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BOOTSTRAP PERCOLATION IN THREE DIMENSIONS

BY JÓZSEF BALOGH,1 BÉLA BOLLOBÁS2 AND ROBERT MORRIS3

University of Illinois, University of Memphis and
University of Cambridge

By bootstrap percolation we mean the following deterministic process
on a graph G. Given a set A of vertices “infected” at time 0, new vertices are
subsequently infected, at each time step, if they have at least r ∈N previously
infected neighbors. When the set A is chosen at random, the main aim is to
determine the critical probability pc(G, r) at which percolation (infection of
the entire graph) becomes likely to occur. This bootstrap process has been
extensively studied on the d-dimensional grid [n]d : with 2 ≤ r ≤ d fixed, it
was proved by Cerf and Cirillo (for d = r = 3), and by Cerf and Manzo (in
general), that

pc([n]d , r)=�

(
1

log(r−1) n

)d−r+1
,

where log(r) is an r-times iterated logarithm. However, the exact threshold
function is only known in the case d = r = 2, where it was shown by Holroyd

to be (1+ o(1)) π2

18 logn
. In this paper we shall determine the exact threshold

in the crucial case d = r = 3, and lay the groundwork for solving the problem
for all fixed d and r .

1. Introduction. In this paper we shall study three-neighbor bootstrap perco-
lation on [n]3. Let G be a (finite) graph, let r ∈ N, and let A ⊂ V (G) be a set of
initially “infected” vertices. In r-neighbor bootstrap percolation on G, with initial
set A, new vertices of G are infected if they have at least r infected neighbors, and
infected vertices remain infected forever. Formally, set A0 =A, and

At+1 :=At ∪ {v ∈ V (G) : |�(v)∩At | ≥ r}
for each integer t ≥ 0. The closure of A ⊂ V (G) is the set [A] = ⋃

t At of even-
tually infected vertices. We say that the set A percolates if eventually the entire
vertex set is infected, that is, if [A] = V (G).

Bootstrap percolation is an example of a cellular automaton, studied, for exam-
ple, by von Neumann [28]. However, the particular model we are studying was
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introduced in 1979 by Chalupa, Leith and Reich [14], and was subsequently redis-
covered by several authors who were motivated by its connections to interacting
particle systems and other physical applications (see, e.g., the survey [1]). The
first mathematical papers in the area were by van Enter [26] and Schonmann [24,
25], who studied the process on the infinite lattice Z

d , and by Aizenman and
Lebowitz [2], who studied it on the finite grid [n]d . They considered sets A whose
elements are chosen independently at random with probability p, and asked for
which values of p percolation is likely to occur. More precisely, let P(G, r,p)

denote the probability that A percolates if A is chosen with this distribution, and,
noting that P(G, r,p) is strictly increasing in p, define, for each α ∈ [0,1],

pα = pα(G, r) := inf{p :P(G, r,p)≥ α}.
As is customary, we shall write pc for p1/2, and call it the critical probability.
Aizenman and Lebowitz [2] (see also Balogh and Pete [9]) showed that, for fixed d ,

pc([n]d,2)=�

(
1

logn

)d−1

,

and thus determined pc up to a constant factor when r = 2. Moreover, they showed
that pα satisfies the same relation for every fixed α ∈ (0,1). When r ≥ 3 the prob-
lem is somewhat harder, and it was not until 1999 that Cerf and Cirillo [12] deter-
mined the order of magnitude of pc([n]3,3). This result was later extended to all
fixed 2≤ r ≤ d by Cerf and Manzo [13], who proved that

pc([n]d, r)=�

(
1

log(r−1) n

)d−r+1

,

where log(r) denotes an r-times iterated logarithm, log(r+1)(n) = log(log(r)(n)).
The bootstrap process has also been studied on the hypercube [3, 5, 6], on infinite
trees [8] and on the random regular graph [10, 21], and has found applications in
other areas: for example, techniques from [2], and more recently [6], were used to
study the Ising model at zero temperature (see [15] and [22]).

Despite this extensive body of work, the threshold pc([n]d, r) is known asymp-
totically only in the simplest case, d = r = 2. This important breakthrough was
made by Holroyd [19], who proved that

pc([n]2,2)= π2

18 logn
+ o

(
1

logn

)
.

(Here, and throughout, log refers to the natural logarithm, unless otherwise stated.)
We shall discuss Holroyd’s ideas in more detail later in the paper. Holroyd [20] also
determined the critical constant in d dimensions (for any fixed d) in the simpler
“modified” bootstrap model, but was unable to do so for the standard case. Balogh
and Bollobás [4] proved, using a general method of Friedgut and Kalai [17], that
the threshold pc([n]d,2) undergoes a sharp transition in a weaker sense. More
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precisely, they showed that the critical window p1−ε − pε has width o(pc), but
not that (logn)d−1pc converges. For r ≥ 3, however, even this weaker result is
unknown.

We shall determine the critical probability for 3-neighbor bootstrap percolation
on [n]3, up to a factor of 1+ o(1). In order to state our main result, we first need
to define some functions. For each k ∈N, let

βk(u) := 1

2
− (1− u)k

2
+ 1

2

√
1+ (4u− 2)(1− u)k + (1− u)2k,(1)

so βk(u)2 = (1− (1− u)k)βk(u)+ u(1− u)k , and let

gk(z) := − log
(
βk(1− e−z)

)
.(2)

Now, for each 2≤ r ≤ d ∈N, let

λ(d, r) :=
∫ ∞

0
gr−1(z

d−r+1) dz.(3)

The following theorem is the main result of this paper.

THEOREM 1. Let λ(3,3)≈ 0.4039 be as defined above. Then

pc([n]3,3)= λ(3,3)+ o(1)

log logn

as n→∞.

The functions β1, g1 and λ(2,2) were introduced by Holroyd [19], who also
showed that λ(2,2)= π2/18. We make the following conjecture, which is proved
by Balogh et al. [7] in a forthcoming article.

CONJECTURE 1. Let d, r ∈N, with d ≥ r ≥ 2. Then

pc([n]d, r)=
(

λ(d, r)+ o(1)

log(r−1) n

)d−r+1

as n→∞.

We remark (see Proposition 4 below) that λ(d, r) < ∞ for every 2 ≤ r ≤ d ,
that λ(3,3)≈ 0.4039 (by computer approximation), and that dλ(d, d)→ π2/6 as
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TABLE 1
Values of λ(d, r)

d

r 2 3 4 5 6 7

2 0.5483 0.9924 1.4797 1.9764 2.4760 2.9768
3 – 0.4039 0.8810 1.3864 1.8961 2.4078
4 – – 0.3198 0.8024 1.3162 1.8338
5 – – – 0.2650 0.7431 1.2606
6 – – – – 0.2265 0.6963
7 – – – – – 0.1979

d →∞. Table 1 lists some approximate values of λ(d, r) for 2≤ r ≤ 7.
The proof of Theorem 1 uses the techniques introduced by Cerf and Cirillo [12],

Cerf and Manzo [13], and Holroyd [19], together with some new ideas. In partic-
ular, we shall need to introduce the following more general family of bootstrap
processes.

Define a bootstrap structure B(G, r(v)) to be a graph G together with a thresh-
old function r :V (G) → N. Bootstrap percolation on such a structure is then de-
fined in the obvious way, by setting A0 =A and

At+1 :=At ∪ {v ∈ V (G) : |�(v)∩At | ≥ r(v)}
for each t ≥ 0. This definition clearly includes all of the processes considered
above; in particular, B([n]d, r) is the usual r-neighbor structure on the graph [n]d .

We shall consider, in particular, the following two families of bootstrap struc-
tures. The first, which we shall call C∗(n,2), is an n× n× 2 cuboid, with thresh-
old 2 in the “top” layer and threshold 3 in the “bottom” layer, that is, r(v) = 2
if v ∈ [n]2 × {1} and r(v) = 3 if v ∈ [n]2 × {2}. The second, which we shall call
C(n, k), where 2 ≤ k ∈ N, is an n× n× k cuboid, with threshold 2 in the top and
bottom layers and threshold 3 in each of the k − 2 middle layers. Both C∗(n,2)

and C(n, k) have the edges induced by the lattice Z
3.

We need two more definitions. Say that A ⊂ C∗(n,2) semi-percolates if
[A] contains all vertices with threshold 2, and, for each α ∈ (0,1), write
p

(s)
α (C∗(n,2)) := inf{p : P(A semi-percolates) ≥ α}. Recall also from above that

pα(C(n, k)) is defined similarly for percolation (i.e., full occupation).
We shall prove Theorem 1 using the following result.

THEOREM 2. For every ε > 0, there exists K =K(ε) ∈N such that, if k ≥K ,
δ = δ(k) > 0 is sufficiently small, and n= n(k, δ, ε) ∈N is sufficiently large, then

λ(3,3)− ε

logn
≤ pδ(C(n, k))≤ p

(s)
1−δ(C

∗(n,2))≤ λ(3,3)+ ε

logn
.
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In fact, we shall need a somewhat more technical statement in order to deduce
Theorem 1 (see Corollary 14 below), but Theorem 2 is morally what is required.

Being a little imprecise, the basic idea of the proof of Theorem 1 is as fol-
lows. With high probability, complete occupation occurs in bootstrap percolation
on B([n]3,3) (roughly) if and only if there exists, somewhere in [n]3, a cuboid
R, with side-lengths about logn, which is internally spanned, that is, R satisfies
[A∩R] =R. If this exists, we (rather vaguely) refer to such a cuboid R as a “criti-
cal droplet.” We couple the process occurring on the sides (i.e., faces) of the droplet
R in two different ways, in order to prove upper and lower bounds on the probabil-
ity that R “grows sideways.” To prove the upper bound in Theorem 1, we couple
with C∗(logn,2), and use the upper bound in Theorem 2; for the lower bound we
couple with C(logn, k) and use a counting argument as in [12, 13]. This allows
us to show that no large connected component of infected sites forms anywhere in
[n]3.

Several of our lemmas generalize easily to a multidimensional setting, and will
be used (in this more general form) in [7]. We shall therefore often work in [n]d ×
[k]
 for general d ≥ 2 and 
 ≥ 0. However, the reader should always be thinking
of the case d = 2 and 
= 1, and our terminology will reflect this.

The paper is organized as follows: In Section 2 we collect some of the defin-
itions and basic tools which we shall use throughout the paper, and prove some
simple bounds on λ(d, r). In Section 3 we prove the upper bound in Conjecture 1
(and hence in Theorem 1 also), and in Section 4 we prove Theorem 2 (and Corol-
lary 14). Finally, in Section 5, we deduce the lower bound in Theorem 1.

2. Tools and notation. In this section we shall make various definitions and
introduce some notation which we shall use throughout the paper. We have labeled
some of these in order to highlight those that are most crucial.

We begin by defining some slightly more general versions of the bootstrap struc-
tures described above, which we shall call C([n]d×[k]
, r) and C∗([n]d×[2]
, r).
We think of [n]d × [k]
 as a box [n]d of “thickness” [k]
.

DEFINITION. Let n,d, 
, r ∈ N0, with 2 ≤ r ≤ d . Then C∗([n]d × [2]
, r) is
the bootstrap structure such that:

(a) the vertex set is [n]d × [2]
,
(b) the edge set is induced by Z

d+
,
(c) v = (a1, . . . , ad, b1, . . . , b
) has threshold r if bj = 1 for each j ∈ [
],
(d) v = (a1, . . . , ad, b1, . . . , b
) has threshold r + 
 otherwise.

We say that a set A ⊂ [n]d × [2]
 semi-percolates in C∗([n]d × [2]
, r) if [A]
contains all vertices with threshold r . Note that C∗(n,2)= C∗([n]2 × [2],2).

DEFINITION. Let n,d, k, 
, r ∈N0, with 2≤ r ≤ d and k ≥ 2. Then C([n]d ×
[k]
, r) is the bootstrap structure such that:
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(a) the vertex set is [n]d × [k]
,
(b) the edge set is induced by Z

d+
,
(c) v = (a1, . . . , ad, b1, . . . , b
) has threshold r + |{j ∈ [
] :bj /∈ {1, k}}|.
Note that C(n, k)= C([n]2 × [k],2) for any k ≥ 2, and B([n]d, r)= C([n]d ×

[k]0, r).
We next, with the case d = 2 in mind, define a rectangle R in [n]d × [k]
 to be

a set

[(a1, . . . , ad), (b1, . . . , bd)] := {(x1, . . . , xd, y1, . . . , y
) :xi ∈ [ai, bi], yi ∈ [k]}.
We also identify these with rectangles in [n]d = [n]d × [k]0 in the obvious way.
The dimensions of R is the vector

dim(R) := (b1 − a1 + 1, . . . , bd − ad + 1) ∈N
d

and the semi-perimeter of R is

φ(R) :=∑
i

(bi − ai + 1).

The longest side-length of R is long(R) := max{bi − ai + 1}, and the shortest
side-length of R is short(R) :=min{bi − ai + 1}.

A component of a set S ⊂ Z
d is a maximal connected set in the graph Z

d [S]
(the subgraph of Z

d induced by S), and the diameter of S is

diam(S) := sup
x,y

{‖x − y‖∞ + 1 : x and y are in the same component of S}.

Note that if S is a rectangle in [n]d × [k]
, then diam(S)=max{long(R), k}.
Let S ⊂ [n]d × [k]
. The projection �(S)⊂ [n]d of S is the set

�(S) := {x ∈ [n]d : (x,y) ∈ S for some y ∈ [k]
}.
We have defined the completion [A] of A; now we shall define the span, 〈A〉.

We emphasize that this is not the usual definition. First, note that for each subset
S ⊂ [n]d there is a smallest rectangle, R(S), such that S ⊂R(S).

DEFINITION. Let n, k ∈N and A⊂ C([n]d × [k]
, r). Let C1, . . . ,Cm denote
the collection of connected components in �([A]). The span of A is defined to be
the following collection of rectangles:

〈A〉 := {R(C1), . . . ,R(Cm)}.
If �([A]) is connected (i.e., m = 1), then A spans the rectangle R(C1). Also, if
〈A′〉 = {R} for some A′ ⊂A, then A internally spans R.

If 〈A〉 = {R}, that is, A spans R, then we shall usually write simply 〈A〉 = R.
Note that A⊂R internally spans R if and only if R ∈ 〈A〉.

We now prove some simple properties of the functions βk(u), gk(u) and λ(d, r)

defined in Section 1.
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PROPOSITION 3. Let k ∈ N0, and βk and gk be the functions defined in (1)
and (2):

(a) βk(u) is increasing in u on [0,1] and gk(u) is decreasing in u on (0,∞).
(b) βk+1(u) ≥ βk(u) ∈ [0,1] for u ∈ [0,1], and gk+1(u) ≤ gk(u) for u ∈

(0,∞).
(c) gk(z)≤ 2e−zk if z is sufficiently large.

PROOF. We use Lemma 6 below, which says that the probability Lk(m,u) that
there is no “L-gap” (defined below) in a sequence of events of length m, with each
event having probability u ∈ [0,1], satisfies

βk+1(u)m+1 ≤ Lk(m,u)≤ βk+1(u)m.

