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A VECTOR-VALUED ALMOST SURE INVARIANCE PRINCIPLE
FOR HYPERBOLIC DYNAMICAL SYSTEMS

BY IAN MELBOURNE1,2 AND MATTHEW NICOL1,3

University of Surrey and University of Houston

We prove an almost sure invariance principle (approximation by d-di-
mensional Brownian motion) for vector-valued Hölder observables of large
classes of nonuniformly hyperbolic dynamical systems. These systems in-
clude Axiom A diffeomorphisms and flows as well as systems modeled by
Young towers with moderate tail decay rates.

In particular, the position variable of the planar periodic Lorentz gas with
finite horizon approximates a two-dimensional Brownian motion.

1. Introduction. The scalar almost sure invariance principle (ASIP), or ap-
proximation by one-dimensional Brownian motion, is a strong statistical property
of sequences of random variables introduced by Strassen [40, 41]. It implies nu-
merous other statistical limit laws including the central limit theorem, the func-
tional central limit theorem, and the law of the iterated logarithm. See [22, 37] and
references therein for a survey of consequences of the ASIP.

The scalar ASIP has been shown to hold for large classes of dynamical systems
[13, 16, 17, 20, 23, 24, 29, 30, 34]. Chernov and Dolgopyat [9], Problem 1, asked
for a proof of the ASIP for R

d -valued observables, and it is this problem that
is solved in this paper. Our main result applies to a large variety of dynamical
systems, as surveyed in Section 4.

As a secondary matter, we obtain explicit error estimates that depend on the
dimension d and the lack of hyperbolicity. Even for d = 1, this estimate is better
than those in almost all of the above references. The exception is [20] which gives
the best available estimate for scalar ASIPs for a restricted class of systems.

1.1. Statement of the main results. Throughout, we use “big O” and � nota-
tion interchangeably, writing aN = O(bN) or aN � bN (as N → ∞) if there is
a constant C ≥ 1 such that aN ≤ CbN for all N ≥ 1.
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DEFINITION 1.1. A sequence {SN } of random variables with values in R
d

satisfies a d-dimensional almost sure invariance principle (ASIP) if there exists
λ > 0 and a probability space supporting a sequence of random variables S∗

N and
a d-dimensional Brownian motion W(t) such that:

(a) {SN ;N ≥ 1} =d {S∗
N ;N ≥ 1}, and

(b) S∗
N = W(N) + O(N1/2−λ) as N → ∞ almost everywhere.

For brevity, we write SN = W(N)+O(N1/2−λ) a.e. The ASIP for a one-parameter
family ST of R

d -valued random variables is defined similarly, and denoted ST =
W(T ) + O(T 1/2−λ) a.e.

REMARK 1.2. The ASIP is said to be nondegenerate if the Brownian mo-
tion W(t) has nonsingular covariance matrix �. For the classes of dynamical sys-
tems considered in this paper, the ASIP is nondegenerate for typical observables.
More precisely, there is a closed subspace Z of infinite codimension in the space
of all (piecewise) Hölder R

d -valued observables such that � is nonsingular when-
ever φ /∈ Z. (By considering all one-dimensional projections it suffices to consider
the case d = 1. This is done explicitly in, e.g., [24], Section 4.3.)

AXIOM A (Diffeomorphisms and flows). Our results are most easily stated in
the uniformly hyperbolic (Axiom A) context. Let f :M → M be a C1 diffeomor-
phism on a manifold M . A compact f -invariant set X ⊂ M is uniformly hyperbolic
if there is a continuous Df -invariant splitting Es ⊕Eu of the tangent bundle TXM

and constants C1 > 0, λ ∈ (0,1) such that for all n ≥ 0 and x ∈ X,

‖(Df n)xv‖ ≤ C1λ
n‖v‖, v ∈ Es, ‖(Df −n)xv‖ ≤ C1λ

n‖v‖, v ∈ Eu.

The subset X is a uniformly hyperbolic basic set if in addition (i) it is transitive
(there is a dense orbit {f nx0 :n ≥ 0} in X) and (ii) it is locally maximal (there exists
a neighborhood U of X such that every f -invariant subset of U is contained in X).
Such a basic set is nontrivial if it is not a periodic orbit. Analogous definitions
hold for flows ft :M → M allowing for the one-dimensional direction along the
flow. (See [39] or [35], Appendix III, for further details on uniformly hyperbolic
diffeomorphisms and flows.)

THEOREM 1.3. Let f :M → M be a diffeomorphism with a (nontrivial) uni-
formly hyperbolic basic set X ⊂ M , and suppose that μ is an equilibrium measure
corresponding to a Hölder potential. Let φ :X → R

d be a mean zero Hölder ob-
servable with partial sums SN = ∑N

n=1 φ ◦ f n. Then for any ε > 0,

SN = W(N) + O(Nβ+ε) a.e., where β = 2d + 3

4d + 7
.

(The improved estimate β = 1
4 holds when d = 1 [20].)
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An immediate consequence (see, e.g., [16, 31]) is the corresponding result for
Axiom A flows.

COROLLARY 1.4. Let ft :M → M be a smooth flow with a (nontrivial) uni-
formly hyperbolic basic set X ⊂ M , and suppose that μ is an equilibrium measure
corresponding to a Hölder potential. Let φ :X → R

d be a mean zero Hölder ob-
servable with partial sums ST = ∫ T

0 φ ◦ ft dt . Then for any ε > 0,

ST = W(T ) + O(T β+ε) a.e., where β = 2d + 3

4d + 7
.

(The improved estimate β = 1
4 holds when d = 1 [20, 31].)

REMARK 1.5. Denker and Philipp [16] proved Theorem 1.3 and Corollary 1.4
in the case d = 1 (though with a weaker error term).

Nonuniformly hyperbolic systems. Our results apply also to maps f :M →
M that are nonuniformly expanding/hyperbolic in the sense of Young [44, 45].
Roughly speaking, such maps possess a subset � ⊂ M and a return time R :� →
Z

+ such that the induced map f R :� → � is uniformly hyperbolic. In particular,
f satisfies conditions (A1)–(A4) in Section 4.2 and possesses an SRB measure m.

THEOREM 1.6. Let f :M → M be a diffeomorphism (possibly with singu-
larities) that is nonuniformly hyperbolic in the sense of Young [44, 45]. Assume
that the return time function R lies in Lp , p > 2. Let φ :M → R

d be a mean zero
Hölder observable with partial sums SN = ∑N

n=1 φ ◦ f n. Then there exists λ > 0
such that

SN = W(N) + O(N1/2−λ) a.e.

REMARK 1.7. Again, we obtain explicit estimates for the error term in the
form O(Nβ+ε), where ε > 0 is arbitrarily small and β depends on d ≥ 1 and
p > 2 as follows: for d ≥ 1, we have

β = 1/p + B/2

1 + B
, B =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

4pd + 6p − 4

p − 2
; 2 < p ≤ 3 − 1

2d + 3
,

12d + 18; 3 − 1

2d + 3
≤ p ≤ 20d + 29

6d + 9
,

4d + 4

p − 3
; 20d + 29

6d + 9
≤ p ≤ 4 − 1

2d + 3
,

4d + 6; p ≥ 4 − 1

2d + 3
.

In particular, β = 1/p+2d+3
4d+7 for p ≥ 4 − 1

2d+3 .

For d = 1, we have the improved result β = 1
2p

+ 1
4 for 2 < p ≤ 4 and β = 3

8
for p ≥ 4.
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Again, there is an immediate extension to nonuniformly hyperbolic flows. Sup-
pose that f :M → M satisfies the assumptions of Theorem 1.6 with R ∈ Lp ,
p > 2, and that ft is a suspension flow over f with a (uniformly bounded) Hölder
roof function. By [31], R

d -valued Hölder observables of the suspension flow sat-
isfy an ASIP of the form ST = W(T )+O(T β+ε) a.e. where β is as in Remark 1.7.

Application to Lorentz gases. The planar periodic Lorentz gas was studied by
Sinai [38]. This is a three-dimensional flow with phase space (R2 − �) × S1,
where � ⊂ R

2 is a periodic array of disjoint convex regions with C3 boundaries.
The coordinates are position q ∈ R

2 − � and velocity v ∈ S1. The flow satisfies
the finite horizon condition if the time between collisions with ∂� is uniformly
bounded.

Let q(t) ∈ R
2 denote the position at time t of a particle starting at position q(0)

pointing in direction v(0). Bunimovich and Sinai [5], see also [6], proved that q(t)

satisfies a two-dimensional functional central limit theorem (weak invariance prin-
ciple) supporting the view of such flows as a deterministic model for Brownian
motion. We complete this circle of ideas by proving the strong version of this re-
sult.

THEOREM 1.8. Consider a planar periodic Lorentz gas satisfying the finite
horizon condition. Let ε > 0. There is a two-dimensional Brownian motion W(t)

with nonsingular covariance matrix such that for almost every initial condition,
q(T ) = W(T ) + O(T 7/15+ε).

