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THE STABILITY OF CONDITIONAL MARKOV PROCESSES AND
MARKOV CHAINS IN RANDOM ENVIRONMENTS

BY RAMON VAN HANDEL

Princeton University

We consider a discrete time hidden Markov model where the signal is a
stationary Markov chain. When conditioned on the observations, the signal is
a Markov chain in a random environment under the conditional measure. It is
shown that this conditional signal is weakly ergodic when the signal is ergodic
and the observations are nondegenerate. This permits a delicate exchange of
the intersection and supremum of σ -fields, which is key for the stability of
the nonlinear filter and partially resolves a long-standing gap in the proof of
a result of Kunita [J. Multivariate Anal. 1 (1971) 365–393]. A similar result
is obtained also in the continuous time setting. The proofs are based on an
ergodic theorem for Markov chains in random environments in a general state
space.

1. Introduction. Consider a discrete time Markov chain (Xn)n∈Z+ and a ran-
dom process (Yn)n∈Z+ such that Yn and Ym (n �= m) are conditionally independent
given (Xn)n∈Z+ and such that the conditional distribution of Yn given (Xn)n∈Z+
depends only on Xn. Then the pair (Xn,Yn)n∈Z+ defines a hidden Markov model,
where the observation process (Yn)n∈Z+ provides indirect information on the sig-
nal process (Xn)n∈Z+ . Models of this form have a wide array of applications in
statistics, engineering and finance, and possess a rich theory of statistical infer-
ence [7]. Of particular interest in the present paper is the filtering problem, which
aims to estimate the current state Xn of the signal given the observation history
(Yk)0≤k≤n by computing the regular conditional probability P(Xn ∈ ·|(Yk)0≤k≤n).
A similar class of problems can also be formulated in continuous time.

This paper is concerned with the long time properties of the nonlinear filter,
that is, we are interested in the behavior of the regular conditional probabilities
�n = P(Xn ∈ ·|(Yk)0≤k≤n) as n → ∞, in the case that the signal possesses an
invariant probability measure π . The investigation of such problems in general
hidden Markov models has a long history, starting with the pioneering work of
Kunita [23] (in the continuous time setting) on the stationary behavior of the mean
square estimation error of the nonlinear filter. To study this problem, he established
the following key result [23], Theorem 3.3: for any invariant measure π of the
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signal, the filtering process (�n)n∈Z+ possesses a unique invariant measure with
barycenter π if and only if the signal is ergodic in a particular sense (see below).

A different but closely related problem of interest is the stability of nonlinear
filters. Denote by Pμ the law of (Xn,Yn)n∈Z+ with the initial law X0 ∼ μ, and
write the corresponding filter as �

μ
n = Pμ(Xn ∈ ·|(Yk)0≤k≤n). In practice, the ini-

tial measure μ (the Bayesian prior) is rarely known precisely, and it is thus highly
desirable that the filter �

μ
n becomes insensitive to the choice of μ as n → ∞ (e.g.,

as in Theorem 5.2 below). When this is the case, the filter is said to be stable. In a
pioneering paper, Ocone and Pardoux [25] used Kunita’s theorem to establish that
stability of the filter is inherited from the ergodicity of the signal process.

The asymptotic properties of nonlinear filters have received considerable atten-
tion in recent years (see, e.g., [12] and the references therein). Beside the funda-
mental interest of the topic, results in this direction have a variety of applications,
which include uniform convergence of filter approximations [5, 6, 13, 14], max-
imum likelihood estimation [7, 8, 19], stochastic control [18, 31] and estimation
error bounds [3, 23]. In various specific cases one can even obtain detailed quan-
titative information about the rate of stability of the filter (see [12] for references).
In the general setting, however, little is known about the asymptotic properties
of nonlinear filters beyond the work of Kunita [23] and subsequent papers, such
as [25], which rely directly on the approach of [23] (but see [36]).

Unfortunately, as was pointed out in [1], there is a serious gap in the proof of the
main result in [23]. To describe the problem, let us suppose that the signal process
possesses an invariant probability measure π . Then Pπ is a stationary measure,
and we can therefore extend the stationary hidden Markov model to two-sided time
(Xn,Yn)n∈Z by a standard argument. Denote by P the extension of Pπ to two-sided
time, and define the σ -fields F X

I = σ {Xn :n ∈ I } and F Y
I = σ {Yn :n ∈ I } (I ⊂ Z).

The key step in Kunita’s proof is to argue that his result would follow if we could
establish that the following identity holds true:⋂

n≥0

F Y]−∞,0] ∨ F X]−∞,−n] = F Y]−∞,0] P-a.s.

He proceeds to argue as follows. Suppose that the signal satisfies the following
ergodicity condition:

⋂
n≥0 F X]−∞,−n] is P-a.s. trivial. Then

⋂
n≥0

F Y]−∞,0] ∨ F X]−∞,−n]
?= F Y]−∞,0] ∨ ⋂

n≥0

F X]−∞,−n] = F Y]−∞,0] P-a.s.

The exchange of the intersection and supremum of σ -fields is not at all obvious,
however, and no proof of this assertion is provided in [23]. Indeed, this exchange
is not permitted in general, as an illuminating counterexample in [1] shows.

It is important to note, on the other hand, that all known counterexamples rely in
an essential way on the degeneracy of the observation model, that is, Yk = h(Xk)

for some function h without any additional noise. It is therefore tempting to conjec-
ture that the exchange of intersection and supremum is always permitted provided
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that the observations are nondegenerate, which is most naturally imposed in our
general setting by requiring that the conditional law of Yn given (Xk)k∈Z satisfies

P
(
Yn ∈ A|(Xk)k∈Z

) =
∫

IA(du)g(Xn,u)ϕ(du) P-a.s.,

where ϕ is a fixed reference measure and g is a strictly positive function. Though
no counterexamples are known, it is unclear whether or not this is the case, and the
(positive or negative) verification of this conjecture remains an open problem.

From the work of Budhiraja [4] and of Baxendale, Chigansky and Liptser [1],
and from the results of Section 5 below, it is clear that Kunita’s exchange of inter-
section and supremum and its time-reversed cousin

⋂
n≥0

F Y]−∞,0] ∨ F X]−∞,−n]
?= F Y]−∞,0]

and ⋂
n≥0

F Y[0,∞[ ∨ F X[n,∞[
?= F Y[0,∞[ P-a.s.

lie at the heart of the qualitative asymptotic theory of nonlinear filtering. The main
result of this paper, Theorem 4.2, establishes that both these identities do indeed
hold under conditions that are only mildly stronger than those assumed by Kunita.
Given an invariant probability measure π of the signal process, we assume the
following:

1. The signal is ergodic in the following sense:

‖Pδz(Xn ∈ ·) − π‖TV
n→∞−−−→ 0 for π -a.e. z,

where ‖ · ‖TV is the total variation norm (Assumption 3.1 below).
2. The observations are nondegenerate (Assumption 3.2 below).

These assumptions are satisfied by the vast majority of stationary hidden Markov
models of practical interest, including the important case of aperiodic and positive
Harris recurrent signals with nondegenerate observations. Note that we do not re-
quire the Feller assumption, and that we allow for signal and observation processes
with arbitrary Polish state spaces (the Polish assumption guarantees an abundance
of regular conditional probabilities). The latter has the additional advantage that
our results extend directly to the continuous time setting (Section 6).

Beside our main result, this paper contains two additional results which are
of independent interest. First, as we will discuss shortly, the proof of our main
result hinges on the ergodic theory of Markov chains in random environments
as developed by Cogburn [10, 11] and Orey [26] for countable state spaces. In
Section 2, we prove the counterpart of a result from [11] for Markov chains in
random environments on general Polish state spaces (Theorem 2.3). This result is
not specific to hidden Markov models, and could be relevant in other settings.
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Second, we will show in Section 5 that the permissibility of the exchange of
intersection and supremum leads to the stability of the nonlinear filter in a much
stronger sense than was previously established in [1, 4, 25]. A special case of
our main stability theorem (Theorem 5.2) is the following result: if the signal is
aperiodic and positive Harris recurrent, and if the observations are nondegenerate,
then

‖�μ
n − �ν

n‖TV
n→∞−−−→ 0 Pγ -a.s. for all μ,ν, γ.

Similar results hold in the continuous time setting (Section 6).
The remainder of this section is devoted to a guided tour through our proofs.

1.1. The method of von Weizsäcker and the conditional signal. In [37], von
Weizsäcker has studied the exchange of intersection and supremum problem in a
general setting. Following his approach, one can establish the following illuminat-
ing result. Let Gn, n ∈ N be a decreasing family of countably generated σ -fields
and let F be another countably generated σ -field. Then⋂
n∈N

F ∨ Gn = F P-a.s. iff
⋂
n∈N

Gn is P F (ω, ·)-a.s. trivial for P-a.e. ω,

where P F (ω, ·) is a version of the regular conditional probability P(·|F ). It
would appear at first glance that P-a.s. triviality of the tail σ -field

⋂
n∈N Gn au-

tomatically implies that it is also P(·|F )-a.s. trivial; after all, it is elementary that
P(A|F ) = P(A) P-a.s. whenever P(A) = 0 or P(A) = 1. However, the tail σ -field
is not countably generated, so we cannot eliminate the dependence of the excep-
tional set on A. Verification of P(·|F )-a.s. triviality is thus a nontrivial problem.

Despite its generality, the result of von Weizsäcker is rarely used in the litera-
ture. In many cases the result is difficult to apply, as a tractable characterization
of the conditional measure P(·|F ) is typically not available. In our setting, how-
ever, a fortuitous observation makes this approach much more attractive: when
conditioned on the observations, the signal process remains an (albeit nonhomo-
geneous) Markov process whose transition probabilities depend on the observed
sample path of the observation process. This observation dates back to the work
of Stratonovich [33], and has recently been applied to obtain quantitative stabil-
ity results for various special filtering models [7, 20, 35]. In these references a
time horizon N is fixed and the signal is considered under the conditional measure
P(·|F Y[0,N]), while we will work under the conditional measure P(·|F Y[0,∞[), but
this difference does not affect the Markov property of the conditional signal.

Our basic strategy is thus as follows. Note that by the above discussion⋂
n≥0

F Y[0,∞[ ∨ F X[n,∞[ = F Y[0,∞[ P-a.s.

would be established if we could show that

T X = ⋂
n≥0

F X[n,∞[ is P
(·|F Y[0,∞[

)
-a.s. trivial P-a.s.
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We therefore aim to show that the signal (Xn)n≥0, which is a nonhomogeneous
Markov process under the regular conditional probability P(·|F Y[0,∞[), has trivial
tail σ -field T X for almost every observation path, provided our ergodicity and
nondegeneracy assumptions are satisfied. The time-reversed result follows simi-
larly.

1.2. Markov chains in random environments. To obtain our main result, we
must now show that tail triviality of the signal process under the conditional mea-
sure is inherited from the ergodicity of the signal process under the original proba-
bility measure. In the following, we will often refer to the signal process under the
conditional measure as the conditional signal.

To fix some ideas, consider the case of a time homogeneous finite state Markov
chain. In this setting, ergodicity (and hence tail triviality) is determined entirely
by the graph of the chain, and not by the precise values of the transition proba-
bilities. In particular, for one such chain to inherit ergodicity from another chain,
it suffices that the two chains have the same graph, or, in probabilistic terms, that
their transition probabilities are mutually absolutely continuous. That a similar
statement holds in a general state space can be inferred, for example, from [28],
Theorem 2.1.

The problem in our setting is that the conditional signal is not time homoge-
neous. Nonetheless, the transition probability of the conditional signal Kn(x, ·) =
P(Xn ∈ ·|Xn−1 = x,F Y[0,∞[) satisfies a key homogeneity property: it is easily seen
[using the stationarity of P and the Markov property of (Xn,Yn)n∈Z] that n �→ Kn

is a stationary stochastic process. The conditional signal is thus a Markov chain in
a random environment in the terminology of Cogburn, who established [11], Sec-
tion 3, that the ergodicity of such a process in a finite (or countable) state space is
determined by its graph in essentially the same manner as for time homogeneous
chains. This suggests that to prove our result, it suffices to show that the transition
probabilities of the conditional signal and of the signal are equivalent.

As is perhaps to be expected, things are not quite so straightforward in practice.
First, even in a finite state space, the conditional signal under P(·|F Y[0,∞[) does not
fit in the framework of Cogburn as the ergodic theory of Markov chains in random
environments relies on the availability of all environmental variables (Yk)k∈Z. In
order to apply the result of Cogburn, we must therefore condition not on F Y[0,∞[
but on F Y

Z
. It is then necessary to establish two things: that

P(Xn ∈ ·|Xn−1 = i,F Y
Z

) ∼ P(Xn ∈ ·|Xn−1 = i) for all i P-a.s.,

so that the ergodicity of the signal process under P implies the ergodicity of the
signal process under P(·|F Y

Z
) by the result of Cogburn, and that

P
(
(Xn)n≥0 ∈ ·|F Y

Z

) ∼ P
(
(Xn)n≥0 ∈ ·|F Y[0,∞[

)
P-a.s.,
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so that triviality of T X under P(·|F Y
Z

) implies triviality of T X under P(·|F Y[0,∞[).
We will prove these identities in Sections 3 and 4 using a coupling argument; it is
here that the nondegeneracy of the observations is required. Once these facts have
been established, von Weizsäcker’s argument completes the proof.

Unlike Cogburn’s results, however, our results are not restricted to finite or
countable state spaces. Our first order of business is therefore to extend the neces-
sary result from [11] to the setting of general Polish state spaces. As with ordinary
Markov chains in general state spaces, the general case requires significantly more
sophisticated tools than are needed in the countable setting. Our general result in
Section 2 is inspired by the elegant martingale methods of Derriennic [16] and of
Papangelou [28] for ordinary Markov chains in general state spaces.

1.3. Organization of the paper. This paper is organized as follows.
In Section 2, we introduce the general model for a Markov chain in a random

environment. The main result, Theorem 2.3, establishes that weak ergodicity, tail
triviality and irreducibility are equivalent for stationary Markov chains in random
environments. This result is key for the proof of our main result.

In Section 3, we introduce the general hidden Markov model. We begin by prov-
ing that this model fits in the framework of Section 2 if we condition on the com-
plete observation record (Yn)n∈Z (Lemma 3.3). The main result of this section,
Theorem 3.4, establishes that the conditional signal is ergodic provided that the
ergodicity and nondegeneracy Assumptions 3.1 and 3.2 are satisfied. The proof
proceeds in two steps. First, we show that the result would follow from ergodicity
of the signal and the equivalence of the conditional and unconditional transition
probabilities (Lemma 3.5). Next, we show that this equivalence does in fact hold if
we additionally assume nondegenerate observations (Lemma 3.8). Of independent
interest is Lemma 3.7, which is used repeatedly in the following sections.

In Section 4, we complete the proof of the main result of this paper (Theo-
rem 4.2). First, we develop the argument of von Weizsäcker in our setting (Sec-
tion 4.1). The remainder of the section is devoted to proving that P((Xn)n≥0 ∈
·|F Y

Z
) ∼ P((Xn)n≥0 ∈ ·|F Y[0,∞[) P-a.s. (the relevance of which was discussed

above).
Section 5 establishes that our main result implies stability of the filter (The-

orem 5.2). The key connection between Theorems 5.2 and 4.2 is the expression
in Lemma 5.6 for the Radon–Nikodym derivative between differently initialized
filters.

In Section 6, we extend our main results to the continuous time setting.
Finally, Section 7 contains a brief discussion on the implications of our main

result for the gap in the result of Kunita [23].

2. Markov chains in random environments.

2.1. The canonical setup and main result. Throughout this paper, we operate
in the following canonical setup. We consider the pair (Xn,Yn)n∈Z, where Xn
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takes values in the Polish space E and Yn takes values in the Polish space F . We
realize these processes on the canonical path space 
 = 
X × 
Y with 
X = EZ

and 
Y = F Z, such that Xn(x, y) = x(n) and Yn(x, y) = y(n). Denote by F the
Borel σ -field on 
, and introduce the natural filtrations

F X
n = σ {Xk :k ≤ n}, F Y

n = σ {Yk :k ≤ n}, Fn = F X
n ∨ F Y

n

for n ∈ Z, as well as the σ -fields

F X
I = σ {Xk :k ∈ I }, F Y

I = σ {Yk :k ∈ I }, FI = F X
I ∨ F Y

I

for I ⊂ Z. For simplicity of notation, we set

F X = F X
Z

, F Y = F Y
Z

, F X+ = F X[0,∞[, F Y+ = F Y[0,∞[
and we will denote by Y the FZ-valued random variable (Yk)k∈Z. The canonical
shift � :
 → 
 is defined as �(x,y)(m) = (x(m + 1), y(m + 1)).