(Note that the proof of Lemma 6 is straightforward and self-contained.) It is clear
from the definition of L-gaps that Lk(m,u) is strictly increasing in both k and u.
Thus, applying the displayed equation for sufficiently large m, it follows that βk is
increasing in both u and k, and that βk(u) ∈ [0,1]. The facts about gk in parts (a)
and (b) now follow from those about βk by (2), the definition of gk .

For part (c) recall that βk(u)2 = (1 − (1 − u)k)βk(u)+ u(1 − u)k , so βk(u) ≥
1−(1−u)k for u ∈ [0,1]. Recall also that− log(1−x)≤ 2x if x > 0 is sufficiently
small. Therefore,

− log
(
βk(1− e−z)

)≤− log(1− e−zk)≤ 2e−zk,

if z is sufficiently large, as required. �

Although we cannot solve the integral (3) exactly, the following proposition
gives some bounds on λ(d, r). The proofs are all straightforward, so we give only
a sketch.

PROPOSITION 4. Let 2≤ r ≤ d and let λ(d, r) be the function defined in (3):

(a) λ(d, r) <∞.
(b) λ(d,2)= d−1

2 + o(1).

(c) dλ(d, d)→ π2

6 as d →∞.

PROOF. First we show that, for every d, k ∈N,∫ ∞
0

gk(z
d) dz≤

∫ ∞
0

g1(z
d) dz= d

2
+ o(1).

The first inequality follows by Proposition 3(b). For the second we use the fact that
β1 is increasing and continuous, and the following simple facts:

(i) (1− e−x)/x → 1 as x → 0.
(ii) β1(x)/

√
x → 1 as x → 0.
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(iii)
∫∞

1 g1(z
d) dz→ 0 as d →∞.

It follows that, letting d →∞,

β1(1− e−zd

)= (
1+ o(1)

)
β1(z

d)= (
1+ o(1)

)√
zd

for every z ∈ (0,1), and hence,∫ ∞
0

g1(z
d) dz=

∫ 1

0

(
−d

2
log z+ o(1)

)
dz+

∫ ∞
1

g1(z
d) dz= d

2
+ o(1),

as required. Parts (a) and (b) now follow by the definition of λ(d, r).
For part (c), note that

βk(1− e−z)= 1

2
− e−zk

2
+ 1

2

√
(1− e−zk)2 + 4e−zk(1− e−z),

and that x ≤
√

x2 + y ≤ x + y
2x

if y ≥ 0. Thus, since 1− e−z ≤ z,

1− e−zk ≤ βk(1− e−z)≤ 1− e−zk + ze−zk

1− e−zk
.

Hence, making the substitution x = e−zk ,

k

∫ ∞
0

gk(z) dz≤
∫ ∞

0
−k log(1− e−zk) dz=

∫ 1

0
− log(1− x)

dx

x
= π2

6

by [18], number 4.291.2. Moreover, z
1−e−zk is increasing on z > 0 (by simple calcu-

lus). Thus, letting k be large, δ := 1√
k

, and using the substitution x = (1−2δ)e−zk ,

k

∫ ∞
0

gk(z) dz≥
∫ δ

δ/k
−k log

(
1− e−zk + δe−zk

1− e−δk

)
dz

≥
∫ δ

δ/k
−k log(1− e−zk + 2δe−zk) dz

≥
∫ (1−2δ)e−δ

e−δk
− log(1− x)

dx

x
→ π2

6

as k →∞, as required. �

REMARK 1. The constant determined by Holroyd [20] for the modified boot-
strap model is π2/6. Thus, when d is large, λ(d, d) differs from the critical con-
stant in that model by a factor of d . It is tempting to suggest a simple explanation
for this: a blocking set (i.e., an L-gap, see Section 3) is d times larger in bootstrap
percolation than in modified bootstrap (see Lemmas 6 and 7 below). Caution is re-
quired, however, since this heuristic fails when the number of dimensions is small;
in particular, when d = 2 the critical constants differ instead by a factor of three.
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We next state the FKG (Fortuin–Kasteleyn–Ginibre) inequality [16], the van den
Berg–Kesten Lemma [11] and Reimer’s Theorem [23]. We shall use the former two
results several times; the latter will only be used once, but will play a key role in the
proof. We remark that although Reimer’s Theorem appears rather naturally in our
proof, it can be avoided; indeed, the proof in [7] of the (more general) Conjecture 1
does not use it.

We begin with the simplest of the three results, the FKG inequality. Let
E :P (n) → {T ,F } be an event defined on the cube P (n) = {0,1}n, that is, E

is a subset of {0,1}n. E is said to be increasing if, for any two sets X,Y ⊂ [n],
E(X)∧ (X ⊂ Y)⇒E(Y ).

We write Pp for the product measure on {0,1}n with Pp(j ∈ A) = p for each
j ∈ [n].

THE FKG INEQUALITY. Let n ∈ N and p ∈ (0,1), and let E and F be in-
creasing events on the cube {0,1}n. Then

Pp(E ∩ F)≥ Pp(E)Pp(F ).

Now let E and F be two events defined on P (n), and let S ⊂ [n]. A witness
set for the event “E(S) holds” is a disjoint pair of sets (U,V ) such that U ⊂ S,
S ∩ V =∅, and

(U ⊂X)∧ (X ∩ V =∅)⇒E(X)

for any set X ∈ P (n). The events E and F are said to occur disjointly at a point
S ∈ P (n) if there exist witness sets (U,V ) and (U ′,V ′) for the events “E(S)

holds” and “F(S) holds” respectively, such that the sets U ∪ V and U ′ ∪ V ′ are
disjoint.

We write E ◦ F for the event that E and F occur disjointly. The following
lemma is an important and much-used tool in percolation theory, and was proved
by van den Berg and Kesten [11].

VAN DEN BERG–KESTEN LEMMA. Let n ∈ N and p ∈ (0,1), and let E and
F be increasing events defined on the cube {0,1}n. Then

Pp(E ◦ F)≤ Pp(E)Pp(F ).

The following substantial generalization of the van den Berg–Kesten Lemma
was conjectured by van den Berg and Kesten [11] and proved by Reimer [23].

REIMER’S THEOREM. Let n ∈N and p ∈ (0,1), and let E and F be arbitrary
events defined on the cube {0,1}n. Then

Pp(E ◦ F)≤ Pp(E)Pp(F ).
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We conclude the section with a little more notation. Given a set S, and p ∈
[0,1], say that A ∈ Bin(S,p) if the elements of A⊂ S are chosen independently
at random with probability p. If R is a rectangle in C([n]d × [k]
, r), then let

Pp(R) := P
(
R ∈ 〈A〉 |A ∈ Bin(R,p)

)
,

that is, the probability that A ∈ Bin(R,p) spans R.
A set is said to be occupied if it is nonempty (i.e., contains some element of A),

and it is said to be full if every site is in A. We shall use throughout the paper the
notation

q := − log(1− p)

as in [19]. Note that p ∼ q for small p. The advantage of this notation is the fact
that

βk

(
1− (1− p)n

)= e−gk(nq).(4)

For any a, b ∈ Z, we write [a, b] for the set {n ∈ Z :a ≤ n ≤ b}, and [a] = [1, a].
Given two functions f,g : N→R, we say that f � g if f (n)/g(n)→∞ as n→
∞. Whenever v is a vector, vj will be its j th coordinate. Finally, if G is an oriented
tree, then ��(u)= ��G(u) := {v ∈ V (G) :u→ v}.

3. A general upper bound. We begin by proving the upper bound in Theo-
rem 1. The proof is straightforward (though slightly technical); since essentially
the same method gives the upper bound in Conjecture 1 for all d and r , we shall
give the general argument. We refer the reader to [19] and [20] (see also [2, 27]
and [25]), where many of the ideas we shall use originated.

THEOREM 5. Let d, 
, r ∈ Z, with d ≥ r ≥ 2 and 
≥ 0, and let ε > 0. Suppose
n ∈N,

p ≥
(

λ(d + 
, 
+ r)+ ε

log(r−1) n

)d−r+1

,

and the elements of A ⊂ C∗([n]d × [2]
, r) are chosen independently at random
with probability p. Then

P
(
A semi-percolates in C∗([n]d × [2]
, r))→ 1

as n→∞. In particular,

pc([n]d, r)≤
(

λ(d, r)+ o(1)

log(r−1) n

)d−r+1
.
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The idea of the proof is quite simple, but the details are a little technical, so
we begin with some motivation. It follows from [13] that a “critical droplet” in
B([n]d, r) has size roughly [logn]d . Suppose a cube R of this size is completely
infected, and consider two “layers” next to it in some direction, which form a
copy S of [logn]d−1 × [2]. Since all vertices of R are infected, each vertex in
the layer of S adjacent to R has one already-infected neighbor, and so requires
only r − 1 more infected neighbors from inside S. Thus, if the set A ∩ S semi-
percolates (i.e., completely occupies the layer with threshold r−1) in the bootstrap
structure C∗([logn]d−1 × [2], r − 1), then the cube R will grow sideways by one
step. Hence, the critical droplet is likely to grow if percolation is likely to occur in
C∗([logn]d−1 × [2], r − 1).

Applying the same logic to the structure C∗([logn]d−1×[2], r−1), we see that
a critical droplet has size about [log logn]d−1×[2]. (It is important to note that we
only require the “top layer,” i.e., the vertices with threshold r − 1, to be infected.)
This droplet is likely to grow if semi-percolation is likely to occur in the copies of
C∗([log logn]d−2 × [2]2, r − 2) on its sides, and so on. Iterating r − 2 times, we
see that percolation is likely to occur in B([n]d, r) if semi-percolation is likely to
occur in C∗([log(r−1) n]d−r+2 × [2]r−2,2).

We begin with the base case, C∗([n]d × [2]
,2). Our first aim is to give a lower
bound on the probability that the set A semi-percolates in C∗([n]d × [2]
,2) by
considering one particular way in which the percolation may occur. Slightly more
precisely, we shall consider the growth of an infected “droplet” which begins life
in the bottom left-hand corner, and grows upward and rightward by “crossing rec-
tangles” as follows.

Let et be the site (0, . . . ,0,1,0, . . . ,0) ∈ Z
d+
 with a single 1 in position t . We

shall sometimes write 1
 to denote the vector (1, . . . ,1) ∈ [2]
.

DEFINITION. Let 2≤ n,d ∈N, 
 ∈N0, R ⊂ C∗([n]d×[2]
,2) be a rectangle,
and A⊂ [n]d × [2]
. For each t ∈ [d], let R+

t := {v /∈ R :v − et ∈ R, r(v)= 2} be
the set of vertices with threshold 2 immediately to the right of R, and R−

t := {v /∈
R :v + et ∈ R, r(v)= 2} be those immediately to the left of R, both right and left
being in direction t .

Now, let

AR
t :=

(
A∩ (R ∪R+

t )
)∪R−

t .

We say R is semi-crossed from left to right in direction t by A if the set [AR
t ]

contains all vertices in R with threshold 2.

In other words, if R is semi-crossed by A, and the sites with threshold 2 to the
left of R have already been infected, the sites of R with threshold 2 will then also
be infected.
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In order to bound the probability that a rectangle in C∗([n]d × [2]
,2) is semi-
crossed, we need to introduce the concept of an L-gap in a sequence of events.4

Let 
,m ∈N, and consider some sequence of events

E = {Ui : i ∈ [m+ 1]} ∪ {
V

(i)
j : i ∈ [
], j ∈ [m]}.

An L-gap in E is an event ¬(Ui ∨Ui+1 ∨ V
(1)
i ∨ · · · ∨ V

(
)
i ) for some i ∈ [m].

LEMMA 6. Let 
,m ∈N, let u ∈ (0,1), and suppose that each event in the set

E = {Ui : i ∈ [m+ 1]} ∪ {
V

(i)
j : i ∈ [
], j ∈ [m]}

occurs independently with probability u.
Let L(m,u) denote the probability that there is no L-gap in E . Then

β
+1(u)m+1 ≤L(m,u)≤ β
+1(u)m,

where β
+1(u) is the function defined in the Introduction.

PROOF. We partition the event that there is no L-gap in E into three cases, and
use induction on m. Let L(−1, u)= L(0, u)= 1, and note that β
+1(u) ∈ (0,1) for
u ∈ (0,1), so the induction hypothesis holds for m ∈ {−1,0}. So let m ∈ N, and
observe that either at least one of the events U1,V

(1)
1 , . . . , V

(
)
1 occurs, or none of

these occurs but U2 does, or none does and U2 also does not. Conditional on these
events, the probabilities that there is no L-gap are L(m−1, u), L(m−2, u) and 0,
respectively. Thus,

L(m,u)= (
1− (1− u)
+1)

L(m− 1, u)+ u(1− u)
+1L(m− 2, u)

for every m≥ 1. Furthermore,

β
+1(u)2 = (
1− (1− u)
+1)

β
+1(u)+ u(1− u)
+1,

and so the result follows by induction, as claimed. �

We now deduce the following bound on the probability that a rectangle is semi-
crossed.

LEMMA 7. Let 2 ≤ n,d ∈ N, 
 ∈ N0, R ⊂ C∗([n]d × [2]
,2) be a rectangle,
p ∈ (0,1) and A ∈ Bin(R,p). Let t ∈ [d] and write v(t) = ∏

i �=t ai and u(t) =
1− (1− p)v(t), where dim(R)= (a1, . . . , ad). Then

P(R is semi-crossed in direction t by A)≥ β
+1(u(t))at+1.

4Note that L-gaps are so named because of their shape; this L is not a variable.
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PROOF. Consider the sequence of events

E = {Ui : i ∈ [at + 1]} ∪ {
V

(i)
j : i ∈ [
], j ∈ [at ]},

where

Ui = {[a1] × · · · × [at−1] × {i} × [at+1] × · · · × [ad ] × 1
 is occupied
}

and

V
(i)
j = {[a1] × · · · × [at−1] × {j} × [at+1] × · · · × [ad ] × (1
 + ei) is occupied

}
.

As before, a set is said to be occupied if it contains at least one element of the
set A ⊂ R. Note that each of the events Ui and V

(i)
j occurs independently with

probability u(t).
We claim that if E has no L-gap, then R is crossed from left to right in direction

t by A. Indeed, let m be the minimal index such that some element of {v ∈R :vt =
m,r(v)= 2} is not in [AR

t ]. Then the event

¬(
Um ∨Um+1 ∨ V (1)

m ∨ · · · ∨ V (
)
m

)
holds, and is an L-gap. The result now follows by Lemma 6. �

For each p ∈ (0,1), and each n,d, 
, r ∈N0 with 2≤ r ≤ d , let P(n, d, 
, r,p)

denote the probability that a set A ∈ Bin(C∗([n+1]d×[2]
, r),p) semi-percolates
in [n]d × [2]
, that is, [n]d × 1
 ⊂ [A]. Note that we are allowed to use active sites
in the layer outside [n]d × [2]
; this technicality will help to simplify the proof
below.

The next lemma gives a lower bound on P(n, d, 
,2,p) by considering one way
in which the spanning could occur. Let

G(d, 
,2,p) := d
∫∞

0 g
+1(z
d−1) dz

p1/(d−1)
= dλ(d + 
, 
+ 2)

p1/(d−1)
.(5)

LEMMA 8. Let 2 ≤ n,d ∈ N, 
 ∈ N0, ε > 0, and p > 0 be sufficiently small.
Then

P(n, d, 
,2,p)≥ exp
(−(1+ ε)G(d, 
,2,p)

)
.