REMARK 1.9. (a) A number of authors [8, 29, 34] have independently es-
tablished scalar ASIPs for one-dimensional projections of q(t). In hindsight, the
scalar ASIP for the Lorentz gas follows from earlier work of [20], again with
β = 1

4 . (We note that the methods of [20] apply in the first place only to the time-
reversal of the dynamical system under study. Their applicability here is due to the
fact that the class of systems is closed under time-reversal.)

(b) The finite horizon condition is crucial. For infinite horizons, Szász and
Varjú [42] prove that q(t) lies in the nonstandard domain of the normal distrib-
ution. In particular, the central limit theorem fails, hence the ASIP fails.

1.2. Consequences of the vector-valued ASIP. For convenience, we suppose
that the Brownian motion in the ASIP is nondegenerate. Coordinates can be chosen
on R

d so that W(t) is a standard d-dimensional Brownian motion with � = Id .
Throughout, the norm on R

d is taken to be the usual Euclidean norm. The fol-
lowing consequences of the ASIP are summarized in [33], page 233. Here, LIL
stands for law of the iterated logarithm and the functional LIL stated below is a
far-reaching generalization, due to Strassen, of the classical LIL.

PROPOSITION 1.10. For the dynamical systems to which the results in this
paper apply, the following consequences hold (after normalization so that � = Id ):
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• Functional LIL. Let C = C([0,1],R
d) be the Banach space of continuous maps

f : [0,1] → R
d with the supremum norm. Let K be the (compact) set of f ∈ C

absolutely continuous with f (0) = 0,
∫ 1

0 |f ′(t)|2 dt ≤ 1. Define fn(i/n) =
Si/

√
2n log logn, i = 0, . . . , n, and linearly interpolate to obtain fn ∈ C. Then

a.s. the sequence {fn} is relatively compact in C and its set of limit points is
precisely K .

• Upper and lower class refinement of the LIL. Let φ : R → R be a positive non-
decreasing function. Then

P
(|SN | > N1/2φ(N) i.o.

) = 0 or 1

according to whether
∫ ∞

1
φd(u)

u
exp(−1

2φ2(u)) du converges or diverges.
• Upper and lower class refinement of Chung’s LIL. Let φ : R → R be a positive

nondecreasing function. Then there is a constant c (depending only on d) such
that

P

(
max
n≤N

|Sn| < cN1/2φ−1(N) i.o.
)

= 0 or 1

according to whether
∫ ∞

1
φ2(u)

u
exp(−φ2(u)) du converges or diverges.

• Central limit theorem and functional central limit theorem.

REMARK 1.11. (a) Berger [3] gives a unified approach to the ASIP for weakly
dependent sequences of random variables with values in a real separable Ba-
nach space, but with error term o(

√
N log logN). It follows from Berger [3],

Corollary 4.1, part A.5, and Melbourne and Nicol [29] that the Banach space-
valued ASIP formulated in [3], Theorem 3.2, holds for all dynamical systems
considered in this paper. In particular, the R

d -valued ASIP holds with error term
o(

√
N log logN). This error term suffices for the functional LIL, but is inadequate

for the upper and lower class refinements and for the (functional) central limit the-
orem; whereas the error term established in this paper suffices. Indeed this was
the original motivation of Jain, Jogdeo and Stout [25] to improve the error term in
Strassen’s scalar ASIP.

(b) The R
d -valued functional central limit theorem, being a distributional result,

can be proved directly under the more general condition R ∈ L2 in Theorem 1.6:
reduce as in this paper to the setting in Section 3 and then apply the method of [20],
Section 3.3.

We end this section by discussing briefly the probabilistic methods used in
this paper. Strassen’s original proof of the scalar ASIP for IIDs and martingales
[40, 41] relies heavily on the Skorokhod embedding theorem for scalar stochas-
tic processes. This method was extended to weakly dependent sequences of ran-
dom variables by a number of authors, using blocking arguments to reduce to the
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martingale case, see [37]. In particular, Philipp and Stout [37], Theorem 7.1, for-
mulated a version of the scalar ASIP which is particularly useful for dynamical
systems [16, 23, 29].

Attempts to extend Strassen’s proof to the R
d -valued situation were only par-

tially successful [26], and the same is true for the completely different quantile
transform method of Csörgő and Révész [14]. Eventually, Berkes and Philipp [4]
introduced a third method which works in any number of dimensions, and the ap-
plicability of this method was extended to weakly dependent sequences by Kuelbs
and Philipp [27].

The remainder of the paper is organized as follows: in Section 2, we combine
the blocking argument in [37] with the results of [4, 27] to prove a vector-valued
ASIP for R

d -valued random variables satisfying certain hypotheses. In Section 3,
we verify these hypotheses for Gibbs–Markov maps and derive Theorem 1.3 as
a consequence. In Section 4, we first prove the ASIP for nonuniformly expanding
maps and then prove Theorems 1.6 and 1.8. We also list numerous other situations
to which our results apply, and we mention some open problems regarding time-
one maps of flows.

2. A vector-valued ASIP for functions of mixing sequences. In this section,
we prove a vector-valued ASIP for R

d -valued random variables satisfying certain
hypotheses. This is the vector-valued analogue of [37], Theorem 7.1, though with
hypotheses tailored to the dynamical systems setting. (A result of this type is hinted
at in Kuelbs and Philipp [27], but it is necessary to work through the details to
determine the hypotheses, which were left unstated. In any case, the estimates in
(2.2) and (2.4) are not so natural in the probabilistic setting in [27], and partly
account for our strong error term.)

2.1. Statement of the ASIP. Let ξ1, ξ2, . . . be a sequence of real-valued random
variables and let F b

a = σ {ξn;a ≤ n ≤ b}. We assume the strong-mixing hypothesis

|P(AB) − P(A)P (B)| ≤ Cτn for all A ∈ F k
1 and B ∈ F ∞

k+n,(2.1)

where τ ∈ (0,1).
Let p > 2, and let ηn be a strictly stationary sequence of F ∞

n -measurable
R

d -valued random variables in Lp satisfying Eηn = 0. We assume the following
(backward) Burkholder-type inequality:∣∣∣∣∣ max

1≤�≤N

∣∣∣∣∣
N∑

n=�

ηn

∣∣∣∣∣
∣∣∣∣∣
p

≤ CN1/2.(2.2)

Define η�,n = η�n = E(ηn|F n+�
n ). We require that

|ηn − η�n|p ≤ Cτ�.(2.3)
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Let � be a symmetric positive semidefinite d × d covariance matrix. Given
u ∈ R

d , define fN(u) = E exp(i〈u,
∑

n≤N ηn/
√

N〉) and g(u) = exp(−1
2〈u,�u〉).

Assume that there exists ε > 0 and a, b ∈ (0, 1
2 ] such that

|fN(u) − g(u)| ≤ CN−a for all |u| ≤ εNb.(2.4)

THEOREM 2.1. Assume hypotheses (2.1)–(2.4). Set

β = 1/p + B/2

1 + B
, B = max

{
2d + 2

a
,

1

b
,4d + 6

}

and let ε > 0. Then there is a d-dimensional Brownian motion W(t) with covari-
ance matrix � such that

∑
n≤N ηn = W(N) + O(Nβ+ε) a.e.

In particular, if a = b = 1
2 , then β = 1/p+2d+3

4d+7 .

Next, we consider the alternative hypothesis:

E

{( ∑
n≤N

ηn

)( ∑
n≤N

ηn

)T }
= N� + O(N1/2).(2.5)

THEOREM 2.2. The statement of Theorem 2.1 goes through with hypothe-
sis (2.4) replaced by hypothesis (2.5) and

β = 1/p + B/2

1 + B
, B =

⎧⎪⎪⎨
⎪⎪⎩

4pd + 6p − 4

p − 2
; p ≤ 3 − 1

2d + 3
,

12d + 18; p ≥ 3 − 1

2d + 3
.

REMARK 2.3. (a) For d = 1, under the hypotheses of Theorem 2.2, we obtain
the improved error estimate

β =

⎧⎪⎪⎨
⎪⎪⎩

1

2p
+ 1

4
; 2 < p ≤ 4,

3

8
; p ≥ 4.

This is proved using a different method, see Appendix.
(b) It is evident from the proof of Theorems 2.1 and 2.2 that the exponential rates

in (2.1) and (2.3) can be replaced by sufficiently high polynomial rates. Further
relaxing of the assumptions is possible at the cost of obtaining a weaker error
estimate.

2.2. Preliminaries. The following result of [15, 43] is stated as [37], Lem-
ma 7.2.1.
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LEMMA 2.4. Let F ,G be σ -fields and β ≥ 0 such that |P(AB) − P(A) ×
P(B)| ≤ β for all A ∈ F , B ∈ G. Let p, r, s > 1 satisfy 1

p
+ 1

r
+ 1

s
= 1. Suppose

that ξ ∈ Lr(F ), η ∈ Ls(G). Then |E(ξη) − E(ξ)E(η)| ≤ 10β1/p‖ξ‖r‖η‖s .