In the following sections we will introduce a measure on (
,F ) which defines
a hidden Markov model. In the present section, however, it will be more convenient
to attach a somewhat different interpretation to our canonical setup. To this end,
consider a probability kernel of the form P X :E × 
Y × B(E) → [0,1], where
B(E) denotes the Borel σ -field of E. We will define a stationary probability mea-
sure P on (
,F ) such that the following holds a.s. for every n ∈ Z:

P(Xn+1 ∈ A|F X
n ∨ F Y ) = P X(Xn,Y ◦ �n,A).

Then Xn is interpreted as a Markov chain in a random environment: the environ-
ment is the sequence Y , and Xn is a nonhomogeneous Markov process, for almost
every path Y , under the regular conditional probability P(·|F Y ).

REMARK 2.1. Markov chains in random environments were studied exten-
sively by Cogburn [10, 11] and by Orey [26] in the case that E is countable. The
purpose of this section is to extend a result in [11] to the general setting in which E

is Polish. It should be noted that in these papers the kernel P X(x, y,A) is assumed
to depend only on y(0), rather than on the entire path y = (y(k))k∈Z. This differ-
ence is immaterial, however, and the current notation fits particularly well with the
hidden Markov model which will be studied in the rest of the paper.

We proceed to construct P. Our model consists of three ingredients:

1. The probability kernel P X :E × 
Y × B(E) → [0,1].
2. A probability kernel μ :
Y × B(E) → [0,1] such that∫

P X(z, y,A)μ(y, dz) = μ(�y,A) for all y ∈ 
Y ,A ∈ B(E).

3. A probability measure PY on (
Y ,F Y ) which is invariant under the shift, that
is, PY (Y ∈ A) = PY (Y ◦ � ∈ A) for all A ∈ F Y .
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For every n ∈ N, define the probability kernel P(n)· :
Y × F X[−n,n] → [0,1] as

P(n)
y (A) =

∫
IA(x)P X(

x(n − 1),�n−1y, dx(n)
) · · ·

× P X(
x(−n),�−ny, dx(−n + 1)

)
μ

(
�−ny, dx(−n)

)
.

Then P(n+1)
y |F X[−n,n]

= P(n)
y , so that we can define a probability kernel

P· :
Y × F X → [0,1], Py |F X[−n,n]
= P(n)

y for all n,y

by the usual Kolmogorov extension argument. We now define the probability mea-
sure P on (
,F ) by setting

P(A) =
∫

IA(x, y)Py(dx)PY (dy) for all A ∈ F .

In addition to the probability measure P and the kernel Py , we introduce a proba-
bility kernel P·,· :E × 
Y × F X+ → [0,1] by setting for A ∈ F X[0,n]

Pz,y(A) =
∫

IA(x)P X(
x(n − 1),�n−1y, dx(n)

) · · ·
× P X(x(1),�y, dx(2))P X(x(0), y, dx(1))δz(dx(0)),

where δz(A) = IA(z), and again extending by the Kolmogorov extension argu-
ment. The following is an easy consequence of our definitions.

LEMMA 2.2. The following properties hold true:

1. The following holds for all A ∈ F X+ , z ∈ E, y ∈ 
Y :

Ez,y(IA ◦ �) =
∫

P X(z, y, dz′)Pz′,�y(A).

2. P�y(A) = Ey(IA ◦ �) for all y ∈ 
Y , A ∈ F X .
3. P is invariant under the shift � :
 → 
, that is, P((Xk,Yk)k∈Z ∈ A) =

P((Xk+n, Yk+n)k∈Z ∈ A) for all A ∈ F , n ∈ Z.
4. The following hold P-a.s. for A ∈ F X , B ∈ F X+ , n ∈ Z:

E(IA ◦ �n|F Y ) = PY◦�n(A),E(IB ◦ �n|F X
n ∨ F Y ) = PXn,Y◦�n(B).

PROOF. Elementary. �

The goal of this section is to prove the following theorem. In the case that E is
countable, a similar result can be found in [11], Section 3.

THEOREM 2.3. The following are equivalent.
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1. ‖Pz,y(Xn ∈ ·) − Pz′,y(Xn ∈ ·)‖TV
n→∞−−−→ 0 for (μ ⊗ μ)PY -a.e. (z, z′, y).

2. The tail σ -field T X = ⋂
n≥0 F X[n,∞[ is a.s. trivial in the following sense:

Pz,y(A) = Pz,y(A)2 = Pz′,y(A) for all A ∈ T X and (z, z′, y) ∈ H,

where H is a fixed set (independent of A) of (μ ⊗ μ)PY -full measure.
3. For (μ ⊗ μ)PY -a.e. (z, z′, y), there is an n ∈ N such that the measures

Pz,y(Xn ∈ ·) and Pz′,y(Xn ∈ ·) are not mutually singular.

When the first condition of this theorem holds, the Markov chain in the random
environment is said to be weakly ergodic; when the second condition holds, it is
said to be tail trivial; and when the last condition holds, it is said to be irreducible.
Our goal is to prove that these notions are equivalent.

2.2. Proof of Theorem 2.3. The implication 1 ⇒ 3 of Theorem 2.3 is trivial;
thus, it suffices to show that 2 ⇒ 1 and 3 ⇒ 1,2. Our approach below is partially
inspired by the martingale methods of Derriennic [16] and of Papangelou [28] for
ordinary Markov chains in general state spaces, and by the work of Cogburn [11]
for countable Markov chains in random environments.

We begin by stating two preliminary lemmas which are in essence well-known
results. The first lemma below shows that the total variation norm of a kernel is a
measurable function; the second lemma shows that 2 ⇒ 1 in Theorem 2.3.

LEMMA 2.4. Let (G,G) be a measurable space, (K,K) be a measurable
space with K a countably generated σ -field, and ρ :G×K → R be a finite kernel.
Then the map g �→ ‖ρ(g, ·)‖TV is measurable.

PROOF. As K is countably generated, there is a sequence {In} of refining
partitions In = {En

1 , . . . ,En
n} of K such that K = σ {In :n ∈ N}. But then

n∑
k=1

|ρ(g,En
k )| = ∥∥ρ(g, ·)|σ {In}

∥∥
TV ↗ ‖ρ(g, ·)‖TV as n → ∞

for all g ∈ G (see, e.g., [27], page 1635). As g �→ ρ(g,En
k ) is measurable for every

k,n, the above limit is also measurable and the result follows. �

The proof of the following result follows closely along the lines of the proof
of [29], Proposition 6.2.4, and is therefore omitted.

LEMMA 2.5. Let H be a set of (μ ⊗ μ)PY -full measure. If

Pz,y(A) = Pz,y(A)2 = Pz′,y(A) for all A ∈ T X and (z, z′, y) ∈ H,

then ‖Pz,y(Xn ∈ ·)−Pz′,y(Xn ∈ ·)‖TV
n→∞−−−→ 0 for all (z, z′, y) ∈ H . In particular,

if condition 2 of Theorem 2.3 holds, then so does condition 1.
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Before we proceed, we state an additional lemma on general Markov chains
which will be used several times. The construction of the set H below follows
closely along the lines of [27], pages 1636–1637, so the proof is omitted.

LEMMA 2.6. Let Pz be the law of a Markov process (Zk)k≥0 given Z0 = z,
and let ν be a stationary probability for this Markov process. Then for any set H̃

of ν-full measure, there is a subset H ⊂ H̃ of ν-full measure such that

Pz(Zn ∈ H for all n ≥ 0) = 1 for all z ∈ H.

We now proceed with the proof of Theorem 2.3. Let us introduce certain skew
Markov chains which will be useful in what follows. Define Un = (Xn,Y ◦ �n);
then evidently Un is an E × 
Y -valued stationary Markov chain under P, whose
stationary measure λ(A) = P(Un ∈ A) for all n ∈ Z, A ∈ B(E × 
Y ) and transi-
tion probability kernel P U :E × 
Y × B(E × 
Y ) → [0,1] are given by

λ(A) =
∫

IA(z, y)μ(y, dz)PY (dy), P U(z, y,B ×C) = P X(z, y,B)IC(�y),

while Un is a Markov process with the same transition probability kernel P U but
with the initial measures δz,y and μ(y, ·) under Pz,y and Py , respectively,

In addition to this skew Markov chain, it will be convenient to construct a cou-
pling of two copies Un = (Xn,Y ◦ �n) and U ′

n = (X′
n, Y

′ ◦ �n) of the skew chain
such that Y = Y ′. To construct such a coupling, we define an E × E × 
Y -valued
Markov process Vn = (Xn,X

′
n, Y ◦ �n) with transition probability kernel

P V (z, z′, y,B × C × D) = P X(z, y,B)P X(z′, y,C)ID(�y).

Note that the probability measure on E × E × 
Y ,

λ̃(A) =
∫

IA(z, z′, y)μ(y, dz)μ(y, dz′)PY (dy) = (
(μ ⊗ μ)PY )

(A),

is an invariant measure for the transition probability P V . We will construct in the
usual way a probability kernel Q·,·,· :E × E × 
Y × B(E × E × 
Y )Z+ → [0,1]
such that Qz,z′,y is the law of (Vn)n≥0 with V0 ∼ δz,z′,y . Note that under Qz,z′,y ,
the processes (Xn)n≥0 and (X′

n)n≥0 are independent and their laws coincide with
the law of (Xn)n≥0 under Pz,y and Pz′,y , respectively.

Define the sequence of measurable functions

βn(z, z
′, y) = ‖Pz,y(Xn ∈ ·) − Pz′,y(Xn ∈ ·)‖TV, n ∈ N.

Note that βn is nonincreasing with n, so that β(z, z′, y) = limn→∞ βn(z, z
′, y) is

well defined and measurable. We wish to prove that condition 3 of Theorem 2.3
implies that β(z, z′, y) = 0 (μ ⊗ μ)PY -a.e. We will do this in two steps. First,
following Derriennic [16] (see also Ornstein and Sucheston [27]), we prove a zero-
two law for β(z, z′, y) which asserts that either conditions 1 and 2 of Theorem 2.3
hold, or else β(z, z′, y) attains values arbitrarily close to 2. In the second step, we
will show that condition 3 of Theorem 2.3 rules out the latter possibility.
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PROPOSITION 2.7 (Zero-two law). Let H̃ be a given set of (μ ⊗ μ)PY -full
measure. Then one or the other of the following possibilities must hold true:

1. Condition 2 of Theorem 2.3 holds for a subset H ⊂ H̃ of (μ ⊗ μ)PY -full mea-
sure, and β(z, z′, y) = 0 for all (z, z′, y) ∈ H .

2. There is an y ∈ 
Y such that the following holds: for any ε > 0, there is a
(z, z′, y′) ∈ H̃ with y′ = �ny for some n ∈ N and β(z, z′, y′) > 2 − ε.

PROOF. Let H ⊂ H̃ be the subset constructed through Lemma 2.6. It suf-
fices to show that if condition 2 of Theorem 2.3 does not hold on H , then the
second possibility in the statement of the current proposition must hold true. In-
deed, if condition 2 of Theorem 2.3 does hold on H , then β(z, z′, y) = 0 for all
(z, z′, y) ∈ H by Lemma 2.5 and, thus, the first possibility holds true.

We suppose, therefore, that condition 2 of Theorem 2.3 does not hold on H .
Then we may clearly choose a (z, z′, y) ∈ H and an A ∈ T X such that we have
either Pz,y(A) �= Pz′,y(A) or 0 < Pz,y(A) < 1. Let us now define

Z = 2IA − 1, gn(z̃) = Ez̃,�ny(Z ◦ �−n) for all z̃ ∈ E.

Using the first property of Lemma 2.2, it is not difficult to establish that

gn(z̃) = Ez̃,�ny(gn+k(Xk)) for all z̃ ∈ E,k ≥ 0,

and that

gn(Xn) = Ez̃,y

(
Z|F X[0,n]

)
Pz̃,y-a.s. for every z̃ ∈ E.

In particular, gn(Xn) → Z Pz̃,y -a.s. for every z̃ ∈ E by martingale convergence,
and this implies for any 0 < ε < 2 and z̃ ∈ E that

Pz̃,y

(
gn(Xn) > 1 − ε

) n→∞−−−→ Pz̃,y(A),

Pz̃,y

(
gn(Xn) < −1 + ε

) n→∞−−−→ 1 − Pz̃,y(A).

We now proceed as follows. Note that for any 0 < ε < 2,

Qz,z′,y
(
gn(Xn) > 1 − ε/2 and gn(X

′
n) < −1 + ε/2

)
= Pz,y

(
gn(Xn) > 1 − ε/2

)
Pz′,y

(
gn(Xn) < −1 + ε/2

)
,

which converges as n → ∞ to Pz,y(A)(1 − Pz′,y(A)), and similarly,

Qz,z′,y
(
gn(X

′
n) > 1 − ε/2 and gn(Xn) < −1 + ε/2

)
= Pz′,y

(
gn(Xn) > 1 − ε/2

)
Pz,y

(
gn(Xn) < −1 + ε/2

)
,

which converges as n → ∞ to Pz′,y(A)(1 − Pz,y(A)). But as either Pz,y(A) �=
Pz′,y(A) or 0 < Pz,y(A) < 1, at least one of these expressions must be positive.
Hence, for every 0 < ε < 2, we can find an n ∈ N such that

Qz,z′,y
(|gn(Xn) − gn(X

′
n)| > 2 − ε

)
> 0.
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In particular, there must then be a choice of (z̃, z̃′,�ny) ∈ H such that we have
|gn(z̃) − gn(z̃

′)| > 2 − ε. It remains to note that, for all k ≥ 0,

βk(z̃, z̃
′,�ny) = sup

‖f ‖∞≤1
|Ez̃,�ny(f (Xk)) − Ez̃′,�ny(f (Xk))|

≥ |Ez̃,�ny(gn+k(Xk)) − Ez̃′,�ny(gn+k(Xk))|
= |gn(z̃) − gn(z̃

′)| > 2 − ε,

so that β(z̃, z̃′,�ny) > 2 − ε. But we can repeat this procedure for any 0 < ε < 2,
and this establishes that the second possibility of the proposition holds. �

It remains to argue that condition 3 of Theorem 2.3 rules out the second possi-
bility of the zero-two law. We will need the following lemma.

LEMMA 2.8. The following holds for all (z, z′, y) ∈ E × E × 
Y :

βn+1(z, z
′, y) ≤ (P V βn)(z, z

′, y) =
∫

βn(z̃, z̃
′, ỹ)P V (z, z′, y, dz̃, dz̃′, dỹ).

In particular, β(z, z′, y) ≤ (P V β)(z, z′, y).

PROOF. Choose sets En
k as in Lemma 2.4, and define

βn
� (z, z′, y) =

n∑
k=1

|Pz,y(X� ∈ En
k ) − Pz′,y(X� ∈ En

k )|.

Then βn
� ↗ β� as n → ∞. But βn

�+1 ≤ P V βn
� follows from Jensen’s inequality

and Lemma 2.2, so that β�+1 ≤ P V β� follows by monotone convergence. Letting
� → ∞, we obtain β ≤ P V β by dominated convergence. �

The following result now essentially completes the proof.

PROPOSITION 2.9. Suppose that condition 3 of Theorem 2.3 holds. Then there
is a set H̃ of (μ ⊗ μ)PY -full measure such that β(z, z′, y) = β(z̃, z̃′, ỹ) < 2 for
every (z, z′, y), (z̃, z̃′, ỹ) ∈ H̃ with ỹ = �ny for some n ≥ 0.

PROOF. Denote by Q the law of (Vn)n≥0 with initial measure λ̃ = (μ⊗μ)PY .
By the previous lemma, β(Vn) is a bounded submartingale under Q and, hence,
{β(Vn)} is a Cauchy sequence in L1(Q) by the martingale convergence theorem.
But then, using the stationarity of Q, we find that

EQ|β(V0) − β(Vn)| = EQ|β(Vk) − β(Vn+k)| k→∞−−−→ 0 for all n ∈ N.

In particular, we evidently have∫
Qz,z′,y

(
β(V0) = β(Vn) for all n

)
λ̃(dz, dz′, dy) = 1
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and there is consequently a set H̃1 of λ̃-full measure such that

Qz,z′,y
(
β(z, z′, y) = β(Vn) for all n

) = 1 for all (z, z′, y) ∈ H̃1.

By condition 3 of Theorem 2.3, we may choose another set H̃2 of λ̃-full mea-
sure such that for every (z, z̃, y) ∈ H̃2, there is an n ∈ N such that Pz,y(Xn ∈ ·)
and Pz̃,y(Xn ∈ ·) are not mutually singular. Note that the latter implies that
Pz,y(Xm ∈ ·) and Pz̃,y(Xm ∈ ·) are not mutually singular for every m ≥ n, as
Pz,y(Xn ∈ ·) ⊥ Pz̃,y(Xn ∈ ·) is equivalent to βn(z, z̃, y) = 2 and βm(z, z̃, y) is non-
increasing with m. Now define the set

H̃3 = {(z, z′, z̃, z̃′, y) : (z, z′, y), (z̃, z̃′, y) ∈ H̃1, (z, z̃, y), (z′, z̃′, y) ∈ H̃2}.
Then it is easily seen that H̃3 has (μ ⊗ μ ⊗ μ ⊗ μ)PY -full measure.