REMARK 2. Note that n does not appear in the expression on the right-hand
side.

PROOF OF LEMMA 8. Let n, d , 
, ε and p be as described, and let A ∈
Bin(C∗([n+ 1]d × [2]
,2),p). We shall describe sufficient conditions for semi-
percolation to occur. Let r := �p1/(2d−2)�, and let E0 denote the event that the
set

M0 :=
d⋃

j=1

{x ∈ [n]d × 1
 :xj ∈ [r] and xi = 1 if i �= j}
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is full, that is, M0 ⊂A. Now, for each j ∈ [d] and t ∈N, let

Rj(t) := {x ∈ [n]d :xj ∈ [tr + 1, (t + 1)r] and xi ∈ [tr] if i �= j} × [2]
,
and note that Rj(t) is a [tr]d−1 × [r] × [2]
-cuboid. Let Ej(t) denote the event
that Rj(t) is left-to-right semi-crossed in direction j by A.

We first claim that if E0 and Ej(t) hold for every j ∈ [d] and 1≤ t ≤ n/r , then
A semi-percolates in C∗([n]d × [2]
,2). Indeed, [r]d × 1
 ⊂ [A] since E0 holds,
so Rj(1) ⊂ [A] for each j ∈ [d] since Ej(1) holds. But if Rj(1) ⊂ [A] for each
j ∈ [d], then [2r]d × 1
 ⊂ [A]. Repeating this argument shows that [tr]d × 1
 ⊂
[A] for each t ≤ n/r .

It remains to bound the probability of the events E0 and Ej(t); since these
events are all increasing, by the FKG inequality we may bound the probability
of their intersection from below by the product of their probabilities. [Note that
they are not independent, since the event Ej(t) depends on the set A ∩ (Rj (t) ∪
(Rj (t))

+
j ).] It is easy to see that P(E0)≥ pdr , and by Lemma 7 and (4) we have

P(Ej (t))≥ β
+1
(
1− (1− p)(tr)

d−1)r+1 = exp
(−(r + 1)g
+1(q(tr)d−1)

)
.

Note also that

∞∑
t=1

g
+1(q(tr)d−1)≤ 1

q1/(d−1)r

∫ ∞
0

g
+1(z
d−1) dz

since g
+1(z) is decreasing on (0,∞). Thus,

P(A semi-percolates)

≥ P(E0)
∏
j,t

P(Ej (t))

≥ pdr exp

(
−d(r + 1)

∞∑
t=1

g
+1(q(tr)d−1)

)

≥ exp
(
− d

p1/(2d−2)
log

(
1

p

)
− d(r + 1)

q1/(d−1)r

∫ ∞
0

g
+1(z
d−1) dz

)

≥ exp
(
−(1+ ε)dλ(d + 
, 
+ 2)

p1/(d−1)

)

if p is sufficiently small (as a function of d and ε), as required. The last inequality
holds by (3), and because p ∼ q , r + 1∼ r and p−1/(2d−2) log(1/p)� p−1/(d−1)

as p → 0. �

Now we use Lemma 8 to prove Theorem 5 in the case r = 2.
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LEMMA 9. Let 2≤ d ∈N, 
 ∈N0, ε > 0, and

p =
(

λ(d + 
, 
+ 2)+ ε

logn

)d−1

.

Then

P(n, d, 
,2,p)→ 1

as n→∞.

PROOF. Let n, d and 
 be as given, and assume ε is sufficiently small. Recall
that the function G was defined in (5), and note that we have chosen p so that
G(d, 
,2,p) ≤ (1 − ε2)d logn. Let m = �p−3/(d−1)�, partition [n]d × [2]
 into
blocks of size [m]d × [2]
, and run �n/m�d independent bootstrap processes on
the intersection of A with each block. By Lemma 8, the probability that A semi-
percolates in at least one of them is at least

1− (
1− exp

(−(1+ ε3)G(d, 
,2,p)
))�n/m�d ≥ 1− (

1− n−(1−ε3)d)�n/m�d → 1

as n→∞, since nε3 �m.
Next, consider all [m]d−1 × [1]
+1 cuboids in [n]d × [2]
. If A semi-percolates

in some [m]d × [2]
 block, but A does not semi-percolate in C∗([n]d × [2]
,2),
then one of these cuboids must be empty. But pmd−1 ≥ p−2, so the probability
that at least one is empty is at most

dnd(1− p)m
d−1 ≤ dnd exp(−pmd−1)≤ dnd exp

(
−

(
logn

λ+ ε

)2)
→ 0

as n →∞, where λ = λ(d + 
, 
+ 2). Since the events “there exists an [m]d ×
[2]
 block in which A semi-percolates” and “all the [m]d−1 × [1]
+1 blocks in
[n]d × [2]
 are occupied” are both increasing events, the result follows by the
FKG inequality. �

Having proved the base case, the general result follows by a well-known and
standard method (see [20], for example). We use the following two straightforward
lemmas, which somewhat simplify the proof.

LEMMA 10 (Lemma 2 of [20]). For any d ≥ 3, 
≥ 0 and ε > 0, if n is suffi-
ciently large and p−2d ≤ nε , then

P(n, d, 
,3,p)≥ exp(−n1+ε).

SKETCH OF PROOF. Let m= 2d logn
p

, and consider the set

M =
d⋃

j=1

{x ∈ [n]d × 1
 :xj ∈ [n] and xi ∈ [m] if i �= j}.
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The probability that M ⊂A is at least pdmd−1n ≥ exp(−n1+ε), and the probability
that A semi-percolates given M ⊂ A is at least the probability that every [m] ×
[1]d+
−1 cuboid is occupied, which is at least 1− dnde−pm = 1− o(1). �

The next lemma was proved in [2] for G= [n]d and r = 2, but the proof gener-
alizes easily to our case.

LEMMA 11 (Aizenman and Lebowitz [2]). For each 2 ≤ r ≤ d ∈ N and

 ∈ N0, there exists δ = δ(d, 
, r) > 0 and C = C(d, 
, r) < ∞ such that, if
P(m,d, 
, r,p)≥ 1− δ, then

P(n, d, 
, r,p)≥ 1−Ce−n/m

for every n≥m.

SKETCH OF PROOF. First note that, by taking C large, we may assume that
n/m is sufficiently large, since otherwise the result is trivial. The idea is to partition
[n]d ×[2]
 into blocks of size (roughly) [m]d ×[2]
, and run the bootstrap process
independently in each block. Call a block B “active” if A ∩ B semi-percolates in
B , and “inactive” otherwise.

Suppose that A does not semi-percolate in [n]d . We claim that every connected
component of inactive [m]d -blocks must span two opposite sides of [n]d , that is,
must touch both faces of [n]d in some direction. Indeed, consider a component
X of inactive [m]d -blocks which does not span two opposite sides of [n]d . Let Y

denote the collection of sites with threshold r which are in blocks of X, but which
are not in [A]. We claim that Y is empty, and hence that X is empty.

Note that if a block B is on the boundary of X (but not in X), then it is active,
since X is a component. Thus, if x ∈ B , and r(x)= r , then x ∈ [A]. Hence, if Y

is nonempty, then it contains a site y with at least d infected neighbors (consider
the rightmost vertices in direction 1, then the rightmost of those in direction 2, and
so on). But then y ∈ [A], so y /∈ Y . This contradiction implies that Y is empty, as
claimed.

Finally, note that P(B is inactive)≤ δ, and so we may bound the probability of
the existence of a component of inactive blocks which spans two opposite sides of
[n]d using standard techniques from percolation theory. �

Lemma 11 has the following important consequence.

LEMMA 12. For each 2≤ r ≤ d ∈N and 
 ∈N0, there exists a constant δ′ =
δ′(d, 
, r) > 0 such that the following holds. Let n,m ∈ N, let ε,p > 0 and let
A ∈ Bin(C∗([n+ 1]d × [2]
, r),p). Suppose that

P(m,d − i, 
+ i, r − i, p)≥ 1− δ′
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for each 1≤ i ≤ r − 2, and that M/m is sufficiently large. Then,

P
([n]d × 1
 ⊂ [

A∪ ([M]d × 1
)
])≥ 1− ε,

and so, in particular,

P(n, d, 
, r,p)≥ (1− ε)P (M,d, 
, r,p)

whenever M ≤ n ∈N.

PROOF. For each t ∈N and S ⊂ [d], consider the set

Mt(S)= {
x ∈N

d :xi ∈ {t + 1, t + 2} if i ∈ S and xi ∈ [t] if i /∈ S
}
,

and let M∗
t (S)= {x ∈Mt(S) :xi = t + 1 if i ∈ S}. For each S ⊂ [d], define a boot-

strap structure Ct(S) on Mt(S)× [2]
 by giving threshold max{r − |S|,0} to the
elements of M∗

t (S) × 1
 and threshold r + 
 to the others. Observe that, when
r − |S| ≥ 2, this structure is a copy of C∗([t]d−|S| × [2]
+|S|, r − |S|).

CLAIM. Suppose that [m]d × 1
 ⊂ [A], and that Ct(S) is internally semi-
spanned for each ∅ �= S ⊂ [d] and each m≤ t ≤ n− 1. Then [n]d × 1
 ⊂ [A].

PROOF. It is sufficient to prove the claim for n=m+ 1. First let j ∈ [d], and
consider an element x ∈ M∗

m({j}) × 1
. It has a neighbor in [m]d × 1
. Thus, if
[m]d × 1
 ⊂ [A] and Cm({j}) is internally semi-spanned, then M∗

m({j}) × 1
 ⊂
[A].

In general, let ∂S = {S \ {i} : i ∈ [d]} denote the shadow of S, and observe that
the sets {M∗

m(U) :U ∈ ∂S} are pairwise disjoint. Thus, x ∈ M∗
m(S) × 1
 has |S|

neighbors in the set
⋃

U∈∂S M∗
m(U) × 1
. Hence, if

⋃
U∈∂S M∗

m(U) × 1
 ⊂ [A]
and Cm(S) is internally semi-spanned, then M∗

m(S) × 1
 ⊂ [A]. Hence, the sets
M∗

m(S)× 1
 are infected in order of increasing |S|. Finally, note that [m+ 1]d ×
1
 =⋃

S M∗
m(S)× 1
. �

Now, choose δ(d ′, 
′, r ′) and C(d ′, 
′, r ′) according to Lemma 11 for each 2≤
r ′ ≤ d ′ ∈ N and 
′ ∈ N0, and let δ′ = min{δ(d − i, 
+ i, r − i) : i ∈ [r − 2]} and
C = max{C(d − i, 
+ i, r − i) : i ∈ [r − 2]}. Then, using the FKG inequality and
Lemma 11,

P(n, d, 
, r,p)

≥ P(M,d, 
, r,p)

∞∏
t=M

(
1− ∑

S⊂[d]
[1− P(t, d − |S|, 
+ |S|, r − |S|)]

)

≥ P(M,d, 
, r,p)

∞∏
t=M

(1− 2dCe−t/m)

≥ (1− ε)P (M,d, 
, r,p)
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if M/m is sufficiently large, as required. �

We can now prove Theorem 5.

PROOF OF THEOREM 5. The proof is by induction on r . The theorem holds
for r = 2 by Lemma 9, so let r ≥ 3 and assume the result holds for all smaller
values of r , for all values of d ≥ r , 
≥ 0 and ε > 0. We shall fill the set [n]d in three
steps: First we use Lemma 10 to fill a cube of sidelength M ≈ (logn)1−ε; then we
use Lemma 12 to fill a cube of sidelength N = (logn)3; finally we show that such
an internally spanned cube exists somewhere in [n]d with high probability, and
that this cube grows to fill all of [n]d .

Let d , 
, r and ε be as described, let n be sufficiently large, and let

p ≥
(

λ(d + 
, 
+ r)+ ε

log(r−1) n

)d−r+1

.

Let δ = δ(d, 
, r, ε) > 0 be sufficiently small, and let m be defined by

log(r−2) m= (1− 2δ) log(r−1) n,

let M be defined by log(r−2) M = (1 − δ) log(r−1) n, and let N = (logn)3. Note
that M/m→∞ as n→∞.

First we give a lower bound on the probability that [M]d ×[2]
 is semi-spanned.

CLAIM 1. P(M,d, 
, r,p)� 1
n

as n→∞.

PROOF. When r = 3 this follows from Lemma 10. Indeed, note that logM =
(1− δ) log logn, so p−2d ≤ (log logn)2d2 ≤Mδ , and thus,

P(M,d, 
,3,p)≥ exp(−M1+δ)= exp
(−(logn)1−δ2)� 1

n
.

When r ≥ 4 the claim is even easier, since d logM ≤ d(log logn)1−δ � (1 −
δ) log logn, so

P(M,d, 
, r,p)≥ pMd � exp
(− log(1/p)(logn)1−δ)� 1

n
. �

Next we apply the induction hypothesis to show that semi-percolation is likely
to occur on the sides of [m]d × [2]
.

CLAIM 2. P(m,d− i, 
+ i, r− i, p)→ 1 as n→∞ for every 1≤ i ≤ r − 2.

PROOF. Observe that

p ≥
(

(1− 2δ)(λ(d + 
, 
+ r)+ ε)

log(r−2) m

)d−r+1

≥
(

λ(d + 
, 
+ r)+ δ

log(r−i−1) m

)d−r+1
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for each i ∈ [r − 2], if δ is sufficiently small. Thus, for each i ∈ [r − 2],
P(m,d − i, 
+ i, r − i, p)→ 1

as n→∞, by the induction hypothesis. �

Claim 2 allows us to apply Lemma 12. Combining this with Claim 1, we obtain

P(N,d, 
, r,p)≥ 1

2
P(M,d, 
, r,p)≥ 1

n

if n is sufficiently large. It follows, as there are (n/N)d � n pairwise disjoint
cubes, that, with high probability, there exists a cuboid C×1
 ⊂ [A] of size [N ]d×
1
 somewhere in [n]d × [2]
. Applying Lemma 12 and the FKG inequality once
more, we obtain

P(n− 1, d, 
, r,p)≥ (
1− o(1)

)
P

([n− 1]d × 1
 ⊂ [A∪ (C × 1
)])→ 1

as n→∞. One final application of the induction hypothesis to the sets {x ∈ [n]d×
[2]
 :xj = n} now gives P([n]d × 1
 ⊂ [A])→ 1 as n→∞, as required. �

4. Percolation on C([n]2 ×[k],2). In this section we shall prove the follow-
ing theorem and corollary, from which Theorem 2 follows.

THEOREM 13. For every ε > 0, there exists B0 > 0 and k0 : R+ → R
+ such

that the following holds for all B ≥ B0 and k ≥ k0(B)≥ 3. Let p > 0 be sufficiently
small, let R ⊂ C(B/p, k) be a rectangle with long(R)= B/p, and let the elements
of A⊂R be chosen independently at random with probability p. Then

P(R ∈ 〈A〉)≤ exp
(
−2λ(3,3)− ε

p

)
.

The following corollary is the technical statement which we shall need in Sec-
tion 5.

COROLLARY 14. For every ε > 0, there exist B,k0 > 0 such that if k ≥ k0, n

is sufficiently large, and the elements of A⊂ C(n, k) are chosen independently at
random with probability p = λ(3,3)−ε

logn
, then

P
(
long(R)≥ B logn for some R ∈ 〈A〉)≤ n−ε.