The next result is due to Dvoretsky [18], see [27], Lemma 2.2.

LEMMA 2.5. Let F ,G be σ -fields. Let ξ be a complex-valued F -measurable
random variable with |ξ | ≤ 1. Then E|E(ξ |G)−Eξ | ≤ 2π supA∈F ,B∈G |P(AB)−
P(A)P (B)|.

The following Gal–Koksma strong law [21] is stated in [37], Theorem A1.

LEMMA 2.6. Let ξj be a sequence of random variables with Eξj = 0, and let
q > 0. Suppose that E|∑n

j=m ξj |2 ≤ nq − mq for all n ≥ m ≥ 1. For any ε > 0,∑M
j=1 ξj � Mq/2+ε a.e.

2.3. Introduction of the blocks. In this subsection we assume that hypothe-
ses (2.1)–(2.3) are satisfied. Fix Q > 2, α ∈ (0,1). Define random variables
y1, z1, y2, z2, . . . consisting of sums of consecutive η�(n)n where the j th blocks
yj and zj consist of [jQ] and [jα] such terms, respectively, and throughout the
j th blocks �(n) = [1

2jα].
In other words, yj = ∑

n η�n, where � = [1
2jα] and the sum ranges over∑j−1

i=1 ([iQ] + [iα]) < n ≤ ∑j−1
i=1 ([iQ] + [iα]) + [jQ]. Similarly for zj .

Let Lb
a = σ {yj ;a ≤ j ≤ b} and L̃b

a = σ {zj ;a ≤ j ≤ b}.

LEMMA 2.7. There exists (a modified) τ ∈ (0,1) such that for all k,n ≥ 1,

|P(AB) − P(A)P (B)| � τ (k+n)α for all A ∈ Lk
1 and B ∈ L∞

k+n.

The same is true for all A ∈ L̃k
1 and B ∈ L̃∞

k+n.

PROOF. Note that Lk
1 is defined using y1, . . . , yk , which are defined using η�n

with � ≤ [1
2kα], n ≤ ∑k−1

i=1 ([iQ] + [iα]) + [kQ]. This involves conditioning on ξn

with n ≤ ∑k−1
i=1 ([iQ] + [iα]) + [kQ] + [1

2kα]. Similarly for L∞
k+n and we obtain

Lk
1 ⊂ F

∑k−1
i=1 ([iQ]+[iα])+[kQ]+[kα/2]

1 , L∞
k+n ⊂ F ∞∑k+n−1

i=1 ([iQ]+[iα])+1
.

Hence by (2.1), |P(AB) − P(A)P (B)| ≤ τN where N = ∑k+n−1
i=k+1 ([iQ] + [iα]) +

[kα] − [1
2kα] + 1. For all k,n ≥ 1, we compute that N � (k + n)α as required for

the first statement. (Note that the details for the cases n = 1 and n ≥ 2 are slightly
different.) The second statement is proved in the same way. �
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For N ≥ 1, let yMN
, zMN

be the pair of blocks that contains η�(N)N . Write

yMN
+ zMN

=
PMN∑

j=PMN −1+1

η�j , � = [1
2Mα

N

]
.

In particular, PMN−1 < N ≤ PMN
, and PMN

− PMN−1 = [MQ
N ] + [Mα

N ] ∼ M
Q
N .

The next result is immediate.

PROPOSITION 2.8. Writing M = MN , we have M1+Q ∼ ∑
j≤MjQ ∼ N . In

particular, PM − PM−1 ∼ NQ/(1+Q).

PROPOSITION 2.9.
∑

n≥1 |ηn − η�n|p < ∞.

PROOF. Focusing on the M th block, and applying (2.3), we obtain∑
PM−1<n≤PM

|ηn − η�(n)n|p � MQτMα/2 which is summable. �

PROPOSITION 2.10. |yj |p � jQ/2 and |zj |p � jα/2.

PROOF. Write yj = ∑∗ η�n, where
∑∗ is a sum of length [jQ]. By Proposi-

tion 2.9, (2.2) and stationarity, |yj |p ≤ |∑∗(η�n−ηn)|p +|∑∗ ηn|p � 1+jQ/2 �
jQ/2. Similarly for zj . �

2.4. Approximation result. In this subsection we continue to assume that hy-
potheses (2.1)–(2.3) are satisfied.

THEOREM 2.11. Let β = ( 1
p

+ 1
2Q)/(1 + Q). For any ε > 0, there exists

α > 0 such that
∑

n≤N ηn − ∑
j≤MN

yj � Nβ+ε a.e.

Begin by writing

∑
n≤N

ηn − ∑
j≤MN

yj =
( ∑

n≤PMN

ηn − ∑
j≤MN

(yj + zj )

)
−

PMN∑
n=N+1

ηn + ∑
j≤MN

zj .

In the next three lemmas, we estimate these three terms (following [37], Lem-
mas 7.3.2, 7.3.3 and 7.3.4). The result follows by combining these estimates.

LEMMA 2.12.
∑

n≤PMN
ηn − ∑

j≤MN
(yj + zj ) � 1 a.e.

PROOF. By Proposition 2.9,
∑

n≤∞ |ηn − η�n| < ∞ a.e. Hence |∑n≤PM
ηn −∑

j≤M(yj + zj )| = |∑n≤PM
(ηn − η�n)| ≤ ∑

n≤∞ |ηn − η�n| � 1 a.e. �
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LEMMA 2.13. Let β = (1
2 + 1

2α)/(1 + Q). For any ε > 0,
∑

j≤MN
zj �

Nβ+ε a.e.

PROOF. We work componentwise, so without loss zj is R-valued. By Propo-
sition 2.10, we have |zj |p � jα/2 and so

∑n
m Ez2

j � ∑n
m jα � n1+α − m1+α . By

Lemmas 2.4 and 2.7 (with τ̃ = τ ε , where ε = 1 − 2/p) for all i < j ,

|Ezizj | � |zi |p|zj |pτ̃ jα ≤ (iατ̃ iα jατ̃ jα
)1/2,

which is summable over (i, j) ∈ N
2. We have shown that E(

∑n
j=m zj )

2 � n1+α −
m1+α , for all 1 ≤ m ≤ n. By Lemma 2.6,

∑
j≤M zj � Mγ a.e. for γ > 1

2(1 + α),
and the result follows from Proposition 2.8. �

LEMMA 2.14. Let β = ( 1
p

+ 1
2Q)/(1 + Q). For any ε > 0,

∑PMN

n=N+1 ηn �
Nβ+ε a.e.

PROOF. Let AM = maxPM−1+1≤N≤PM
|∑PM

n=N+1 ηn|. By (2.2) and stationar-
ity, |AM |p � (PM − PM−1)

1/2 � MQ/2. Hence

P(AM > Mγ ) = P(A
p
M > Mpγ ) � M−p(γ−Q/2),

which is summable provided γ > 1
p

+ 1
2Q. By Borel–Cantelli, AM � Mγ a.e. and

the result follows from Proposition 2.8. �

2.5. Proof of Theorem 2.1. Our proof follows the argument of Kuelbs and
Philipp [27] which extends Berkes and Philipp [4]. Let Xj = [jQ]−1/2yj . Note

that L
j
1 is an increasing sequence of σ -fields such that Xj is L

j
1-measurable.

Let a, b ∈ (0, 1
2 ] be as in hypothesis (2.4).

PROPOSITION 2.15. Let γ ∈ (0, bQ). There exists ε > 0 such that
E|E(exp(i〈u,Xj 〉)|Lj−1

1 ) − exp(−1
2〈u,�u〉)| ≤ C′(j−aQ + jγ−Q/2) for all u ∈

R
d satisfying |u| ≤ εjγ .

PROOF. Let fN(u) = E exp(i〈u,
∑

n≤N ηn/
√

N〉), g(u) = exp(−1
2〈u,�u〉),

and write

E{exp(i〈u,Xj 〉)|Lj−1
1 } − g(u)

= (
E{exp(i〈u,Xj 〉)|Lj−1

1 } − E exp(i〈u,Xj 〉))
+

(
E exp(i〈u, [jQ]−1/2yj 〉) − E exp

(
i

〈
u, [jQ]−1/2

∑
n≤[jQ]

ηn

〉))

+ (
f[jQ](u) − g(u)

)
= I + II + III.
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Using Lemmas 2.5 and 2.7, E|I | � τ jα
. Also, III is estimated by (2.4) so it

remains to estimate II. Write yj = ∑∗ η�n, where
∑∗ has length [jQ]. By station-

arity and Proposition 2.9,

|II| =
∣∣∣∣∣E

(
exp

(
i

〈
u, [jQ]−1/2

∑∗
η�n

〉)
− exp

(
i

〈
u, [jQ]−1/2

∑∗
ηn

〉))∣∣∣∣∣
≤

∣∣∣∣∣exp

(
i

〈
u, [jQ]−1/2

∑∗
(η�n − ηn)

〉)
− 1

∣∣∣∣∣
1

≤
∣∣∣∣∣
〈
u, [jQ]−1/2

∑∗
(η�n − ηn)

〉∣∣∣∣∣
1

≤ εjγ [jQ]−1/2

∣∣∣∣∣
∑
n≥1

(η�n − ηn)

∣∣∣∣∣
1

� jγ−Q/2

as required. �

PROPOSITION 2.16. Let G be the distribution function of N(0,�). Then
G{u : |u| > T } ≤ e−DT 2

.

