⊂ U[m/2],m(x) and P6 ∩ Ann(x; [m/2],m) ⊂ D[m/2],m(x);

- there exists a pm-closed path P inside Ann(m,2m − 1)∗ \ B(x, [m/2])∗
such that P connects L[m/2](x)∗ to R[m/2](x)∗ and P ∩ Ann(x; [m/2],m)∗ ⊂
L[m/2],m(x)∗ ∪ R[m/2],m(x)∗.

The event C̃e(n,N;m) is illustrated in Figure 4.

The event C̃e(n,N;m) obviously implies the event Ce(n,N;m). The reason we
introduce the event C̃e(n,N;m) is that

P(C̃e(n,N;m)) � P(Ãe(x;m;pc,pm))Pcr

(
B(n) ↔ ∂B(N)

)
,(45)

FIG. 4. Event C̃e(n,N;m). The solid curves represent pc-open paths and the dotted curves repre-
sent pm-closed paths. The edge e does not have to be pc-open or pm-closed.
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where the constants do not depend on e, m, n and N . This observation follows
from Lemma 6.1, the RSW theorem, and (35) and (36) applied to q1 = q2 = pc.

COROLLARY 6.2. For any positive integers n, m and N such that 2n ≤ m and
3m ≤ N ,

P
(∃e ∈ Ann(m,2m) : τe ∈ (pc,pm),Ce(n,N;m)

)
(46)

≥ C8Pcr

(
B(n) ↔ ∂B(N)

)
,

where C8 does not depend on n, N and m.

PROOF. Note that the events

{τe ∈ (pc,pm),Ce(n,N;m)}e∈Ann(m,2m)

are disjoint. Therefore,

P
(∃e ∈ Ann(m,2m) : τe ∈ (pc,pm),Ce(n,N;m)

)
= ∑

e∈Ann(m,2m)

P
(
τe ∈ (pc,pm),Ce(n,N;m)

)

≥ (pm − pc)
∑

e∈B(x,[m/2])
P(C̃e(n,N;m))

≥ C9(pm − pc)
∑

e∈B(x,[m/2])
P(Ãe(x;m;pc,pm))Pcr

(
B(n) ↔ ∂B(N)

)

≥ C10(pm − pc)m
2
P(A(m;pc,pc))Pcr

(
B(n) ↔ ∂B(N)

)
≥ C11Pcr

(
B(n) ↔ ∂B(N)

)
.

The second inequality follows from (45). In the third inequality, we use (37) and
Lemma 6.3. In the last inequality, we use (11). �

PROOF OF THEOREM 1.5. LOWER BOUND. We give the proof for k = 2. The
case k = 1 was considered in [18] and the proof for k ≥ 3 is similar to the one for
k = 2. Note that the event {R̂2 > n} is implied by the event that there exists an edge
e ∈ B(n) and p > pc such that:

- τe ∈ (pc,p);
- there exist two pc-open paths P1 and P2 in B(n), the path P1 connects an end

of e to the origin and the path P2 connects the other end of e to the boundary of
B(n);

- there exists a p-closed path P in B(n)∗ connecting e∗
x to e∗

y so that P ∪ {e∗} is a
circuit around the origin.
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There could be at most one edge e ∈ B(n) which satisfies the above three condi-
tions. Therefore,

P(R̂2 > n) ≥
[logn]−1∑

k=0

P
(∃e ∈ Ann([n/2k+1], [n/2k]) : τe ∈ (pc,pn/2k+1),

Ce(1, n; [n/2k+1]))

≥ C12

[logn]−1∑
k=0

Pcr

(
0 ↔ ∂B(n)

)
= C12[logn]Pcr

(
0 ↔ ∂B(n)

)
.

The last inequality follows from (46). �

7. Proof of Theorem 1.8. Let G = (G, E ) be an infinite connected subgraph
of (Z2,E

2) which contains the origin. We call an edge e ∈ E a disconnecting edge
for G if the graph (G, E \ {e}) has a finite component and if the origin belongs to
this finite component. Note that each outlet of the invasion is a disconnecting edge
for the IPC.