Our proof will be similar in structure to that given by Holroyd [19] in the
2-dimensional case; however, the proof does not follow from that of [19] in a
straightforward way. In fact, even our notion of a “hierarchy” is different, and this
makes “crossing a rectangle” somewhat harder. In Sections 4.1 and 4.2 we make
the necessary definitions and deal with the resulting technical problems. Finally,
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in Section 4.3 we sketch how the method of [19] may be used to complete the
proof.

One of the important ideas of Holroyd was that the bootstrap process in a
(B/p)× (B/p) rectangle may be broken up into a bounded number of steps, each
step being either the appearance of a small internally filled rectangle (a “seed”),
the growth of a rectangle sideways by ε/p, or the combination of two (not too
small) rectangles into a larger one. Moreover, and crucially, these steps are caused
by disjoint sets of active sites, so, having bounded the probability of each step, the
probability of a particular “hierarchy” of rectangles may be bounded from above
using the van den Berg–Kesten Lemma. The point is that there are either many
“sideways steps” or many seeds.

In our case the situation is a little more complicated, and we therefore have
to define the hierarchy slightly differently (see Section 4.1), using the concept of
internal spanning defined in Section 2. It is then somewhat trickier to bound the
probability that a rectangle grows sideways: we do this is Section 4.2. Bounding
the probability of a seed appearing is easy, as in [19].

We remark here, for ease of reference, that there will be various constants which
appear in the proof, which will depend on each other, but not on p. These will be
chosen in the order first B (for “big”), then δ, k and Z (for “seed”) together, and
finally T (for “tiny”), and will satisfy

T � δ,Z � 1� B � k.

In particular, we shall need that δ ≤ δ(B), k ≥ k(B, δ) and T ≤ T (Z, k, δ) in Lem-
mas 21 and 28, that δ ≤ δ(Z) in Lemma 28, and that Z ≤ Z(B, k) in Lemma 31.
Fortunately all of these inequalities can be satisfied simultaneously, as we shall
see.

4.1. Hierarchies. The purpose of this subsection is to prove Lemma 20, below,
which gives us our fundamental bound on the probability that A percolates. (Note
that we are now referring to full percolation, as opposed to the semi-percolation
studied in the previous section.) In order to state the lemma, we shall need to
define what we mean by a “good and satisfied hierarchy” of a rectangle R. In
this subsection we shall work in C([n]d × [k]
, r), since the proofs carry over to
the general case in a very natural way. We shall assume throughout that k ≥ 3,
although in fact our proofs also work in the case k = 2.

We begin by describing the algorithm by which we infect the sites of C([n]d ×
[k]
, r). It is slightly more complicated than the algorithm used in [19], and may
seem slightly unnatural at first. Defining a hierarchy in this way seems to be nec-
essary, however, and is perhaps the most crucial new idea in this paper.

MAIN ALGORITHM. At each step of the algorithm we have a collection of
rectangles R1, . . . ,Rm and a collection of disjoint sets A1, . . . ,Am ⊂ A such that
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〈Ai〉 = Ri for each i ∈ [m], that is, �([Ai]) is connected and Ri is the smallest
rectangle containing [Ai].

We begin by letting m = |A|, and partitioning A into single elements, that is,
|Ai | = 1 for each i ∈ [m]. Thus, each Ri = 〈Ai〉 is a 1× · · · × 1 rectangle (consid-
ered in [n]d ). At each step, we perform one of the following operations:

(a) If �([Ai])∪�([Aj ]) is connected, then we replace

(Ri,Ai) and (Rj ,Aj ) by (〈Ai ∪Aj 〉,Ai ∪Aj).

(b) If 2 ≤ t ≤ r + 
 is minimal such that [Aj(1) ∪ · · · ∪ Aj(t)] �= [Aj(1)] ∪ · · · ∪
[Aj(t)], then we replace the collection{(

Rj(1),Aj(1)

)
, . . . ,

(
Rj(t),Aj(t)

)}
by

(〈
Aj(1) ∪ · · · ∪Aj(t)

〉
,Aj(1) ∪ · · · ∪Aj(t)

)
.

When neither of the operations is possible, or when m= 1, we stop and output the
collection {R1, . . . ,Rm}.

We claim that, after each step, the sets {Aj : j ∈ [m]} are pairwise disjoint, and
�([Aj ]) is connected for each j ∈ [m], as required. For (a) this is obvious; for (b) it
follows because t was chosen to be minimal, and so one of the elements of [Aj(1)∪
· · ·∪Aj(t)] \ ([Aj(1)]∪ · · ·∪ [Aj(t)]) connects the components of �([Aj(1)]∪ · · ·∪
[Aj(t)]).

We make the following observation about the algorithm above.

OBSERVATION 15. For any A ⊂ C([n]d × [k]
, r), the output of the Main
Algorithm is 〈A〉.

Moreover, the diameter of the largest rectangle at most doubles at each step.
Thus, we have the following two key lemmas from [19]. (We remark that the first
was originally proved for [n]d in [2], and a version of the second for the hypercube
was independently proved in [3].)

LEMMA 16. Let A⊂ C([n]d × [k]
, r). If 1 ≤ L≤ diam([A]), then there ex-
ists a rectangle R, internally spanned by A, with

L≤ long(R)≤ 2L.

PROOF. Run the Main Algorithm for A. At some point along the way the
required rectangle must have been created. �

LEMMA 17. Let R ⊂ C([n]d × [k]
, r) be a rectangle, and suppose that
R ∈ 〈A ∩ R〉. Then, for some 2 ≤ t ≤ r + 
, there exist disjoint nonempty sets
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A1, . . . ,At ⊂ A, and rectangles U1, . . . ,Ut , such that 〈Ai〉 = Ui �= R for each
i ∈ [t], and 〈A1 ∪ · · · ∪At 〉 =R.

REMARK 3. Note that we prove that 〈A1 ∪ · · · ∪At 〉 = R, not just that 〈U1 ∪
· · ·∪Ut 〉 =R (as in previous versions of the lemma, see [3, 19]). This subtlety will
be important in the proof of Lemma 18 below.

PROOF OF LEMMA 17. Let A′ ⊂A∩R be minimal such that 〈A′〉 =R; such
a set must exist since R ∈ 〈A ∩ R〉. Run the Main Algorithm for A′ up until the
penultimate step. Whether the last step is of Type (a) or Type (b) we obtain, for
some 2≤ t ≤ r+
, disjoint nonempty sets A1, . . . ,At , as required. Indeed, 〈Ai〉 is
a rectangle for each i ∈ [t] by the definition of the algorithm, and 〈Ai〉 �= R since
A′ was chosen to be minimal. Finally, 〈A1∪· · ·∪At 〉 =R by Observation 15 since
〈A′〉 =R. �

We need one more important definition.

DEFINITION. Given two rectangles R ⊂ R′, let D(R,R′) denote the event
that

R′ ∈ 〈(A∪R)∩R′〉,
that is, the event that R′ is internally spanned by A∪R.

Note that the event D(R,R′) depends only on the set A∩ (R′ \R). Let

Pp(R,R′) := P
(
D(R,R′)|A ∈ Bin(R′,p)

)
.

DEFINITION. Let R be a rectangle in C([n]d × [k]
, r), and let p > 0. A hi-
erarchy H of R is an oriented rooted tree GH , with all edges oriented away from
the root (“downward”), together with a collection of rectangles {Ru :u ∈ V (GH )},
Ru ⊂ C([n]d × [k]
, r), one for each vertex of GH , satisfying the following crite-
ria:

(a) The root of GH corresponds to R.
(b) Each vertex has at most r + 
 neighbors below it.
(c) If u→ v in GH , then Ru ⊃Rv .
(d) If ��(u)= {v1, . . . , vt } and t ≥ 2, then 〈Rv1 ∪ · · · ∪Rvt 〉 =Ru.

A hierarchy is good for (T ,Z,p) ∈R
3 if:

(e) If ��(u)= {v} and | ��(v)| = 1, then φ(Ru)− φ(Rv) ∈ [T/p,2T/p].
(f) If ��(u)= {v} and | ��(v)| �= 1, then φ(Ru)− φ(Rv)≤ 2T/p.
(g) If | ��(u)| ≥ 2 and v ∈ ��(u), then φ(Ru)− φ(Rv)≥ T/p.
(h) If u is a leaf, then short(Ru)≤Z/p.
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(i) If u is not a leaf, then short(Ru) > Z/p.

A hierarchy is satisfied by A if the following events all occur disjointly:

(j) Ru is internally spanned by A whenever Ru is a seed (i.e., u is a leaf).
(k) D(Rv,Ru) whenever ��(u)= {v}.

The next lemma tells us that every internally spanned rectangle R has a good
and satisfied hierarchy. See also Proposition 32 of [19].

LEMMA 18. Let A ⊂ C([n]d × [k]
, r), let T ,Z > p > 0, and let R ⊂
C([n]d × [k]
, r) be a rectangle. Suppose that A internally spans R. Then there
exists a good and satisfied hierarchy of R.

PROOF. The lemma follows by an easy induction on φ(R). First note that
the result is immediate if short(R) ≤ Z/p, by choosing the hierarchy with one
element. Thus, in particular, the result holds if φ(R)≤ 2Z/p.

So let short(R) > Z/p, and apply Lemma 17. For some 2 ≤ t (1) ≤ r + 
, we
obtain disjoint sets A

(1)
1 , . . . ,A

(1)
t (1) ⊂ A and rectangles U

(1)
1 , . . . ,U

(1)
t (1), such that

〈A(1)
i 〉 =U

(1)
i �=R for each i ∈ [t (1)], and 〈A(1)

1 ∪ · · · ∪A
(1)
t (1)〉 =R. Choose one of

the rectangles U
(1)
j (1) with

φ
(
U

(1)
j (1)

)=max
{
φ

(
U

(1)
i

)
: i ∈ [t]},

and let S1 =U
(1)
j (1) and A1 =A

(1)
j (1). Note that 〈A1〉 = S1, and that φ(S1) < φ(R).

Now apply Lemma 17 to the rectangle S1 to get disjoint sets A
(2)
1 , . . . ,A

(2)
t (2) ⊂

A1 and rectangles U
(2)
1 , . . . ,U

(2)
t (2), and hence a pair (S2,A2) with 〈A2〉 = S2 =

U
(2)
j (2) as before. Repeat until one of the following occurs for some m ∈N:

(a) φ(R)− φ(Sm) ∈ [T/p,2T/p],
(b) φ(R)− φ(Sm)≥ 2T/p,
(c) short(Sm)≤Z/p.

Note that at least one of these must occur eventually, since φ(St+1) ≤ φ(St )− 1
for all t ∈N. There are four cases to consider:

Case 1: φ(R)− φ(Sm) ∈ [T/p,2T/p]. By induction, there exists a good [for
(T ,Z,p)] and satisfied (by Am) hierarchy H ′ of Sm. We create a good and satisfied
hierarchy H of R by adding a new root vertex, with a single neighbor (the root
vertex of H ′). It is easy to see that H is a good hierarchy for (T ,Z,p); it is
satisfied by A because the set A \ Am is a witness set for the event D(Sm,R),
since Am ⊂ Sm and R ∈ 〈A〉.



1352 J. BALOGH, B. BOLLOBÁS AND R. MORRIS

Case 2: φ(R) − φ(S1) ≥ 2T/p. There exist good and satisfied hierarchies
H1, . . . ,Ht (1) for U

(1)
1 , . . . ,U

(1)
t (1) respectively, where Hi is satisfied by A

(1)
i for

each i ∈ [t (1)]. We obtain a good and satisfied hierarchy H for R by adding a new
root vertex, with t (1) neighbors [the root vertices of H1, . . . ,Ht (1)]. This hierar-

chy is clearly satisfied by A; it is good because φ(R)−φ(U
(1)
i )≥ φ(R)−φ(S1)≥

2T/p for each i ∈ [t (1)].
Case 3: φ(R) − φ(Sm) ≥ 2T/p for some m ≥ 2. Since this is the first m

for which one of (a), (b) and (c) holds, it follows that φ(R) − φ(Sm−1) < T/p

and short(Sm−1) > Z/p. Note that therefore φ(Sm−1) − φ(U
(m)
i ) ≥ φ(Sm−1) −

φ(Sm)≥ T/p for each i ∈ [t (m)].
Let H1, . . . ,Ht (m) be good and satisfied hierarchies for U

(m)
1 , . . . ,U

(m)
t (m), re-

spectively. Define H by adding two new vertices: a new root vertex u, with
one neighbor v, which in turn has t (m) other neighbors [the root vertices of
H1, . . . ,Ht (m)]. Let Rv = Sm−1, and observe that H is good and satisfied.

Case 4: short(Sm) ≤ Z/p, but φ(R) − φ(Sm) < T/p. Let H1 be a good and
satisfied hierarchy for Sm (i.e., a single vertex), and form H by adding a root
vertex to H1. It is easy to see that H is a good and satisfied hierarchy for R. �

Given T ,Z > p > 0, let H(R,T ,Z,p) denote the collection of hierarchies
for R which are good for the triple (T ,Z,p). The next lemma makes the crucial
observation that there are only “few” possible hierarchies.

LEMMA 19. Let B,p > 0, let R ⊂ C([n]d × [k]
, r) with long (R) ≤ B/p,
and let T ,Z > p > 0. Then there exists a constant M =M(B,T , d, 
, r) such that

|H(R,T ,Z,p)| ≤Mp−M.

PROOF. Let H be a hierarchy in H(R,T ,Z,p), and consider a path from the
root of H to a leaf. By properties (e) and (g), out of every two consecutive steps
(not including the last), there is one which corresponds to a decrease in φ(R) of
at least T/p. These add up to at most dB/p, and thus, the tree G of H has depth
at most 2dB/T + 1. It also has maximal out-degree at most r + 
 by property (b).
Each such tree has at most V = 2(r + 
)2dB/T+1 vertices, and there are thus at
most (r + 
+ 1)V such trees.

Now, each rectangle may be chosen in at most (B/p)2d ways, and so there are
at most (B/p)2dV ways of choosing the rectangles. Thus, there are at most

(r + 
+ 1)V (B/p)2dV ≤ (
B(r + 
+ 1)

)2dV
p−2dV ≤Mp−M

possible hierarchies of R, where M = (B(r + 
+ 1))2dV . �

We are ready to prove the main lemma of this section. It gives us our basic
bound on the probability that A internally spans R. Recall that Pp(R) denotes the
probability that a rectangle R is spanned by a set A ∈ Bin(R,p).
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LEMMA 20. Let R be a rectangle in C([n]d × [k]
, r), T ,Z > p > 0, and
A ∈ Bin(R,p). Then

P(R ∈ 〈A〉)≤ ∑
H∈H(R,T ,Z,p)

( ∏
��(u)={v}

Pp(Rv,Ru)

) ∏
seeds u

Pp(Ru).