PROOF. This is a straightforward calculation; see, e.g., [4], page 43. �

Let λj = C′(j−aQ + jγ−Q/2), Tj = εjγ , where γ ∈ (0, bQ) is chosen below.
By Propositions 2.15 and 2.16, we have

E|E{exp(i〈u,Xj 〉)|Lj−1
1 } − g(u)| ≤ λj for all |u| ≤ Tj ,

G
{
u : |u| > 1

4Tj

} ≤ δj ,

where δj = e−D′j2γ
. These are the hypotheses of [4], Theorem 1. Defining

αj = 16dT −1
j logTj + 4λ

1/2
j T d

j + δj

as in [4], we have

αj � j−γ log j + jdγ−aQ/2 + j (d+1/2)γ−Q/4,

which is summable provided 1 < γ <
aQ/2−1

d
and 1 < γ <

Q/4−1
d+1/2 . We take γ

slightly larger than 1 (which can be done provided Q > 1
b

) and Q slightly larger
than (2d + 2)/a and 4d + 6 so that αj � j−(1+ε).

Applying [4], Theorem 1, we conclude that (passing to a richer probability
space) there is a sequence of i.i.d. random variables Yj with distribution N(0,�)

such that

|Xj − Yj | � j−(1+ε) a.e.
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Let W(t) be a Brownian motion with covariance � and define Y ∗
j = [jQ]−1/2 ×

(W(hj ) − W(hj−1)), where hj = ∑j
n=1[nQ] ∼ j1+Q. Then {Yj } =d {Y ∗

j } and
without loss (after passing to a richer probability space), Yj = Y ∗

j . We have∑
j≤M

yj = ∑
j≤M

[jQ]1/2Xj = ∑
j≤M

[jQ]1/2(Xj − Yj ) + ∑
j≤M

W(hj ) − W(hj−1)

= ∑
j≤M

[jQ]1/2(Xj − Yj ) + W(hM).

Now ∑
j≤M

[jQ]1/2(Xj − Yj ) � ∑
j≤M

jQ/2αj � ∑
j≤M

jQ/2−1 � MQ/2

� NQ/(2(1+Q)).

If hM > N , then hM − N ≤ PM − PM−1 � MQ, whereas if hM < N then
N − hM < PM − hM = ∑

j≤M [jα] � M1+α . Since Q > 1 + α, we obtain
hM − N � NQ/(1+Q), and so W(hM) = W(N) + O(NQ/(2(1+Q))+ε). Combin-
ing these estimates with Theorem 2.11 we obtain∑

n≤N

ηn = ∑
n≤N

ηn − ∑
j≤M

yj + ∑
j≤M

yj = W(N) + O
(
N(1/p+Q/2)/(1+Q)+ε).

Taking Q slightly larger than B = max{2d+2
a

, 1
b
,4d + 6} yields the required result.

2.6. Proof of Theorem 2.2. Starting with ηn, n = 1,2, . . . , we write η�n =
E(ηn|F n+�

n ) and construct blocks Y1, Z1, Y2, Z2, . . . as before, but note that the
blocks Yj , Zj have nothing to do with the blocks yj , zj . In fact, we define Yj to
be blocks of fixed length [Nc] and Zj to be blocks of fixed length [Nδ], where
0 < δ < c < 1 are specified later. Also, let � = [Nδ]/2 and let M = [N/(Nc +
Nδ)] = N1−c + O(N1−2c+δ).

By analogy with Propositions 2.9 and 2.10, we have∑
n≥1

|ηn − η�,n|p < ∞, |Yj |p � Nc/2, |Zj |p � Nδ/2.(2.6)

Given u ∈ R
d , define σ 2

u = 〈�u,u〉.

PROPOSITION 2.17. Let b ∈ (0,min{ c
4 , (1

2 − 1
p
)(1 − c)}]. There exists ε > 0

such that∣∣∣∣∣
∏

j≤M

E
(
ei〈u,Yj /

√
N〉) − e−σ 2

u /2

∣∣∣∣∣ � e−σ 2
u /2

{ |u|2
Nc−δ

+ |u|2
Nc/2 + |u|p

N(p/2−1)(1−c))

}

for all |u| ≤ εNb.
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PROOF. By (2.5), |〈u,
∑

n≤N ηn〉|2 = N1/2σu + O(|u|). We can write Yj =∑∗ η�n where
∑∗ is a sum of length [Nc]. By (2.6) and stationarity,

|〈u,Yj 〉|2 =
∣∣∣∣∣
〈
u,

∑∗
ηn

〉∣∣∣∣∣
2

+ O(|u|) =
∣∣∣∣∣
〈
u,

∑
n≤[Nc]

ηn

〉∣∣∣∣∣
2

+ O(|u|)

= Nc/2σu + O(|u|).
Hence

E(〈u,Yj 〉2) = Ncσ 2
u + O(Nc/2|u|2).

Next, write E(ei〈u,Yj /
√

N〉) = 1 − r , where

r = 1
2E(〈u,Yj 〉2)/N + O

(
E(〈u,Yj 〉p)/Np/2)

= 1
2σ 2

u /N1−c + O(|u|2/N1−c/2) + O
(|u|p/Np(1−c)/2)

and r2 = O(|u|4/N2(1−c)). Here, we have used (2.6) and the fact that r is small
since |u| ≤ εN(1−c)/2. Hence

logE
(
ei〈u,Yj /

√
N〉) = −r + O(r2)

= −1
2σ 2

u /N1−c + O(|u|2/N1−c/2) + O
(|u|p/Np(1−c)/2)

and ∑
j≤M

logE
(
ei〈u,Yj /

√
N〉)

= −1
2σ 2

u + O(|u|2/Nc−δ) + O(|u|2/Nc/2) + O
(|u|p/N(p/2−1)(1−c)).

The last three terms on the right-hand side are small by the constraints on u, so
exponentiation yields the result. �

PROPOSITION 2.18. For all u ∈ R
d ,∣∣E(

ei〈u,
∑

n≤N ηn/
√

N〉)−E
(
ei〈u,

∑
j≤M Yj /

√
N〉)∣∣ � |u|(1/N1/2−c/2 +1/Nc−1/2−δ/2).

PROOF. Write ∑
n≤N

ηn = ∑
n≤M([Nc]+[Nδ])

ηn + ∑∗
ηn,

where
∑∗ has length smaller than Nc + Nδ and so |∑∗ ηn|1 � |YN+1|1 +

|ZN+1|1 � Nc/2 + Nδ/2 � Nc/2 by (2.6). Further,∑
n≤M([Nc]+[Nδ])

η�,n = ∑
j≤M

(Yj + Zj).
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By (2.6), |Zj | � Nδ/2 and so |∑j≤M Zj |1 � N1−c+δ/2. Combining all of this
with (2.6), ∣∣∣∣∣

∑
n≤N

ηn − ∑
j≤M

Yj

∣∣∣∣∣
1

� Nc/2 + N1−c+δ/2

and the result follows from the estimate |eix − eiy | ≤ |x − y|. �

PROPOSITION 2.19. For all u ∈ R
d ,∣∣∣∣∣E

( ∏
j≤M

ei〈u,Yj /
√

N〉
)

− ∏
j≤M

E
(
ei〈u,Yj /

√
N〉)∣∣∣∣∣ � τNδ

for a (modified) τ ∈ (0,1).

PROOF. For each j , we have that Yj is measurable with respect to

F
j [Nc]+(j−1)[Nδ]+[Nδ/2]

1 whereas Yj+1 is measurable with respect to
F ∞

j [Nc]+j [Nδ]+1. It follows from (2.1) and Lemma 2.4 (with p = 1, r = s = ∞)

that |E(
∏

j≤q+1 ei〈u,Yj /
√

N〉) − E(
∏

j≤q ei〈u,Yj /
√

N〉)E(ei〈u,Yq+1/
√

N〉)| ≤
10τ [Nδ]−[Nδ/2]+1 � τNδ/2. Inductively, we obtain∣∣∣∣∣E

( ∏
j≤M

ei〈u,Yj /
√

N〉
)

− ∏
j≤M

E
(
ei〈u,Yj /

√
N〉)∣∣∣∣∣ � MτNδ/2 � N1−cτNδ/2

as required. �

COROLLARY 2.20. Let b ∈ (0,min{ c
4 , (1

2 − 1
p
)(1 − c)}]. There exists ε > 0

such that

∣∣E(
ei〈u,

∑
n≤N ηn/

√
N〉) − e−σ 2

u /2∣∣ � e−σ 2
u /2

{ |u|2
Nc−δ

+ |u|2
Nc/2 + |u|p

N(p/2−1)(1−c)

}

+ |u|
{

1

N1/2−c/2 + 1

Nc−1/2−δ/2

}

for all |u| ≤ εNb.

