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INTRINSIC ULTRACONTRACTIVITY OF NONSYMMETRIC
DIFFUSIONS WITH MEASURE-VALUED DRIFTS AND

POTENTIALS

BY PANKI KIM1 AND RENMING SONG2

Seoul National University and University of Illinois

Recently, in [Preprint (2006)], we extended the concept of intrinsic ultra-
contractivity to nonsymmetric semigroups. In this paper, we study the intrin-
sic ultracontractivity of nonsymmetric diffusions with measure-valued drifts
and measure-valued potentials in bounded domains. Our process Y is a diffu-
sion process whose generator can be formally written as L + μ · ∇ − ν with
Dirichlet boundary conditions, where L is a uniformly elliptic second-order
differential operator and μ = (μ1, . . . ,μd) is such that each component μi ,
i = 1, . . . , d, is a signed measure belonging to the Kato class Kd,1 and ν

is a (nonnegative) measure belonging to the Kato class Kd,2. We show that
scale-invariant parabolic and elliptic Harnack inequalities are valid for Y .

In this paper, we prove the parabolic boundary Harnack principle and the
intrinsic ultracontractivity for the killed diffusion YD with measure-valued
drift and potential when D is one of the following types of bounded domains:
twisted Hölder domains of order α ∈ (1/3,1], uniformly Hölder domains of
order α ∈ (0,2) and domains which can be locally represented as the region
above the graph of a function. This extends the results in [J. Funct. Anal. 100
(1991) 181–206] and [Probab. Theory Related Fields 91 (1992) 405–443]. As
a consequence of the intrinsic ultracontractivity, we get that the supremum of
the expected conditional lifetimes of YD is finite.

1. Introduction. In this paper, we study the intrinsic ultracontractivity of a
nonsymmetric diffusion process Y with measure-valued drift and measure-valued
potential in bounded domains D ⊂ Rd for d ≥ 3. The generator of Y can be for-
mally written as L + μ · ∇ − ν with Dirichlet boundary conditions, where L is a
uniformly elliptic second order differential operator and μ = (μ1, . . . ,μd) is such
that each component μi , i = 1, . . . , d , is a signed measure belonging to the Kato
class Kd,1 and ν is a (nonnegative) measure belonging to the Kato class Kd,2 (see
below for the definitions of Kd,1 and Kd,2). The existence and uniqueness of this
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process Y were proven in Bass and Chen [3]. In [15–17, 19], we have studied prop-
erties of diffusions with measure-valued drifts in bounded domains. Using results
in [15–17, 19], we will prove that, with respect to a certain reference measure, Y

has a dual process which is a continuous Hunt process satisfying the strong Feller
property.

The notion of intrinsic ultracontractivity, introduced in [11] for symmetric semi-
groups, is a very important concept and has been studied extensively. In [18], the
concept of intrinsic ultracontractivity was extended to nonsymmetric semigroups
and it was proven there that the semigroup of the killed diffusion process in a
bounded Lipschitz domain is intrinsically ultracontractive if the coefficients of the
generator of the diffusion process are smooth.

In this paper, using the duality of our processes, we prove that the semigroups
of the killed diffusion YD and its dual are intrinsically ultracontractive if D is one
of the following types of bounded domains:

(a) a twisted Hölder domain of order α ∈ (1/3,1];
(b) a uniformly Hölder domain of order α ∈ (0,2);
(c) a domain which can be locally represented as the region above the graph of

a function.

In fact, we first prove parabolic boundary Harnack principles for YD and its dual
process (see Theorem 5.6 and Corollary 5.7). We then show that the parabolic
boundary Harnack principles imply that the semigroups of YD and its dual are in-
trinsically ultracontractive. The fact that the parabolic boundary Harnack principle
implies the intrinsic ultracontractivity in the symmetric diffusion case was used
and discussed in [2] and [12]. As a consequence of the intrinsic ultracontractivity,
we have that the supremum of the expected conditional lifetimes of YD is finite if
D is one of the domains above.

Many results in this paper are stated for both the diffusion process Y and its
dual. In these cases, the proofs for the dual process are usually harder. Once the
proofs for the dual process are completed, it is very easy to see that the results for
the diffusion process Y can be proven through similar and simpler arguments. For
this reason, we only present the proof for the dual process.

The contents of this paper are organized as follows. In Section 2, we present
some preliminary properties of Y and the existence of the dual process of Y . Sec-
tion 3 contains the proof of parabolic Harnack inequalities for Y and its dual
process. In Section 4, we discuss some properties of Y and its dual in twisted
Hölder domains, uniformly Hölder domains and domains which can be locally rep-
resented as the region above the graph of a function. In the last section, we prove
the parabolic boundary Harnack principles and show that the parabolic bound-
ary Harnack principles imply the intrinsic ultracontractivity of the nonsymmetric
semigroups. Finally, we obtain that the supremum of the expected conditional life-
time is finite.
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In this paper, we always assume that d ≥ 3. Throughout, we use the notation
a ∧ b := min{a, b} and a ∨ b := max{a, b}. The distance between x and ∂D, the
boundary of D, is denote by ρD(x). We use the convention f (∂) = 0. We will also
use the following convention: the values of the constants r1, t0, t1 will remain the
same throughout, while the values of the constants c1, c2, . . . might change from
one appearance to another. The labeling of the constants c1, c2, . . . starts anew in
the statement of each result.

In this paper, we use “:=” to denote a definition, this being read as “is defined
to be.”

2. Dual processes for diffusion processes with measure-valued drifts and
potentials. First, we recall the definition of the Kato class Kd,j for j = 1,2. For
any function f on Rd and r > 0, we define

M
j
f (r) = sup

x∈Rd

∫
|x−y|≤r

|f |(y) dy

|x − y|d−j
, j = 1,2.

For any signed measure ν on Rd , we use ν+ and ν− to denote its positive and
negative parts, and |ν| := ν+ +ν−. For any signed measure ν on Rd and any r > 0,
we define

Mj
ν (r) = sup

x∈Rd

∫
|x−y|≤r

|ν|(dy)

|x − y|d−j
, j = 1,2.

DEFINITION 2.1. Let j = 1,2. We say that a function f on Rd belongs to the
Kato class Kd,j if limr↓0 M

j
f (r) = 0. We say that a signed Radon measure ν on

Rd belongs to the Kato class Kd,j if limr↓0 M
j
ν (r) = 0.