We claim that β(z, z′, y) = β(z̃, z̃′, y) whenever (z, z′, z̃, z̃′, y) ∈ H̃3. To see
this, fix such a point, and choose n ∈ N such that Pz,y(Xn ∈ ·) and Pz̃,y(Xn ∈ ·)
are not mutually singular and Pz′,y(Xn ∈ ·) and Pz̃′,y(Xn ∈ ·) are not mutually
singular. This implies, in particular, that Qz,z′,y(Vn ∈ ·) and Qz̃,z̃′,y(Vn ∈ ·) are not
mutually singular. But these measures are supported, respectively, on the sets

�1 = {(ζ, ζ ′,�ny) :β(z, z′, y) = β(ζ, ζ ′,�ny)},
�2 = {(ζ, ζ ′,�ny) :β(z̃, z̃′, y) = β(ζ, ζ ′,�ny)}

as (z, z′, y), (z̃, z̃′, y) ∈ H̃1, and, as the measures are nonsingular, we must have
�1 ∩ �2 �= ∅. We have therefore established that β(z, z′, y) = β(z̃, z̃′, y).

To proceed, we define

β(y) =
∫

β(z, z′, y)μ(y, dz)μ(y, dz′).

We claim that β(z, z′, y) = β(y) λ̃-a.e. Indeed, note that∫
|β(z, z′, y) − β(y)|λ̃(dz, dz′, dy)

≤
∫

|β(z, z′, y) − β(z̃, z̃′, y)|(μ ⊗ μ ⊗ μ ⊗ μ)(y, dz, dz′, dz̃, dz̃′)PY (dy)

by Jensen’s inequality, and we may restrict the integral on the right-hand side
to H̃3, as this set has full measure. Thus, the left-hand side vanishes as claimed.

To complete the proof, let H̃4 be a set of λ̃-full measure such that β(z, z′, y) =
β(y) for all (z, z′, y) ∈ H̃4. Using Lemma 2.6, we can find a subset H̃5 ⊂ H̃4 of
λ̃-full measure such that we have

Qz,z′,y(Vn ∈ H̃5 for all n ≥ 0) = 1 for all (z, z′, y) ∈ H̃5.

We now set H̃ = H̃1 ∩ H̃2 ∩ H̃5. Then evidently β(z, z′, y) = β(y) = β(�ny)

for all n ≥ 0 whenever (z, z′, y) ∈ H̃ , and β(z, z′, y) < 2 as condition 3 of Theo-
rem 2.3 holds for (z, z′, y) ∈ H̃ . The proof is easily completed. �
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Let us now complete the proof of the implication 3 ⇒ 1,2 in Theorem 2.3. By
the zero-two law, it suffices to show that condition 3 of Theorem 2.3 rules out
the second possibility of Proposition 2.7. Assume that condition 3 of Theorem 2.3
holds, and apply the zero-two law with the set H̃ obtained from Proposition 2.9.
If the second possibility of Proposition 2.7 holds, then there is an y ∈ 
Y and a
sequence (zk, z

′
k,�

nky) ∈ H̃ such that β(zk, z
′
k,�

nky) → 2 as k → ∞. But by
Proposition 2.9, β(zk, z

′
k,�

nky) = β(z1, z
′
1,�

n1y) < 2 for all k ≥ 1, which is a
contradiction. Hence, the proof of Theorem 2.3 is complete.

3. Weak ergodicity of conditional Markov processes.

3.1. The hidden Markov model. Throughout this paper we will operate in the
same canonical setting as in Section 2. In this section, however, we will initially
give a different construction of the measure P which makes (Xn,Yn)n∈Z a hidden
Markov model; the signal process Xn then plays the role of the unobserved com-
ponent, while the observation process Yn is the observed component. Such hidden
Markov structure is the usual setup in which nonlinear filtering problems are of
interest. We will shortly see, however, that hidden Markov models are Markov
chains in random environments in disguise, so that the results of Section 2 apply.

As before, the signal Xn takes values in the Polish space E and the observa-
tions Yn take values in the Polish space F . We proceed to construct a measure P
on the canonical path space (
,F ). The hidden Markov model consists of:

1. A probability kernel P :E × B(E) → [0,1].
2. A probability measure π on (E,B(E)) such that∫

P(z,A)π(dz) = π(A) for all A ∈ B(E).

3. A probability kernel � :E × B(F ) → [0,1].
We now construct P as follows. For every n ∈ N, we can define the probability
measure P(n) on F[−n,n] as

P(n)(A) =
∫

IA(x, y)�(x(n), dy(n)) · · ·�(x(−n), dy(−n))

× P
(
x(n − 1), dx(n)

) · · ·P (
x(−n), dx(−n + 1)

)
π(dx(−n)).

Then P(n+1)|F[−n,n] = P(n), so that we can construct the probability measure

P :F → [0,1], P|F[−n,n] = P(n) for all n ∈ N

by the Kolmogorov extension theorem. Note that under P, the signal Xn is a sta-
tionary Markov chain with transition probability kernel P(z,A) and stationary
probability measure π , while, conditionally on the signal, the observations are in-
dependent at different times and Yn has law �(Xn, ·). We also remark that the joint
process (Xn,Yn)n∈Z is easily seen to be itself a stationary Markov chain.
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In addition to the probability measure P, we introduce the probability kernel
P· :E × F+ → [0,1] such that Pz is the law of (Xn,Yn)n≥0 started at X0 = z

[i.e., under Pz, the signal (Xn)n≥0 is a Markov chain with transition probability
kernel P and initial measure X0 ∼ δz, the observations (Yn)n≥0 are conditionally
independent given the signal, and Yn has conditional law �(Xn, ·) given F X+ ]. For
any probability measure ν on (E,B(E)), we define the probability measure

Pν(A) =
∫

IA(x, y)Pz(dx, dy)ν(dz) for all A ∈ F+.

Note that Pπ is in fact the restriction of P to F+.
We now introduce two assumptions on the hidden Markov model which will

play an important role in our main results.

ASSUMPTION 3.1 (Ergodicity). The following holds:

‖Pz(Xn ∈ ·) − π‖TV
n→∞−−−→ 0 for π -a.e. z ∈ E.

ASSUMPTION 3.2 (Nondegeneracy). There exists a probability measure ϕ on
B(F ) and a strictly positive measurable function g :E × F →]0,∞[ such that

�(z,A) =
∫

IA(u)g(z,u)ϕ(du) for all A ∈ B(F ), z ∈ E.

We do not automatically assume in the following that either of these assump-
tions is in force, but we will impose them explicitly where they are needed.

3.2. The conditional signal process. Despite that we have constructed the
measure P in a rather different manner, the hidden Markov model introduced in
the previous subsection is in fact a disguised Markov chain in a random environ-
ment in the sense of Section 2. This is established in the following lemma.

LEMMA 3.3. There exist probability kernels P X :E × 
Y × B(E) → [0,1]
and μ :
Y × B(E) → [0,1], and a probability measure PY on (
Y ,F Y ), such
that the conditions of Section 2 are satisfied and the measure P constructed there
coincides with the measure P constructed in the current section. In particular,

P X(Xn,Y ◦ �n,A) = P(Xn+1 ∈ A|F X
n ∨ F Y ) P-a.s.,

μ(Y ◦ �n,A) = P(Xn ∈ A|F Y ) P-a.s.

for every A ∈ B(E) and n ∈ Z, and PY = P|F Y .

PROOF. Let us fix the measure P as defined in the current section. We will
use this measure to construct P X , μ and PY . Subsequently, denoting by P′ the
probability measure on F constructed from P X , μ and PY in Section 2 (called P
there), we will show that in fact P′ = P.
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Set PY = P|F Y , and let μ̃ :
Y × B(E) → [0,1] be a regular conditional prob-
ability of the form P(X0 ∈ ·|F Y ). Moreover, note that

P(X1 ∈ A|F X
0 ∨ F Y ) = P

(
X1 ∈ A|σ(X0) ∨ F Y )

P-a.s.

by the Markov property of (Xn,Yn)n∈Z; indeed, due to the Markov property the
σ -fields F[1,∞[ and F−1 are conditionally independent given σ(X0, Y0), so that
the claim follows directly from the elementary properties of the conditional expec-
tation. We can therefore obtain a regular conditional probability P̃ X :E × 
Y ×
B(E) → [0,1] of the form P(X1 ∈ ·|F X

0 ∨ F Y ) [i.e., P̃ X(X0, Y,A) = P(X1 ∈
A|F X

0 ∨ F Y ) P-a.s. for every A ∈ B(E)]. The regular conditional probabilities
exist by the Polish assumption [21], Theorem 5.3.

Note that it follows trivially from the stationarity of (Xn,Yn)n∈Z that PY is
invariant under �. We now claim that for PY -a.e. y ∈ 
Y , we have∫

P̃ X(z, y,A)μ̃(y, dz) = μ̃(�y,A) for all A ∈ B(E).

To see this, note that as B(E) is countably generated, it suffices by a standard
monotone class argument to prove the claim for A in a countable generating alge-
bra {En} ⊂ B(E) such that B(E) = σ {En :n ∈ N}. But note that for fixed n ∈ N,∫

P̃ X(z,Y,En)μ̃(Y, dz) = E
(
P(X1 ∈ En|F X

0 ∨ F Y )|F Y ) = P(X1 ∈ En|F Y ),

while P(X1 ∈ En|F Y ) = μ̃(Y ◦ �,En) follows from

E
(
f (Y ){P(X0 ∈ En|F Y ) ◦ �}) = E

(
f (Y ◦ �−1)P(X0 ∈ En|F Y )

)
= E

(
f (Y ◦ �−1)IEn(X0)

)
= E(f (Y )IEn(X1))

for every bounded measurable f :
Y → R, where we have twice used the station-
arity of P. As we must only verify equality for a countable collection {En}, we can
indeed find a set H ∈ F Y of PY -full measure such that∫

P̃ X(z, y,A)μ̃(y, dz) = μ̃(�y,A) for all A ∈ B(E), y ∈ H.

We now set μ(y,A) = μ̃(y,A) and P X(z, y,A) = P̃ X(z, y,A) for all z ∈ E,
y ∈ H , and A ∈ B(E), and we set μ(y,A) = π(A), P X(z, y,A) = π(A) when-
ever y /∈ H . Then μ and P X are still versions of their defining regular conditional
probabilities and P X , μ, PY satisfy the conditions of Section 2. The various iden-
tities in the statement of the lemma follow from the stationarity of P in the same
way as we established above that P(X1 ∈ En|F Y ) = μ̃(Y ◦ �,En).

It remains to show that the measure P′ constructed from P X , μ, PY as in Sec-
tion 2 coincides with the measure P. It suffices to show that P′(A) = P(A) for
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every A ∈ F[−n,n], n ∈ N. To this end, note that for A ∈ F[−n,n] we evidently have

P′(A) =
∫

IA(x, y)P X(
x(n − 1),�n−1y, dx(n)

) · · ·
× P X(

x(−n),�−ny, dx(−n + 1)
)
μ

(
�−ny, dx(−n)

)
PY (dy)

= E
(
E

(
E

(· · ·E
(
E(IA|F X

n−1 ∨ F Y )|F X
n−2 ∨ F Y ) · · · |F X−n ∨ F Y )|F Y ))

= P(A).

Thus, the proof is complete. �

From this point onward we will fix P X , μ, PY as defined in the previous lemma.
In particular, this allows us to define the probability kernels Py and Pz,y as in Sec-
tion 2, and these are easily seen to be versions of the regular conditional proba-
bilities P(·|F Y ) and P(·|F X

0 ∨ F Y ), respectively. Under Py , the process (Xn)n∈Z

has the law of the signal process conditioned on the observations (Yn)n∈Z; we will
refer to this process as the conditional signal process. The main purpose of this
section is to obtain a sufficient condition for the conditional signal to be weakly
ergodic, that is, for any (hence all) of the conditions of Theorem 2.3 to hold in
the current setting. In Sections 4–6, we will see that this question has important
consequences for the asymptotic properties of nonlinear filters.

Intuitively, it seems plausible that the weak ergodicity of the conditional signal
process is inherited from the ergodicity of the (unconditional) signal process, that
is, that weak ergodicity of the conditional signal follows from Assumption 3.1. The
counterexample in [1] illustrates, however, that this need not be the case. The fol-
lowing theorem, which is the main result of this section, shows that weak ergodic-
ity of the conditional signal follows nonetheless if we also assume nondegeneracy
of the observations (Assumption 3.2).

THEOREM 3.4. Suppose that both Assumptions 3.1 and 3.2 are in force. Then
any (hence all) of the conditions of Theorem 2.3 hold true.

The proof of this result is contained in the following subsections.

3.3. Weak ergodicity of the conditional signal. The strategy of the proof of
Theorem 3.4 is to show that condition 3 of Theorem 2.3 follows from Assump-
tions 3.1 and 3.2. In this subsection we prove that condition 3 of Theorem 2.3
follows from Assumption 3.1 and a certain absolute continuity assumption; that
the latter follows from Assumptions 3.1 and 3.2 is established in the next subsec-
tion.

LEMMA 3.5. Suppose Assumption 3.1 holds, and that there is a strictly posi-
tive measurable function h :E × 
Y × E →]0,∞[ such that for μPY -a.e. (z, y),

P X(z, y,A) =
∫

IA(z̃)h(z, y, z̃)P (z, dz̃) for all A ∈ B(E).
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Then condition 3 of Theorem 2.3 holds.

PROOF. First, we note that Assumption 3.1 implies that there is a set H1 of
(μ ⊗ μ)PY -full measure such that for any (z, z′, y) ∈ H1, there is an n ∈ N such
that Pz(Xn ∈ ·) and Pz′

(Xn ∈ ·) are not mutually singular. To see this, note that∫
‖Pz(Xn ∈ ·) − Pz′

(Xn ∈ ·)‖TVμ(y, dz)μ(y, dz′)PY (dy)

≤ 2
∫

‖Pz(Xn ∈ ·) − π‖TVμ(y, dz)PY (dy)

= 2
∫

‖Pz(Xn ∈ ·) − π‖TVπ(dz)
n→∞−−−→ 0

by Assumption 3.1. But as ‖Pz(Xn ∈ ·) − Pz′
(Xn ∈ ·)‖TV is nonincreasing and

uniformly bounded, we find that ‖Pz(Xn ∈ ·)−Pz′
(Xn ∈ ·)‖TV → 0 as n → ∞ for

(μ ⊗ μ)PY -a.e. (z, z′, y), which establishes the claim.
Now let H2 be a set of μPY -full measure such that the absolute continuity con-

dition in the statement of the lemma holds true for all (z, y) ∈ H2. By Lemma 2.6,
there is a subset H3 ⊂ H2 of μPY -full measure such that for every (z, y) ∈ H3
we have Pz,y((Xn,�

ny) ∈ H3 for all n ≥ 0) = 1. It follows directly that for every
(z, y) ∈ H3, n ∈ N and A ∈ B(E), we have

Pz,y(Xn ∈ A) = Ez(h(X0, y,X1) · · ·h(Xn−1,�
n−1y,Xn)IA(Xn)

)
.

In particular, Pz,y(Xn ∈ ·) ∼ Pz(Xn ∈ ·) for all (z, y) ∈ H3 and n ∈ N.
To complete the proof, define the following set:

H4 = {(z, z′, y) : (z, z′, y) ∈ H1, (z, y), (z′, y) ∈ H3}.
Then H4 has (μ ⊗ μ)PY -full measure, and for every (z, z′, y) ∈ H4, there is an
n ∈ N such that Pz,y(Xn ∈ ·) and Pz′,y(Xn ∈ ·) are not mutually singular. �

3.4. Nondegeneracy. Before we proceed, we will prove an elementary result
on regular conditional probabilities. The result generalizes the trivial identity

P(A|B,C)

P(A|C)
= P(B|A,C)

P(B|C)
provided P(A ∩ C) > 0,P(B ∩ C) > 0

to regular conditional probabilities in Polish spaces.

LEMMA 3.6. Let G1, G2 and K be Polish spaces and set 
 = G1 × G2 × K .
We consider a probability measure P on (
,B(
)). Denote by γ1 :
 → G1,
γ2 :
 → G2 and κ :
 → K the coordinate projections, and let G1, G2 and K be
the σ -fields generated by γ1, γ2 and κ , respectively. Choose fixed versions of the
following regular conditional probabilities (which exist by the Polish assumption):

�K
1 (g1, ·) = P(κ ∈ ·|G1)(g1), �K

12(g1, g2, ·) = P(κ ∈ ·|G1 ∨ G2)(g1, g2),

�2
1(g1, ·) = P(γ2 ∈ ·|G1)(g1), �2

1K(g1, k, ·) = P(γ2 ∈ ·|G1 ∨ K)(g1, k),
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where g1 ∈ G1, g2 ∈ G2, k ∈ K . Suppose that there exists a nonnegative mea-
surable function h :G1 × G2 × K → [0,∞[ and a set H ⊂ G1 × G2 such that
E(IH (γ1, γ2)) = 1 and for every (g1, g2) ∈ H,

�K
12(g1, g2,A) =

∫
IA(k)h(g1, g2, k)�K

1 (g1, dk) for all A ∈ K.