PROOF OF THEOREM 2.2. If p ≥ 3 − 1
2d+3 , we take c = 2

3 and b = 1
12d+18 .

Then b satisfies the constraints b ≤ c
4 and b ≤ (1

2 − 1
p
)(1−c) so that Corollary 2.20

applies. It follows that |E(ei〈u,
∑

n≤N ηn/
√

N〉) − e−σ 2
u /2| = O(Nb/Nc−1/2−δ/2) =

O(N−a′+δ′
), where a′ = d+1

6d+9 and δ′ = δ/2 is arbitrarily small. Hence hypothe-

sis (2.4) holds with b = 1
12d+18 for all a < d+1

6d+9 . Now apply Theorem 2.1.

If p ≤ 3 − 1
2d+3 , we take c = 2pd+3p−2d−4

2pd+3p−2 and b = p−2
4pd+6p−4 . Again

Corollary 2.20 applies and we obtain |E(ei〈u,
∑

n≤N ηn/
√

N〉) − e−σ 2
u /2| = O(1/
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N(1/2−1/p)(1−c)) = O(N−a), where a = 1
p
(p − 2)(d + 1). Hence hypothesis (2.4)

holds with these choices of a and b and the result follows from Theorem 2.1. �

3. ASIP for Gibbs–Markov maps. In this section we prove the ASIP for
weighted Lipschitz R

d -valued observables of Gibbs–Markov maps [1]. Roughly
speaking, these are uniformly expanding maps with countably many inverse
branches and good distortion properties. We derive Theorem 1.3 as a consequence.

3.1. Gibbs–Markov maps. Let (�,m) be a Lebesgue space with a countable
measurable partition α. Without loss, we suppose that all partition elements a ∈ α

have m(a) > 0. Recall that a measure-preserving transformation F :� → � is a
Markov map if Fa is a union of elements of α and F |a is injective for all a ∈ α.
Define α′ to be the coarsest partition of � such that Fa is a union of atoms in α′
for all a ∈ α. (So α′ is a coarser partition than α.) If a0, . . . , an−1 ∈ α, we define
the n-cylinder [a0, . . . , an−1] = ⋂n−1

i=0 F−iai . It is assumed that F and α separate
points in � (if x, y ∈ � and x �= y, then for n large enough there exist distinct
n-cylinders that contain x and y).

Let 0 < β < 1. We define a metric dβ on � by dβ(x, y) = βs(x,y) where s(x, y)

is the greatest integer n ≥ 0 such that x, y lie in the same n-cylinder. Define g =
JF−1 = dm

d(m◦F)
and set gk = gg ◦ F · · ·g ◦ Fk−1.

A Markov map F is topologically mixing if for all a, b ∈ α there exists N ≥ 1
such that Fna ∩ b �= ∅ for all n ≥ N . A Markov map F is Gibbs–Markov if:

(i) Big images property. There exists c > 0 such that m(Fa) ≥ c for all a ∈ α.
(ii) Distortion. logg|a is Lipschitz with respect to dβ for all a ∈ α′.

Let αk−1
0 denote the partition of � into length k cylinders a = [a0, . . . , ak−1].

The following result of [2] is stated explicitly in [29], Lemma 2.4(b).

LEMMA 3.1. Let F be a topologically mixing Gibbs–Markov map. Then
|m(a∩F−(N+k)b)−m(a)m(b)| ≤ CτNm(a)m(b)1/2 for all a ∈ αk−1

0 and all mea-
surable b.

3.2. Weighted Lipschitz observables. Let p ∈ [1,∞). We fix a sequence of
weights R(a) > 0 satisfying |R|p = (

∑
a∈α m(a)R(a)p)1/p < ∞. Given � :� →

R continuous, define |�|β to be the Lipschitz constant of � with respect to the met-
ric dβ . Let ‖�‖∞ = supa∈α |�1a|∞/R(a), ‖�‖β = supa∈α |�1a|β/R(a). Let B
consist of the space of weighted Lipschitz functions with ‖�‖ = ‖�‖∞ +‖�‖β <

∞. Note in particular that R ∈ B and ‖R‖ = 1. We have the embeddings Lip ⊂
B ⊂ Lp ⊂ L1, where Lip is the space of (globally) Lipschitz functions.

LEMMA 3.2. Let � ∈ B with
∫
� � = 0. Then |� − E(�|αk−1

0 )|p ≤ ‖�‖β ×
|R|pβk for all k ≥ 1.
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PROOF (cf. [29], Lemma 2.4(a)). Note that E(�|αk−1
0 ) is constant on partition

elements a ∈ αk−1
0 with value 1

m(a)

∫
a �dm, and that |�1a − 1

m(a)

∫
a �dm|∞ ≤

|�1a|β diamβ(a) ≤ ‖�‖βR(a)βk . Hence, |� − E(�|αk−1
0 )|pp ≤ (‖�‖ββk)p ×∑

a∈αk−1
0

R(a)pm(a) = (‖�‖ββk|R|p)p . �

3.3. A maximal inequality. Given a measure-preserving transformation F :
� → � of a probability space (�,m), the transfer (Perron–Frobenius) operator
L :L1 → L1 is defined by

∫
� L�� dm = ∫

� �� ◦ F dm for all � ∈ L1, � ∈ L∞.
This restricts to an operator on Lp , 1 ≤ p ≤ ∞.

LEMMA 3.3. Let � ∈ Lp(�), 2 ≤ p < ∞, with L� = 0. Then
|max0≤�≤N−1 |∑N

n=� � ◦ Fn||p ≤ CN1/2.

PROOF. Note that L = E(·|F−1M), where M is the underlying σ -algebra.
By hypothesis the sequence {� ◦ Fn;n ≥ 0} is a reverse martingale difference
sequence. Passing to the natural extension we obtain an Lp martingale difference
sequence {wn;n ∈ Z} such that � ◦ Fn = w−n. By Burkholder’s inequality [7]
(which follows from [7], (1.4) and (3.3), and is stated explicitly in [36], (1)), we
have |max1≤k≤N |∑k

n=0 wn||p ≤ CN1/2. Setting � = N −k and using stationarity,

max
0≤�≤N−1

∣∣∣∣∣
N∑
�

� ◦ Fn

∣∣∣∣∣ =d max
0≤�≤N−1

∣∣∣∣∣
0∑

−N+�

� ◦ Fn

∣∣∣∣∣ = max
1≤k≤N

∣∣∣∣∣
k∑
0

wn

∣∣∣∣∣,
proving the result. �

3.4. Quasicompactness and the central limit theorem. Let F :� → � be
a topologically mixing Gibbs–Markov map with transfer operator L :L1 → L1. It
is well known [1, 29] that L restricts to a bounded operator on weighted Lipschitz
observables � ∈ B and L(B) ⊂ Lip. Moreover L :B → B is quasicompact:
L1 = 1 and the spectral radius of L restricted to B0 = {� ∈ B :

∫
� �dm = 0}

is strictly less than 1.
We define Bd to the be the space of R

d weighted Lipschitz observables, so
� = (�1, . . . ,�d) ∈ Bd if and only if �i ∈ B for i = 1, . . . , d . Similarly, we
define Bd

0 . We suppress the superscript for spaces such as Lp and Lip relying on
the context.

PROPOSITION 3.4. Suppose that � ∈ Bd
0 . Then there exists � ∈ Bd

0 and
χ ∈ L∞ such that � = � + χ ◦ F − χ and L� = 0.

PROOF (cf. [29], proof of Corollary 2.3(c)). Define χ = ∑∞
j=1 Lj�. This con-

verges in Bd
0 since the spectral radius of L is less than 1. Since L(Bd) ⊂ Lip, we

have χ ∈ L∞. By construction, L� = 0. �
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Suppose that p ≥ 2. Let � ∈ Bd
0 ⊂ L2 and assume that L� = 0. Let SN =∑

n≤N � ◦ Fn and form the d × d matrix SNST
N . We define the covariance matrix

� = 1
N

∫
� SNST

N dm = ∫
� ��T dm.

LEMMA 3.5. Suppose that p > 3. Let a = (p − 3)/2 for p < 3 ≤ 4 and a = 1
2

for p ≥ 4. There exists ε > 0 such that∫
�

exp(i〈u,SN 〉N−1/2) dm − exp
(−1

2〈u,�u〉) = O(N−a)

uniformly for u ∈ R
d satisfying |u| ≤ εN1/2.