Throughout this paper, we assume that μ = (μ1, . . . ,μd) and ν are fixed with
each μi being a signed measure on Rd belonging to Kd,1 and ν being a (non-
negative) measure on Rd belonging to Kd,2.

We also assume that the operator L is either L1 or L2, where

L1 := 1
2

d∑
i,j=1

∂i(aij ∂j ) and L2 := 1
2

d∑
i,j=1

aij ∂i∂j

with A(x) := (aij (x)) being C1 and uniformly elliptic. Since A(x) = (aij (x)) is
C1, without loss of generality, one can assume that the matrix A(x) is symmetric
(see, e.g., Section 6 of [16]).

We will use X to denote the diffusion process in Rd whose generator can be
formally written as L + μ · ∇ . When each μi is given by Ui(x) dx for some func-
tion Ui , X is a diffusion in Rd with generator L + U · ∇ and it is a solution to
the stochastic differential equation dXt = dX0

t + U(Xt) · dt , where X0 is a diffu-
sion in Rd with generator L. For a precise definition of a (nonsymmetric) diffusion
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X with drift μ in Kd,1, we refer to Section 6 in [16] and Section 1 in [19]. The
existence and uniqueness of X were established in [3] (see Remark 6.1 in [3]).

For any open set U , we use τX
U to denote the first exit time of U for X, that is,

τX
U = inf{t > 0 :Xt /∈ U}. We define XU

t (ω) = Xt(ω) if t < τX
U (ω) and XU

t (ω) = ∂

if t ≥ τX
U (ω), where ∂ is a cemetery state. The process XU is called a killed diffu-

sion with drift μ in U . XU is a Hunt process with the strong Feller property, that
is, for every f ∈ L∞(U), Ex[f (XU

t )] is in C(U), the space of continuous func-
tions in U (Proposition 2.1 [19]). Moreover, XU has a jointly continuous density
qU(t, x, y) with respect to the Lebesgue measure (Theorem 2.4 in [16]).

From Section 3 in [17] and Proposition 7.1 in [19], we know that for every
bounded domain U , there exists a positive continuous additive functional AU of
XU with Revuz measure ν|U , that is, for any x ∈ U , t > 0 and bounded nonnega-
tive function f on U ,

Ex

∫ t

0
f (XU

s ) dAU
s =

∫ t

0

∫
U

qU(s, x, y)f (y)ν(dy) ds.

Throughout this paper, we assume that V is a bounded smooth domain in Rd and
consider the transient diffusion process Y such that

Ex[f (Yt )] = Ex[exp(−AV
t )f (XV

t )].
(See III.3 of [4] for the construction of such a killed process.) We will use ζ to
denote the lifetime of Y . Note that the process Y might have killing inside V , that
is, Px(Yζ− ∈ V ) might be positive.

A simple example of Y is a diffusion whose infinitesimal generator is a second-
order differential operator L − b · ∇ − c, where (b1, . . . , bd) and c ≥ 0 belong to
the Kato classes Kd,1 and Kd,2, respectively. If (b1, . . . , bd) is differentiable and
L = L1, then the formal adjoint of the above operator is L1 + b · ∇ − (c − ∇b).

If one further assumes that c − ∇b ≥ 0, then there is a diffusion process with
generator L1 + b · ∇ − (c −∇b). We cannot, and do not make such assumptions in
this paper. Instead, we will introduce a new reference measure and consider a dual
process with respect to this reference measure.

Recall that for any domain D ⊂ Rd , ρD(x) is the distance between x and ∂D.
It is shown in [17] that the process Y has a jointly continuous and strictly positive
transition density function r(t, x, y) with respect to the Lebesgue measure and for
each T > 0, there exist positive constants cj , 1 ≤ j ≤ 4, depending on V such that
for t ≤ T ,

c1t
−d/2

(
1 ∧ ρV (x)√

t

)(
1 ∧ ρV (y)√

t

)
e−c2|x−y|2/(2t)

≤ r(t, x, y)(2.1)

≤ c3t
−d/2

(
1 ∧ ρV (x)√

t

)(
1 ∧ ρV (y)√

t

)
e−c4|x−y|2/(2t).
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Moreover, for every smooth subset U of V , the killed process YU has a jointly
continuous and strictly positive transition density function rU (t, x, y) with respect
to the Lebesgue measure and for each T > 0, there exist positive constants cj ,
5 ≤ j ≤ 8, depending on U such that for t ≤ T ,

c5t
−d/2

(
1 ∧ ρU(x)√

t

)(
1 ∧ ρU(y)√

t

)
e−c6|x−y|2/(2t)

≤ rU (t, x, y)(2.2)

≤ c7t
−d/2

(
1 ∧ ρU(x)√

t

)(
1 ∧ ρV (y)√

t

)
e−c8|x−y|2/(2t).

(See Theorem 4.4(1) in [17].)
Let C0(V ) be the class of bounded continuous functions on V vanishing con-

tinuously near the boundary of V . We will use ‖ · ‖∞ to denote the L∞-norm in
C0(V ). Using the joint continuity of r(t, x, y) and rU (t, x, y), and the estimates
above, it is easy to show the following result, so we omit the proof.

PROPOSITION 2.2. Y is a doubly Feller process (a Feller process satis-
fying the strong Feller property), that is, for every g ∈ C0(V ), Ex[g(Yt )] =
Ex[g(Yt ); t < ζ ] is in C0(V ) and ‖Ex[g(Yt )] − g(x)‖∞ → 0 as t → 0, and for
every f ∈ L∞(V ), Ex[f (Yt )] is bounded and continuous in V .

In particular, the above proposition implies that for any domain U ⊂ V , YU is
Hunt process with the strong Feller property (see, e.g., [7]).

We will use G(x,y) to denote the Green function of Y . For any domain U ⊂ V ,
we will use GU(x, y) to denote the Green function of YU . Thus,

Ex

∫ ∞
0

f (Yt ) dt = Ex

∫ ζ

0
f (Yt ) dt =

∫
V

G(x, y)f (y) dy

and

Ex

∫ ∞
0

f (YU
t ) dt = Ex

∫ τU

0
f (YU

t ) dt =
∫
U

GU(x, y)f (y) dy,

where τU is the first exit time of U for Y , that is, τU = inf{t > 0 :Yt /∈ U}. We will
use GX

U(x, y) to denote the Green function of XU and G0
V (x, y) the Green function

of the killed Brownian motion in V . Since Y is transient, combining Theorem 6.2
in [15] and the result in Section 3 of [17], we have that there exists a constant
c = c(V ) such that

c−1G0
V (x, y) ≤ G(x,y) ≤ cG0

V (x, y), V × V \ {x = y}.(2.3)

Thus, for every U ⊂ V ,

GU(x, y) ≤ G(x,y) ≤ c

|x − y|d−2 for every x, y ∈ D,(2.4)
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for some constant c > 0.
Let

H(x) :=
∫
V

G(y, x) dy and ξ(dx) := H(x)dx.