Let Dm,n be the event that the IIC does not contain a disconnecting edge in
the annulus Ann(m,n) and let Dm,n be the event that the IPC does not contain a
disconnecting edge in the annulus Ann(m,n). We prove the following theorem:

THEOREM 7.1. There exists a sequence (nk) such that

P

(∑
k

I(Dnk,nk+1) < ∞
)

= 1(47)

and

ν

(∑
k

I(Dnk,nk+1) = ∞
)

= 1.(48)

Theorem 1.8 immediately follows from Theorem 7.1. Indeed, Theorem 7.1 im-
plies that the IIC is supported on clusters for which infinitely many of the events
Dnk,nk+1 occur and the IPC is supported on clusters for which only finitely many
of the events Dnk,nk+1 occur. Roughly speaking, this says that the distance be-
tween consecutive disconnecting edges (ordered by distance from the origin) can
be much larger in the IIC than in the IPC. The proof of Theorem 7.1 is based on
the following result (see Section 1.2 for the definitions).

THEOREM 7.2. There exist C1,C2 such that for all 1 ≤ m < n,

P(Dm,n) ≤ C1Pcr (A
2
m,n)(49)
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and

ν(Dm,n) ≥ C2
Pcr (A

2
m,n)

Pcr (A1
m,n)

.(50)

LEMMA 7.1 ([17], Theorem 27). For all positive integers m < n and for all
p ∈ [pc,pn],

Pp(A2
m,n) � Pcr (A

2
m,n),

where the constants do not depend on m, n and p.

Although Theorem 27 in [17] is stated for site percolation on the triangular
lattice, the proof for bond percolation on the square lattice is the same.

LEMMA 7.2. There exists C3 such that for all m1 < m2 < n, we have

Pcr (A
2
m1,n

)

Pcr (A2
m1,m2

)
≥ C3

m2

n
.

PROOF. This follows from a priori estimates of probabilities of two arms in a
half-plane (see [17], Theorem 24). �

PROOF OF THEOREM 7.2. We first prove (49). Note that if the invasion per-
colation cluster contains a circuit, then there is a pond that entirely contains this
circuit. Therefore, the event Dm,n can only occur if there exists an invasion pond
which contains two disjoint crossings P1 and P2 of the annulus Ann(m,n) (see
Figure 5). Therefore, there exists p′ such that P1 and P2 are p′-open and there
exists a circuit around the origin which is p′-closed and which has diameter at
least n.

Recall the definition of (pn(j)) from (5). Later, we take C∗ in (5) to be suffi-
ciently large. We decompose the event Dm,n according to the value of p′:

P(Dm,n) =
log∗ n∑
j=1

P
(

Dm,n;p′ ∈ [pn(j),pn(j − 1))
)
.(51)

Note that the event {Dm,n;p′ ∈ [pn(j),pn(j − 1))} implies the event
A2

m,n,pn(j−1) ∩ Bn,pn(j) (see Section 1.2 for the definition of these events). It fol-
lows from (6) and (10) that there exist constants C4 and C5 such that the probability
P(Bn,pn(j)) is bounded from above by C4(log(j−1) n)−C5 . The constant C5 can be
made arbitrarily large by making C∗ large enough. We use Lemmas 7.1 and 7.2
to bound the probability P(A2

m,n,pn(j−1)) ≤ C6(log(j−1) n)Pcr (A
2
m,n). We use the
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FIG. 5. Event Dm,n. The edges e and f are disconnecting. The paths P1 and P2 create a circuit,
which implies that there is a pond that entirely contains both paths.

FKG inequality and the above estimates for the events A2
m,n,pn(j−1) and Bn,pn(j)

to get

P(Dm,n) ≤ C4C6Pcr (A
2
m,n)

log∗ n∑
j=1

(
log(j−1) n

)1−C5

≤ C7Pcr (A
2
m,n).

The last inequality follows from [6], (2.26), if we take C∗ such that C5 > 1.
We now prove (50). Let Cm,n be the event A[m/2],m ∩ A2[m/2],2n ∩ An,2n (see

Figure 6). Note that ν(Cm,n \ Dm,n) = 0. It is therefore sufficient to prove (50) for
Cm,n.