PROOF. Suppose R ∈ 〈A〉. Then, by Lemma 18, there exists a good and satis-
fied hierarchy H for V . But, by the van den Berg–Kesten Lemma, the probability
that H is satisfied by A is at most the product of the probability of the following
events:

(j) Ru is internally spanned by A whenever Ru is a seed (i.e., u is a leaf), and
(k) D(Rv,Ru) whenever ��(u)= {v}

since these occur disjointly. The result now follows by taking the union bound over
all possible hierarchies. �

4.2. Crossing a rectangle. We now return to the three-dimensional case,
C(n, k). We begin by defining what we mean by crossing a rectangle in C(n, k).
Our definition is a generalization of that for [n]2 in [19].

A path from left to right across a rectangle R = [(a, b), (c, d)] ⊂ C(n, k) is a
path from a point in the set {(x, y, z) ∈ R :x = a} to a point in the set {(x, y, z) ∈
R :x = c}.

DEFINITION. A rectangle R = [(a, b), (c, d)] ⊂ C(n, k) is said to be left-to-
right crossed (or just crossed) by A⊂ C(n, k) if the set A ∩ R has the following
property: let

A′ := (A∩R)∪ {(x, y, z) :x ≤ a − 1}.
Then there is path in [A′] from left to right across R.

We write H→(R) for this event, and define H←(R) (right-to-left), H↓(R) (top-
to-bottom) and H↑(R) (bottom-to-top) crossing of R similarly. (Here “top-to-
bottom,” e.g., means from a larger to a smaller second coordinate.) In [n]2 cross-
ing a rectangle is simple; one simply has to avoid “double gaps.” In C(n, k) more
things can go wrong, so we begin by bounding the event H→(R) (the others follow
by symmetry). In fact, and with foresight, we shall bound from above the function

h(R, 
) := max
W⊂R,|W |≤


{Pp(R is left-to-right crossed by A|W ⊂A)},
where we write Pp to mean A ∈ Bin(R,p). Note that Pp(H→(R))= h(R,0).

Recall the definition (1) of β(u) := β2(u) from the Introduction. In particular,
note that it satisfies

β(u)2 = (2u− u2)β(u)+ u(1− u)2.

The following lemma is the key (new) step in the proof of Theorem 13.
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LEMMA 21. Let B > 0, δ0(B) > δ > 0, and k ≥ 6e6B log(1/δ) + 2. There
exists a constant T = T (k, δ) > 0 such that the following holds. Let p > 0 be
sufficiently small, and let R be a rectangle in C(n, k), with dim(R)= (s,m), where
m≤ B/p and s ≤ T/p. Then, for any 
 ∈N with 2
≤ s,

β(u)s+1 ≤ Pp(H→(R))≤ h(R, 
)≤m3(
β(u)+ δ

)s−4

,

where u= 1− (1− p)m = 1− e−qm.

REMARK 4. To understand this lemma, the reader should think of B and k as
large, and of β(u), δ and T as constants, with δ smaller than 1−β(u) ∈ (0,1), and
T much smaller than δ. As we shall see later, the error terms m3, δ and 4
 on the
right-hand side do not matter much, and so the lemma gives an essentially sharp
upper bound on h(R, 
).

For the sake of simplicity, we shall assume that k is even in the proof of
Lemma 21; the proof for k odd is the same. Thus, we now replace k by 2k, and
throughout the remainder of this section we let R = [(1,1), (s,m)] ⊂ C(n,2k) be
a rectangle as in Lemma 21, and assume that the set {(0, y, z) : (1, y, z) ∈R} ⊂A.
We begin by defining some events which depend on the set A ∩ R ∈ Bin(R,p),
which we shall call blockers, savers and last chances (see Figure 1).

In Figure 1 the top left point of R is (1,1,1), the x-axis runs left-to-right, the z-
axis top to bottom and the y-axis into the page. Thus, the top and bottom surfaces

FIG. 1. Crossing R.
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of R (in the figure) have threshold 2, and every vertex not on one of these surfaces
has threshold 3. The shaded area on the left denotes the set A′ \R of “previously
infected” sites.

We begin by defining some sets, which are each 1×m× 1 columns (going into
the page). For each i ∈ [s] and j ∈ [k], let

Mi(j) := {(x, y, z) ∈R :x = i and z= j},
and let M ′

i (j) :=Mi(2k + 1− j).

DEFINITION. An L-blocker occurs at point (i, j) if the set

Mi(1)∪Mi(2)∪Mi+1(1)∪Mi(j)∪Mi(j − 1)∪Mi+1(j)

is empty (i.e., contains no element of A), where i ∈ [s − 1] and 2≤ j ≤ k. Define
an L′-blocker similarly, for the sets M ′

i (j).

The L-blockers act like the L-gaps of Section 3 (with 
= 1). The idea is that, if
k is sufficiently large, the probability that there is an L-blocker at point (i, j) for
some j ∈ [k] is about the same as the probability of an L-gap.

For each 1 ≤ i ≤ j ≤ s, let R[i, j ] = {(a, b, c) ∈ R :a ∈ [i, j ]}, and let R[i] =
R[i, i]. Moreover, let R+ = {(a, b, c) ∈ R : c ≤ k} and R− = R \ R+, and define
R+[i, j ] and R−[i, j ] accordingly.

A double gap in a cuboid C = [a1] × [a2] × [a3] is a pair of empty adjacent
planes in C, that is, a pair (i, j), with 0 ≤ j ≤ ai , such that {(x1, x2, x3) ∈ A ∩
C :xi ∈ {j, j + 1}} =∅. Note that this definition includes the case where just the
face of the cuboid is empty.

Our next definition deals with the possibility that, although Mi(j) may be empty
(in A), it may contain some element of [A].

DEFINITION. An 
-saver of Mi(j) is a cuboid C ⊂ R+[i, i + 
− 1] whose
left face intersects Mi(j), whose right face intersects Mi+
−1(j), and which has
no double gap.

An L-blocker at point (i, j) is said to be saved (or 
-saved) if there exists an 
-
saver of one of Mi(1), Mi(2), Mi+1(1), Mi(j), Mi(j − 1) and Mi+1(j), for some
2≤ 
≤ s. Otherwise, the L-blocker is unsaved.

We define 
-savers and L′-blockers in R− similarly, using the sets M ′
i (j).

We shall show (see Lemma 26 below) that an L-blocker is very unlikely to be
saved, and thus that the probability that there is an unsaved L-blocker at point
(i, j) for some j ∈ [k] is also about the same as the probability of an L-gap.

The following algorithm describes a method of trying to cross R+, and defines
the variable CA(R+) ∈ [0, s].
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CROSSING ALGORITHM. Set CA(R+) := 0 and x := 0, and repeat the fol-
lowing steps until either CA(R+)≥ s, or STOP:

1. If the set Mx+1(1)∪Mx+1(2) is occupied, then set x := x+1, and go to Step 5.
2. If the set Mx+2(1) is occupied, then set x := x + 2, and go to Step 5.
3. If Mx+1(1) ∪Mx+1(2) ∪Mx+2(1) is empty, but there is no L-blocker at point

(x + 1, j) for any 2≤ j ≤ k, then set x := x + 2, and go to Step 5.
4. Otherwise, let u ∈ [k] be minimal such that there is an L-blocker at point (x +

1, u). Set 
 := 2, and repeat the following steps until x + 
≥ s:
(a) If there exists an 
-saver of the L-blocker at point (x + 1, u), then set x :=

x + 
+ 1 and go to Step 5.
(b) Otherwise,

(i) If x + 
≥ s, then STOP.
(ii) Set 
 := 
+ 1 and go back to Step 4(a).

5. Set CA(R+) := x and go back to Step 1.

REMARK 5. Note that if an L-blocker is saved by an 
-saver, we “give away
for free” the next 
 + 1 columns, about which we now have “positive” informa-
tion (that some cuboid has no double gaps), in order to preserve independence.
However, we pay a price for this: the Crossing Algorithm is not monotone. [For
example, adding an infected site in Mi(1) is unhelpful if we would otherwise use a
10-saver of Mi(5).] It is for this reason that we will need to use Reimer’s Theorem.

Using the Crossing Algorithm, we come to the definition we shall use.

DEFINITION. Say that R+ is L-crossed up to the point x ∈ [s] if CA(R)≥ x.
Define L′-crossing of R− similarly, using L′-blockers and the sets M ′

i (j) in the
Crossing Algorithm.

If either R+ is L-crossed or R− is L′-crossed up to x, then say that R is un-
blocked up to x.

We shall use the following properties of L-crossing.

LEMMA 22. For any x, y ≥ 0,

Pp(R is L-crossed up to x + y |R[1, x] ⊂A)≤ Pp(R is L-crossed up to y).

PROOF. None of the elements of A∩R[1, x] are useful in crossing from x to
x + y. The inequality comes from the fact that there is less space to the right in
which to find 
-savers (only s − x instead of s). �

LEMMA 23. Let x ∈N be maximal such that R is unblocked up to x. Suppose
x ≤ s − 1. Then, for some (u, v) and (u′, v′), with max{u,u′} = x + 1 and v, v′ ∈
[k],
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(a) there is an unsaved L-blocker at point (u, v), and
(b) there is an unsaved L′-blocker at point (u′, v′).

Moreover, suppose u′ ≤ u, and let

X = {(a, b, c) ∈R :a < u′, or a < u and c ≤ 2k − v′}.
Then there is a witness set in X for the event “R is unblocked up to x.”

PROOF. This follows immediately from the Crossing Algorithm. �

We need one more definition. Let [A∩R]2 denote the closure of the set A ∩R

under the 2-neighbor rule.

DEFINITION. A last chance at distance y ≥ 0 is a path in [n]2, which uses
only vertices from the set

�([A∩R]2 ∪R[s + 1]),
from R[s + 1] to R[s − y + 1], that is, from the boundary of R on the right, to a
point at distance y from the boundary.

Finally our effort is rewarded: the following lemma shows why the events above
are important.

LEMMA 24. Let R ⊂ C(n,2k) be a rectangle as described in Lemma 21, and
let A⊂ R. If the event H→(R) occurs, then there exists some x ≤ s such that the
events,

(a) R is unblocked up to x, and
(b) there exists a last chance at distance y = s − x,

occur disjointly.

PROOF. Let R = [(1,1), (s,m)], and let x ∈ [s] be maximal such that R is
unblocked up to x. If x = s, then we are done, since there is always a last chance
at distance 0. Otherwise, by Lemma 23, there exists an unsaved L-blocker at (u, v)

and an unsaved L′-blocker at (u′, v′), say, where, without loss of generality, u′ ≤
u= x + 1. Moreover, writing

X = {(a, b, c) ∈R : a < u′, or a < u and c ≤ 2k − v′}
(see Figure 1), there is a witness set in A ∩X for the event “R is unblocked up to
x.” Suppose the event H→(R) occurs; we claim that there is a witness set in A \X

for the event “there exists a last chance at distance y = s − x.”
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Assume there is no such witness set, and let A′ = A ∪ {(0, b, c) :b ∈ [m], c ∈
[2k]}. We must show that there is no path across R in [A′]. Consider the set

Y =Mu(1)∪Mu(2)∪Mu+1(1)∪Mu(v)∪Mu(v − 1)∪Mu+1(v)

∪M ′
u′(1)∪M ′

u′(2)∪M ′
u′+1(1)∪M ′

u′(v
′)∪M ′

u′(v
′ − 1)∪M ′

u′+1(v
′),

where the sets Mi(j) and M ′
i (j) are as defined above. Observe that A ∩ Y = ∅,

since R has an L-blocker at point (u, v) and an L′-blocker at point (u′, v′).

CLAIM. [A′] ∩ Y =∅.

PROOF. This follows because the L-blocker and the L′-blocker are unsaved.
Indeed, suppose that [A′] ∩ Y is nonempty, and run the bootstrap process until
some element of Y is infected. Let w ∈ [A′] ∩ Y be the first element of Y infected
by A′, and let W denote the set of infected sites if the bootstrap process is stopped
as soon as w becomes infected. (To be precise, we choose an ordering v1, . . . , vt

of [A′] \ A′ such that |�(vi) ∩ (A′ ∪ {v1, . . . , vi−1})| ≥ r(vi) for each i ∈ [t], let
w = vj ∈ Y with j minimal, and let W =A′ ∪ {v1, . . . , vj }.)

There are two cases to consider: either w ∈R+ or w ∈R−. Consider the sets

W+ :=W ∩ {(a, b, c) ∈R :a ≥ u and c ≤ v}
and

W− :=W ∩ {(a, b, c) ∈R :a ≥ u′ and c ≥ 2k + 1− v′}.
If w ∈ R+, then let D denote the connected component in W+ containing w. If
w ∈R−, then let D denote the connected component in W− containing w. In both
cases, let C denote the smallest cuboid containing D.

First note that the vertices of Mu(1) ∪ M ′
u′(1) have only one neighbor in R

outside Y , and the vertices of Mu(v) ∪ M ′
u′(v

′) have only two neighbors in R

outside Y , and so w /∈ Mu(1) ∪ Mu(v) ∪ M ′
u′(1) ∪ M ′

u′(v
′), since it is the first

element of Y infected. Next, observe that w cannot lie in the right-hand edge of
C, since w would not have enough previously infected neighbors in [A′] to be
infected itself. For example, if w ∈ Mu(v − 1), then w would have at most two
previously infected neighbors, one in X and one in the row above. Thus, if C does
not have a double gap, then it is a saver of Mi(j), where w ∈Mi(j)⊂ Y .

But the blockers are unsaved, so C must have a double gap, U . Since C is the
smallest cuboid containing the connected component D, it follows that D contains
some member x ∈U . Let x be the first member of U to be infected; we claim that
in fact x must have fewer than r(x) infected neighbors, a contradiction.

Indeed, x has no neighbors in D \ C = ∅, and at most one infected neighbor
in C, since U is a double gap, and x is the first member of U to be infected.
Moreover, x has at most one neighbor in W \W± [since w /∈Mu(v) ∪M ′

u′(v
′)],
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and if r(x)= 2, then x has no neighbors in W \W± [since w /∈Mu(1)∪M ′
u′(1)]. It

follows that x has too few infected neighbors; this contradiction proves the claim.
�

Now, observe that the sites of R\(X∪Y) either have threshold 3 and at most one
neighbor in X, or have threshold 2 and no neighbors in X. Thus, given [A′] ∩ Y =
∅, it follows that [A′] is contained in the set X ∪ [A \X]2.

Recall our earlier assumption, that there is no witness set in R \ X for a last
chance at distance y = s−x. This means that there is no path in �([A\X]2) from
the right-hand edge of R to the set �(X), and so, since [A′] ⊂X∪[A\X]2, there is
no path across the rectangle R in �([A′]). So R is not crossed by A, contradicting
our assumption that the event H→(R) occurs.

We have shown that there exist witness sets for events (a) and (b) which lie in
A∩X and in A\X respectively. Thus, the events occur disjointly, as required. �

Now, define

a(x, 
)= max
W⊂R,|W |≤


Pp(R+ is L-crossed up to point x|W ⊂A).

Note that a(x, 
) is decreasing in x and increasing in 
. Most of the rest of the work
of this section will be to prove the following lemma, which gives us our bound on
a(x, 
).

LEMMA 25. Let the constants B, δ,p > 0 and n,m, s, k ∈N, and the rectan-
gle R ⊂ C(n,2k), be as in Lemma 21, and let u = 1 − (1 − p)m. Then, for any
x ∈ [s] and any 
 ∈N with 2
≤ s,

a(x, 
)≤ (
β(u)+ δ

)x−2

.