It is then easy to check (see the proof of Proposition 2.2 in [19]) that ξ is an
excessive measure with respect to Y , that is, for every Borel function f ≥ 0,∫

V
f (x)ξ(dx) ≥

∫
V

Ex[f (Yt )]ξ(dx).

We define a new transition density function with respect to the reference measure
ξ by

r(t, x, y) := r(t, x, y)

H(y)
.

Then

G(x,y) :=
∫ ∞

0
r(t, x, y) dt = G(x,y)

H(y)

is the Green function of Y with respect to the reference measure ξ(dy).
Before we discuss properties of Y any further, we recall some definitions. Recall

that τA = inf{t > 0 :Yt /∈ A}.
DEFINITION 2.3. Suppose U is an open subset of V . A nonnegative Borel

function u defined on U is said to be:

(1) harmonic with respect to Y in U if

u(x) = Ex[u(YτB
)] = Ex[u(YτB

); τB < ζ ], x ∈ B,(2.5)

for every bounded open set B with B ⊂ U ;
(2) superharmonic with respect to YU if

u(x) ≥ Ex[u(YU
τB

)], x ∈ B,

for every bounded open set B with B ⊂ U ;
(3) excessive for YU if

u(x) ≥ Ex[u(YU
t )] = Ex[u(YU

t ); t < ζ ], t > 0, x ∈ U

and

u(x) = lim
t↓0

Ex[u(YU
t )], x ∈ U ;

(4) a potential for YU if it is excessive for YU and for every sequence {Un}n≥1
of open sets with Un ⊂ Un+1 and

⋃
n Un = U ,

lim
n→∞ Ex[u(YU

τUn
)] = 0, ξ -a.e. x ∈ U.
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A Borel function u defined on U is said to be regular harmonic with respect to Y

in U if u is harmonic with respect to Y in U and (2.5) is true for B = U .

Since YU is a Hunt processes with the strong Feller property, it is easy to check
that u is excessive for YU if and only if f is lower-semicontinuous in U and
superharmonic with respect to YU . (See Theorem 4.5.3 in [10] for the Brownian
motion case; the proof there can adapted easily to the present case.)

Using (2.1)–(2.2) and the joint continuity of r(t, x, y) and rU (t, x, y), one can
easily check that GU(x, y) is strictly positive and jointly continuous on (U ×U) \
{(x, y) : x = y}. GU(x, y) is infinite if and only if x = y (see the proof of Theorem
2.6 in [16]). Thus, by (2.3), we see that H is a strictly positive, bounded continuous
function on V . Moreover, using the estimates for G0

V (x, y), one can check that
there exists a constant c = c(V ) such that

c−1ρV (x) ≤ H(x) ≤ cρV (x).(2.6)

(See Lemma 6.4 in [19] and its proof.) Now, using the above properties and (2.4),
we see that Y is a transient diffusion with its Green function G(x,y) with respect
to ξ satisfying the conditions in [9] and [23] (see (A1)–(A4) in [19]). In fact, one
can follow the arguments in [19] and check that all the results in Sections 2–3
of [19] are true for Y . In particular, using the same arguments in the proofs of
Theorems 2.4–2.5 in [19], it is easy to check that the conditions (i)–(vii) and (70)–
(71) in [20] (also, see the Remark on page 391 in [21]) are satisfied. Thus, with
respect to the reference measure ξ , Y has a nice dual process. For more detailed
arguments, we refer readers to [19].

THEOREM 2.4. There exists a continuous transient Hunt process Ŷ in V such
that Ŷ is a strong dual of Y with respect to the measure ξ , that is, the density of
the semigroup {P̂t }t≥0 of Ŷ is r̂(t, x, y) := r(t, y, x) and thus∫

V
f (x)Ptg(x)ξ(dx) =

∫
V

g(x)P̂tf (x)ξ(dx) for all f,g ∈ L2(V , ξ).

We will use ζ̂ to denote the lifetime of Ŷ . Note that Ŷ might also have killing
inside V , that is, Px(Ŷζ̂− ∈ V ) might be positive.

By Theorem 2 and Remark 2 following it in [25], for any domain U ⊂ V , YU

and Ŷ U are duals of each other with respect to ξ . For any domain U ⊂ V , we
define

r̂U (t, x, y) := rU (t, y, x)H(y)

H(x)
.

Since H is strictly positive and continuous, by the joint continuity of rU (t, x, y)

(see Section 4 of [17] and the references therein), r̂U (t, x, y) is jointly continuous
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on U × U . Thus, r̂U (t, x, y) is the transition density of Ŷ U with respect to the
Lebesgue measure and

ĜU (x, y) := GU(y, x)H(y)

H(x)
(2.7)

is the Green function for Ŷ U with respect to the Lebesgue measure so that for
every nonnegative Borel function f ,

Ex

[∫ τ̂U

0
f (Ŷt ) dt

]
=

∫
U

ĜU(x, y)f (y) dy,

where τ̂U := inf{t > 0 : Ŷt /∈ U}.
We will use {ĜU

λ , λ ≥ 0} to denote the resolvent of Ŷ U with respect to ξ . Fol-
lowing the argument in Proposition 3.4 in [19], one can check that Ŷ U has the
strong Feller property. We include the proof here for the reader’s convenience.

PROPOSITION 2.5. For any U ⊂ V , Ŷ U has the strong Feller property in
the resolvent sense; that is, for every bounded Borel function f on U and λ ≥ 0,
ĜU

λ f (x) is a bounded continuous function on U .

PROOF. By the resolvent equation ĜU
0 = ĜU

λ +λĜU
0 ĜU

λ , it is enough to show
the strong Feller property for ĜU

0 . Fix a bounded Borel function f on U and a
sequence {yn}n≥1 converging to y in U . Let M := ‖f H‖L∞(U) < ∞. We assume
{yn}n≥1 ⊂ K for a compact subset K of U . Let A := infy∈K H(y). By (2.6), we
know that A is strictly positive. Note that there exists a constant c1 such that for
every δ > 0, (∫

B(y,δ)

dx

|x − y|d−2 +
∫
B(yn,2δ)

dx

|x − yn|d−2

)
≤ c1δ

2.