Then there is an H ′ ⊂ G1 × K with E(IH ′(γ1, κ)) = 1 so that for all (g1, k) ∈ H ′,

�2
1K(g1, k,B) =

∫
IB(g2)h(g1, g2, k)�2

1(g1, dg2) for all B ∈ G2.

PROOF. We can evidently write (using the disintegration of measures [21],
Theorem 5.4) for every A ∈ G1, B ∈ G2, and C ∈ K

P(γ1 ∈ A,γ2 ∈ B,κ ∈ C)

=
∫

IA(g1)IB(g2)�
K
12(g1, g2,C)�2

1(g1, dg2)�1(dg1)

=
∫

IA(g1)IC(k)�2
1K(g1, k,B)�K

1 (g1, dk)�1(dg1),

where �1 is the law of γ1 under P. Therefore,∫
�2

1K(g1, k,B)IA(g1)IC(k)�K
1 (g1, dk)�1(dg1)

=
∫

IB(g2)h(g1, g2, k)�2
1(g1, dg2)IA(g1)IC(k)�K

1 (g1, dk)�1(dg1),

where the exchange of integration order is permitted due to the nonnegativity of
the integrand. As this holds for every A ∈ G1 and C ∈ K , we obtain

�2
1K(g1, k,B) =

∫
IB(g2)h(g1, g2, k)�2

1(g1, dg2) for P-a.e. (g1, k)

for every fixed B ∈ G2. But as G2 is countably generated, it suffices to verify that
equality holds for B in a countable generating algebra, and we can thus eliminate
the dependence of the exceptional set on B . �

To complete the proof of Theorem 3.4, we must show that the absolute conti-
nuity condition P X(z, y, ·) ∼ P(z, ·) of Lemma 3.5 holds. Recall that P(z, ·) is a
version of the regular conditional probability P(X1 ∈ ·|F X

0 ), while P X is a ver-
sion of the regular conditional probability P(X1 ∈ ·|F X

0 ∨ F Y ). By the Markov
property, however, it is immediate that we can also consider P to be a version of
the regular conditional probability P(X1 ∈ ·|σ(X0)), and P X a version of the reg-
ular conditional probability P(X1 ∈ ·|σ(X0) ∨ F Y+ ). To prove absolute continuity,
we will apply the previous lemma to the law of the triple (X0,X1, (Yk)k≥0). In
particular, to establish that P X(z, y, ·) ∼ P(z, ·), we may equivalently investigate
whether the laws of (Yk)k≥0 under different initial conditions are equivalent.

The following result, which is of independent interest, shows that—provided the
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observations are nondegenerate—two initial laws of the signal give rise to equiva-
lent laws of the observations whenever the signal forgets the initial laws. This will
be used below to establish that P X(z, y, ·) ∼ P(z, ·).

LEMMA 3.7. Suppose Assumption 3.2 holds. Let ν, ν̄ be probability measures
such that ‖Pν(Xn ∈ ·) − Pν̄ (Xn ∈ ·)‖TV

n→∞−−−→ 0. Then Pν |F Y+ ∼ Pν̄ |F Y+ .

PROOF. We will work on the space 
′ = EZ+ × EZ+ × FZ+ , where we write
Xn(x, x′, y) = x(n), X′

n(x, x′, y) = x′(n), and Yn(x, x′, y) = y(n).
We make use of the well-known fact [24], Theorem III.14.10 and (III.20.7), that

‖Pν(Xn ∈ ·) − Pν̄ (Xn ∈ ·)‖TV → 0 as n → ∞ implies the existence of a success-
ful coupling of the laws of (Xn)n≥0 under Pν and Pν̄ . We can thus construct a
probability measure Q :B(EZ+ × EZ+) → [0,1] such that:

1. The law of (Xn)n≥0 under Q coincides with the law of (Xn)n≥0 under Pν ;
2. The law of (X′

n)n≥0 under Q coincides with the law of (Xn)n≥0 under Pν̄ ;
3. There is a finite random time τ such that a.s. Xn = X′

n for all n ≥ τ .

In addition, we define a probability kernel QY :EZ+ ×B(FZ+) → [0,1] such that
(Yn)n≥0 are independent under QY (x, ·) and QY (x,Yn ∈ ·) = �(x(n), ·).

Now consider the following probability measures on 
′:

Q1(A) =
∫

IA(x, x′, y)QY (x, dy)Q(dx, dx′),

Q2(A) =
∫

IA(x, x′, y)QY (x′, dy)Q(dx, dx′).

It is easily seen that Pν |F Y+ = Q1|F Y+ and Pν̄ |F Y+ = Q2|F Y+ . To complete the proof,
it therefore suffices to show that Q1 ∼ Q2. It is immediate, however, that

dQY (x′, ·)
dQY (x, ·) =

N∏
k=0

g(x′(k), y(k))

g(x(k), y(k))
whenever x(n) = x′(n) for all n > N,

where g(z, y) is the observation density defined in Assumption 3.2. Thus, evi-
dently

Q1 ∼ Q2 with
dQ2

dQ1
=

τ∏
k=0

g(X′
k, Yk)

g(Xk,Yk)
.

The proof is complete. �

We can now prove the following.

LEMMA 3.8. Suppose Assumptions 3.1 and 3.2 hold. Then there is a strictly
positive measurable h :E × 
Y × E →]0,∞[ such that for μPY -a.e. (z, y),

P X(z, y,A) =
∫

IA(z̃)h(z, y, z̃)P (z, dz̃) for all A ∈ B(E).
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PROOF. By the Markov property, P and P X are versions of the regular con-
ditional probabilities P(X1 ∈ ·|σ(X0)) and P(X1 ∈ ·|σ(X0) ∨ F Y+ ), respectively.
By the Polish assumption, we can also introduce regular conditional probabilities
R :E × F Y+ → [0,1] and RX :E × E × F Y+ → [0,1] of the form P((Yk)k≥0 ∈
·|σ(X0)) and P((Yk)k≥0 ∈ ·|σ(X0,X1)), respectively. Applying Lemma 3.6 to the
law of the triple (X0,X1, (Yk)k≥0), it evidently suffices to show that there is a
strictly positive measurable h :E × 
Y × E →]0,∞[ such that

RX(z, z′,A) =
∫

IA(y)h(z, y, z′)R(z, dy) for all A ∈ F Y+

for (z, z′) ∈ H with P((X0,X1) ∈ H) = 1.
By a well-known result on kernels ([15], Section V.58) there exists a nonnega-

tive measurable function h̃ :E × 
Y × E → [0,∞[ such that, for all z, z′ ∈ E,

RX(z, z′,A) =
∫

IA(y)h̃(z, y, z′)R(z, dy) + R⊥(z, z′,A) for all A ∈ F Y+ ,

where the kernel R⊥ is such that R⊥(z, z′, ·) ⊥ R(z, ·) for every z, z′ ∈ E.
Now suppose we can establish that RX(z, z′, ·) ∼ R(z, ·) for (z, z′) ∈ H with
P((X0,X1) ∈ H) = 1. Then R⊥(z, z′, ·) = 0 for (z, z′) ∈ H , and h̃(z, y, z′) > 0
except on a null set. We can then set h(z, y, z′) = 1 whenever h̃(z, y, z′) = 0, and
set h(z, y, z′) = h̃(z, y, z′) otherwise; this gives a function h with the desired prop-
erties, completing the proof. It thus remains to show that RX(z, z′, ·) ∼ R(z, ·) for
(z, z′) ∈ H with P((X0,X1) ∈ H) = 1.

To this end, let us introduce convenient versions of the regular conditional prob-
abilities R and RX . Note that we may set∫

f0(y(0)) · · ·fn(y(n))RX(z, z′, dy)

=
∫

f0(u)�(z, du) × Ez′(
f1(Y0) · · ·fn(Yn−1)

)

for all bounded measurable f0, . . . , fn and n < ∞. Similarly, we may set∫
f0(y(0)) · · ·fn(y(n))R(z, dy)

=
∫

f0(u)�(z, du) ×
∫

Ez̃(f1(Y0) · · ·fn(Yn−1)
)
P(z, dz̃)

=
∫

f0(u)�(z, du) × EP(z,·)(f1(Y0) · · ·fn(Yn−1)
)
.

It thus suffices to show that

Pz′ |F Y+ ∼ PP(z,·)|F Y+ for (z, z′) ∈ H with P
(
(X0,X1) ∈ H

) = 1.

By Assumption 3.2 and Lemma 3.7, it suffices to show that
∥∥Pz′

(Xn ∈ ·) − PP(z,·)(Xn ∈ ·)∥∥TV
n→∞−−−→ 0



THE STABILITY OF CONDITIONAL MARKOV PROCESSES 1897

for (z, z′) ∈ H with P((X0,X1) ∈ H) = 1.
Now note that by Assumption 3.1, we may choose a set H1 of π -full measure

such that ‖Pz(Xn ∈ ·) − π‖TV → 0 as n → ∞ for all z ∈ H1. By Lemma 2.6,
there is a subset H2 ⊂ H1 of π -full measure such that for every z ∈ H2 we have
Pz(Xn ∈ H2 for all n ≥ 0) = 1. In particular, for z, z′ ∈ H2, we then have∥∥Pz′

(Xn ∈ ·) − PP(z,·)(Xn ∈ ·)∥∥TV

≤ ‖Pz′
(Xn ∈ ·) − π‖TV

+
∫

‖Pz′′
(Xn ∈ ·) − π‖TVP(z, dz′′) n→∞−−−→ 0.

But H = H2 × H2 satisfies P((X0,X1) ∈ H) = 1 by construction. �

Combining Lemmas 3.5 and 3.8 now completes the proof of Theorem 3.4.

4. Exchange of intersection and supremum of σ -fields. As is discussed in
the Introduction and in the following sections, key to the asymptotic properties of
nonlinear filters are certain identities for the observation and signal σ -fields. For
example, key to the proof of total variation stability (Section 5) is the identity⋂

n≥0

F Y+ ∨ F X[n,∞[
?= F Y+ P-a.s.,

and the goal of this section is to show that such identities hold under Assump-
tions 3.1 and 3.2. The question can be seen as pertaining to the permissibility of
the exchange of the intersection and the supremum of σ -fields; indeed, under As-
sumption 3.1 the tail σ -field T X is P-a.s. trivial, so that the above identity can be
written as ⋂

n≥0

F Y+ ∨ F X[n,∞[
?= F Y+ ∨ ⋂

n≥0

F X[n,∞[ P-a.s.

The validity of such an exchange is a notoriously delicate problem [37].
For the sake of demonstration, we begin by proving the following lemma.

LEMMA 4.1. Suppose that any (hence all) of the conditions of Theorem 2.3
are in force. Then the following holds true:⋂

n≥0

F Y ∨ F X[n,∞[ = ⋂
n≥0

F Y ∨ F X−n = F Y P-a.s.

The interest of this lemma is independent of the remainder of the paper; it fol-
lows directly from Theorem 2.3, and thus serves as a simplified demonstration of
the proof of the exchange of intersection and supremum property. Unfortunately,
this result is not in itself of use in proving asymptotic properties of nonlinear fil-
ters, as the entire observation field F Y appears in the expression rather than the
positive and negative time observations F Y+ and F Y

0 . Using additional coupling
and time reversal arguments, we will prove the following useful result.
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THEOREM 4.2. Suppose that Assumptions 3.1 and 3.2 are in force. Then⋂
n≥0

F Y+ ∨ F X[n,∞[ = F Y+ and
⋂
n≥0

F Y
0 ∨ F X−n = F Y

0 P-a.s.

The proof of Lemma 4.1 is given in Section 4.1 below, while the proof of The-
orem 4.2 is contained in Sections 4.2–4.4.

4.1. Proof of Lemma 4.1. In [37], von Weizsäcker studied problems of this
type in a general setting, and Lemma 4.1 can be derived from his result and Theo-
rem 2.3. As the idea is straightforward, however, we give a direct proof here.

Let us begin by proving the assertion⋂
n≥0

F Y ∨ F X[n,∞[ = F Y P-a.s.

It suffices to show that, for every A ∈ F ,

P
(
A

∣∣∣ ⋂
n≥0

F Y ∨ F X[n,∞[
)

= P(A|F Y ) P-a.s.

As bounded random variables of the form F(x, y) = f (x)g(y) are total in L1(P),
it suffices to verify the statement for A ∈ F X only. By the martingale convergence
theorem, it is sufficient to show that, for any A ∈ F X,

P
(
A|F Y ∨ F X[n,∞[

) n→∞−−−→ P(A|F Y ) in L1(P).

We now appeal to the following fact: as F X[n,∞[ is countably generated, we have

P
(
A|F Y ∨ F X[n,∞[

) = PY

(
A|F X[n,∞[

)
P-a.s.

for any A ∈ F X , where we have used that (Lemma 2.2) PY (·) is a regular condi-
tional probability of the form P(·|F Y ); see [37], Lemma 4.II.1. But

Py

(∣∣Py

(
A|F X[n,∞[

) − Py(A)
∣∣) n→∞−−−→ 0 for PY -a.e. y

follows by martingale convergence and the following lemma.

LEMMA 4.3. Suppose that any (hence all) of the conditions of Theorem 2.3
hold. Then the tail σ -field T X is Py -trivial for PY -a.e. y.

PROOF. By condition 1 of Theorem 2.3, we find that∫
‖Pz,y(Xn ∈ ·) − Py(Xn ∈ ·)‖TVμ(y, dz)PY (dy)

≤
∫

‖Pz,y(Xn ∈ ·) − Pz′,y(Xn ∈ ·)‖TVμ(y, dz′)μ(y, dz)PY (dy)
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converges to zero as n → ∞. But as ‖Pz,y(Xn ∈ ·)−Py(Xn ∈ ·)‖TV is nonincreas-
ing, we find that ‖Pz,y(Xn ∈ ·) − Py(Xn ∈ ·)‖TV → 0 as n → ∞ for μPY -a.e.
(z, y). Note that by the Markov property of (Xn)n≥0 under Pz,y ,

‖Pz,y(Xn ∈ ·) − Py(Xn ∈ ·)‖TV

= ∥∥Pz,y |F X[n,∞[
− Py |F X[n,∞[

∥∥
TV

n→∞−−−→ ‖Pz,y |T X − Py |T X‖TV

(see, e.g., [24], Section III.20). Therefore, Pz,y |T X = Py |T X for μPY -a.e. (z, y),
and it remains to invoke condition 2 of Theorem 2.3. �

We can now easily complete the proof of
⋂

n≥0 F Y ∨ F X[n,∞[ = F Y P-a.s. In-
deed, integrating with respect to PY , we find by dominated convergence that

P
(|PY

(
A|F X[n,∞[

) − PY (A)|) n→∞−−−→ 0

and the result now follows directly.
We now turn to the proof of the assertion⋂

n≥0

F Y ∨ F X−n = F Y P-a.s.

As above, it suffices to show that, for every A ∈ F X,

P(A|F Y ∨ F X−n)
n→∞−−−→ P(A|F Y ) in L1(P).

In fact, it suffices to establish only that

E
(
f1(Xk1) · · ·f�(Xk�

)|F Y ∨ F X−n

)
n→∞−−−→ E

(
f1(Xk1) · · ·f�(Xk�

)|F Y )
in L1(P)

for all � < ∞, k1, . . . , k� ∈ Z, and bounded measurable functions f1, . . . , f�, as
the family of functions of the form f1(Xk1) · · ·f�(Xk�

) is total in L1(F X,P). Now
note that by the last property of Lemma 2.2, we can write

E
(
f1(Xk1) · · ·f�(Xk�

)|F Y ∨ F X−n

) = EX−n,Y◦�−n

(
f1(Xk1+n) · · ·f�(Xk�+n)

)
,

E
(
f1(Xk1) · · ·f�(Xk�

)|F Y ) = EY◦�−n

(
f1(Xk1+n) · · ·f�(Xk�+n)

)
.

Therefore, using the stationarity of P, we find that

E
(|E(�0|F Y ∨ F X−n) − E(�0|F Y )|)

=
∫

|Ez,y(�n) − Ey(�n)|μ(y, dz)PY (dy)

≤
∫

|Ez,y(�n) − Ez′,y(�n)|μ(y, dz)μ(y, dz′)PY (dy),

where we have written �n = f1(Xk1+n) · · ·f�(Xk�+n) for simplicity. It follows
(see, e.g., [24], Section III.20) from the first condition of Theorem 2.3 that this
expression converges to zero as n → ∞, and thus the claim is established.