REMARK 6. Recall that k ≥ 6e6B log(1/δ)+ 2, and that s ≤ T/p, where T =
T (k, δ).

In order to prove Lemma 25, we must estimate the probability that a blocker is
saved. Since the proof is similar, and we shall need the result later, we shall also
bound the probability that a last chance occurs. For each y ∈ [s] each 
 ∈N, let

S(y, 
)=max
i,j

max|W |≤


{
Pp

(
Mi(j) has a y-saver|W ⊂A

)}
and

b(y, 
)= max|W |≤

{Pp(R has a last chance at distance y |W ⊂A)}.

LEMMA 26. Let 
, y ∈N, with y ≥ 2, and let n,m, s, k ∈N and the rectangle
R ⊂ C(n,2k) be as described in Lemma 21. Then,
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(a) S(y, 
)≤ 4m(y + 1)3(4kyp)�(y+1)/2�−
,
(b) b(y, 
)≤ 2my(6kyp)y/2−
.

We shall use the following simple observation in the proof of Lemma 26.

LEMMA 27. Let C ⊂ [n]3 be a cuboid with dim(C)= (u, v,w), and let p > 0.
Let L⊂ C with |L| = 
, and let A ∈ Bin(C,p). Then

P(C has no double gap |L⊂A)≤ (2uvp)�(w+1)/2�−
.

PROOF. We partition C into double slices D1, . . . ,Dw′ , where w′ = �(w +
1)/2�, by letting Di = {(x, y, z) ∈ C : z ∈ {2i − 2,2i − 1}} for each i ∈ [w′]. If C

has no double gap, then each Di is occupied, so let WL = {i ∈ [w′] :Di ∩L=∅},
and let w′′ = |WL| ≥w′ − 
.

Let us choose, for each i ∈ WL, an infected site di ∈ Di and let D = {di : i ∈
WL}. We have (2uv)w

′′
choices for the set D, and the probability that A contains

D \L is at most pw′′
, as required. �

We now prove Lemma 26.

PROOF OF LEMMA 26. Recall that R is a rectangle as in Lemma 21, and
let W ⊂ R with |W | ≤ 
. All probabilities in this proof will be conditional on the
assumption that W ⊂A. The proof in each case follows easily by counting cuboids
and using Lemma 27.

Indeed, recall that a y-saver of Mi(j) is a cuboid C ⊂R[i, i+ y− 1] such that:

• the left face of C intersects Mi(j),
• the right face of C intersects Mi+y−1(j), and
• C has no double gap.

Let long(C)= t ≥ y, and count cuboids. We have at most m choices for the “near-
most” point in Mi(j)∩C, and at most t3 choices for C, given this point (t choices
in direction 2, t2 choices in direction 3, and only one choice in direction 1). Note
that the shorter two dimensions of C are at most y and 2k respectively. Thus, by
Lemma 27, the probability that C has no double gap is at most

(4kyp)�(t+1)/2�−
.

Recall that y ≤ s ≤ T/p, and that we may choose T = T (k, δ) as small as we like.
Thus, we may assume that 4kyp is arbitrarily small. Hence, summing over t , we
get

S(y, 
)≤m

m∑
t=y

t3(4kyp)�(t+1)/2�−
 ≤ 4m(y + 1)3(4kyp)�(y+1)/2�−
,
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as claimed. In the second inequality, note that the maximum could occur at either
t = y or t = y + 1.

Next, consider b(y, 
), and recall that a last chance at distance y is a path in
�([A ∩ R]2 ∪ R[s + 1]) from R[s + 1] to R[s − y + 1]. We now have to count
rectangles (in [n]2), and bound the probability that each is crossed by the projection
of A.

Indeed, suppose there is such a (shortest) path P from R[s + 1] to R[s −
y + 1], and consider the smallest rectangle S ⊂ [n]2 containing the component
of �([A∩R]2) which contains P ∩R. Then S must have no double gap in �(A).
By Lemma 27 (applied to the cuboid S × {1} with density 2kp), the probability of
this is at most

(4kup)�(t+1)/2�−
,

where S is a u× t rectangle, and u ≤ t say. Since P ∩ R is a path from R[s] to
R[s − y + 1], we have t ≥ y. Also u≤ s ≤ T/p, so 4kup may be made arbitrarily
small by an appropriate choice of T .

Thus, summing over all rectangles S, and noting that we have at most 2m

choices for S for each pair (u, t), we obtain

b(y, 
)≤ 2m
∑

u,t :u≤t,y≤t

(4kup)�(t+1)/2�−
 ≤ 2my(6kyp)y/2−
,

as claimed. �

Now we use Lemma 26 to prove Lemma 25, that is, to bound from above the
probability that CA(R+)≥ x.

PROOF OF LEMMA 25. Suppose that β(u) + δ < 1 (the result is otherwise
trivial). We are required to prove that, for any x ∈ [s], any 
 ∈ N and any W ⊂ R

with |W | ≤ 
,

Pp

(
CA(R+)≥ x|W ⊂A

)≤ (
β(u)+ δ

)x−2

.

Note that Pp(CA(R+)≥ x) depends on s, and in fact is increasing in s (the prob-
ability of a saver existing increases with s). However, we shall only need the fact
that s is bounded from above by T/p, and so shall suppress this dependency on s.

The proof is by induction on x+ 
. If x ≤ 2
, then the result is immediate, since
a(x, 
)≤ 1. The induction step follows easily from the following claim.

CLAIM.

Pp

(
CA(R+)≥ x|W ⊂A

)
≤max

{
a(x − 2, 
− 1), (2u− u2)a(x − 1, 
)+ u(1− u)2a(x − 2, 
)

+ δ3a(x − 2, 
)+ 6
∑
y≥2

∑

′≥0

S(y, 
′)a(x − y − 1, 
− 
′)
}
.
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PROOF. It follows from the Crossing Algorithm (see also Lemma 6 of Sec-
tion 3) that one of the following holds:

• M1(1)∪M1(2) is occupied,
• M1(1)∪M1(2) is empty but M2(1) is occupied,
• M1(1) ∪ M1(2) ∪ M2(1) is empty but there is no L-blocker at (1, j) for any

j ∈ [k],
• there is a y-saver of an L-blocker at point (1, j) [where j and y are minimal, in

the sense that there is no L-blocker at (1, j ′) for any j ′ < j , and no y′-saver of
the L-blocker at (1, j) for any y′ < y],

• CA(R+)= 0.

Suppose first that W ∩R[1,2] �=∅. We claim that

Pp

(
CA(R+)≥ x|W ⊂A

)
≤max

{
a(x − 2, 
− 1),6

∑
y≥2

∑

′≥0

S(y, 
′)a(x − y − 1, 
− 
′)
}
.

Indeed, if one of the first three cases holds, then

Pp

(
CA(R+)≥ x|W ⊂A

)≤ a(x − 2, 
− 1),

by Lemma 22 (applied with x = 2) and the Crossing Algorithm. [Recall that
a(x, 
) is monotone in both x and 
.] On the other hand, consider the fourth case,
and recall that the event “there is a y-saver of an L-blocker at point (1, j)” means
that the six sets M1(1), M1(2), M2(1), M1(j), M1(j − 1) and M2(j) are empty,
and that at least one of them has a y-saver. Thus, our y-saver may lie either in
R[1, y] or in R[2, y + 1], and so

Pp

(
CA(R+)≥ x|W ⊂A,∃y-saver at point (1, j)

)≤ a(x − y − 1, 
− 
′),
where 
′ = |W ∩ R[1, y + 1]|. The probability such a y-saver exists is at most
6S(y, 
′), so

Pp

(
CA(R+)≥ x|W ⊂A

)≤ 6
∑
y≥2

∑

′≥0

S(y, 
′)a(x − y − 1, 
− 
′),

as required. Finally, in the fifth case Pp(CA(R+)≥ x)= 0.
Next suppose that W ∩R[1,2] =∅. Then Pp(CA(R+)≥ x) is bounded above

by a(x− 1, 
) in the first case, and by a(x− 2, 
) in the second and third cases, by
Lemma 22. Moreover, the probability that the first case occurs is 2u− u2 and the
probability of the second case is u(1− u)2.

Now recall that 1− u= (1− p)m ≥ e−2pm ≥ e−2B , since m≤ B/p. Thus, the
probability that the third case occurs is at most(

1− (1− u)3)(k−2)/2 ≤ (1− e−6B)(k−2)/2 ≤ δ3,

since k ≥ 6e6B log(1/δ)+ 2. The fourth and fifth cases are as before. �
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Next we use Lemma 26 and the induction hypothesis to bound the sum in the
claim. Indeed, if y ≥ 2 and 
′ ≥ 0, then

S(y, 
′)a(x − y − 1, 
− 
′)

≤ 4m(y + 1)3(4kyp)�(y+1)/2�−
′(β(u)+ δ
)x−y−1−2(
−
′)

.

Recall that y ≤ s ≤ T/p, and so 8kyp ≤ δ4 if T is chosen to be sufficiently small
compared with k and δ. Note also that mk2p2 ≤ Bk2p → 0 as p → 0. Thus,∑

y≥2

∑

′≥0

S(y, 
′)a(x − y − 1, 
− 
′)

≤ 2
∑
y≥2

4m(y + 1)3(4kyp)�(y+1)/2�(β(u)+ δ
)x−y−1−2


≤ 212m(12kp)2(
β(u)+ δ

)x−2
−4 ≤ δ3(
β(u)+ δ

)x−2
−2
.

Finally, recalling that

β(u)2 = (2u− u2)β(u)+ u(1− u)2,

and using the claim, the bounds above and the induction hypothesis, we get

Pp

(
CA(R+)≥ x|W ⊂A

)
≤ (

β(u)+ δ
)x−2
−2(

(2u− u2)
(
β(u)+ δ

)+ u(1− u)2 + 7δ3)
≤ (

β(u)+ δ
)x−2
−2(

β(u)2 + (2u− u2)δ + δ2)
≤ (

β(u)+ δ
)x−2


,

since δ < δ0(B)≤ 1/7 and 2u− u2 < β(u). �

Lemma 21 now follows easily from Lemmas 24–26.

PROOF OF LEMMA 21. The lower bound follows easily by Lemma 7, ap-
plied with d = 2 and 
= 1, since if R is semi-crossed (in the sense of Section 3),
then it is crossed (in the sense of this section). Note that dim(R) = (s,m), so
v(1) = m and u(1) = u, as required. We shall therefore concentrate on the upper
bound.

Let B > 0 and δ0(B) > δ > 0 be sufficiently small. We may assume that β(u)+
δ < 1, since otherwise the result is trivial. Let k ≥ 6e6B log(1/δ)+ 2 and let T be
chosen appropriately so that Lemmas 25 and 26 hold.

Let p > 0 be sufficiently small, and let R ⊂C(n, k) be a rectangle as described,
with dim(R)= (s,m), where m≤ B/p and s ≤ T/p. Let 2
≤ s, let W ⊂ R with
|W | ≤ 
, and let A ∈ Bin(R,p). We are required to show that

P(R is left-to-right crossed by A|W ⊂A)≤m3(
β(u)+ δ

)s−4

.
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Indeed, suppose that R is crossed by A. Then, by Lemma 24, there exists an
x ∈ [s] such that the events,

(a) R is unblocked up to the point x, and
(b) there is a last chance at distance y = s − x,

occur disjointly. Therefore, by Reimer’s Theorem,

P(R is left-to-right crossed by A|W ⊂A)≤
s∑

x=0

a(x, 
)b(s − x, 
).

Letting y = s − x, and applying Lemmas 25 and 26, we get

a(x, 
)b(y, 
)≤ (
β(u)+ δ

)x−2
 min{2my(6kyp)y/2−
,1} ≤m2(
β(u)+ δ

)s−4

,

since we may choose T small enough that 6kyp ≤ 6kT ≤ δ2. Indeed, either y <

2
, in which case x − 2
 > s − 4
, or y ≥ 2
, in which case

2my(6kyp)y/2−
 ≤m2δy−2
 ≤m2(
β(u)+ δ

)y−2

.

Hence,

P(R is left-to-right crossed by A|W ⊂A)≤m3(
β(u)+ δ

)s−4

,

as required. �

4.3. Proof of Theorem 13. In this section we complete the proof of Theo-
rem 13, using Lemmas 20 and 21 and the method of Holroyd [19]. We begin by
bounding the probability that a rectangle grows sideways by T/p.

Let R ⊂ R′ be rectangles in C(B/p, k), and recall from Section 4.1 the defini-
tion of D(R,R′), and that

Pp(R,R′)= P
(
D(R,R′)|A ∈ Bin(R′,p)

)
.

Let R1, . . . ,R8 be as in Figure 2. Moreover, let Rtop = R1 ∪ R2 ∪ R3, Rright =
R3 ∪R4 ∪R5, Rbottom =R5 ∪R6 ∪R7 and Rleft =R1 ∪R7 ∪R8. We have

Pp(R,R′)= Pp(R′ is internally spanned by A|R is internally filled)

≤ Pp

(
H→(Rright)∪H←(Rleft)∪H↑(Rtop)∪H↓(Rbottom)

)
.

Let g(z)= g2(z), the function defined in the Introduction. We shall deduce the
following lemma from Lemma 21.

LEMMA 28. Let B > 0, and let δ0(B) > δ > 0, Z0 > Z > 0 and k ∈ N

satisfy k ≥ 12e6B log(1/δ) + 2 and (6δ)2 < Z. Then there exists a constant
T = T (Z, k, δ) > 0 such that the following holds.
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FIG. 2. The rectangles R ⊂R’.

Let p > 0 be sufficiently small, and let R ⊂R′ ⊂C(B/p, k) be rectangles, with
dim(R) = (m,n) and dim(R′) = (m + s, n + t), where Z/p ≤ m,n ≤ B/p and
s, t ≤ T/p. Then

Pp(R,R′)≤m7n7(
β

(
u(n+ t)

)+ δ2)(1−δ)s(
β

(
u(m+ s)

)+ δ2)(1−δ)t

(6)
≤ (B/p)14 exp

(−(1− 2δ)
(
g(qn)s + g(qm)t

))
,

where u(x)= 1− (1− p)x = 1− e−qx .

PROOF. Let C = R1 ∪ R3 ∪ R5 ∪ R7 denote the corner areas of R′ \ R, and
let W = A ∩ C. Let 
 = |W |, and note that |C| = st ≤ (T /p)2. The idea is that,
since T may be chosen small compared with Z, it is likely that 
 will be small
compared with s and t , and so the events H→(Rright), H←(Rleft), H↑(Rtop) and
H↓(Rbottom) are “almost independent.”

To be precise, let us apply Lemma 21 to (appropriate rotations of) the rectangles
Rright, Rleft, Rtop and Rbottom, conditional on the event that |A ∩C| = 
. Let u1 =
u(n+ t) and u2 = u(m+s), and assume that δ is sufficiently small, so, in particular,
β(ui) + δ2 < 1 for i = 1,2. Let T = T (k, δ2) be chosen small enough so that
Lemma 21 holds, and so that (m + s)6(n + t)6 ≤ 2m6n6. Then, by Lemma 21,
applied to B , δ2 and k,

Pp

(
D(R,R′)||W | = 


)≤ h(Rright, 
)h(Rleft, 
)h(Rtop, 
)h(Rbottom, 
)

≤ 2m6n6(
β(u1)+ δ2)s−8
(

β(u2)+ δ2)t−8

.