Thus, by (2.4), there exists a constant c2 such that for every δ > 0 and yn with
yn ∈ B(y, δ

2) ⊂ B(y,2δ) ∈ K ,∫
B(y,δ)

GU(x, y)H(x)f (x)

H(y)
dx +

∫
B(y,δ)

GU(x, yn)H(x)f (x)

H(yn)
dx

≤ M

A

(∫
B(y,δ)

GU(x, y) dx +
∫
B(yn,2δ)

GU(x, yn) dx

)

≤ c2M

A

(∫
B(y,δ)

dx

|x − y|d−2 +
∫
B(yn,2δ)

dx

|x − yn|d−2

)
≤ 1

A
c1c2Mδ2.

Given ε, choose δ small enough such that 1
A
c1c2Mδ2 < ε

2 . Then

|ĜU
0 f (y) − ĜU

0 f (yn)|
≤ M

∫
U\B(y,δ)

∣∣∣∣GU(x, y)

H(y)
− GU(x, yn)

H(yn)

∣∣∣∣dx + ε

2
.
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Note that GU(x, yn)/H(yn) converges to GU(x, y)/H(y) for every x �= y and that
{GU(x, yn)/H(yn)} are uniformly bounded on x ∈ U \ B(y, δ) and yn ∈ B(y, δ

2).
So, the first term on the right-hand side of the inequality above goes to zero as
n → ∞, by the bounded convergence theorem. �

Applying the results in [23] and [24], we have the following.

PROPOSITION 2.6. Suppose D ⊂ V . Any function which is harmonic for Y

(resp. Ŷ ) in D is continuous. For each y, x → GD(x, y) is excessive for YD and
harmonic for Y in D \ {y}, and x → ĜD(x, y) is excessive for Ŷ D and harmonic
for Ŷ in D \ {y}. Moreover, for every open subset U of D, we have

Ex[GD(YD
TU

, y)] = GD(x, y) and
(2.8)

Ex[ĜD(ŶD
T̂U

, y)] = ĜD(x, y), (x, y) ∈ D × U,

where TU := inf{t > 0 :YD
t ∈ U} and T̂U := inf{t > 0 : Ŷ D

t ∈ U}. In particular,
for every y ∈ D and ε > 0, GD(·, y) is regular harmonic with respect to YD in
D \ B(y, ε) and ĜD(·, y) is regular harmonic with respect to Ŷ D in D \ B(y, ε).

By Theorem 3.7 in [16], there exist constants r1 = r1(d,μ) > 0 and c =
c(d,μ) > 1 depending on μ only via the rate at which max1≤i≤d M1

μi (r) goes

to zero such that for r ≤ r1, w ∈ Rd , x, y ∈ B(w, r),

c−1G0
B(w,r)(x, y) ≤ GX

B(w,r)(x, y) ≤ cG0
B(w,r)(x, y).(2.9)

Thus, there exists a positive constant c independent of r ≤ r1 such that for every
x, y, z ∈ B(w, r) and w ∈ Rd ,

GX
B(w,r)(x, y)GX

B(w,r)(y, z)

GX
B(w,r)(x, z)

≤ c(|x − y|2−d + |y − z|2−d).(2.10)

For any z ∈ B(w, r), let (Pz
x,X

B(w,r)
t ) be the GX

B(w,r)(·, z)-transform of (Px,

X
B(w,r)
t ), that is, for any nonnegative Borel function f ,

Ez
x

[
f

(
X

B(w,r)
t

)] = Ex

[GX
B(w,r)(X

B(w,r)
t , z)

GX
B(w,r)(x, z)

f
(
X

B(w,r)
t

)]
.

Recall that AV is the positive continuous additive functionals of XV with Revuz
measures ν|V . Equation (2.10) implies that there exists a positive constant c1 < ∞
such that for every r ∈ (0, r1], w ∈ Rd and x, z ∈ B(w, r),

Ez
x

[
AV

τX
B(w,r)

] ≤
∫
B(w,r)

GX
B(w,r)(x, y)GX

B(w,r)(y, z)

GX
B(w,r)(x, z)

ν(dy) < c1.(2.11)
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Hence, by Jensen’s inequality, for x, z ∈ B(w, r), we have

Ez
x

[
exp

(−AV

τX
B(w,r)

)] ≥ exp
(−Ez

x

[
AV

τX
B(w,r)

]) ≥ e−c1 > 0.

Combining the identity

GB(w,r)(x, z) = GX
B(w,r)(x, z)Ez

x

[
exp

(−AV

τX
B(w,r)

)]
, x, z ∈ B(w, r),

(Lemma 3.5 (1) of [5]) with (2.9), we arrive at the following result.

PROPOSITION 2.7. There exist positive constants c and r1 := r1(d,μ, ν) such
that for all r ∈ (0, r1] and B(w, r) ∈ V , we have

c−1G0
B(w,r)(x, y) ≤ GB(w,r)(x, y) ≤ cG0

B(w,r)(x, y), x, y ∈ B(w, r).

In the remainder of this paper, we will always assume D is a bounded domain
with D ⊂ V . Let γ1 := 1

2 dist(∂V,D) and V̌ := {z ∈ V ;ρV (z) > γ1}. We fix D, V̌

and γ1 throughout this paper. For any subdomain U ⊂ V and any subset A of U ,
we define

CapU(A) := sup
{
η(A) :η is a measure supported on A

(2.12)

with
∫
U

G0
U(x, y)η(dy) ≤ 1

}
.

The next lemma is a nonsymmetric version of Lemma 2.1 in [2] for small balls.
For any set A, we define Az

r := z + rA = {w ∈ Rd :w = z + ra, a ∈ A}, Ar := A0
r

and Az := Az
1.