1900 R. VAN HANDEL

4.2. Time reversal. In order to apply the theory of Markov chains in random
environments, it was important to condition the signal process on all observa-
tions F Y . Note that the conditional probability P(X0 ∈ ·|F Y ) satisfies the property
P(X0 ∈ ·|F Y ) ◦ �n = P(Xn ∈ ·|F Y ) which was used repeatedly in Section 2; this
property is not shared by the conditional probability P(X0 ∈ ·|F Y+ ). An unfortu-
nate consequence is that we obtain the triviality of T X under the regular condi-
tional probability P(·|F Y ), which leads to Lemma 4.1, rather than the triviality
of T X under P(·|F Y+ ), which would give (the first part of) Theorem 4.2.

To prove Theorem 4.2, we must therefore eliminate the dependence of our re-
sults to date on the past observations. As we will see in the following subsections,
this can be done provided that the signal is not only ergodic forward in time (as is
guaranteed by Assumption 3.1) but also after time reversal; in essence, we aim to
establish that the remote past of the signal does not depend on the present. In this
subsection, we will show that this property in fact already follows from Assump-
tion 3.1, so that no additional assumptions need to be imposed.

In the following we will extend the definition of Pz to negative times, that is,
Pz is a version of the regular conditional probability P(·|X0). Note that the time
reversed signal X̃n = X−n is again a Markov chain under P and Pz with stationary
measure π . The goal of this subsection is to prove the following result.

PROPOSITION 4.4. Suppose that Assumption 3.1 holds. Then

‖Pz(X−n ∈ ·) − π‖TV
n→∞−−−→ 0 for π -a.e. z ∈ E.

We will need the following lemma on regular conditional probabilities.

LEMMA 4.5. Let G be a Polish space. Denote by γ1 :G×G → G and γ2 :G×
G → G the coordinate projections and by G1 and G2 the σ -fields generated by
γ1 and γ2, respectively. Consider a probability measure π on (G,B(G)), and a
probability measure P on (G × G,B(G × G)) such that the laws of γ1 and γ2
under P both equal π . Denote by P1 :G × B(G) → [0,1] and P2 :G × B(G) →
[0,1] the regular conditional probabilities of the form P(γ1 ∈ ·|G2) and P(γ2 ∈
·|G1), respectively, and consider their Lebesgue decompositions

P(A × B) =
∫

IA(dz)IB(dz′)p(z, z′)π(dz)π(dz′) + P⊥(A × B),

P1(z
′,A) =

∫
IA(z)p1(z, z

′)π(dz) + P ⊥
1 (z′,A),

P2(z,B) =
∫

IB(z′)p2(z, z
′)π(dz′) + P ⊥

2 (z,B),

where P⊥ ⊥ π ⊗ π , P ⊥
1 (z′, ·) ⊥ π and P ⊥

2 (z, ·) ⊥ π , and p,p1,p2 :G × G →
[0,∞[ are measurable. Then p(z, z′) = p1(z, z

′) = p2(z, z
′) for π ⊗π -a.e. (z, z′).



THE STABILITY OF CONDITIONAL MARKOV PROCESSES 1901

PROOF. The existence of regular conditional probabilities follows from the
Polish assumption, while the existence of measurable p1,p2 follows from [15],
Section V.58. It also follows from [15], Sections V.56–58, that there exist S1, S2 ∈
B(G × G) such that (π ⊗ π)(S1) = (π ⊗ π)(S2) = 1 and for π -a.e. z, z′,

∫
IS1(z, z

′)P ⊥
1 (z′, dz) = 0,

∫
IS2(z, z

′)P ⊥
2 (z, dz′) = 0.

Now note that, by the disintegration of measures, we have for all A,B ∈ B(G)

P(A × B) =
∫

IB(z′)P1(z
′,A)π(dz′) =

∫
IA(z)P2(z,B)π(dz).

Now substitute in the Lebesgue decompositions of P1 and P2, and note that
∫

IS1(z, z
′)P ⊥

1 (z′, dz)π(dz′) =
∫

IS2(z, z
′)P ⊥

2 (z, dz′)π(dz) = 0.

Therefore, P ⊥
1 π ⊥ π ⊗ π and P ⊥

2 π ⊥ π ⊗ π . But by the uniqueness of the
Lebesgue decomposition of P, this implies that

∫
IA(dz)IB(dz′)p(z, z′)π(dz)π(dz′)

=
∫

IA(dz)IB(dz′)p1(z, z
′)π(dz)π(dz′)

=
∫

IA(dz)IB(dz′)p2(z, z
′)π(dz)π(dz′)

for all A,B ∈ B(G), from which the result follows. �

We can now prove Proposition 4.4.

PROOF OF PROPOSITION 4.4. Denote by fn(z, z
′) the density in the Lebesgue

decomposition of Pz(Xn ∈ ·) with respect to π . Then by Assumption 3.1,
∫

|fn(z, z
′) − 1|π(dz)π(dz′) n→∞−−−→ 0.

In particular, there is a subsequence nk ↗ ∞ such that
∫

|fnk
(z, z′) − 1|π(dz)

k→∞−−−→ 0 for π -a.e. z′.

But by the previous lemma and by stationarity, fn(z, z
′) is also the density in

the Lebesgue decomposition of Pz′
(X−n ∈ ·) with respect to π . It follows that

‖Pz′
(X−nk

∈ ·) − π‖TV → 0 as k → ∞ for π -a.e. z′. But X̃n = X−n is again
Markov, so ‖Pz′

(X−n ∈ ·) − π‖TV is nonincreasing and the result follows. �
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4.3. Equivalence of the initial measures. Let us begin by fixing a version
μ+ :
Y × B(E) → [0,1] of the regular conditional probability P(X0 ∈ ·|F Y+ ).
We can then define a probability kernel P+· :
Y × F X+ → [0,1] by setting

P+
y (A) =

∫
Pz,y(A)μ+(y, dz) for all A ∈ F X+ , y ∈ 
Y .

It is not difficult to see that P+
y is a version of the regular conditional probability

P(·|F Y+ ); indeed, it suffices to note that by the Markov property Pz,y is a version
of the regular conditional probability P(·|σ(X0) ∨ F Y+ ). We also recall that

Py(A) =
∫

Pz,y(A)μ(y, dz) for all A ∈ F X+ , y ∈ 
Y

is a version of the regular conditional probability P(·|F Y ).
Theorem 2.3 establishes that the tail σ -field T X is Py-a.s. trivial for PY -a.e. y

(Lemma 4.3). To demonstrate the first part of Theorem 4.2 along the lines of the
proof of Lemma 4.1, however, we would have to show that T X is P+

y -a.s. trivial for
PY -a.e. y. The latter would follow from the former if we could show that P+

y ∼ Py

for PY -a.e. y, and it evidently suffices to show that μ+(y, ·) ∼ μ(y, ·) for PY -
a.e. y. The purpose of this subsection is to prove that this is indeed the case under
Assumptions 3.1 and 3.2. In fact, we will prove the following stronger statement:
μ+(y, ·) ∼ π and μ(y, ·) ∼ π for PY -a.e. y.

The easy part of the proof is contained in the following lemma.

LEMMA 4.6. Suppose Assumptions 3.1 and 3.2 hold. Then there is a strictly
positive measurable k+ :
Y × E →]0,∞[ such that, for PY -a.e. y ∈ 
Y ,

μ+(y,A) =
∫

IA(z̃)k+(y, z̃)π(dz̃) for all A ∈ B(E).

PROOF. By Lemma 3.6, it suffices to show that there exists a strictly positive
measurable k+ :
Y × E →]0,∞[ such that, for π -a.e. z ∈ E,

Pz(B) =
∫

IB(y)k+(y, z)P(dy) for all B ∈ F Y+ .

But this follows immediately from Lemma 3.7 and Assumptions 3.1 and 3.2. �

It remains to prove the corresponding result for μ. Though we will proceed
along the same lines, the proof is complicated by the fact that Lemma 3.7 only
establishes equivalence for observations at positive times F Y+ and not on the entire
time interval F Y . We therefore set out to extend Lemma 3.7 to F Y .

LEMMA 4.7. Under Assumptions 3.1 and 3.2, Pz|F Y ∼ P|F Y for π -a.e. z.
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PROOF. By the Markov property of the signal process, F X[n,∞[ and F X−n are
independent under Pz. We can therefore estimate as follows:

∥∥Pz|F X−n∨F X[n,∞[
− Pz′ |F X−n∨F X[n,∞[

∥∥
TV

= ∥∥Pz|F X−n
⊗ Pz|F X[n,∞[

− Pz′ |F X−n
⊗ Pz′ |F X[n,∞[

∥∥
TV

≤ ‖Pz|F X−n
− Pz′ |F X−n

‖TV + ∥∥Pz|F X[n,∞[
− Pz′ |F X[n,∞[

∥∥
TV

= ‖Pz(X−n ∈ ·) − Pz′
(X−n ∈ ·)‖TV + ‖Pz(Xn ∈ ·) − Pz′

(Xn ∈ ·)‖TV

≤ ‖Pz(X−n ∈ ·) − π‖TV + ‖Pz′
(X−n ∈ ·) − π‖TV

+ ‖Pz(Xn ∈ ·) − π‖TV + ‖Pz′
(Xn ∈ ·) − π‖TV.

Here we have used the Markov property of Xn and X̃n = X−n, and the elementary
identity ‖μ1 ⊗ν1 −μ2 ⊗ν2‖TV ≤ ‖μ1 −μ2‖TV +‖ν1 −ν2‖TV. By Assumption 3.1
and Proposition 4.4, we now find that

∥∥Pz|F X−n∨F X[n,∞[
− Pz′ |F X−n∨F X[n,∞[

∥∥
TV

n→∞−−−→ 0 for π ⊗ π -a.e. (z, z′).

But then we have∥∥Pz|F X−n∨F X[n,∞[
− P|F X−n∨F X[n,∞[

∥∥
TV

≤
∫ ∥∥Pz|F X−n∨F X[n,∞[

− Pz′ |F X−n∨F X[n,∞[
∥∥

TVπ(dz′) n→∞−−−→ 0 for π -a.e. z.

In particular, P and Pz agree on the remote σ -field for π -a.e. z:

Pz|RX = P|RX for π -a.e. z, RX = ⋂
n≥0

F X−n ∨ F X[n,∞[.

From this point onward, we fix an arbitrary z such that Pz|RX = P|RX . To complete
the proof, it suffices to show that this implies Pz|F Y ∼ P|F Y .

To proceed, we note that the remote σ -field RX coincides with the tail σ -field
of the one-sided sequence (X−n,Xn)n≥0. We can therefore apply the maximal
coupling theorem [24], Theorem III.14.10, to this sequence. In particular, we find
that we can construct a probability measure Q :B(EZ × EZ) → [0,1] such that:

1. The law of (Xn)n∈Z under Q coincides with the law of (Xn)n∈Z under Pz;
2. The law of (X′

n)n∈Z under Q coincides with the law of (Xn)n∈Z under P;
3. There is a random time 0 ≤ τ < ∞ such that a.s. Xn = X′

n for all |n| ≥ τ .

Here Xn and X′
n are the canonical coordinate processes on EZ × EZ. The remain-

der of the proof now proceeds exactly as the proof of Lemma 3.7. �

We can now prove the equivalence of μ(y, ·) and π .
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LEMMA 4.8. Suppose Assumptions 3.1 and 3.2 hold. Then there is a strictly
positive measurable k :
Y × E →]0,∞[ such that, for PY -a.e. y ∈ 
Y ,

μ(y,A) =
∫

IA(z̃)k(y, z̃)π(dz̃) for all A ∈ B(E).

PROOF. By Lemma 3.6, it suffices to show that there exists a strictly positive
measurable k :
Y × E →]0,∞[ such that, for π -a.e. z ∈ E,

Pz(B) =
∫

IB(y)k(y, z)P(dy) for all B ∈ F Y .

But this follows immediately from Lemma 4.7 and Assumptions 3.1 and 3.2. �

The following corollary follows directly.

COROLLARY 4.9. Suppose that Assumptions 3.1 and 3.2 hold true. Then

P+
y |F X+ ∼ Py |F X+ for PY -a.e. y ∈ 
Y .

In particular, P+
y |T X ∼ Py |T X for PY -a.e. y ∈ 
Y .

4.4. Proof of Theorem 4.2. We begin by proving the first assertion⋂
n≥0

F Y+ ∨ F X[n,∞[ = F Y+ P-a.s.

This would follow exactly as in the proof of the first part of Lemma 4.1 if we
could show that T X is P+

y -a.s. trivial for PY -a.e. y. But this follows directly from
Lemma 4.3 and Corollary 4.9, so the claim is established.

We now turn to the second assertion⋂
n≥0

F Y
0 ∨ F X−n = F Y

0 P-a.s.

Note that this assertion is precisely equivalent to the first assertion of the theorem
after time reversal. But by Proposition 4.4, the reversed Markov chain X̃n = X−n

satisfies Assumption 3.1 whenever the forward chain Xn does, and Assumption 3.2
is invariant under time reversal. Thus, it suffices to apply the first part of the the-
orem to the hidden Markov model obtained by replacing the forward transition
kernel P(z, ·) by the backward transition kernel Pz(X−1 ∈ ·). This completes the
proof.

5. Total variation stability of the nonlinear filter. Let us begin with a brief
reminder of elementary filtering theory. The purpose of nonlinear filtering is to
compute conditional probabilities of the form Pμ(Xn ∈ ·|F Y[0,n]). We will choose
fixed versions of these regular conditional probabilities according to the following
well-known lemma, whose proof we provide for future reference.

LEMMA 5.1. Suppose that Assumption 3.2 holds. For every probability mea-
sure μ on B(E), we define a sequence of probability kernels �

μ
n :
Y × B(E) →
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[0,1] (n ≥ 0) through the following recursion:

�μ
n (y,A) =

∫
IA(z)g(z, y(n))P (z′, dz)�

μ
n−1(y, dz′)∫

g(z, y(n))P (z′, dz)�
μ
n−1(y, dz′)

,

�
μ
0 (y,A) =

∫
IA(z)g(z, y(0))μ(dz)∫

g(z, y(0))μ(dz)
,

where g is the observation density defined in Assumption 3.2. Then �
μ
n is a version

of the regular conditional probability Pμ(Xn ∈ ·|F Y[0,n]) for every n ≥ 0.

PROOF. Writing out the recursion, we find that

�μ
n (y,A) = Eμ(g(X0, y(0)) · · ·g(Xn, y(n))IA(Xn))

Eμ(g(X0, y(0)) · · ·g(Xn, y(n)))
.

But note that, by construction,

g(X0, Y0) · · ·g(Xn,Yn) = dPμ|F[0,n]
d(Pμ|F X[0,n]

⊗ ϕ⊗n)
,

so that by the Bayes formula �
μ
n (Y,A) = Pμ(Xn ∈ A|F Y[0,n]) Pμ-a.s. �

The filter stability problem can now be phrased as follows: under which con-
ditions does the filter �

μ
n become independent of μ for large n? The main goal

of this section is to give a precise answer to this question under Assumptions 3.1
and 3.2. To this end, we will prove the following theorem.

THEOREM 5.2. Suppose that Assumptions 3.1 and 3.2 hold. Then

‖�μ
n − �π

n ‖TV
n→∞−−−→ 0 Pμ-a.s. iff ‖Pμ(Xn ∈ ·) − π‖TV

n→∞−−−→ 0.

The following corollaries are essentially immediate.

COROLLARY 5.3. Suppose that Assumptions 3.1 and 3.2 hold, and call the
probability measure μ stable if ‖�μ

n − �π
n ‖TV → 0 Pμ-a.s. as n → ∞. Then μ

is stable whenever μ � π , and δz is stable for π -a.e. z ∈ E. Moreover, stability
holds for all μ if and only if the signal process is Harris recurrent and aperiodic.

PROOF. The first two statements follow directly from Assumption 3.1, while
the last statement follows from [30], Proposition 3.6, and the fact that, by assump-
tion, the signal possesses a finite invariant measure π . �

COROLLARY 5.4. Suppose that Assumptions 3.1 and 3.2 hold true. If we have
‖Pμ(Xn ∈ ·) − π‖TV → 0, then ‖�μ

n − �π
n ‖TV → 0 P-a.s. In particular, if

‖Pμ(Xn ∈ ·) − π‖TV
n→∞−−−→ 0, ‖Pν(Xn ∈ ·) − π‖TV

n→∞−−−→ 0,

we find that ‖�μ
n − �ν

n‖TV → 0 P-a.s., Pμ-a.s. and Pν -a.s.
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PROOF. Apply Lemma 3.7 and the triangle inequality. �

COROLLARY 5.5. Suppose that Assumption 3.2 holds and that the signal is
Harris recurrent and aperiodic. Then ‖�μ

n − �ν
n‖TV → 0 Pγ -a.s. for all μ,ν, γ .