We split into two cases: 8
 < δ min{s, t} and 8
 ≥ δ min{s, t}. In the first case
we have

Pp

(
D(R,R′) and 8|W |< δ min{s, t})
= ∑

8
<δ min{s,t}
Pp

(
D(R,R′)||W | ≤ 


)
(7)
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≤ δ(s + t)m6n6(
β(u1)+ δ2)s−8
(

β(u2)+ δ2)t−8


≤ m7n7

2

(
β

(
u(n+ t)

)+ δ2)(1−δ)s(
β

(
u(m+ s)

)+ δ2)(1−δ)t
.

In the second case, first note that |W | ∼ Bin(st,p), and so, if 8
≥ δ min{s, t},
then

Pp(|W | = 
)≤
(

st




)
p
 ≤

(
3pst




)


≤
(

24pst

δ min{s, t}
)


≤
(

50T

δ

)


.

Thus,

Pp

(
D(R,R′) and 8|W | ≥ δ min{s, t})
= ∑

8
≥δ min{s,t}
Pp

(
D(R,R′)||W | = 


)
Pp(|W | = 
)

(8)

≤ ∑
8
≥δ min{s,t}

2m6n6(
β(u1)+ δ2)s−8
(

β(u2)+ δ2)t−8

(

50T

δ

)


≤ 4m6n6(
β

(
u(n+ t)

)+ δ2)s(
β

(
u(m+ s)

)+ δ2)t
,

since T may be chosen so that 100T ≤ δ33. The first inequality follows from (7)
and (8).

To obtain the second inequality, recall that m,n≤ B/p, and that

e−g(qx) = β(1− e−qx)= β(u(x)).

Now, recall that m,n ≥ Z/p, so u(m+ s), u(n+ t) ≥ Z/2, that β(u) is increas-
ing in u, and that β(u) ≥√

u/2 for small u. Thus, β(ui) ≥
√

Z/3, and so, since
(6δ)2 < Z,

β(ui)+ δ2 ≤ β(ui)
1−δ

for i = 1,2. [Note that d
dx

(c+ x2 − c1−x)= 2x + c1−x log c < 0 if 0 < 2x < c <

1/e.] Therefore,

(
β(u1)+ δ2)(1−δ)s ≤ β(u1)

(1−δ)2s = e−(1−δ)2sg(q(n+t)) ≤ exp
(−(1− 2δ)sg(qn)

)
since g(x) is continuous, and qt ≤ 2T may be made arbitrarily small compared
with qn ≥ Z and δ. A similar inequality holds for β(u2) and t , and so the result
follows. �

We now rewrite the right-hand side of (6) in a more useful form. Define

Wg(a,b)= inf
γ : a→b

∫
γ

(
g(y) dx + g(x) dy

)
,
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where the infimum is taken over all piecewise linear, increasing paths from a to b
in R

2 (see Section 6 of [19]). Moreover, for any two rectangles R ⊂R′, let

U(R,R′)=Wg(q dim(R), q dim(R′)).
The following easy observation holds not only for g, but for any decreasing func-
tion.

OBSERVATION 29 (Proposition 12 of [19]).

Wg(a,b)≥ (b1 − a1)g(a2)+ (b2 − a2)g(a1).

The following corollary of Lemma 28 is now immediate.

COROLLARY 30. Under the conditions of Lemma 28,

Pp(R,R′)≤ (B/p)14 exp
(
−(1− 2δ)U(R,R′)

q

)
.

Next we bound the probability that a seed is internally spanned.

LEMMA 31. Let α > 0, Z > 0 and k ∈ N, with 2kZ ≤ e−4α . Let n ∈ N

and p > 0, let R ⊂ C(n, k) be a rectangle with short(R) ≤ Z/p, and let A ∈
Bin(R,p). Then

P(R ∈ 〈A〉)≤ e−αφ(R).

PROOF. Suppose dim(R) = (u, v), with u ≤ v. Note that if R ∈ 〈A〉, then R

has no double gap. Thus, by Lemma 27,

P(R ∈ 〈A〉)≤ (2kup)v/2 ≤ (2kZ)φ(R)/4 ≤ e−αφ(R),

as required. �

Finally, in order to deduce Theorem 13 from Corollary 30 and Lemmas 19, 20
and 31, we shall need some way to relate the quantities

∑
��(u)={v}U(Rv,Ru) and∑

seeds u φ(Ru). The following lemma, due to Holroyd [19], does this for us.

LEMMA 32 (Lemma 37 of [19]). Let n, k ∈ N and T ,Z,p > 0. For any hi-
erarchy H of a rectangle R ⊂ C(n, k) which is good for (T ,Z,p), there exists a
rectangle S = S(H)⊂R, with

φ(S)≤ ∑
seeds u

φ(Ru)

such that ∑
��(u)={v}

U(Rv,Ru)≥U(S,R)− (2qg(Z))
∣∣{u ∈H : | ��(u)| ≥ 2}∣∣.
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PROOF. This was proved in [19] only for [n]2, but the proof for C(n, k) is
exactly the same. �

Finally, we need the following simple modification of a lemma from [19].

LEMMA 33 (Proposition 14 of [19]). If a1 + a2 ≤ A and b = (B, b2), and
a2 ≤ b2, then

W(a,b)≥ 2
∫ B

A
g(z) dz−Bg(B).

We remark that Bg(B)→ 0 as B →∞, since g is integrable on (0,∞), or by
Proposition 3.

We are finally ready to prove Theorem 13.

PROOF OF THEOREM 13. Let ε > 0, and let B = B(ε), δ, k, α, Z and T =
T (Z, k, δ) be positive constants, chosen so that Lemmas 21, 28 and 31 all hold.
Thus, B , k and α are sufficiently large, and δ, Z and T are sufficiently small. In
particular, let α = 2B , k ≥ 10e6B log(1/δ), 6δ2 ≤ Z and kZ ≤ e−4α . It is easy to
see that we can satisfy these inequalities simultaneously, and that we have

T � δ,Z � 1� B � k.

Finally, we let p → 0, so p � T .
Let R ⊂ C(B/p, k) with long(R) = B/p, and let A ∈ Bin(R,p). By Corol-

lary 30 and Lemmas 19, 20 and 31, we obtain

P(R ∈ 〈A〉)
≤ ∑

H∈H(R,T ,Z,p)

( ∏
��(u)={v}

Pp(Rv,Ru)

) ∏
seeds u

Pp(Ru)

≤Mp−M(B/p)14M

× exp
(
− ∑

��(u)={v}

(1− 2δ)U(Rv,Ru)

q
− α

∑
seeds u

φ(Ru)

)
.

Now, applying Lemma 32, this becomes

P(R ∈ 〈A〉)≤M ′p−M ′
exp

(
−(1− 2δ)U(S,R)

q
− α

∑
seeds u

φ(Ru)

)

for some constant M ′, since g(Z)|V (GH )| is bounded above by a constant de-
pending only on B , Z and T .
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We split into two cases, depending on whether
∑

seeds u φ(Ru)≥ 1
Bp

or not, and
apply Lemma 33. In the former case, we get

P(R ∈ 〈A〉)≤M ′p−M ′
exp

(
−(1− 2δ)U(S,R)

q
− α

∑
seeds u

φ(Ru)

)

≤M ′p−M ′
exp

(
− α

Bp

)
≤ exp

(
−2λ(3,3)

p

)

since α = 2B , and p is sufficiently small. In the latter case note that φ(S)≤ 1
Bp

≤
2

Bq
, and that xg(x)→ 0 as x →∞. Thus, by Lemma 33,

P(R ∈ 〈A〉)≤M ′p−M ′
exp

(
−(1− 2δ)U(S,R)

q
− α

∑
seeds u

φ(Ru)

)

≤M ′p−M ′
exp

(
−2(1− 2δ)

q

(∫ B

2/B
g(z) dz−Bg(B)

))

≤ exp
(
−2λ(3,3)− ε

p

)

if B is sufficiently large and δ and p are sufficiently small, as required. �

4.4. Proofs of Corollary 14 and Theorem 2. We complete Section 4 by making
the easy final steps necessary to deduce Corollary 14 and Theorem 2.

PROOF OF COROLLARY 14. Let ε > 0, and let B = B(ε), k = k(B, ε) be
chosen according to Theorem 13. Let n= n(B, k, ε) be sufficiently large, let p =
λ(3,3)−ε

logn
, and let A ∈ Bin(C(n, k),p). We are required to show that

P
(
long(R)≥ B logn for some R ∈ 〈A〉)≤ n−ε.

Indeed, suppose long(R)≥ B logn for some R ∈ 〈A〉. By Lemma 16, there ex-
ists an internally spanned rectangle R′ ⊂R with (B/2) logn≤ long(R′)≤ B logn.
Then, by Theorem 13,

P(R′ ∈ 〈A∩R′〉) ≤ exp
(
−2λ(3,3)− ε

p

)

= exp
(
−

(
2λ(3,3)− ε

λ(3,3)− ε

)
logn

)
≤ n−(2+2ε),

if B is sufficiently large, since λ(3,3) < 1/2.
There are at most (B logn)2n2 ≤ n2+ε potential such rectangles R′. So, writ-

ing X(B) for the number of internally spanned rectangles R′ ⊂ C(n, k) with
(B/2) logn≤ long(R′)≤ B logn, we get

P
(
long(R)≥ B logn for some R ∈ 〈A〉)≤ E(X(B))≤ n−ε,
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as required. �

The proof of Theorem 2 is now immediate.

PROOF OF THEOREM 2. Let ε > 0, let k ≥K(ε) ∈ N be chosen according to
Corollary 14, and let δ > 0 satisfy δ ≤ (1 − δ)k . Finally, let n ∈ N be sufficiently
large. We are required to prove that

λ(3,3)− ε

logn
≤ pδ(C(n, k))≤ p

(s)
1−δ(C

∗(n,2))≤ λ(3,3)+ ε

logn
.

The lower bound is immediate from Corollary 14, which says that, moreover,
if p = λ(3,3)−ε

logn
, then with high probability (as n →∞) [A] has diameter only

O(logn).
The middle bound follows from the condition δ ≤ (1 − δ)k , and the fact that

there exist two copies (C1 and C2, say) of C∗(n,2) in C(n, k). Indeed, if p =
p

(s)
1−δ(C

∗(n,2)), then Pp(A percolates in C(n, k))≥ (1− δ)k for any 2≤ k ∈N.
To spell it out, we use induction on k. The result holds for the base case, k = 2,

because all sites in C(n,2) have threshold 2, so we may couple C(n,2) with two
overlapping copies of C∗(n,2), and use the FKG inequality.

For the induction step, let C1 be the copy of C∗(n,2) in C(n, k) with ver-
tex set {(x, y, z) : z ∈ {1,2}}, and let D be a copy of C(n, k − 1) on vertex set
{(x, y, z) : 2 ≤ z ≤ k}. Observe that if A ∩ C1 semi-percolates in C1, and A ∩D

percolates in D, then A percolates in C(n, k). Moreover, these events are increas-
ing in A, and have probability at least 1 − δ and (1 − δ)k−1 respectively, by the
induction hypothesis. Thus, the result follows by the FKG inequality.

Finally, the upper bound was proved in Section 3. Indeed, Theorem 5 (applied
in the case d = r = 2, 
= 1) says exactly that, if p = λ(3,3)+ε

logn
, then

Pp

(
A⊂ C∗(n,2) semi-percolates

)→ 1

as n→∞. �

5. Proof of Theorem 1. In this section we shall use Corollary 14 to prove
Theorem 1. To do so, we will borrow the ideas of Cerf, Cirillo and Manzo [12,
13], and also of Holroyd [20], who corrects a small error from [12, 13].

In order to state the main lemma of this section, we need a little notation. We
will be interested in two-colored graphs, that is, simple graphs with two types of
edges, which we shall label “good” and “bad.” We call such a two-colored graph
“admissible” if it either contains at least one bad edge, or if every component is a
clique. For any set S, let

�(S) := {admissible two-colored graphs with vertex set S × [2]}.
Now, given m ∈N, let

�(S,m) := {P = (G1, . . . ,Gm) :Gt ∈�(S) for each t ∈ [m]},
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FIG. 3. A graph GP , with S = [3] and m= 4.

the set of sequences of two-colored admissible graphs on S × [2] of length m. We
shall sometimes think of Gt as a colored graph on S × [2t − 1,2t], and trust that
this will cause no confusion. We shall be interested in probability distributions on
�(S,m) in which, with high probability, there are bad edges in only very few of
the graphs Gt .

Now, for each P ∈�(S,m), let GP denote the graph with vertex set S× [2m],
and the following edge set E(GP ) (see, e.g., Figure 3):

(a) GP [S × {2y − 1,2y}] =Gy ,
(b) {(x,2y), (x′,2y + 1)} ∈E(GP )⇔ x = x′,
(c) {(x, y), (x′, y′)} /∈E(GP ) if |y − y′| ≥ 2.

Edges in GP of types (a) and (b) are labeled good and bad in the obvious way,
to match the label of the corresponding edge in Gy . Thus, GP has three types of
edges: good, bad and unlabeled.

Such a graph GP , with S = [3] and m = 4, is pictured below. Note that, for
example, G3 has two edges: {(1,1), (2,1)} and {(3,1), (3,2)}, and that G4 must
contain a bad edge.

Given G ∈ �(S), let Eg(G) denote the set of good edges, and Eb(G) denote
the bad edges, so that E(G) = Eg(G) ∪ Eb(G). If uv is a good edge in G, then
we shall write u∼ v.

For each 1 ≤ i ≤ j ≤ 2m, we shall write GP [i, j ] for the subgraph of GP

induced by the set S × [i, j ], and V (Gt) for the vertex set of GP [2t − 1,2t]. For
each vertex v = (x, y) ∈ V (GP ), let

�P (v) := {
u ∈ V

(
G�y/2�

)
:u∼ v and u �= v

}
,

and let dP (v)= |�P (v)|. We emphasize that dP (v) is the number of good edges
incident with v.

We shall use the following simple calculation in the proof below.

LEMMA 34. Let m,r ∈ N and, for each t ∈ [r], let it , jt ∈ {1,2} and k(t) ∈
[m]. Let S be any finite set, and P = (G1, . . . ,Gm) be a random sequence of
admissible two-colored graphs on S × [2], chosen according to some (arbitrary)



1372 J. BALOGH, B. BOLLOBÁS AND R. MORRIS

probability distribution f� on �(S,m). Then

∑
x1,...,xr+1∈S

r∏
t=1

P
(
(xt , it )∼ (xt+1, jt ) in Gk(t)

)≤ |S|
(

max
v∈GP

E(dP (v))
)r

.

PROOF. This follows easily from the fact that E(dP (v)) = ∑
u P(u ∼ v). In-

deed, pulling constant factors through the summation signs, the left-hand side may
be rewritten as∑

x1,x2

(
P

(
(x1, i1)∼ (x2, j1)

)∑
x3

(
P

(
(x2, i2)∼ (x3, j2)

) · · ·
× ∑

xr+1

P
(
(xr , ir )∼ (xr+1, jr)

))
. . .