PROOF. We follow a standard argument establishing the central limit theorem
with error term for systems with quasicompact transfer operator (see [35], Theo-
rem 4.13, and references therein). Let Sd−1 denote the unit sphere in R

d . Given
u ∈ R

d , write u = tv where t ≥ 0 and v ∈ Sd−1. Define the twisted transfer oper-
ator Lu :B → B by Lu� = L(ei〈u,�〉�). Recall that 1 is an isolated eigenvalue
for L. For u small, the spectral radius of Lu is expP(u) where P is continuous
and P(0) = 0.

Now
∫
� exp(i〈u,SN 〉N−1/2) dm = ∫

�(LuN−1/2)N1dm, and since the leading
eigenvalue of Lu is isolated, there exists γ ∈ (0,1) such that∫

�
exp(i〈u,SN 〉N−1/2) dm − exp(NP (uN−1/2)) � γ N,

uniformly for |u| ≤ εN1/2. Hence it remains to estimate exp(NP (uN−1/2)) −
exp(−1

2〈u,�u〉).
We claim that P is p − 1 times differentiable. Suppose for the moment that the

claim is correct. If p > 4, then it follows from the argument in [35], page 66, that

P(u) = −1
2〈u,�u〉 − iP3(v)t3 + P4(v, t)t4,

where P3(v) ∈ R, P4(v, t) ∈ C are bounded, and hence there exists ε > 0 such
that [35], page 67,

exp(NP (uN−1/2)) − exp
(−1

2〈u,�u〉)(1 − iP3(v)t3N−1/2) = O(N−1/2),

uniformly for |u| ≤ εN1/2. [In fact, we obtain O(N−1) for p > 5 and
O(N−(p−3)/2) for 4 < p < 5.]

Still assuming the claim, for p > 3,

P(u) = −1
2〈u,�u〉 + E(v, t)tp−1,

where E(v, t) ∈ C is bounded, and hence

exp(NP (uN−1/2)) − exp
(−1

2〈u,�u〉) = O
(
N−(p−3)/2)

,

uniformly for |u| ≤ εN1/2.
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We verify the claim by showing that u �→ Pu is Cp−1. Write p > 1 + k + α

where k ∈ N and α ∈ [0,1). We show that u �→ Lu is Ck+α , when viewed as a map
from (−δ, δ) to bounded linear transformations on Lip.

For ease of notation, we consider the case d = 1. Recall that Lu� = L(eiu�〉�).
Here, � ∈ B is weighted Lipschitz with respect to the weight R ∈ Lp , and � ∈ Lip
is globally Lipschitz. It is easily verified that eiu�� ∈ B and ‖eiu��‖B ≤ (1 +
‖�‖B)‖�‖Lip. Moreover, L :B → Lip is a bounded operator with norm C say, so
‖Lu�‖Lip ≤ C(1 + ‖�‖B)‖�‖Lip.

The fact that L :B → Lip is bounded uses only that R ∈ L1. Hence a similar
argument shows that � �→ Lu(�

p−1�) is bounded (since eiu��p−1� is weighted
Lipschitz with respect to Rp). It follows that we can form the Taylor expansion

Lu+h� = Lu(e
ih��)

= Lu� + ihLu(��) − (h2/2!)Lu(�
2�) + · · ·

+ (
(ih)k/k!)Lu(�

k�) + o(hk),

establishing Ck differentiability. Similarly, the kth derivative Lu(�
k·) is Cα , com-

pleting the verification of the claim. �

3.5. Statement and proof of ASIP for Gibbs–Markov maps.

THEOREM 3.6. Suppose that F :� → � is a topologically mixing Gibbs–
Markov map. Define the Banach space Bd corresponding to weights R ∈ Lp

where p > 2. Suppose that � :� → R
d is a mean zero observable in Bd with

partial sums SN = ∑N
n=1 � ◦Fn. Then the conclusion of Theorem 1.6 is valid with

error term O(Nβ+ε) as in Remark 1.7.

PROOF. We give the proof for d ≥ 2. The improved estimate for d = 1 follows
from Theorem A.5.

By Proposition 3.4, SN = ∑N
n=1 � ◦ Fn + O(1) a.e., where L� = 0. Hence

without loss we may suppose from the outset that L� = 0.
Define ηn = � ◦ Fn and ξn = an. Then ηn = �(ξn, ξn+1, . . .). The assumptions

on � imply that ηn lies in Lp and Eηn = 0. Hypotheses (2.1)–(2.3) follow from
Lemmas 3.1, 3.3 and 3.2, respectively.

If p > 3, then hypothesis (2.4) holds with b = 1
2 and a given by Lemma 3.2.

Applying Theorem 2.1, we compute that B = 4d + 6 for p ≥ 4 − 1
2d+3 and B =

4d+4
p−3 for 3 < p ≤ 4 − 1

2d+3 . In particular, we obtain the required value of β for

p ≥ 20d+29
6d+9 .

Hypothesis (2.5) is satisfied for general p > 2, indeed E(
∑

n≤N ηn)
2 = N� +

O(1). (See, e.g., [29] when d = 1 and [20] for general d .) Applying Theorem 2.2
yields the required value of β for 2 < p ≤ 20d+29

6d+9 . �



496 I. MELBOURNE AND M. NICOL

PROOF OF THEOREM 1.3. This reduces by standard techniques to a two-sided
and then one-sided subshift of finite type. The latter is a special case of a Gibbs–
Markov map with finite alphabet, hence R ∈ L∞. Theorem 1.3 follows from The-
orem 3.6 with p = ∞. �

4. Applications to nonuniformly hyperbolic systems. In this section, we
prove the vector-valued ASIP for large classes of nonuniformly hyperbolic sys-
tems. In Section 4.1, we consider nonuniformly expanding systems. In Section 4.2,
we consider nonuniformly hyperbolic systems, proving Theorems 1.6 and 1.8.
Some open problems are described in Section 4.3.

4.1. Nonuniformly expanding systems. Let (M,d) be a locally compact sepa-
rable bounded metric space with Borel probability measure η and let f :M → M

be a nonsingular transformation for which η is ergodic. Let � ⊂ M be a measur-
able subset with η(�) > 0. We suppose that there is an at most countable mea-
surable partition {�j } with η(�j ) > 0, and that there exist integers Rj ≥ 1, and
constants λ > 1; C > 0 and γ ∈ (0,1) such that for all j ,

(1) f Rj :�j → � is a (measure-theoretic) bijection.
(2) d(f Rj x, f Rj y) ≥ λd(x, y) for all x, y ∈ �j .
(3) d(f kx, f ky) ≤ Cd(f Rj x, f Rj y) for all x, y ∈ �j , k < Rj .

(4) gj = d(η|�j
◦(f Rj )−1)

dη|� satisfies | loggj (x) − loggj (y)| ≤ Cd(x, y)γ for almost
all x, y ∈ �.

(5)
∑

j Rjη(�j ) < ∞.

A dynamical system f satisfying (1)–(5) is called nonuniformly expanding.
Define the return time function R :� → Z

+ by R|�j
≡ Rj and the induced map

F :� → � by Fy = f R(y)(y). It is well known that there is a unique invariant
probability measure m on M that is equivalent to η.

THEOREM 4.1. Let f :M → M be a nonuniformly expanding map satisfy-
ing (1)–(5) above. Assume moreover that R ∈ Lp(�), p > 2. Let φ :M → R

d be
a mean zero Hölder observable with partial sums SN = ∑N

n=1 φ ◦ f n. Then the
conclusion of Theorem 1.6 is valid.

PROOF. This is identical to the proof of [29], Theorem 2.9, so we just sketch
the main steps. The induced map F :� → � is a topologically mixing Gibbs–
Markov map with respect to the partition α = {�j }. The induced observable

� :� → R
d given by �(y) = ∑R(y)−1

�=0 φ(f �y) is weighted Lipschitz and satis-
fies the ASIP by Theorem 3.6.

If F :� → � were the first return map, then the result would follow imme-
diately from [31], Theorem 4.2 (see also [29], Theorem B.1). The general re-
sult is proved by passing to a Young tower [45] which is a Markov extension of
f :M → M for which F is the first return map. �
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REMARK 4.2. (a) The regularity assumption on φ in Theorem 4.1 can be re-
placed by the more general assumption that the induced observable � is weighted
Lipschitz (with respect to the metric defined on the Gibbs–Markov system �).

(b) A similar result holds for nonuniformly expanding semiflows ([29], Corol-
lary 2.12).

Naturally, Theorem 4.1 includes uniformly expanding and piecewise expand-
ing maps where the partition is finite (with p = ∞). Further examples of nonuni-
formly expanding maps to which Theorem 4.1 applies include Alves–Viana maps,
Liverani–Saussol–Vaienti (Pomeau–Manneville maps), multimodal maps, and cir-
cle maps with a neutral fixed point; see [29], Section 4.