PROOF. It is well known that for Harris recurrent aperiodic Markov chains
which possess a finite invariant measure π , we have ‖Pμ(Xn ∈ ·) − π‖TV → 0 as
n → ∞ for every probability measure μ [29], Theorem 6.2.8. Therefore, Assump-
tion 3.1 follows, and it remains to apply the previous corollary and Lemma 3.7.

�

The remainder of this section is devoted to the proof of Theorem 5.2.

5.1. Proof of Theorem 5.2: the case μ � π . We begin by proving stability of
probability measures μ that are absolutely continuous with respect to the stationary
measure π . Note that by Assumption 3.1 we have ‖Pμ(Xn ∈ ·) − π‖TV → 0 as
n → ∞ for any μ � π . We will also need the following result.

LEMMA 5.6. Suppose that Assumption 3.2 holds true and that μ � π . Then
we have �

μ
n (y, ·) � �π

n (y, ·) for every y ∈ 
Y , where

d�
μ
n

d�π
n

(Y,Xn) = E((dμ/dπ)(X0)|F Y+ ∨ F X[n,∞[)
E((dμ/dπ)(X0)|F Y[0,n])

P-a.s.

PROOF. That �
μ
n (y, ·) � �π

n (y, ·) for every y ∈ 
Y can be read off directly
from the expression in the proof of Lemma 5.1. Now note that

dPμ

dP

∣∣∣∣
F[0,∞[

= dμ

dπ
(X0),

dPμ

dP

∣∣∣∣
F Y[0,n]

= E
(

dμ

dπ
(X0)

∣∣∣F Y[0,n]
)
.

Moreover, it follows easily from Assumption 3.2 that

Pμ|F Y[0,n]
∼ P|F Y[0,n]

for every n ∈ N.

Therefore, the conditional expectations Pμ(Xn ∈ A|F Y[0,n]) are P-a.s. uniquely de-

fined and E(
dμ
dπ

(X0)|F Y[0,n]) > 0 P-a.s. We obtain by the Bayes formula

Pμ(
Xn ∈ A|F Y[0,n]

)

= E(IA(Xn)(dμ/dπ)(X0)|F Y[0,n])
E((dμ/dπ)(X0)|F Y[0,n])

= E(IA(Xn)E((dμ/dπ)(X0)|σ(Xn) ∨ F Y[0,n])|F Y[0,n])
E((dμ/dπ)(X0)|F Y[0,n])

P-a.s.
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Choose a measurable �n :
Y × E → [0,∞[ such that

E((dμ/dπ)(X0)|σ(Xn) ∨ F Y[0,n])
E((dμ/dπ)(X0)|F Y[0,n])

= �n(Y,Xn) P-a.s.

Then evidently for every A ∈ B(E)

�μ
n (Y,A) =

∫
IA(z)�n(Y, z)�π

n (Y, dz) P-a.s.

But as B(E) is countably generated, it suffices by a monotone class argument to
restrict to A in a countable generating algebra, and we can therefore eliminate the
dependence of the P-null set on A. It remains to note that

E
(

dμ

dπ
(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

= E
(

dμ

dπ
(X0)

∣∣∣σ(Xn) ∨ F Y[0,n]
)

P-a.s.

by the Markov property, and the proof is complete. �

We immediately obtain the following corollary.

COROLLARY 5.7. Suppose Assumption 3.2 holds and μ � π . Then P-a.s.

‖�μ
n − �π

n ‖TV

= E(|E((dμ/dπ)(X0)|F Y+ ∨ F X[n,∞[) − E((dμ/dπ)(X0)|F Y[0,n])||F Y[0,n])
E((dμ/dπ)(X0)|F Y[0,n])

.

PROOF. This follows directly from the identity

‖�μ
n (y, ·) − �π

n (y, ·)‖TV =
∫ ∣∣∣∣d�

μ
n

d�π
n

(y, z) − 1
∣∣∣∣�π

n (y, dz)

and the previous lemma. �

We can now complete the proof of Theorem 5.2 for the case μ � π .

LEMMA 5.8. Suppose Assumptions 3.1 and 3.2 hold and μ � π . Then

‖�μ
n − �π

n ‖TV
n→∞−−−→ 0 P-a.s.

and therefore also Pμ-a.s. as Pμ � P.

PROOF. We aim to establish the P-a.s. limit of the expression in Corollary 5.7.
Note that the denominator satisfies

E
(

dμ

dπ
(X0)

∣∣∣F Y[0,n]
)

n→∞−−−→ E
(

dμ

dπ
(X0)

∣∣∣F Y+
)

= dPμ

dP

∣∣∣∣
F Y+

P-a.s.
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by martingale convergence. Moreover, Pμ|F Y+ ∼ P|F Y+ by Lemma 3.7 and Assump-
tions 3.1 and 3.2. Therefore, the P-a.s. limit of the denominator is P-a.s. strictly
positive. It remains to establish convergence of the numerator.

To this end, note that for any k ∈ N we have P-a.s.
∣∣∣∣E

(
dμ

dπ
(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

− E
(

dμ

dπ
(X0)

∣∣∣F Y[0,n]
)∣∣∣∣

≤
∣∣∣∣E

(
dμ

dπ
(X0)I(dμ/dπ)≤k(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

− E
(

dμ

dπ
(X0)I(dμ/dπ)≤k(X0)

∣∣∣F Y[0,n]
)∣∣∣∣

+
∣∣∣∣E

(
dμ

dπ
(X0)I(dμ/dπ)>k(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

− E
(

dμ

dπ
(X0)I(dμ/dπ)>k(X0)

∣∣∣F Y[0,n]
)∣∣∣∣

≤
∣∣∣∣E

(
dμ

dπ
(X0)I(dμ/dπ)≤k(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

− E
(

dμ

dπ
(X0)I(dμ/dπ)≤k(X0)

∣∣∣F Y[0,n]
)∣∣∣∣

+ E
(

dμ

dπ
(X0)I(dμ/dπ)>k(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

+ E
(

dμ

dπ
(X0)I(dμ/dπ)>k(X0)

∣∣∣F Y[0,n]
)
.

In particular, setting for notational convenience

Mk
n =

∣∣∣∣E
(

dμ

dπ
(X0)I(dμ/dπ)≤k(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

− E
(

dμ

dπ
(X0)I(dμ/dπ)≤k(X0)

∣∣∣F Y[0,n]
)∣∣∣∣,

we find that the numerator Rn satisfies

Rn = E
(∣∣∣∣E

(
dμ

dπ
(X0)

∣∣∣F Y+ ∨ F X[n,∞[
)

− E
(

dμ

dπ
(X0)

∣∣∣F Y[0,n]
)∣∣∣∣

∣∣∣F Y[0,n]
)

≤ E
(
Mk

n |F Y[0,n]
) + 2E

(
dμ

dπ
(X0)I(dμ/dπ)>k(X0)

∣∣∣F Y[0,n]
)
.

But E(Mk
n |F Y[0,n]) → 0 P-a.s. as n → ∞ by Hunt’s lemma [15], Theorem V.45, as

Mk
n ≤ k for all n and Mk

n → 0 P-a.s. as n → ∞ by martingale convergence and
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Theorem 4.2. Moreover, by martingale convergence and dominated convergence,

lim sup
k→∞

lim sup
n→∞

E
(

dμ

dπ
(X0)I(dμ/dπ)>k(X0)

∣∣∣F Y[0,n]
)

= 0 P-a.s.

Therefore, the numerator converges to zero P-a.s., and the proof is complete. �

REMARK 5.9. Along the same lines, one can prove the following result. Sup-
pose that Assumptions 3.1 and 3.2 hold and that the relative entropy of μ with
respect to π is finite, that is, D(μ||π) < ∞. Then D(�

μ
n ||�π

n ) → 0 P-a.s. as
n → ∞. We refer to [9] for further details on the role of relative entropy in fil-
ter stability.

5.2. Proof of Theorem 5.2: the general case. We now devote our attention to
the case where μ is not necessarily absolutely continuous with respect to π . Let us
begin by proving the only if part of the theorem.

LEMMA 5.10. Suppose that Assumptions 3.1 and 3.2 hold and that

lim sup
n→∞

‖Pμ(Xn ∈ ·) − π‖TV > 0.

Then we must have

Pμ
(
lim sup
n→∞

‖�μ
n − �π

n ‖TV = 0
)

< 1.

PROOF. Let Pμ(Xn ∈ ·) = μn + μ⊥
n be the Lebesgue decomposition of

Pμ(Xn ∈ ·) with respect to π . In particular, μn � π and μ⊥
n ⊥ π , and there exists

a set Sn such that π(Sn) = 0 and μ⊥
n (Sc

n) = 0. We claim that

lim sup
n→∞

‖Pμ(Xn ∈ ·) − π‖TV > 0 �⇒ lim sup
n→∞

Pμ(Xn ∈ Sn) > 0.

Indeed, by [28], Theorem 7.2, Assumption 3.1 and Pμ(Xn ∈ Sn) → 0 as n → ∞
would imply that ‖Pμ(Xn ∈ ·) − π‖TV → 0 as n → ∞, which is a contradiction.

Now note that it is easily established, using the expression in the proof of
Lemma 5.1, that Assumption 3.2 implies �π

n (y, ·) ∼ π for every y ∈ 
Y . There-
fore, �π

n (y,Sn) = 0 for all y ∈ 
Y , and we can estimate as follows:

�μ
n (y,Sn) = |�μ

n (y,Sn) − �π
n (y,Sn)| ≤ ‖�μ

n (y, ·) − �π
n (y, ·)‖TV.

In particular, we find that

Pμ(Xn ∈ Sn) = Eμ(�μ
n (Y,Sn)) ≤ Eμ(‖�μ

n (Y, ·) − �π
n (Y, ·)‖TV

)
and we must therefore have

lim sup
n→∞

Eμ(‖�μ
n (Y, ·) − �π

n (Y, ·)‖TV
)
> 0.
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The proof is easily completed. �

It remains to prove the converse assertion. The idea is to reduce the general case
to the case μ � π . To this end, we will need the following lemma.

LEMMA 5.11. Suppose that Assumption 3.2 holds. Let μ and ρ be probability
measures, and let μ = μac + μs be the Lebesgue decomposition of μ with respect
to ρ (i.e., μac � ρ and μs ⊥ ρ). Choose S so that ρ(S) = 1 and μs(S) = 0. Then

�μ
n (Y,A) = Pμ(

X0 ∈ S|F Y[0,n]
)
�ν

n(Y,A) + Pμ(
X0 /∈ S|F Y[0,n]

)
�ν⊥

n (Y,A)

Pμ-a.s. for every A ∈ B(E), where we have written ν = μac/μac(E) and ν⊥ =
μs/μs(E). In particular, we obtain Pμ-a.s. the estimate

‖�μ
n (Y, ·) − �ρ

n(Y, ·)‖TV ≤ ‖�ν
n(Y, ·) − �ρ

n(Y, ·)‖TV + 2Pμ(
X0 /∈ S|F Y[0,n]

)
.

PROOF. Note that dν/dμ = IS/μac(E). By the Bayes formula, we thus have

Eμ(
IS(X0)IA(Xn)|F Y[0,n]

) = Eμ(
IS(X0)|F Y[0,n]

)
Eν(

IA(Xn)|F Y[0,n]
)

Pμ-a.s.

Similarly, as dν⊥/dμ = ISc/μs(E), we find that

Eμ(
ISc(X0)IA(Xn)|F Y[0,n]

) = Eμ(
ISc(X0)|F Y[0,n]

)
Eν⊥(

IA(Xn)|F Y[0,n]
)

Pμ-a.s.

The first claim now follows by summing these expressions. To prove the second
assertion, let Ik = {Ek

1 , . . . ,Ek
k } be an increasing sequence of partitions of E as in

the proof of Lemma 2.4. Then we can estimate

k∑
�=1

|�μ
n (Y,Ek

� ) − �ρ
n(Y,Ek

� )|

≤ Pμ(
X0 ∈ S|F Y[0,n]

) k∑
�=1

|�ν
n(Y,Ek

� ) − �ρ
n(Y,Ek

� )|

+ Pμ(
X0 /∈ S|F Y[0,n]

) k∑
�=1

(
�ν⊥

n (Y,Ek
� ) + �ρ

n(Y,Ek
� )

)

≤
k∑

�=1

|�ν
n(Y,Ek

� ) − �ρ
n(Y,Ek

� )| + 2Pμ(
X0 /∈ S|F Y[0,n]

)
Pμ-a.s.

It remains to take the limit as k → ∞. �

Note that in this result ν � ρ by construction. In particular, presuming that
Assumptions 3.1 and 3.2 hold true and that ‖Pμ(Xn ∈ ·) − π‖TV → 0, and substi-
tuting π for ρ, it is not difficult to establish using Lemmas 5.8 and 3.7 that

lim sup
n→∞

‖�μ
n (Y, ·) − �π

n (Y, ·)‖TV ≤ 2Pμ(X0 /∈ S|F Y+ ) Pμ-a.s.
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We can therefore eliminate the absolutely continuous part of the initial measure μ

using the stability for the case μ � π (Lemma 5.8). However, the singular part
leaves the residual quantity Pμ(X0 /∈ S|F Y+ ), and it remains to eliminate this term.
To resolve this problem, we will exploit the recursive property of the filter. To-
gether with Lemma 5.10, the following result completes the proof of Theorem 5.2.

LEMMA 5.12. Suppose that Assumptions 3.1 and 3.2 hold and that

lim sup
n→∞

‖Pμ(Xn ∈ ·) − π‖TV = 0.

Then we must have

lim sup
n→∞

‖�μ
n − �π

n ‖TV = 0 Pμ-a.s.

PROOF. Define the following probability kernels:

ϒ
μ
0 (y,A) = μ(A), ϒμ

n (y,A) =
∫

IA(z)P (z′, dz)�
μ
n−1(y, dz′).

Then by Lemma 5.1, the filter satisfies the recursive property

�
μ
n+k(y,A) = �

ϒ
μ
n (y,·)

k (�ny,A) for all k,n ∈ Z+, y ∈ 
Y ,A ∈ B(E).

In particular, we can write

lim sup
k→∞

‖�μ
k (y, ·) − �π

k (y, ·)‖TV

= lim sup
k→∞

∥∥�ϒ
μ
n (y,·)

k (�ny, ·) − �
ϒπ

n (y,·)
k (�ny, ·)∥∥TV for all n ∈ Z+.

But from routine manipulations, it follows that, for any B ∈ F[0,∞[,

Eμ(
IB ◦ �n|F Y[0,n−1]

) = Pϒ
μ
n (Y,·)(B) Pμ-a.s.

Therefore,

Eμ
(
lim sup
k→∞

‖�μ
k (Y, ·) − �π

k (Y, ·)‖TV|F Y[0,n−1]
)

= Eμ
(
lim sup
k→∞

∥∥�ϒ
μ
n (Y,·)

k (Y ◦ �n, ·) − �
ϒπ

n (Y,·)
k (Y ◦ �n, ·)∥∥TV|F Y[0,n−1]

)

= Eμ
(
lim sup
k→∞

∥∥�ϒ
μ
n (y,·)

k (Y ◦ �n, ·) − �
ϒπ

n (y,·)
k (Y ◦ �n, ·)∥∥TV|F Y[0,n−1]

)∣∣∣
y=Y

= Eϒ
μ
n (y,·)(lim sup

k→∞
∥∥�ϒ

μ
n (y,·)

k (Y, ·) − �
ϒπ

n (y,·)
k (Y, ·)∥∥TV

)∣∣∣
y=Y

Pμ-a.s.,

where we have used that ϒ
μ
n (Y, ·) is F Y[0,n−1]-measurable.
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For the time being, let us fix a y ∈ 
Y . Note that it is easily established, using the
expression in the proof of Lemma 5.1, that ϒ

ρ
n (y, ·) ∼ Pρ(Xn ∈ ·) for every ρ,n, y.

Denote by Pμ(Xn ∈ ·) = μn +μ⊥
n the Lebesgue decomposition of Pμ(Xn ∈ ·) with

respect to π (i.e., μn � π and μ⊥
n ⊥ π ), and choose Sn such that π(Sn) = 1 and

μ⊥
n (Sn) = 0. Then clearly ϒ

μ
n (y, ·) = νn(y, ·) + ν⊥

n (y, ·) with

νn(y,A) = ϒμ
n (y,A ∩ Sn), ν⊥

n (y,A) = ϒμ
n (y,A ∩ Sc

n)

is the Lebesgue decomposition of ϒ
μ
n (y, ·) with respect to ϒπ

n (y, ·) [i.e., νn(y,

·) � ϒπ
n (y, ·) and ν⊥

n (y, ·) ⊥ ϒπ
n (y, ·)]. By Lemma 5.11, we find that

∥∥�ϒ
μ
n (y,·)

k (Y, ·) − �
ϒπ

n (y,·)
k (Y, ·)∥∥TV

≤ ∥∥�νn(y,·)
k (Y, ·) − �

ϒπ
n (y,·)

k (Y, ·)∥∥TV + 2Pϒ
μ
n (y,·)(X0 /∈ Sn|F Y[0,k]

)

≤ ∥∥�νn(y,·)
k (Y, ·) − �π

k (Y, ·)∥∥TV + ∥∥�ϒπ
n (y,·)

k (Y, ·) − �π
k (Y, ·)∥∥TV

+ 2Pϒ
μ
n (y,·)(X0 /∈ Sn|F Y[0,k]

)
Pϒ

μ
n (y,·)-a.s.