)
,

where |S| is the number of choices for x1. The result now follows by using the
inequalities ∑

xt+1

P
(
(xt , it )∼ (xt+1, jt ) in Gk(t)

)≤ max
v∈GP

E(dP (v))

for each t ∈ [r]. �

Finally, let X(P ) denote the event that there is a connected path across GP

(i.e., a path from the set S×{1} to the set S×{2m}). Observe that the event X(P )

holds for the graph GP depicted in Figure 3.
The following lemma is proved, but not stated, by Cerf and Cirillo [12], and by

Cerf and Manzo [13]. Since it is not immediately obvious how to read the result
out of their papers, we give a sketch of the proof.

LEMMA 35 (Cerf and Cirillo [12]). For each 0 < α < 1/2 and ε > 0, there
exists δ > 0 such that the following holds for all m ∈ N and all finite sets S with
α4|S|ε ≥ 1.

Let P = (G1, . . . ,Gm) be a random sequence of admissible two-colored graphs
on S × [2], chosen according to some probability distribution f� on �(S,m).
Suppose f� satisfies the following conditions:

(a) independence: Gi and Gj are independent if i �= j ,
(b) BK condition: for each t ∈ [m], r ∈N, and each x1, y1, . . . , xr , yr ∈ V (Gt),

P

(
r∧

j=1

(xj ∼ yj )∧
∧

j �=j ′
(xj �∼ xj ′)∧ (

Eb(Gt)=∅
))

≤
r∏

j=1

P(xj ∼ yj ),
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and for each t ∈ [m] and v ∈ V (GP ),

(c) bad edge condition: P(Eb(Gt) �=∅)≤ |S|−ε ,
(d) good edge condition: E(dP (v))≤ δ.

Then

P(X(P ))≤ αm|S|.
REMARK 7. In our application S will be the set [n]2, and will correspond

to the top (or bottom) layer of a copy of C(n, k). The pair uv will be an edge
of the graph Gt if u, v ∈ C(n, k) are in the same component of [A], where
A ∈ Bin(C(n, k),p). Edges will be labeled “good” if both endpoints lie in some
internally filled component of “small” diameter, that is, less than B logn, where
B > 0 is sufficiently large.

Condition (b) will be proved using the van den Berg–Kesten Lemma, condition
(c) using Corollary 14, and condition (d) by Lemma 36, below.

PROOF OF LEMMA 35. Let {z1, . . . , zt } ⊂ [m] denote the indices for which
Eb(Gz) �=∅, and note that this event has probability at most n−εt , where n := |S|.
Thus, the probability that t ≥ T := 3 log(1/α)m/(ε logn) is at most

2mn−3 log(1/α)m/ logn ≤ αm+1.

So suppose t ≤ T ; for each pair zj , zj+1, we shall count “shortest” paths between
the left- and right-hand sides of GP [1,2s] ∼=GP [2zj + 1,2(zj+1 − 1)].

Indeed, let X̃(2s) denote the event that there is a path across GP [1,2s], and
that Eb(Gz) = ∅ for each z ∈ [s]. We claim that if X̃(2s) holds, then there is a
sequence of (distinct) vertices (x1, i1), (y1, j1), . . . , (xr , ir ), (yr , jr) ∈ S × [1,2s],
with r ≥ s, such that:

• i1 = 1 and jr = 2s,
• xt+1 = yt and

it+1 − jt =
{

1, if jt = 0 (mod 2),
−1, if jt = 1 (mod 2),

for each t ∈ [r − 1],
• (xt , it )∼ (yt , jt ) for each t ∈ [r],
• (xt , it ) �∼ (xt ′, it ′) for each t �= t ′.
Indeed, to obtain such a path for which these events occur, simply choose a path
with r minimal. (Note that we use here that each graph Gt is admissible.) Let J
denote the collection of such sequences, that is, the collection of minimal paths
across GP . Summing over all sequences in J, we get

P(X̃(2s))≤∑
J

P

(
r∧

t=1

(
(xt , it )∼ (yt , jt )

)

∧ ∧
t �=t ′

(
(xt , it ) �∼ (xt ′, it ′)

)∧ s∧
t=1

(
Eb(Gt)=∅

))
.
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Now, using conditions (a), (b) and (d), and Lemma 34, it follows that

P(X̃(2s))≤∑
J

P

(
r∧

t=1

(
(xt , it )∼ (yt , jt )

)

∧ ∧
t �=t ′

(
(xt , it ) �∼ (xt ′, it ′)

)∧ s∧
t=1

(
Eb(Gt)=∅

))

≤∑
J

r∏
t=1

P
(
(xt , it )∼ (yt , jt )

)

≤∑
r≥s

4r |S|
(

max
v∈GP [1,2s]E(dP (v))

)r ≤ 2n(4δ)s,

assuming δ is sufficiently small. The term 4r comes from summing over all choices
of i1, j1, . . . , ir , jr .

Now, we simply sum over all choices of the set {z1, . . . , zt }. Recalling that t ≤
T = 3 log(1/α)m/(ε logn) ≤ 3m/4, and writing s(j) = zj+1 − zj − 1 for each
j ∈ [0, t] (let z0 = 0 and zt+1 =m+ 1), this gives

P(X(P ))≤ 2m
t∏

j=0

2n(4δ)s(j) ≤ 24m+1n1+3 log(1/α)m/(ε logn)δm−t

≤ nα−3m/εδm/4 ≤ αm+1n,

as required, since we may choose δ = δ(α, ε) as small as we like. �

In order to apply Lemma 35, we need to give an upper bound on the expected
number of good edges incident to any given vertex. The next lemma does this.
Given a bootstrap structure G on [n]d × [k]
, a set A⊂ V (G), a vertex x ∈ V (G)

and a number R > 0, define

�G(A,R,x) := {y ∈ V (G) : there exists an internally filled

connected component X ⊂ V (G) such that

x, y ∈X and diam(X)≤R}.
(This definition is important, and is due to Holroyd [20].) The following lemma,
together with Corollary 14, allows us to apply Lemma 35. Since the proof is the
same, and we shall need the result in [7], we prove it in C([n]d × [k]
,2).

LEMMA 36. Let 2 ≤ n,d ∈ N and 
 ∈ N0. There exists a function f (B, k)=
fd,
(B, k) such that, for any B > 0, any k ∈ N0 and any sufficiently small
p > 0, the following holds. Let G = C([n]d × [k]
,2), A ∈ Bin(V (G),p), R =
B/p1/(d−1), and x ∈ V (G). Then

E(|�G(A,R,x)|)≤ f (B, k)
(
log(1/p)

)3d+
+1
p.
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PROOF. Let A ∈ Bin([n]d × [k]
,p), let x, y ∈ [n]d × [k]
, and suppose ‖x−
y‖∞ = m. For each t ∈ N, let a(m, t) denote the maximal probability (over all
such choices of x and y) that there exists an internally filled connected component
X ⊂ [n]d × [k]
 such that x, y ∈ X and m+ 1 ≤ t = diam(X) ≤ B/p1/(d−1). We
shall bound a(m, t) from above.

Indeed, suppose such a component X exists, and let t := diam(X), so m+ 1 ≤
t ≤ B/p1/(d−1). We claim that

a(m, t)≤ t2dk2
(2tdk
p)�(t+1)/2�.

This bound follows by considering the smallest cuboid containing X. It has di-
ameter t , it contains x, and, since it is the smallest cuboid containing an inter-
nally filled component, it has no double gaps. There are at most t2dk2
 cuboids
of diameter t containing x, and the probability each has no double gap is at most
(2tdk
p)�(t+1)/2�. (This follows exactly as in the proof of Lemma 27.)

The above bound works well for small t ; for larger t we use the bound

a(m, t)≤ dt exp(−δt)

for some δ = δ(B, k) > 0, which follows because t ≤ B/p1/(d−1). Indeed, let t

be as above and choose vertices u, v ∈X with ‖u− v‖∞ + 1 = t . Assume t ≥ k,
so that, without loss of generality, u and v differ by t − 1 in direction 1. Then
the cuboid with dimensions [t] × [2B/p1/(d−1)]d−1 × [k]
, centered on x, with u

contained in one face and v in the opposite face, has no double gap in direction 1.
There are dt such cuboids, and so the probability that there exists such a cuboid
with no double gap is at most

dt
(
1− (1− p)2dBd−1k
/p)t/2 ≤ dt (1− δ)t ≤ dt exp(−δt),

if δ = δ(B, k) > 0 is chosen to be sufficiently small, as claimed.
Now, there are at most (2m+ 1)d+
 vertices at (infinity norm) distance exactly

m from x, and, hence,

E(|�G(A,R,x)|)≤
R∑

m=0

(2m+ 1)d+

R∑

t=m+1

a(m, t),

where R = B/p1/(d−1). Let M = 5(d+
) log(1/p)
δ

. The first bound on a(m, t) gives

M∑
t=m+1

a(m, t)≤
M∑

t=m+1

t2dk2
(2tdk
p)�(t+1)/2� ≤M2d+1k2
(2Mdk
p)�(m+2)/2�,

so

M∑
t=1

a(0, t)≤ 2M3d+1k3
p,
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and
M∑

t=m+1

a(m, t)≤ p if m≥ 1

and p is sufficiently small. Thus,

M∑
m=1

(2m+ 1)d+

M∑

t=m+1

a(m, t)≤M(2M + 1)d+
p.

On the other hand, the second bound gives

R∑
m=0

(2m+ 1)d+

R∑

t=M+1

a(m, t)≤ R(2R + 1)d+

R∑

t=M+1

dt exp(−δt)

≤ R(2R + 1)d+
dR2 exp(−δM)≤ p2.

Hence,

E(|�G(A,R,x)|)≤ 2M3d+1k3
p+M(2M + 1)d+
p+ p2 ≤ 3M3d+
+1k3
p

if p is sufficiently small, as required. �

We need to recall one more easy lemma from [12].

LEMMA 37. Let A ⊂ C([n]d × [k]
, r). Then for every 1 ≤ L ≤ diam([A]),
there exists a connected set X which is internally filled, that is, X ⊂ [A∩X], with

L≤ diam(X)≤ 2L.

PROOF. Add newly infected sites one by one, and note that in each step the
largest diameter of a component in [A] may jump from at most L− 1 to at most
2L − 1. Thus, at some point in the process the required set X must appear as a
component. �

We are now ready to prove Theorem 1.

PROOF OF THEOREM 1. The upper bound in Theorem 1 was proved in Sec-
tion 3; the lower bound is an immediate consequence of the following statement.
Let ε > 0, and n ∈N be sufficiently large. We shall show that if

p =
(

λ(3,3)− ε

log logn

)

and A ∈ Bin(B([n]3,3),p), then

P
(
diam([A])≥ logn

)≤ n−30.
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Indeed, let B and k0 be given by Corollary 14, let k ≥ k0, let A ∈ Bin(B([n]3,3),

p), where p is as above, and suppose diam([A]) ≥ logn. Then, by Lemma 37,
there exists an internally filled, connected set X with

logn− 1

2
≤ diam(X)≤ logn− 1.

Let u, v ∈X be vertices with ‖u−v‖∞+1=N := diam(X), and let R be an [N ]3
cube, containing X, and with u and v on opposite faces of R. Write (x, y, z) for
an arbitrary element of R, where x, y, z ∈ [N ], and let u ∈ {(x, y, z) ∈ X :x = 1}
and v ∈ {(x, y, z) ∈X :x =N}.

Now, let m= �N/k�, and partition the cube R into blocks B1, . . . ,Bm, each of
size [N ]2 × [k]. To be precise, let Bj = {(x, y, z) ∈ R :x ∈ [(j − 1)k + 1, jk]}.
[If N is not divisible by k, then replace v by an element of {(x, y, z) ∈ X :x =
km} (the “right-hand face” of Bm) and assume that {(x, y, z) ∈ R :x > km} ⊂A.]
Observe that, by our choice of u and v, there exists a path in [A∩R] from the set
{(x, y, z) ∈ R :x = 1} to the set {(x, y, z) ∈ R :x = km}. We shall use Lemma 35
to show that this is rather unlikely.

Indeed, to do so, we use the following coupling. Replace the thresholds in each
block Bj with those of C([N ]2 × [k],2), and allow percolation to occur indepen-
dently in each block. We obtain a set

⋃
j [A∩Bj ] of infected sites, which we shall

denote {A}. The following claim shows that this is indeed a coupling.

CLAIM 1. {A} ⊃ [A∩R].
PROOF. The claim follows easily from the observation that each vertex of

Bj has at most one neighbor in R \ Bj , and internal vertices of Bj [those with
x /∈ {(j − 1)k + 1, jk}] have no neighbors outside. Indeed, recall that a vertex
w = (x, y, z) in Bj originally had threshold 3, and now (in the coupled system)
has threshold 2+ I [x /∈ {(j − 1)k + 1, jk}]. Thus, the threshold of no vertex has
increased, and the threshold of those vertices which have a neighbor in R outside
Bj have decreased by one. Thus, {A} ⊃ [A∩R], as claimed. �

For each j ∈ [m], let {A}(j)= {A} ∩ Bj . Now, let S = [N ]2, and for each j ∈
[m], define a two-colored graph Gj on S × [2] by

xy ∈E(Gj) if and only if x̃ and ỹ are in the same component of {A}(j),

where x̃ is the element of {(j − 1)k + 1, jk} × [N ]2 corresponding to x in the
natural isomorphism, and

x ∼ y ⇔ there exists an internally filled connected component

X ⊂ {A}(j) such that x, y ∈X and diam(X)≤ B logn,

where x ∼ y means xy is a “good” edge, as before, and B > 0 was chosen above.
Note that Gj is admissible, since x ∼ y and y ∼ z in Gj implies that x and z are in
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the same component of {A}(j), and so either x ∼ z, or xz is a bad edge. Note also
that the event x ∼ y is increasing. We claim that the (random) sequence of admis-
sible two-colored graphs P := (G1, . . . ,Gm) ∈�(S,m) satisfies the conditions of
Lemma 35.

Indeed, recall that N ≤ logn, so

p ≤
(

λ(3,3)− ε

logN

)
.

Choose 0 < α ≤ e−100k , let ε′ = ε/3, and choose δ = δ(α, ε′) > 0 using
Lemma 35. By Corollary 14 (and our choice of B and k), for each j ∈ [m] we
have

P
(
diam({A}(j)) > B logN

)≤N−ε,

and by Lemma 36, applied with d = 2 and 
= 1, for any v ∈ V (Gj),

E(dP (v))= E(|�G(A,B logN,v)|)≤ δ

if n is chosen to be sufficiently large (and hence p sufficiently small).
Now, conditions (c) and (d) of Lemma 35 are satisfied (for δ and ε′), by the

comments above. Condition (a) is satisfied by construction. Condition (b) follows
because if x ∼ y and x′ ∼ y′, and there are no bad edges, then either all four points
are in the same internally spanned component with diameter at most B logn, or
they are in different components of {A}(j). So, if x �∼ x′, then the events x ∼ y

and x′ ∼ y′ must occur disjointly, and so we can apply the van den Berg–Kesten
Lemma.

Thus, we may apply Lemma 35, and deduce that

P
(
X(P )

)≤ α�N/k�N2 ≤ n−40

by our choice of α. Summing over all possible rectangles R, we see that

P
(
diam([A])≥ logn

)≤ n−30,

as required. This completes the proof of Theorem 1. �
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