4.2. Nonuniformly hyperbolic systems. As was the case in [29], the results
in this paper apply to dynamical systems that are nonuniformly hyperbolic in the
sense of Young [44] with return time function R ∈ Lp , p > 2.

Let f :M → M be a diffeomorphism (possibly with singularities) defined on a
Riemannian manifold (M,d). We assume from the start that f preserves a “nice”
probability measure m (one of the conclusions in Young [44] is that m is an SRB
measure).

Fix a subset � ⊂ M and a family of subsets of M called “stable disks” {Ws}
that are disjoint and cover �. The stable disk containing x is labeled Ws(x).

(A1) There is a partition {�j } of � and integers Rj ≥ 1 such that f Rj (Ws(x)) ⊂
Ws(f Rj x) for all x ∈ �j .

Define the return time function R :� → Z
+ by R|�j

= Rj and the induced map
F :� → � by F(x) = f R(x)(x). Form the discrete suspension map f̂ :� → �,
where f̂ (x, �) = (x, � + 1) for � < R(x) − 1 and f̂ (x,R(x) − 1) = (Fx,0). De-
fine a separation time s :�×� → N by defining s(x, x ′) to be the greatest integer
n ≥ 0 such that Fkx,F kx′ lie in the same partition element of � for k = 0, . . . , n.
[If x, x′ do not lie in the same partition element, then we take s(x, x′) = 0.] For
general points p = (x, �),p′ = (x′, �′) ∈ �, define s(p, q) = s(x, x′) if � = �′ and
s(p, q) = 0 otherwise. This defines a separation time s :� × � → N. The projec-
tion π :� → M , π(x, �) = f �x, satisfies πf = f̂ π .

(A2) There is a distinguished “unstable leaf” Wu ⊂ � such that each stable disk
intersects Wu in precisely one point, and there exist constants C ≥ 1, α ∈
(0,1) such that:

(i) d(f nx,f ny) ≤ Cαn for all y ∈ Ws(x), all n ≥ 0, and
(ii) d(f nx,f ny) ≤ Cαs(x,y) for all x, y ∈ Wu and all 0 ≤ n < R.

Let �̄ = �/ ∼ where x ∼ x′ if x ∈ Ws(x′) and define the partition {�̄j }
of �̄. We obtain a well-defined return time function R : �̄ → Z

+ and induced
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map F̄ : �̄ → �̄. Let f̄ : �̄ → �̄ denote the quotient of f̂ :� → � where (x, �)

is identified with (x′, �′) if � = �′ and x′ ∈ Ws(x). Let π̄ :� → �̄ denote the
natural projection. The separation time on � drops down to a separation time
on �̄.

(A3) The map F̄ : �̄ → �̄ and partition {�̄j } separate points in �̄. [It follows that
dθ (p, q) = θs(p,q) defines a metric on �̄ for each θ ∈ (0,1).]

(A4) There exist invariant probability measures m̂ on � and m̄ on �̄ such that:

(i) π :� → M and π̄ :� → �̄ are measure-preserving; and
(ii) f̄ : �̄ → �̄ is nonuniformly expanding in the sense of Section 4.1

with induced map F̄ : �̄ → �̄. [Conditions (2) and (3) are automatic.]

PROOF OF THEOREM 1.6. This reduces, as in the proof of [29], Theorem 3.4,
to the ASIP for the nonuniformly expanding map f̄ : �̄ → �̄ and hence follows
from Theorem 4.1. �

REMARK 4.3. Again, the regularity assumption on φ can be relaxed, and the
result extends to nonuniformly hyperbolic flows.

Large classes of billiard maps and Lorentz flows, surveyed in [10] satisfy the
vector-valued ASIP. These include dispersing billiards (with finite or infinite hori-
zons) and the corresponding Lorentz flows (assuming finite horizons).

PROOF OF THEOREM 1.8. By periodicity, we can consider the quotient flow
on the compact manifold M = (T2 − �) × S1. The Poincaré map f :X → X on
the compact cross-section X = ∂�× (−π

2 , π
2 ) is called the billiard map or collision

map. Young [45] showed that f is nonuniformly hyperbolic in the sense of Young
with R ∈ Lp for all p > 2. By Theorem 1.6, the vector-valued ASIP holds for f

with p = ∞. The collision time is uniformly bounded and piecewise Hölder, so it
follows from [31] that the vector-valued ASIP holds for the Lorentz flow on M .
Now take as an R

2-valued observable the velocity coordinate v :M → S1. This is
piecewise Hölder, and the lifted position in R

2 is given by q(T ) = ∫ T
0 v ◦ ft dt .

Finally, nonsingularity of the covariance matrix was proved in [5]. �

Chernov and Zhang [11] consider three classes of billiards with slow mixing
rates. The first and third classes are not covered by our results since it is shown
only that R ∈ L2−ε . The second class of Bunimovich-type billiards treated in [11]
satisfies R ∈ L3−ε . The vector-valued ASIP for such billiards (and the correspond-
ing flows) is hence a consequence of Theorem 1.6 with error β = 6d+10

12d+21 .
As in [29], Theorem 1.6 also applies to Lozi maps and certain piecewise hy-

perbolic maps, Hénon-like maps and partially hyperbolic diffeomorphisms with
mostly contracting direction.
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A further important class of dynamical systems is singular hyperbolic flows [32].
Theorem 1.6 does not apply directly to such systems, but it establishes the vector-
valued ASIP (with p = ∞) when combined with the techniques in Holland and
Melbourne [24].

4.3. Open problems. Given a (non)uniformly hyperbolic flow ft , the time-one
map f1 is only partially hyperbolic. For such maps the Gibbs–Markov/suspension
formalism breaks down so the results in [29] and in this paper do not apply. By dif-
ferent methods, Melbourne and Török [30] proved that the scalar ASIP is typically
valid for the time-one map of an Axiom A flow. They used rapid mixing proper-
ties to reduce to a reverse martingale difference sequence. Following [13, 20], this
leads to the ASIP in reverse time and hence forward time (since the class of such
flows is closed under time reversal). Similarly, the scalar ASIP for the time-one
map of the planar periodic Lorentz gas with finite horizons is typically valid (since
the flow is typically rapid mixing [28] and the class of flows is closed under time
reversal).

PROBLEM 1. Prove that the vector-valued ASIP holds (at least typically) for
time-one maps of Axiom A flows and/or planar periodic Lorentz gas with finite
horizons.

Generally speaking, the hypotheses for a nonuniformly hyperbolic system are
not time-symmetric so [13, 20, 30] fails.

PROBLEM 2. Obtain results on the scalar ASIP for time-one maps of nonuni-
formly hyperbolic flows and/or singular hyperbolic flows.

REMARK 4.4. (a) The Banach space-valued ASIP of [3] applies to Problem 1,
with the caveats mentioned in Remark 1.11(a). In particular, the d-dimensional
functional LIL is typically valid. These results do not apply to Problem 2.

(b) The (vector-valued) functional central limit theorem is typically valid in
Problems 1 and 2 (combining the arguments in [20], Section 3.3, and [30]).

APPENDIX: SCALAR ASIP WITH ERROR TERM

In this appendix, we prove a scalar ASIP using martingale approximation and
the method of Strassen [41]. This is precisely the result [37], Theorem 7.1, used
in [29], but our purpose here is to obtain a better error term under assumptions
appropriate for dynamical systems. This improves Theorem 2.1 when d = 1.

We assume hypotheses (2.1)–(2.3) and (2.5) (with d = 1) normalizing so that
� = 1. Define {yj } as in Section 2.3. In particular, Theorem 2.11 is unchanged.
Fix Q > 1, α > 0. Eventually, α > 0 is chosen arbitrarily small.
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Law of large numbers for y2
j .

LEMMA A.1. Let γ = 1
2Q/(1 + Q). Then

∑
j≤MN

Ey2
j = N + O(N1/2+γ ).

PROOF (cf. [37], Lemma 7.3.5). By hypothesis (2.5), E(
∑

n≤N ηn)
2 = a2

N

where a2
N = N(1 + O(N−1/2)). Write

∑
n≤N

ηn = ∑
n≤PM

ηn −
PM∑

n=N+1

ηn = ∑
n≤PM

(ηn − η�n) + ∑
j≤M

yj + ∑
j≤M

zj −
PM∑

n=N+1

ηn.

Then ∥∥∥∥∥
∑
j≤M

yj

∥∥∥∥∥
2

− aN =
∥∥∥∥∥

∑
j≤M

yj

∥∥∥∥∥
2

−
∥∥∥∥∥

∑
n≤N

ηn

∥∥∥∥∥
2

≤
∥∥∥∥∥

∑
j≤M

zj

∥∥∥∥∥
2

+
∥∥∥∥∥

∑
n≤PM

(ηn − η�n)

∥∥∥∥∥
2

+
∥∥∥∥∥

PM∑
n=N+1

ηn

∥∥∥∥∥
2

.