But νn(y, ·) � π and ϒπ
n (y, ·) ∼ π , so by Lemma 5.8 the first two terms on the

right converge to zero as k → ∞ P-a.s. We claim that this convergence also holds
Pϒ

μ
n (y,·)-a.s. Indeed, recall that ϒ

μ
n (y, ·) ∼ Pμ(Xn ∈ ·) := ρn, so that the claim

is established if we can show that Pρn |F Y+ ∼ P|F Y+ . But ‖Pρn(Xk ∈ ·) − π‖TV =
‖Pμ(Xn+k ∈ ·) − π‖TV → 0, so the claim follows from Lemma 3.7.

We have now established that, for every y ∈ 
Y ,

Eϒ
μ
n (y,·)(lim sup

k→∞
∥∥�ϒ

μ
n (y,·)

k (Y, ·) − �
ϒπ

n (y,·)
k (Y, ·)∥∥TV

)
≤ 2Pϒ

μ
n (y,·)(X0 /∈ Sn).

In particular, this implies that Pμ-a.s.

Eμ
(
lim sup
k→∞

‖�μ
k (Y, ·) − �π

k (Y, ·)‖TV|F Y[0,n−1]
)

≤ 2Pμ(
Xn /∈ Sn|F Y[0,n−1]

)

and, therefore, we have for all n ∈ N

Eμ
(
lim sup
k→∞

‖�μ
k (Y, ·) − �π

k (Y, ·)‖TV

)
≤ 2Pμ(Xn /∈ Sn) = 2μ⊥

n (E).

But by the assumption that ‖Pμ(Xn ∈ ·) − π‖TV → 0, we must have μ⊥
n (E) → 0

as n → ∞. Thus, the proof is complete. �

6. Continuous time.

6.1. The hidden Markov model in continuous time. Up to this point we have
exclusively dealt with Markov chains and hidden Markov models in discrete time.
In this section, we will prove analogous results for continuous time filtering models
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by reducing them to the discrete time setting. First, however, we must introduce
the class of continuous time models in which we will be interested.

We consider an Ẽ-valued signal (ξt )t∈R and an F̃ -valued observation (ηt )t∈R,
where Ẽ is a Polish space and F̃ is a Polish topological vector space. We will
realize these processes on the canonical path space 
̃ = 
̃ξ × 
̃η, where 
̃ξ =
D(R; Ẽ) and 
̃η = D(R; F̃ ) are, respectively, the Skorohod spaces of Ẽ- and F̃ -
valued càdlàg paths. Denote by F̃ the Borel σ -field on 
̃, and we introduce the
natural filtrations F̃

ξ
t , F̃

η
t , F̃t in complete analogy with the discrete time case:

F̃
ξ
t = σ {ξs : s ≤ t}, F̃

η
t = σ {ηs : s ≤ t}, F̃t = F̃

ξ
t ∨ F̃

η
t .

Moreover, we define for intervals [s, t] (s ≤ t) the σ -fields

F̃
ξ
[s,t] = σ {ξr : r ∈ [s, t]}, F̃

η
[s,t] = σ {ηr − ηs : r ∈ [s, t]}

and we set F̃[s,t] = F̃
ξ
[s,t] ∨ F̃

η
[s,t]. Finally, we define

F̃ ξ = ∨
t≥0

F̃
ξ
t , F̃

ξ
+ = ∨

t≥0

F̃
ξ
[0,t], F̃ η = ∨

t≥0

F̃
η
t , F̃

η
+ = ∨

t≥0

F̃
η
[0,t].

The canonical shift is defined as �̃s(ξ, η)(t) = (ξ(s + t), η(s + t) − η(s)).
The continuous time hidden Markov model now consists of the following:

1. A probability kernel Q̃· : Ẽ × F̃
ξ
+ → [0,1] such that, for every A ∈ B(Ẽ),

Q̃z(ξt ∈ A|F̃s) = Q̃ξs (ξt−s ∈ A) Q̃z-a.s. for all z ∈ Ẽ, t ≥ s ≥ 0,

and such that Q̃z(ξ0 = z) = 1 for all z ∈ Ẽ.
2. A probability measure π̃ such that∫

Q̃z(ξt ∈ A)π̃(dz) = π̃(A) for all A ∈ B(Ẽ), t ≥ 0.

3. A probability kernel �̃ : 
̃ξ × F̃ η → [0,1] such that (ηt )t∈R has independent
increments with respect to �̃(ξ, ·) for every ξ ∈ 
̃ξ and such that∫

IA(�̃sη)�̃(ξ, dη) = �̃(�̃sξ,A) for all ξ ∈ 
̃ξ ,A ∈ F̃ η, s ∈ R.

We assume, moreover, that �̃(ξ,A) is F̃
ξ
[s,t]-measurable for every A ∈ F̃

η
[s,t].

For any probability measure μ on B(Ẽ), we define

Q̃μ(A) =
∫

Q̃z(A)μ(dz) for all A ∈ F̃
ξ
+ .

Then under Q̃μ, the signal (ξt )t≥0 is a time homogeneous Markov process with
initial measure ξ0 ∼ μ. In particular, under Q̃π̃ the signal is a stationary Markov
process with stationary measure π̃ . We can therefore extend the measure Q̃π̃ to
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two-sided time F̃ ξ in the usual fashion, and we denote this extended measure as Q̃.
In particular, under Q̃ the entire signal (ξt )t∈R is a stationary Markov process with
stationary measure π̃ . We now define the probability measure P̃ on F̃ as

P̃(A) =
∫

IA(ξ, η)�̃(ξ, dη)Q̃(dξ) for all A ∈ F̃

and we similarly define the measures P̃μ on F̃
ξ
+ ∨ F̃

η
+ as

P̃μ(A) =
∫

IA(ξ, η)�̃(ξ, dη)Q̃μ(dξ) for all A ∈ F̃
ξ
+ ∨ F̃

η
+ .

Then P̃μ defines the hidden Markov model with initial measure μ, while P̃ de-
fines the stationary hidden Markov model. Note that the stationary measure P̃ is
invariant under the canonical shift �̃s by construction.

We now introduce the continuous time counterparts of Assumptions 3.1 and 3.2.

ASSUMPTION 6.1 (Ergodicity). The following holds:

‖Q̃z(ξt ∈ ·) − π̃‖TV
t→∞−−−→ 0 for π̃ -a.e. z ∈ Ẽ.

ASSUMPTION 6.2 (Nondegeneracy). There exists a probability measure ϕ̃ on
F̃ η and a family (�̃s,t )s≤t of strictly positive random variables such that

�̃(ξ,A) =
∫

IA(η)�̃s,t (ξ, η)ϕ̃(dη) for all A ∈ F̃
η
[s,t], ξ ∈ 
̃ξ , s ≤ t,

and such that �̃s,t is F̃[s,t]-measurable for every s ≤ t .

Our guiding example in which a kernel �̃ can be constructed that satisfies all the
required conditions is the ubiquitous filtering model with white noise observations.
Though none of our results rely specifically on this model, let us take a moment to
show that it does indeed fit within our general framework.

EXAMPLE 6.3 (White noise observations). Set F̃ = R
d for some d < ∞, and

let ϕ̃ be the probability measure which makes (ηt )t∈R a two-sided d-dimensional
Wiener process. Such a probability measure is easily constructed; indeed, let W
be the canonical Wiener measure on C([0,∞[;R

d), and define the measurable
function α :C([0,∞[;R

d) × C([0,∞[;R
d) → D(R;R

d) as

α(η−, η+)(t) =
{

η−(−t), if t < 0,
η+(t), if t ≥ 0.

Then ϕ̃ = (W ⊗ W) ◦ α−1. Note that ϕ̃ is invariant under the shift �̃s .
Let h : Ẽ → R

d be a continuous function (the observation function), so that
t �→ h(ξt ) is càdlàg. By [22], we may define an F̃[s,t]-measurable map �̃s,t so that

�̃s,t (ξ, η) = exp
(∫ t

s
h(ξr) · dηr − 1

2

∫ t

s
‖h(ξr)‖2 dr

)
for ϕ̃-a.e. η ∈ 
̃η



THE STABILITY OF CONDITIONAL MARKOV PROCESSES 1915

for every ξ ∈ 
̃ξ . Note that �̃s,t is strictly positive by construction. We now define
for every s ≤ t the probability kernel �̃s,t : 
̃ξ × F̃

η
[s,t] → [0,1] as

�̃s,t (ξ,A) =
∫

IA(η)�̃s,t (ξ, η)ϕ̃(dη) for all A ∈ F̃
η
[s,t], ξ ∈ 
̃ξ .

Define the process

η̄r = ηr+s − ηs −
∫ r+s

s
h(ξu) du.

Then by Girsanov’s theorem, (η̄r )r∈[0,t−s] is a standard d-dimensional Wiener
process under �̃s,t (ξ, ·) for every ξ ∈ 
̃ξ , as t �→ h(ξt ) is càdlàg and hence lo-
cally bounded (the usual conditions, which we have not assumed, are not needed
for this to hold; see [38], Chapter 10). It remains to note that {�̃s,t (ξ, ·) : s ≤ t} is
a consistent family, so there exists a probability kernel �̃ : 
̃ξ × F̃ η → [0,1] with

�̃(ξ,A) = �̃s,t (ξ,A) for all A ∈ F̃
η
[s,t], ξ ∈ 
̃ξ , s ≤ t,

by the usual Kolmogorov extension argument. It is easily verified that �̃ satisfies
the required properties, and Assumption 6.2 holds true by construction.

From this point onward we consider again the general continuous time setting
(i.e., we do not assume white noise observations). The goal of this section is to
extend several of our discrete time results to the continuous time setting. To this
end, we will first prove the following counterpart of Theorem 4.2.

THEOREM 6.4. Suppose that Assumptions 6.1 and 6.2 are in force. Then⋂
t≥0

F̃
η
+ ∨ σ {ξs : s ≥ t} = F̃

η
+ and

⋂
t≥0

F̃
η

0 ∨ F̃
ξ
−t = F̃

η
0 P̃-a.s.

We now turn to the filter stability problem. As in discrete time, we must choose
suitable versions of the regular conditional probabilities P̃μ(ξt ∈ ·|F̃ η

[0,t]).

LEMMA 6.5. Suppose Assumption 6.2 holds. For any probability measure μ

on B(Ẽ), define a family of probability kernels �̃
μ
t : 
̃η × B(Ẽ) → [0,1] (t ≥ 0)

by

�̃
μ
t (η,A) =

∫
IA(ξ(t))�̃0,t (ξ, η)P̃μ(dξ)∫

�̃0,t (ξ, η)P̃μ(dξ)
.

Then �̃
μ
t is a version of the regular conditional probability P̃μ(ξt ∈ ·|F̃ η

[0,t]).

PROOF. Apply the Bayes formula as in Lemma 5.1. �

We can now prove a counterpart of Theorem 5.2. Note that the continuous time
result yields a slightly weaker type of convergence than its discrete time counter-
part; the reason for this choice is explained in the remark below.
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THEOREM 6.6. Suppose that Assumptions 6.1 and 6.2 hold. Then

Ẽμ(‖�̃μ
t − �̃π̃

t ‖TV)
t→∞−−−→ 0 iff ‖P̃μ(ξt ∈ ·) − π̃‖TV

t→∞−−−→ 0.

Moreover, if

‖P̃μ(ξt ∈ ·) − π̃‖TV
t→∞−−−→ 0 and ‖P̃ν(ξt ∈ ·) − π̃‖TV

t→∞−−−→ 0,

then Ẽν(‖�̃μ
t − �̃π̃

t ‖TV) → 0 as t → ∞.

REMARK 6.7. Theorem 5.2 yields almost sure convergence of the filtering er-
ror, while Theorem 6.6 only gives convergence in L1. The subtlety lies in the fact
that convergence results for stochastic processes in continuous time, such as the
martingale convergence theorem, require the choice of a modification of the sto-
chastic process with appropriate continuity properties, and this typically requires
that the filtrations satisfy the usual conditions (the associated σ -fields are therefore
no longer countably generated). Though it seems very likely that such issues can
be resolved with sufficient care, for example, along the lines of [39], we have cho-
sen the simpler route which avoids unnecessary complications at the expense of a
slightly weaker notion of convergence.

The remainder of this section is devoted to the proofs of Theorems 6.4 and 6.6.

6.2. Reduction to discrete time. The proofs in the continuous time setting can
largely be reduced to our previous discrete time results. To this end, we begin by
constructing a discrete time hidden Markov model, as defined in Section 3.1, which
coincides with the continuous time model of this section.

The signal and observation state spaces for our discrete model are taken to be
E = D([0,1]; Ẽ) and F = D([0,1]; F̃ ), respectively (recall that these Skorokhod
spaces are themselves Polish). For the discrete time signal we will choose the E-
valued process Xn = (ξt )n≤t≤n+1, while we choose for the discrete time observa-
tions the F -valued process Yn = (ηt − ηn)n≤t≤n+1. We claim that these processes
define a hidden Markov model in the sense of Section 3.1. Indeed, it is easily seen
that Xn is a Markov process with transition probability kernel

P(ξ ′,A) = Q̃ξ ′(1)((ξt )0≤t≤1 ∈ A
)

for all ξ ′ ∈ E,A ∈ B(E)

and invariant measure

π(A) = P̃
(
(ξt )0≤t≤1 ∈ A

)
for all A ∈ B(E).

On the other hand, given F̃ ξ = F X , the random variables Yn are independent
(as ηt has conditionally independent increments given F̃ ξ ) and we may define

�((ξ(t))0≤t≤1,A) = �̃(ξ, Y0 ∈ A) for all ξ ∈ 
̃ξ ,A ∈ B(F ),
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where we have used that �̃(ξ,A) is F̃
ξ
[0,1]-measurable for A ∈ F̃

η
[0,1] and that

P̃(Yn ∈ A|F̃ ξ ) = �̃(ξ, Yn ∈ A) = �̃(�̃nξ, Y0 ∈ A) = �(Xn,A).

Having defined the kernels P and � and the measure π , we may now construct the
process (Xn,Yn)n∈Z on its canonical path space as in Section 3.1, and it is easily
verified that the measures P and Pμ̃ coincide with the law of the process (Xn,Yn)

under P̃ and P̃μ, respectively, where μ̃ = P̃μ(X0 ∈ ·).

LEMMA 6.8. Assumption 6.1 implies Assumption 3.1 for the discrete chain.
Similarly, Assumption 6.2 implies Assumption 3.2 for the discrete chain.

PROOF. By the Markov property, we find that
∥∥Q̃z((ξt )n≤t≤n+1 ∈ ·) − π

∥∥
TV = ‖Q̃z(ξn ∈ ·) − π̃‖TV.

But note also that

Q̃z((ξt )n≤t≤n+1 ∈ ·) = Pξ ′
(Xn+1 ∈ ·) for all ξ ′ ∈ E with ξ ′(1) = z.

The first statement follows directly. To prove the second statement, it suffices to
note that under Assumption 6.2 we can write for ξ ∈ 
̃ξ

�((ξt )0≤t≤1,A) =
∫

IA

(
(ηt − η0)0≤t≤1

)
�̃0,1

(
(ξt )0≤t≤1, (ηt − η0)0≤t≤1

)
ϕ̃(dη),

so we may set ϕ(A) = ϕ̃(Y0 ∈ A) and g(z,u) = �̃0,1(z, u). �

The proof of Theorem 6.4 now follows immediately.

PROOF OF THEOREM 6.4. The result follows immediately from Theorem 4.2
in view of the fact that the measures P̃ and P coincide. �

Before we proceed, let us prove a continuous time counterpart of Lemma 3.7.

LEMMA 6.9. Suppose Assumption 6.2 holds. Let ν, ν̄ be probability measures

such that ‖P̃ν(ξt ∈ ·) − P̃ν̄ (ξt ∈ ·)‖TV
t→∞−−−→ 0. Then P̃ν |F̃ η

+ ∼ P̃ν̄ |F̃ η
+ .

PROOF. The result follows from Lemma 3.7, in view of the equivalence of the
measures P̃μ and Pμ̃ (μ̃ = P̃μ(X0 ∈ ·)) for any μ, using the same argument as in
the proof of the first assertion of Lemma 6.8. �
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6.3. Proof of Theorem 6.6. As in the discrete time setting, we begin by proving
the only if part of Theorem 6.6. The proof is essentially identical.

LEMMA 6.10. Suppose that Assumptions 6.1 and 6.2 hold and that

lim sup
t→∞

‖P̃μ(ξt ∈ ·) − π̃‖TV > 0.