LEMMA 2.8. There exists c = c(V, d,μ, ν) > 0 such that for any compact
subset K of B(0,1), r ∈ (0, r1], B(z, r) ⊂ V̌ and compact set A ⊂ Kr , we have for
any x ∈ B(z, r),

c−1r2−d

(
inf
y∈K

G0
B(0,1)

(
(x − z)/r, y

))
CapB(0,r)(A)

≤ Px

(
TAz < τB(z,r)

)
≤ cr2−d

(
sup
y∈K

G0
B(0,1)

(
(x − z)/r, y

))
CapB(0,r)(A)

and

c−1r2−d

(
inf
y∈K

G0
B(0,1)

(
(x − z)/r, y

))
CapB(0,r)(A)

≤ Px

(
T̂Az < τ̂B(z,r)

)
≤ cr2−d

(
sup
y∈K

G0
B(0,1)

(
(x − z)/r, y

))
CapB(0,r)(A).
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PROOF. For B(z, r) ⊂ V̌ and U ⊂ B(z, r), define

CapB(z,r)

Ŷ
(U) := sup

{
η(U) :η is a measure supported on U

(2.13)

with
∫
B(z,r)

ĜB(z,r)(x, y)η(dy) ≤ 1
}
.

From (2.6), (2.7) and Proposition 2.7, we see that there is a constant c > 0 such
that for every r < r1 and B(z, r) ⊂ V̌ , we have

c−1CapB(z,r)

Ŷ
(U) ≤ CapB(z,r)(U) ≤ cCapB(z,r)

Ŷ
(U), U ⊂ B(z, r).(2.14)

Note that YB(z,r) and Ŷ B(z,r) are Hunt processes with the strong Feller prop-
erty and that they are in the strong duality with respect to ξ (Propositions 2.4 and
2.5). Since Az is a compact subset of B(z, r), there exist capacitary measures μAz

for Az with respect to YB(z,r) and μ̂Az for Az with respect to Ŷ B(z,r) such that
CapB(z,r)

Ŷ
(Az) = μAz(Az) = μ̂Az(Az). (See, e.g., VI.4 of [4] and Sections 5.1–5.2

of [10] for details.)
Using Proposition 2.7 and (2.6), we have for every x ∈ B(z, r),∫

Az
ĜB(z,r)(x, y)μ̂Az(dy) =

∫
Az

GB(z,r)(y, x)H(y)

H(x)
μ̂Az(dy)

≥ c−1
1

∫
Az

G0
B(z,r)(x, y)μ̂Az(dy)

(2.15)

≥ c−1
1

(
inf

y∈Kz
r

G0
B(z,r)(x, y)

)
μ̂Az(Az)

= c−1
1

(
inf

y∈Kz
r

G0
B(z,r)(x, y)

)
CapB(z,r)

Ŷ
(Az)

for some constant c1 > 0. Applying (2.14) to the above equation and using the
scaling property of Brownian motion, we get that for every x ∈ B(z, r),(

inf
y∈Kz

r

G0
B(z,r)(x, y)

)
CapB(z,r)

Ŷ
(Az)

(2.16)

≥ c−1r2−d

(
inf
y∈K

G0
B(0,1)

(
(x − z)/r, y

))
CapB(0,r)(A).

On the other hand, by (2.8), we have for every x ∈ B(z, r),∫
Az

ĜB(z,r)(x, y)μ̂Az(dy)

=
∫
Az

Ex

[
ĜB(z,r)

(
Ŷ

B(z,r)

T̂Az
, y

)]
μ̂Az(dy)(2.17)

≤
(

sup
w∈Az

∫
Az

ĜB(z,r)(w, y)μAz(dy)

)
Px

(
T̂Az < τ̂B(z,r)

)
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≤ c2Px

(
T̂Az < τ̂B(z,r)

)
for some constant c2 > 0. In the last inequality above, we have used (2.6) and
(2.13).

Combining (2.15)–(2.17), we have for every x ∈ B(z, r),

Px

(
T̂Az < τ̂B(z,r)

) ≥ c3r
2−d

(
inf
y∈K

G0
B(0,1)

(
(x − z)/r, y

))
CapB(0,r)(A)

for some constant c3 > 0. Thus, we have shown the first inequality in (2).
By Corollary 1 to Theorem 2 in [9], the function x �→ Px(T̂Az < τ̂B(z,r)) is a

potential for Ŷ B(z,r), thus there exists a Radon measure ν̂1 on Az such that

Px

(
T̂Az < τ̂B(z,r)

) =
∫
Az

ĜB(z,r)(x, y)̂ν1(dy), x ∈ B(z, r).

Hence, by (2.6) and (2.13), we have

Px

(
T̂Az < τ̂B(z,r)

) ≤ c4

(
sup
y∈Kz

r

GB(z,r)(y, x)

)
CapB(z,r)

Ŷ
(Az), x ∈ B(z, r)

for some constant c4 > 0. Now, applying Proposition 2.7 and (2.14) to the right-
hand side above and using the scaling property of Brownian motion, we get the
desired assertion. �

Note that the result in Lemma 2.1 in [2] (with T∂B(z,r) instead of τB(z,r)) may
not be valid for our processes. This is because our processes might have killing
inside V and so T∂B(z,r) may be different from τB(z,r).

LEMMA 2.9. There exists c > 0 such that for every r < r1 and B(z, r) ⊂ V̌ ,

Ez

[
τB(z,r)

] ∨ Ez

[
τ̂B(z,r)

]
< cr2.(2.18)

PROOF. By Proposition 2.7 and (2.6), the lemma is clear. In fact,

Ez[τ̂B(z,r)] =
∫
B(z,r)

GB(z,r)(y, z)H(y)

H(z)
dy ≤ c

∫
B(z,r)

G0
B(z,r)(z, y) dy ≤ c1r

2

for some constants c, c1 > 0. �

Using the above lemma and the Markov property, we can easily get the follow-
ing result.

LEMMA 2.10. Suppose r < r1, B(z, r) ⊂ V̌ and U ⊂ D. Then

Pz

(
τU < τB(z,r)

)
> c1

(
resp. Pz

(
τ̂U < τ̂B(z,r)

)
> c1

) ∀z

for some c1 > 0 implies

Ez[τU ] ≤ c2r
2 (resp. Ez[τ̂U ] ≤ c2r

2) ∀z

for some c2 > 0.
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PROOF. Using (2.18) and the Markov property, the lemma can be proven using
an argument similar to the one in the proof of Lemma 3.3 in [2] (with τU and τB(z,r)

instead of the hitting times there). We omit the proof. �

3. Parabolic and elliptic Harnack inequalities. In this section, we shall
prove a small-time parabolic Harnack inequality for Y and Ŷ . We will get a scale-
invariant version of the elliptic Harnack inequality as a corollary. These Harnack
inequalities will be used later to prove the main results of this paper.