By Proposition 2.9, ‖∑
n≤N(ηn − η�n)‖2 � 1. By the proof of Lemma 2.13,

‖∑
j≤M zj‖2

2 � M1+2α and so ‖∑
j≤M zj‖2 � N( 1

2 +α)/(1+Q). By stationarity

and (2.5), ‖∑PM

n=N+1 ηn‖2
2 = ‖∑

n≤PM−N ηn‖2
2 � PM − N � NQ/(1+Q). Hence

‖∑
j≤M yj‖2 = aN + O(Nγ ) and E(

∑
j≤M yj )

2 = N + O(N1/2+γ ). Also, as in
the proof of Lemma 2.13,

∑
i �=j Eyiyj � 1. �

COROLLARY A.2. Let β = (1
4 + 1

2Q)/(1 + Q). Then
∑

j≤MN
Ey2

j = N +
O(N2β).

LEMMA A.3. Let β = (3
4 − p

8 + 1
2Q)/(1 + Q) for 2 < p ≤ 4 [and β = (1

4 +
1
2Q)/(1 + Q) for p > 4]. Then for any ε > 0,

∑
j≤MN

y2
j − Ey2

j � N2β+ε a.e.

PROOF. The value of ε below may change from line to line. Define

wj =
{

y2
j − Ey2

j , |y2
j − Ey2

j | ≤ j1+Q+ε,
0, otherwise.

Note that P(wj �= y2
j − Ey2

j ) = P(|y2
j − Ey2

j | > j1+Q+ε) ≤ 2‖yj‖2
2/j

1+Q+ε �
j−(1+ε), which is summable, so by Borel–Cantelli wj fails to coincide with y2

j −
Ey2

j only finitely often. Hence it suffices to estimate
∑

j≤M wj . We do this by
estimating

∑
j≤M w̃j and

∑
j≤M Ewj where w̃j = wj − Ewj .

Again
∑

i �=j Ew̃iw̃j � 1. Also, Ew̃2
j ≤ |w̃p/2

j |1‖w̃2−p/2
j ‖∞ � ‖yj‖p

p ×
‖wj‖2−p/2∞ � jR−1, where R = 3 − p

2 + 2Q + ε. Hence E(
∑n

j=m w̃j )
2 �

nR − mR . By Lemma 2.6,
∑

j≤M w̃j � MR/2 ≤ NR/(2(1+Q)) for any ε > 0.
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Let A = {|y2
j − Ey2

j | > j1+Q+ε}. Then

Ewj = −E{(y2
j − Ey2

j )IA} � ‖y2
j − Ey2

j ‖p/2‖1A‖p/(p−2)

� ‖yj‖2
p‖1A‖p/(p−2) � jQ−(1+ε)(p−2)/p = jS−1,

where S = 2
p

− ε + Q. Hence
∑

j≤M Ewj � MS . Thus, it suffices that 2β =
max{1

2R/(1 + Q),S/(1 + Q)} = 1
2R/(1 + Q). �

Martingale approximation.

LEMMA A.4. Set Lj = L
j
1 = σ {y1, . . . , yj }. There is a martingale difference

sequence {Yj ,Lj } such that yj = Yj + uj − uj+1, where ‖uj‖q � τ̃ jα
for all

2 < q < p.

PROOF (cf. [37], Lemma 7.4.1). Define uj = ∑∞
k=0 E(yj+k|Lj−1). We es-

timate ‖E(yj+k|Lj−1)‖q , which we write for convenience as ‖E(y|L)‖q . Note
that

E|E(y|L)|q = E{E(y|L)E(y|L)|E(y|L)|q−2}
= E{E{yE(y|L)|E(y|L)|q−2|L}}
= E{yE(y|L)|E(y|L)|q−2}.

Write 1
q

+ 1
s

= 1. Then 1
p

+ 1
s

< 1, so by Lemma 2.4,

E|E(y|L)|q ≤ ‖y‖p‖E(y|L)q−1‖s τ̃
(j+k)α .

Note that ‖E(y|L)q−1‖s = (E|E(y|L)|q)1−1/q , and so dividing both sides by this
yields ‖E(y|L)‖q ≤ ‖y‖pτ̃ (j+k)α . Since

∑∞
k=0 τ̃ (j+k)α � j τ̃ jα

, the estimate for
‖uj‖q follows (increasing τ̃ slightly).

At the same time, it follows immediately that
∑∞

k=0 |E(yj+k|Lj )|1 < ∞, which
guarantees (see, e.g., [37], Lemma 2.1) that Yj is a martingale difference se-
quence. �

COROLLARY A.5.
∑

j≤MN
(yj − Yj ) � 1 a.e. and

∑
j≤MN

(y2
j − Y 2

j ) �
N1/2 a.e.

PROOF. We have
∑

j≤M(yj − Yj ) = u1 − uM+1, and hence certainly
|∑j≤M(yj − Yj )| ≤ ∑

j≥1 |uj |. By Lemma A.4,
∑

j≥1 |uj |1 < ∞ so that∑
j≥1 |uj | < ∞ a.e. proving the first statement.
Set vj = uj − uj+1. Then Y 2

j − y2
j = v2

j − 2yjvj . Now E
∑∞

j=1 v2
j =∑∞

j=1 Ev2
j � ∑∞

j=1 τ̃ 2jα
< ∞ by Lemma A.4. Hence

∑
j≤M v2

j ≤ ∑∞
j=1 v2

j <

∞ a.e. Finally,
∑

j≤M yjvj ≤ (
∑

j≤M y2
j )1/2(

∑
j≤M v2

j )
1/2 � (

∑
j≤M y2

j )1/2 �
N1/2 by Lemmas A.1 and A.3. �
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LEMMA A.6. Let Xk be a martingale difference sequence and m ∈ (1,2].
Suppose that b1 < b2 < · · · → ∞. If

∑
k≤n b−m

k E|Xk|m < ∞, then
∑

k≤n Xk =
o(bn) a.e.

PROOF. For m = 2, this is explicit in [19], page 238. For m ∈ (1,2) it follows
from a standard martingale result (Chow [12]), combined with Kronecker’s lemma;
this is implicit in the proof of [37], Lemma 7.4.4. �

LEMMA A.7. Let β = ( 1
p

+ 1
2Q)/(1 + Q) for 2 < p ≤ 4 [and β = (1

4 +
1
2Q)/(1 + Q) for p > 4]. Then for any ε > 0,

∑
j≤MN

(E(Y 2
j |Lj−1) − Y 2

j ) �
N2β+ε a.e.

PROOF. Define Rj = E(Y 2
j |Lj−1) − Y 2

j . Suppose that γ > 2/p + Q and
choose q < p so that γ > 2/q + Q. Then

(jγ )−q/2E|Rj |q/2 � j−γ q/2E|Yj |q � j−(γ−Q)q/2,

hence
∑∞

j=1(j
γ )−q/2E|Rj |q/2 < ∞. Note that q

2 ∈ (1,2] and Rj is a martingale
difference sequence, so it follows from Lemma A.6 that

∑
j≤M Rj � Mγ and the

result follows from Proposition 2.8. �

We now apply Strassen’s martingale version of the Skorokhod embedding [41].
There exist nonnegative random variables Tj such that the sequences {∑j≤M Yj ,

M ≥ 1} and {W(
∑

j≤M Tj ),M ≥ 1} are equal in distribution.

PROPOSITION A.8. For β as in Corollary A.2, Lemmas A.3 and A.7 and any
ε > 0,

∑
j≤MN

Tj − N � N2β+ε a.e.

PROOF. Let AM = σ {W(t) : 0 ≤ t ≤ ∑
j≤M Tj }, so LM ⊂ AM . Each Tj is

Aj -measurable, E(Tj |Aj−1) = E(Y 2
j |Lj−1) a.e., and ET

p
j � E|Yj |2p . In partic-

ular, the argument in Lemma A.7 implies that∑
j≤M

(
Tj − E(Tj |Aj−1)

) � N2β a.e.(A.1)

Now write∑
Tj − N = ∑(

Tj − E(Tj |Aj−1)
) + ∑(

E(Y 2
j |Lj−1) − Y 2

j

) + ∑
Y 2

j − N.

The result follows from (A.1), Corollaries A.2 and A.5 and Lemmas A.3
and A.7. �

THEOREM A.5. Let β = 1
2p

+ 1
4 for 2 < p ≤ 4 and β = 3

8 for p > 4. For any

ε > 0,
∑

n≤N ηn = W(N) + O(Nβ+ε) a.e.

PROOF. By Theorem 2.11 and Corollary A.5, it suffices to prove that∑
j≤M Yj = W(N) + O(Nβ+2ε). Equivalently, W(

∑
j≤M Tj ) = W(N) +

O(Nβ+2ε). Hence the result follows from Proposition A.8. �
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