Then we must have

lim sup
t→∞

Ẽμ(‖�̃μ
t − �̃π̃

t ‖TV) > 0.

PROOF. Let P̃μ(ξn ∈ ·) = μn+μ⊥
n be the Lebesgue decomposition of P̃μ(ξn ∈

·) with respect to π̃ . In particular, μn � π̃ and μ⊥
n ⊥ π̃ , and there exists a set Sn

such that π̃(Sn) = 0 and μ⊥
n (Sc

n) = 0. We claim that

lim sup
t→∞

‖P̃μ(ξt ∈ ·) − π̃‖TV > 0 �⇒ lim sup
n→∞

P̃μ(ξn ∈ Sn) > 0.

To see this, note that (ξn)n∈Z+ is a discrete time Markov chain on the state space Ẽ.
By [28], Theorem 7.2, Assumption 6.1 and P̃μ(ξn ∈ Sn) → 0 as n → ∞ would
imply that ‖P̃μ(ξn ∈ ·) − π̃‖TV → 0 as n → ∞. But ‖P̃μ(ξt ∈ ·) − π̃‖TV is nonin-
creasing with t , so the latter implies that ‖P̃μ(ξt ∈ ·) − π̃‖TV → 0 as t → ∞. The
claim is therefore established by contradiction.

Now note that it is easily established, using the expression in the proof of
Lemma 6.5, that Assumption 6.2 implies �̃π̃

n (η, ·) ∼ π̃ for every η ∈ 
̃η. There-
fore, evidently �̃π̃

n (η, Sn) = 0 for all η ∈ 
̃η, and we can estimate as follows:

�̃μ
n (η, Sn) = |�̃μ

n (η, Sn) − �̃π̃
n (η, Sn)| ≤ ‖�̃μ

n (η, ·) − �̃π̃
n (η, ·)‖TV.

In particular, we find that

P̃μ(Xn ∈ Sn) = Ẽμ(�̃μ
n ((ηt )0≤t≤n, Sn)) ≤ Ẽμ(‖�̃μ

n − �̃π̃
n ‖TV)

and we must therefore have

lim sup
n→∞

Ẽμ(‖�̃μ
n − �̃π̃

n ‖TV) > 0.

The proof is easily completed. �

We now proceed to prove the converse assertion. One could attempt to adapt
the corresponding discrete time proof to the current setting, but here we choose a
different approach. First, we will show using Theorem 5.2 that

‖P̃μ(ξt ∈ ·) − π̃‖TV
t→∞−−−→ 0 and ‖P̃ν(ξt ∈ ·) − π̃‖TV

t→∞−−−→ 0

implies that

Ẽν(‖�̃μ
n − �̃π̃

n ‖TV)
n→∞−−−→ 0,
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where the limit as n → ∞ is taken along the integers n ∈ N. In the second step, we
will show that the function

t �→ Ẽν(‖�̃μ
t − �̃π̃

t ‖TV)(t ∈ R+)

converges to a limit when we let t → ∞ along the positive reals. Taken together,
these two facts complete the proof of Theorem 6.6.

LEMMA 6.11. Suppose that Assumptions 6.1 and 6.2 hold and that

‖P̃μ(ξt ∈ ·) − π̃‖TV
t→∞−−−→ 0 and ‖P̃ν(ξt ∈ ·) − π̃‖TV

t→∞−−−→ 0.

Then Ẽν(‖�̃μ
n − �̃π̃

n ‖TV)
n→∞−−−→ 0 (n ∈ N).

PROOF. Let �
μ̃
n and �π

n be the filters for the discrete time chain as defined in
Lemma 5.1, where μ̃ = P̃μ(X0 ∈ ·). Note that, using the Markov property, we find
that the condition of the current result implies that

‖Pμ̃(Xn ∈ ·) − π‖TV
n→∞−−−→ 0.

Therefore, by Assumptions 6.1 and 6.2, Lemma 6.8 and Theorem 5.2, we find that

‖�μ̃
n − �π

n ‖TV
t→∞−−−→ 0 Pμ̃-a.s.

It follows directly that
∥∥�μ̃

n

(
Y, ξ(1) ∈ ·) − �π

n

(
Y, ξ(1) ∈ ·)∥∥TV

n→∞−−−→ 0 Pμ̃-a.s.

But note that �
μ̃
n (y, ξ(1) ∈ ·) and �π

n (y, ξ(1) ∈ ·) are versions of the regular con-
ditional probabilities

P̃μ(
ξn+1 ∈ ·|F̃ η

[0,n+1]
)

and P̃
(
ξn+1 ∈ ·|F̃ η

[0,n+1]
)
,

respectively. By the a.s. uniqueness of regular conditional probabilities and using
Lemma 6.9 (which holds by virtue of Assumption 6.2), we therefore find that

‖�̃μ
n − �̃π̃

n ‖TV
n→∞−−−→ 0 P̃ν-a.s.

The result follows by dominated convergence. �

LEMMA 6.12. Suppose that Assumption 6.2 holds and that

‖P̃μ(ξt ∈ ·) − π̃‖TV
t→∞−−−→ 0 and ‖P̃ν(ξt ∈ ·) − π̃‖TV

t→∞−−−→ 0.

Then Ẽν(‖�̃μ
t − �̃π̃

t ‖TV) is convergent as t → ∞ (t ∈ R+).



1920 R. VAN HANDEL

PROOF. Let ρ = (μ + π̃)/2. Then we can establish, exactly as in the proof of
Lemma 5.6, that we have �̃

μ
t � �̃

ρ
t and �̃π̃

t � �̃
ρ
t with

d�̃
μ
t

d�̃
ρ
t

= Ẽρ((dμ/dρ)(ξ0)|F̃ η
+ ∨ F̃

ξ
[t,∞[)

Ẽρ((dμ/dρ)(ξ0)|F̃ η
[0,t])

,

d�̃π̃
t

d�̃
ρ
t

= Ẽρ((dπ̃/dρ)(ξ0)|F̃ η
+ ∨ F̃

ξ
[t,∞[)

Ẽρ((dπ̃/dρ)(ξ0)|F̃ η
[0,t])

, P̃ρ-a.s.

Note that Ẽρ(d�̃
μ
t /d�̃

ρ
t ) = Ẽρ(d�̃π̃

t /d�̃
ρ
t ) = 1 for all t . Now fix an arbitrary

sequence tk ↗ ∞. By the martingale convergence theorem, we have P̃ρ -a.s.

Ẽρ

(
dμ

dρ
(ξ0)

∣∣∣F̃ η
[0,tk]

)
→ Ẽρ

(
dμ

dρ
(ξ0)

∣∣∣F̃ η
+

)
,

Ẽρ

(
dπ̃

dρ
(ξ0)

∣∣∣F̃ η
[0,tk]

)
→ Ẽρ

(
dπ̃

dρ
(ξ0)

∣∣∣F̃ η
+

)

as k → ∞. Moreover, these quantities are P̃ρ -a.s. strictly positive by Lemma 6.9.
Applying again the martingale convergence theorem, we find that M

μ
k := d�̃

μ
tk
/

d�̃
ρ
tk

and Mπ̃
k := d�̃π̃

tk
/d�̃

ρ
tk

converge P̃ρ -a.s. to the random variables

Mμ = Ẽρ((dμ/dρ)(ξ0)|⋂t F̃
η
+ ∨ F̃

ξ
[t,∞[)

Ẽρ((dμ/dρ)(ξ0)|F̃ η
+)

and

Mπ̃ = Ẽρ((dπ̃/dρ)(ξ0)|⋂t F̃
η
+ ∨ F̃

ξ
[t,∞[)

Ẽρ((dπ̃/dρ)(ξ0)|F̃ η
+)

,

respectively. Moreover, by the tower property of the conditional expectation,
we have Ẽρ(Mμ|F̃ η

+) = 1 and Ẽρ(Mπ̃ |F̃ η
+) = 1 P̃ρ -a.s. Therefore, Ẽρ(Mμ) =

Ẽρ(Mπ̃ ) = 1, so that M
μ
k → Mμ and Mπ̃

k → Mπ̃ in L1(P̃ρ) by Scheffé’s lemma.
Let us write, for simplicity, Nk = |Mμ

k − Mπ̃
k | and N = |Mμ − Mπ̃ |. Then

Ẽρ(∣∣Ẽρ(
Nk|F̃ η

[0,tk]
) − Ẽρ(N |F̃ η

+)
∣∣)

≤ Ẽρ(∣∣Ẽρ(
Nk|F̃ η

[0,tk]
) − Ẽρ(

N |F̃ η
[0,tk]

)∣∣) + Ẽρ(∣∣Ẽρ(
N |F̃ η

[0,tk]
) − Ẽρ(N |F̃ η

+)
∣∣)

≤ Ẽρ(|Nk − N |) + Ẽρ(∣∣Ẽρ(
N |F̃ η

[0,tk]
) − Ẽρ(N |F̃ η

+)
∣∣)

≤ Ẽρ(|Mμ
k − Mπ̃

k − Mμ + Mπ̃ |) + Ẽρ(∣∣Ẽρ(
N |F̃ η

[0,tk]
) − Ẽρ(N |F̃ η

+)
∣∣)

≤ Ẽρ(|Mμ
k − Mμ|) + Ẽρ(|Mπ̃

k − Mπ̃ |) + Ẽρ(∣∣Ẽρ(
N |F̃ η

[0,tk]
) − Ẽρ(N |F̃ η

+)
∣∣),
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where we have used the inverse triangle inequality to establish that |Nk − N | ≤
|Mμ

k −Mπ̃
k −Mμ +Mπ̃ |. By the martingale convergence theorem and the conver-

gence of M
μ
k and Mπ̃

k , the right-hand side of this expression converges to zero as
k → ∞. But note that ‖�̃μ

tk
− �̃π̃

tk
‖TV = Ẽρ(Nk|F̃ η

[0,tk]) P̃ρ -a.s., so we have

‖�̃μ
tk

− �̃π̃
tk
‖TV

k→∞−−−→ Ẽρ(N |F̃ η
+) in L1(P̃ρ).

In particular, ‖�̃μ
tk

− �̃π̃
tk
‖TV converges to Ẽρ(N |F̃ η

+) in P̃ρ -probability. But

‖P̃ν(ξt ∈ ·) − P̃ρ(ξt ∈ ·)‖TV

≤ 1
2

(‖P̃ν(ξt ∈ ·) − P̃μ(ξt ∈ ·)‖TV + ‖P̃ν(ξt ∈ ·) − π̃‖TV
)

≤ 1
2

(‖P̃μ(ξt ∈ ·) − π̃‖TV + 2‖P̃ν(ξt ∈ ·) − π̃‖TV
) t→∞−−−→ 0,

so by Lemma 6.9 we find that ‖�̃μ
tk

− �̃π̃
tk
‖TV converges to Ẽρ(N |F̃ η

+) in P̃ν -

probability. Thus, we have Ẽν(‖�̃μ
tk

− �̃π̃
tk
‖TV) → Ẽν(Ẽρ(N |F̃ η

+)) by dominated
convergence. But as this holds for any sequence tk ↗ ∞, the result follows. �

7. On the result of Kunita and necessity of the ergodic condition. In Sec-
tions 5 and 6 we explored the consequences of our main results for the stability
of nonlinear filters. Our results also have implications for other asymptotic prop-
erties of the filter, however, in particular for the uniqueness of the invariant mea-
sure as studied in [23]. The aim of this section is to briefly outline the connection
with [23], and to compare our assumptions to those made in the work of Kunita.

Kunita’s original paper [23] investigated the continuous time setting with com-
pact signal state space and white noise type observations. His approach has been
extended to locally compact [32] and Polish [2] signal state spaces on the one
hand, and to discrete time models on locally compact [32] and Polish [17] sig-
nal state spaces on the other hand. None of these papers resolve the gap in [23],
however; we refer to [4] for further discussion and references. For simplicity and
concreteness, we will restrict our discussion below to the original setting of Ku-
nita. However, the results in this paper apply to all settings considered in the above
references, and the reader interested in the ergodic properties of the nonlinear filter
can directly read off the relevant results from these papers.

In [23], the signal process (ξt )t∈R is a stationary, time-homogeneous Feller–
Markov process on a compact Polish state space Ẽ with stationary measure π̃

under P̃, and the R
d -valued observation process (ηt )t∈R is defined as

ηt =
∫ t

0
h(ξs) ds + Wt,

where (Wt)t∈R is a two-sided Wiener process and h : Ẽ → R
d is a continuous

function. Kunita establishes that the filter �̃π̃
t , when seen as a measure-valued

random process, is itself a Feller–Markov process, and we are interested in the
ergodic properties of this process. In particular, [23] yields the following statement.
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PROPOSITION 7.1. There exists at least one invariant measure for the filter
whose barycenter is π̃ . If

⋂
t≥0 F̃

η
0 ∨ F̃

ξ
−t = F̃

η
0 P̃-a.s. holds true, then there is

only one such invariant measure. If in addition π̃ is the unique invariant measure
of the signal, then the invariant measure of the filter is unique.

In [23], it is assumed that the P̃-a.s. triviality of the tail σ -field
⋂

t≥0 F̃
ξ
−t , or,

equivalently [34], Proposition 3, the condition∫
|P̃δz(ξt ∈ A) − π̃(A)|π̃ (dz)

t→∞−−−→ 0 for all A ∈ B(Ẽ),

is already sufficient to establish
⋂

t≥0 F̃
η

0 ∨ F̃
ξ
−t = F̃

η
0 P̃-a.s. As we have argued

before, however, this statement is not at all obvious. On the other hand, by the
continuous time version of our main result (Theorem 6.4), it follows that∫

sup
A∈B(Ẽ)

|P̃δz(ξt ∈ A) − π̃ (A)|π̃ (dz)
t→∞−−−→ 0

does in fact guarantee that
⋂

t≥0 F̃
η

0 ∨ F̃
ξ
−t = F̃

η
0 P̃-a.s. [that this condition is

equivalent to Assumption 6.1 follows from the fact that ‖P̃μ(ξt ∈ ·) − π̃‖TV is
nonincreasing]. This condition covers most, but not all, of the models that sat-
isfy Kunita’s condition, and we have thus partially resolved the gap in his proof.
Whether Kunita’s condition is already sufficient to guarantee uniqueness of the
invariant measure with barycenter π̃ remains an open problem.

Besides sufficiency of the ergodic condition, it is interesting to ask whether such
a condition is necessary for uniqueness of the invariant measure. Theorem 3.3 of
[23] states that Kunita’s condition is in fact necessary for uniqueness of the in-
variant measure with barycenter π̃ , but this does not appear to be correct. As the
following example shows, neither our condition nor Kunita’s condition is neces-
sary.

EXAMPLE 7.2. Consider the signal on Ẽ = [0,1] such that ξt = ξ0 for all
t ∈ R P̃-a.s., and let π̃ be the Lebesgue measure on [0,1]. We choose the observa-
tion function h(x) = x. This model fits entirely within the current setting.

Let us first show that the signal does not satisfy Kunita’s condition (and hence
it does not satisfy our assumptions, which are stronger than Kunita’s). Note that

F̃
ξ
−t = σ {ξs : s ≤ −t} = σ {ξ0} P̃-a.s. for all t ∈ R.

Therefore, P̃-a.s.
⋂

t≥0 F̃
ξ
−t = σ {ξ0}, which is certainly not P̃-a.s. trivial.

We claim that nonetheless
⋂

t≥0 F̃
η

0 ∨F̃
ξ
−t = F̃

η
0 P̃-a.s., so the invariant measure

of the filter with barycenter π̃ is unique. Clearly it suffices to show that

F̃
ξ
−t = σ {ξ0} ⊂ F̃

η
0 P̃-a.s.
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for all t ≥ 0. But note that ηt = ξ0t + Wt for all t ∈ R, so

lim sup
t→−∞

ηt

t
= ξ0 P̃-a.s.

The claim is therefore established.

The previous example highlights a possibility which is not considered in this
paper. Returning to our canonical model, suppose that the tail σ -field T X is not
P-a.s. trivial (so the signal is not ergodic), but that T X ⊂ F Y[0,∞[ P-a.s. Then, if it
could somehow be established that the exchange of intersection and supremum is
permitted, we would still obtain the identity

⋂
n≥0

F Y[0,∞[ ∨ F X[n,∞[
?= F Y[0,∞[ ∨ ⋂

n≥0

F X[n,∞[ = F Y[0,∞[ P-a.s.,

and therefore also the associated implications for the stability properties and for
the uniqueness of the invariant measure of the filter. The condition T X ⊂ F Y[0,∞[ is
closely related to the notion of detectability which is shown in [36] to be necessary
and sufficient for the stability of the filter (in a suitable sense) for models with a
finite signal state space and nondegenerate observations. Whether such a necessary
and sufficient condition can be obtained for more general models in the absence of
an ergodicity assumption is an interesting topic for further investigation.
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