For positive integers m < n < N (later, we consider the limit as N tends to
infinity), we use the FKG inequality to get

Pcr (Cm,n ∩ A1
0,N )

≥ Pcr (Cm,n ∩ A1
0,m ∩ A1

n,N)

≥ C8Pcr

(
A2[m/2],2n

)
Pcr (A

1
0,m)Pcr (A

1
n,N)

≥ C8
Pcr (A

2[m/2],2n)Pcr (A
1
0,N )

Pcr (A1
m,n)
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FIG. 6. Event Cm,n. The inner circuit is in the annulus Ann([m/2],m) and the outer circuit is in
the annulus Ann(n,2n).

for some C8 > 0. Standard RSW arguments give a constant C9 such that for all
1 ≤ m < n,

Pcr

(
A2[m/2],2n

) ≥ C9Pcr (A
2
m,n).

Therefore,

ν(Dm,n) ≥ C8C9
Pcr (A

2
m,n)

Pcr (A1
m,n)

. �

PROPOSITION 7.1. There exists a sequence (nk) such that nk+1 > 4nk ,∑
k

Pcr (A
2
nk,nk+1

) < ∞(52)

and

∑
k

Pcr (A
2
n2k,n2k+1

)

Pcr (A1
n2k,n2k+1

)
= ∞.(53)

Proposition 7.1 follows from Lemma 7.2 and the fact that Pcr (A
1
m,n) ≤ c(m/n)δ

for some positive c and δ. Indeed, we obtain Pcr (A
1
m,n) ≤ c(C3Pcr (A

2
m,n))

δ .
We now take, for example, the sequence nk = min{n > 4nk−1 : Pcr (A

2
nk−1,n

) ≤
(1/k)1+δ}.
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PROOF OF THEOREM 7.1. We take a sequence from Proposition 7.1. Equality
(47) follows from the Borel–Cantelli lemma. To prove (48), we use Borel’s lemma
[13]:

LEMMA 7.3. Consider a probability space (�, F ,P) and a sequence of
events n ∈ F . Let lim supn n = ⋂

n

⋃
k≥n k be the event that infinitely many

of the n’s occur. Let an = I(n) be the indicator of event n. If there exists a
sequence bn such that

∑
n bn = ∞ and for any αi ∈ {0,1}, i = 1, . . . , n − 1,

P(n|a1 = α1, . . . , an−1 = αn−1) ≥ bn > 0,

then

P

(
lim sup

n
n

)
= 1.

Note that it is sufficient to prove (48) for the events Cnk,nk+1 (see the proof of
Theorem 7.2 for the definition). We apply Lemma 7.3 to the probability measure ν

and to the events Cn2k,n2k+1 . Let dk = I(Cn2k,n2k+1). A slight extension of the proof
of (50) gives, for any αi ∈ {0,1}, i = 1, . . . , k − 1,

ν(Cn2k,n2k+1 |d1 = α1, . . . , dk−1 = αk−1) ≥ C2
Pcr (A

2
n2k,n2k+1

)

Pcr (A1
n2k,n2k+1

)
=: bk,(54)

where C2 is the constant from (50). Indeed, let W be the set of configurations of
edges in B(2n2k−1) such that d1 = α1, . . . , dk−1 = αk−1. For any ω ∈ W and large
enough N ,

Pcr (Cn2k,n2k+1 ∩ A1
0,N |ω)

≥ Pcr (Cn2k,n2k+1 ∩ A1
0,n2k

∩ A1
n2k+1,N

|ω)

≥ C8Pcr

(
A2[n2k/2],2n2k+1

|ω)
Pcr (A

1
0,n2k

|ω)Pcr (A
1
n2k+1,N

|ω)

= C8Pcr

(
A2[n2k/2],2n2k+1

)
Pcr (A

1
0,n2k

|ω)Pcr (A
1
n2k+1,N

)

≥ C8
Pcr (A

2[n2k/2],2n2k+1
)Pcr (A

1
0,N |ω)

Pcr (A1
n2k,n2k+1

)
,

which implies (54). In the second line, we used the FKG inequality and indepen-
dence. The equality follows from independence. From the choice of (nk), it follows
that

∑
k bk = ∞. Therefore, equality (48) follows from Lemma 7.3. �
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