Recall that D is a bounded domain with D ⊂ V , γ1 = 1
2 dist(∂V,D) and V̌ =

{z ∈ V ;ρV (z) > γ1}. In [17], we proved uniform Gaussian estimates for the den-
sity (with respect to the Lebesgue measure) of YD when D is a bounded smooth
domain. We recall here part of the result from [17]: there exist positive constants t0,
t1, c1 and c2 such that for every R ≤ √

t0, t ≤ R2t1 and (x, y) ∈ B(z,R)×B(z,R),

rB(z,R)(t, x, y)
(3.1)

≥ c1t
−d/2

(
1 ∧ ρB(z,R)(y)√

t

)(
1 ∧ ρB(z,R)(y)√

t

)
e−c2|x−y|2/(2t),

whenever B(z,R) ⊂ V (see Theorem 4.4(2) in [17]). In the remainder of this pa-
per, t0 and t1 will always stand for the constants above.

With the density estimates (3.1) available, one can follow the ideas in [13] (see
also [15, 27]) to prove the parabolic Harnack inequality. For this reason, the proofs
of this section will be somewhat sketchy.

LEMMA 3.1. For each 0 < δ, u < 1, there exists ε = ε(d, δ, u, t1) > 0 such
that

rB(x0,R)(t, x, y) ∧ r̂B(x0,R)(t, x, y) ≥ ε

|B(x0, δR)|(3.2)

for all x, y ∈ B(x0, δR) ⊂ V̌ , R ≤ √
t0 and (1 − u)R2t1 ≤ t ≤ R2t1.

PROOF. Fix 0 < δ, u < 1 and B(x0, δR) ⊂ V̌ . Let BR := B(x0,R) and assume
that R ≤ √

t0 and t ≤ R2t1. By (2.6) and (3.1), there exist c1 and c2 such that

r̂BR(t, x, y) = rBR(t, y, x)H(y)

H(x)
(3.3)

≥ c1t
−d/2

(
1 ∧ ρBR

(y)√
t

)(
1 ∧ ρBR

(y)√
t

)
e−c2|x−y|2/(2t).

If |x − x0| < δR, |y − x0| < δR and (1 − u)R2t1 ≤ t ≤ R2t1, then(
1 ∧ ρBR

(y)√
t

)(
1 ∧ ρBR

(y)√
t

)
≥ (1 − δ)2

t1
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and

c2|x − y|2
2t

≤ 2c2δ
2

(1 − u)t1
.

So, the right-hand side of (3.3) is bounded below by

c1(R
2t1)

−d/2 (1 − δ)2

t1
e−2c2δ

2/((1−u)t1) = c3c1t
−d/2−1
1

(1 − δ)2δd

|B(0, δR)|e
−2c2δ

2/((1−u)t1)

=: ε

|B(0, δ)| ,

where c3 depends only on d . �

We define space-time processes Zs := (Ts, Ys) and Ẑs := (Ts, Ŷs), where Ts =
T0 − s. The law of the space-time processes Zs (and Ẑs ) starting from (t, x) will
be denoted by Pt,x .

DEFINITION 3.2. For any (t, x) ∈ [0,∞)×V , u > 0 and bounded subdomain
U of V , we say that a nonnegative continuous function g defined on [t, t +u]×U

is parabolic for Y in [t, t + u] × U if for any [s1, s2] ⊂ (t, t + u] and B(y, δ) ⊂
B(y, δ) ⊂ D, we have

g(s, z) = Es,z

[
g
(
Zτ(s1,s2]×B(y,δ)

);Zτ(s1,s2]×B(y,δ)
∈ (0,∞) × V

]
(3.4)

for every (s, z) ∈ (s1, s2] × B(y, δ), where τ(s1,s2]×B(y,δ) = inf{s > 0 :Zs /∈
(s1, s2] × B(y, δ)}. The definition of parabolic functions for Ŷ is similar.

LEMMA 3.3. Suppose that U is a subdomain of V . For each T > 0 and y ∈ U ,
(t, x) → rU (t, x, y) and (t, x) → r̂U (t, x, y) are parabolic in (0, T ]×U for Y and
Ŷ , respectively.

PROOF. See the proof of Lemma 4.5 in [6]. �

COROLLARY 3.4. Suppose that U is a subdomain of V . For each T > 0 and
y ∈ U , and any nonnegative bounded function f on U , the functions

g(t, x) := Ex[f (YU
t )] =

∫
U

rU(t, x, y)f (y) dy

and

ĝ(t, x) := Ex[f (Ŷ U
t )] =

∫
U

r̂U (t, x, y)f (y) dy

are parabolic in (0, T ] × U for Y and Ŷ , respectively.
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PROOF. The continuity of ĝ follows from the continuity of r̂U . Equation (3.4)
follows from Lemma 3.3 and Fubini’s theorem. �

For s ≥ 0, R > 0 and B(x,R) ⊂ V , we define the oscillation of a function g on
(s − t1R

2, s) × B(x,R) by

Osc(g; s, x,R)

= sup{|g(s1, x1) − g(s2, x2)| : s1, s2 ∈ (s − t1R
2, s), x1, x2 ∈ B(x,R)}.

LEMMA 3.5. For any 0 < δ < 1, there exists 0 < ρ < 1 such that for all R ∈
(0,

√
t0], s ∈ [t1R2,∞), B(x0,R) ⊂ V̌ and function g which is parabolic for Y

(resp. Ŷ ) in (s − t1R
2, s] × B(x0,R) and continuous in [s − t1R

2, s] × B(x0,R),

Osc(g; s, x0, δR) ≤ ρOsc(g; s, x0,R).

PROOF. Fix s ≥ 0, 0 < R ≤ √
t0 and B(x0,R) ⊂ V̌ , and consider a function

g which is parabolic for Ŷ in (s − t1R
2, s] × B(x0,R) and continuous in [s −

t1R
2, s] × B(x0,R). Without loss of generality, we may assume that

min
(t,x)∈[s−t1R

2,s]×B(x0,R)
g(t, x) = 0 and max

(t,x)∈[s−t1R
2,s]×B(x0,R)

g(t, x) = 1.

Since Ŷ is a Hunt process, it is easy to see that Ẑ� is a Hunt process for any
bounded open subset � of [0,∞) × V . So, g and 1 − g are excessive with respect
to the process obtained by killing Ẑ upon exiting from (s − t1R

2, s) × B(x0,R).
First, we assume that δ satisfies∫

B(x0,δR)
g

(
s − 1

2
(δ2 + 1)t1R

2, y

)
dy ≥ |B(x0, δR)|

2
.

By Lemma 3.1, we have that for (t, x) ∈ (s − δ2t1R
2, s) × B(x0, δR),

g(t, x) ≥ Et,x

[
g
(
Ẑt+1/2(δ2+1)t1R

2−s

)
:

Ẑt+1/2(δ2+1)t1R
2−s ∈ (t1R

2 − s, s) × B(x0, δR)
]

≥
∫
B(x0,δR)

q̂B(x0,R)

(
t + 1

2
(δ2 + 1)t1R

2 − s, x, y

)

× g

(
s − 1

2
(δ2 + 1)t1R

2, y

)
dy

≥ ε

|B(x0, δR)|
|B(x0, δR)|

2
= ε

2
.

Therefore, Osc(g; s, x0, δR) ≤ 1 − ε.

If ∫
B(x0,δR)

g

(
s − 1

2
(δ2 + 1)t1R

2, y

)
dy ≤ |B(x0, δR)|

2
,
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then we consider 1 − g and use the same argument as above. �

The above lemma implies the Hölder continuity of parabolic functions.

THEOREM 3.6. For any 0 < δ < 1, there exist c > 0 and β ∈ (0,1) such
that for all R ∈ (0,

√
t0], s ∈ [t1R2,∞), B(x0,R) ⊂ V̌ and function g which

is parabolic for Y (resp. Ŷ ) in [s − t1R
2, s] × B(x0,R) and continuous in

[s − t1R
2, s] × B(x0,R), we have

|g(s1, x1) − g(s2, x2)| ≤ c‖g‖L∞([s−t1R
2,s]×B(x0,R))

( |s1 − s2|2 + |x1 − x2|
R

)β

for any (s1, x1), (s2, x2) ∈ [s − t1δ
2R2, s] × B(x0, δR).

PROOF. See Theorem 5.3 in [13]. �

Using Lemmas 3.1 and 3.5, the proof of the next theorem is almost identical to
that of Theorem 5.4 in [13]. Therefore, we omit the proof.

THEOREM 3.7. For any 0 < α < β < 1 and 0 < δ < 1, there exists c > 0 such
that for all R ∈ (0,

√
t0], s ∈ [t1R2,∞), B(x0,R) ⊂ V̌ positive function ĜD(x, y)

is ∞ if and only if X = y ∈ D, and that for function g which is parabolic for Y

(resp. Ŷ ) in (s − t1R
2, s] × B(x0,R) and continuous in (s − t1R

2, s] × B(x0,R),

g(t, y) ≤ cg(s, x0), (t, y) ∈ [s − βt1R
2, s − αt1R

2] × B(x0, δR).

Now, the parabolic Harnack inequality is an easy corollary of the theorem
above.

THEOREM 3.8 (Parabolic Harnack inequality). For any 0 < α1 < β1 < α2 <

β2 < 1 and 0 < δ < 1, there exists c > 0 such that for all 0 < R ≤ √
t0, B(x0,R) ⊂

V̌ and function g which is parabolic for Y (resp. Ŷ ) in [0, t1R
2) × B(x0,R) and

continuous in [0, t1R
2] × B(x0,R),

sup
(t,y)∈B1

g(t, y) ≤ c inf
(t,y)∈B2

g(t, y),

where Bi = {(t, y) ∈ [αit1R
2, βit1R

2] × B(x0, δR)}.
The scale-invariant Harnack inequality is an easy corollary of the parabolic Har-

nack inequality.

THEOREM 3.9 (Scale-invariant Harnack inequality). Every harmonic function
for Y (resp. Ŷ ) is Hölder continuous. There exists c = c(D,V ) > 0 such that for
every harmonic function f for Y (resp. Ŷ ) in B(z0,R) with B(z0,R) ⊂ V̌ , we have

sup
y∈B(z0,R/2)

f (y) ≤ c inf
y∈B(z0,R/2)

f (y).
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PROOF. By Proposition 2.6, any harmonic function f for Ŷ in B(z0, r) is
parabolic in (0, T ] × B(z0, r) with respect to Ŷ for any T > 0. Thus, f is Hölder
continuous by Theorem 3.6 and the Harnack inequality above is true for small
R by Theorem 3.8. When R is large and B(z0,R) ⊂ V̌ , we use a Harnack chain
argument and the fact that V is bounded. �

4. Analysis on various rough domains. In this section, we recall the de-
finitions of various rough domains from [1, 2] and prove the main lemma
(Lemma 4.7). We will use the probabilistic methods used in [2]. For this reason,
we follow the notation and the definitions of [2]. Unlike [2], we do not have the
scaling property here and Lemma 2.8 works only for small balls. Moreover, our
processes Y and Ŷ may have killing inside V . All these make our argument more
complicated than that of [2]. For the reader’s convenience, we will spell out some
of the proofs, especially the parts where things are more complicated.

A bounded domain D is said to be a Hölder domain of order β ∈ (0,1] if the
boundary of D is locally the graph of a function φ which is Hölder continuous of
order β , that is, |φ(x)−φ(z)| ≤ c|x −z|β. The concept of twisted Hölder domains,
which is a natural generalization of the concept of Hölder domains, was introduced
in [2]. Twisted Hölder domains have canals no longer and no thinner than Hölder
domains, but do not have local representation of their boundaries as graphs of
functions. For a rectifiable Jordan arc γ and x, y ∈ γ , we denote the length of the
piece of γ between x and y by l(γ (x, y)). Recall the capacity defined in (2.12).

DEFINITION 4.1. A bounded domain D ⊂ Rd is called a twisted Hölder do-
main of order α ∈ (0,1] if there exist positive constants c1, . . . , c5, a point z0 ∈ D

and a continuous function δ :D → (0,∞) with the following properties:

(1) δ(x) ≤ ρD(x)α for all x ∈ D;
(2) for every x ∈ D, there exists a rectifiable Jordan arc γ connecting x and z0

in D such that

δ(y) ≥ c2
(
l(γ (x, y)) + δ(x)

)
for all y ∈ γ ;

(3)

CapB(x,2c3a)(B(x, c3a) ∩ F(a)c)

CapB(x,2c3a)(B(x, c3a))
≥ c4 for all x ∈ F(a), a ≤ c5,

where F(a) = {y ∈ D : δ(y) ≤ a}.

One interesting fact is that the class of John domains (see page 422 of [2] for
the definition) and the class of twisted Hölder domains of order 1 are identical
(Proposition 3.2 of [2]). The boundary of a twisted Hölder domain can be highly
nonrectifiable and, in general, no regularity of its boundary can be inferred. We
refer to [2] for some elementary results on twisted Hölder domains.
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Under some regularity assumption on the boundary of D, Bañuelos considered
in [1] another natural generalization of Hölder domains. Let kD(x, y) be the quasi-
hyperbolic distance

kD(x, y) := inf
γ

∫
γ

ds

ρD(z)
,

where the infimum is taken over all rectifiable curves joining x to y in D. The
following definition is taken from [1].

DEFINITION 4.2. A bounded domain D ⊂ Rd is called a uniformly Hölder
domain of order α > 0 if there exist positive constants c1, . . . , c5 and a point z1 ∈
D with the following properties:

(1) kD(x, z1) ≤ c1ρD(x)−α + c2 for all x ∈ D;
(2) for every Q ∈ ∂D and r > 0,

CapB(Q,2r)(B(Q, r) ∩ Dc) ≥ c3r
d−2.

The class of uniformly Hölder domains is slightly more general than that of
uniformly regular twisted Lp-domains defined in [2].

LEMMA 4.3. (1) If D is a twisted Hölder domain of order α ∈ (0,1], there
exist c1 > 0, a1 > 0 and b1 > 0 such that for every a ≤ a1,

sup
y∈F(a)

Py

(
TF(a)c∩B(y,ab1) < τB(y,2ab1)

)
> c1

and

sup
y∈F(a)

Py

(
T̂F (a)c∩B(y,ab1) < τ̂B(y,2ab1)

)
> c1.

(2) If D is a uniformly Hölder domain of order α > 0, there exist c2 > 0 and
a2 > 0 such that for every r ≤ a2,

sup
y∈B(Q,2r/3)∩D

Py

(
TB(Q,r)∩Dc < τB(Q,2r)

)
> c2

and

sup
y∈B(Q,2r/3)∩D

Py

(
T̂B(Q,r)∩Dc < τ̂B(Q,2r)

)
> c2.

PROOF. Note that CapB(x,2r)(B(x, r)) ≥ crd−2. Thus, to prove (i), we only
need to use Lemma 2.8 and Definition 4.1(3) with K = B(0,1/2) and Az =
∂F (a) ∩ B(z, ab1) ⊂ B(z, ab1).

To prove (ii), we use Lemma 2.8 and Definition 4.2(2) with K = B(0,2/3) and
Az = B(z,2r/3) ∩ ∂D ⊂ B(z,2r/3). �
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DEFINITION 4.4. We say that a bounded domain D ⊂ Rd can be locally rep-
resented as the region above the graph of a function if there exist a positive con-
stant a0, a finite family of orthonormal coordinate systems CSj ’s, positive bj ’s and
functions

fj : Rd−1 → (−∞,0], j = 1, . . . ,m0,

such that

D =
m0⋃
j=1

{x = (x1, . . . , xd−1, xd) =: (x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd ≤ a0}.

LEMMA 4.5. Suppose that D is a bounded domain which can be locally
represented as the region above the graph of a function. Assume that a ≤ r1
and that y ∈ D is in {x = (x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd ≤ a0} for some
j = 1, . . . ,m0. If U and M are subsets of Rd that can be written as

U := {(x̃, xd) in CSj : |x̃ − ỹ| < a, |xd − yd | < a},
M :=

{
(x̃, xd) in CSj : |x̃ − ỹ| < a

2
, xd = a + yd

}
,

then there exists a constant c1 > 0, independent of a, y and CSj , such that(
inf

|x̃−ỹ|<a/2,xd=yd

Px(TM = τU)

)
∧

(
inf

|x̃−ỹ|<a/2,xd=yd

Px(T̂M = τ̂U )

)
> c1.

PROOF. By our Harnack inequality (Theorem 3.9), it is enough to show that

Py(TM ≤ τU ) ∧ Py(T̂M ≤ τ̂U ) > c1

for some c1 > 0 independent of a and CSj . Fix the coordinate systems CSj . Let
B1 := B(y, a) and

B2 := B
((

ỹ, yd + a/2
)
, a/

√
2
)
,

M1 :=
{
(x̃, xd); |x̃ − ỹ| < a

2
, xd = a

2
+ yd

}
,

M2 :=
{
(x̃, xd); |x̃ − ỹ| < a

4
, xd = a + yd

}
.

Note that B2 ∩ {xd = a + yd} = M . Thus,

Py(T̂M = τ̂U ) ≥ Ey[PŶT̂M1

(T̂M2 < τ̂B2); T̂M1 < τ̂B1]

≥ Py(T̂M1 < τ̂B1)

(
inf

z∈M1
Pz(T̂M2 < τ̂B2)

)
.

Now, applying Lemma 2.8 to both factors on the right-hand side the equation
above, we arrive at our desired conclusion. �
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For a bounded domain which can be locally represented as the region above the
graph of a function, we put

� := 1

2

(
1 + 1

4d − 2

)
.

For any k < 0 and y ∈ D such that

y ∈ {x = (x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd < 0}
for some j = 1, . . . ,m0, we let l

j,k
0 (y) be the smallest integer greater than

10|k|�(a0/2 − yd)/bj and define

D
j,k
1 (y) :=

{
x in CSj : |x̃ − ỹ| < bj

4|k|� ,fj (x̃) < xd < a0

}
,(4.1)

D
j,k
2 (y) :=

{
x in CSj : |x̃ − ỹ| < bj

4|k|� , |xd − yd | < bj

4|k|�
}
,(4.2)

Mj,k(y) :=
{
x in CSj : |x̃ − ỹ| < bj

20|k|� ,xd = yd + bj

10|k|� l
j,k
0 (y)

}
,(4.3)

where a0, bj , CSj and fj are the quantities from Definition 4.4.

LEMMA 4.6. Suppose that D is a bounded domain which can be locally rep-
resented as the region above the graph of a function. There exists p0 ∈ (0,1) such
that if p ∈ [p0,1) and

k ≤ − max
1≤j≤m0

(
bj

10r1

)1/�

,

then for any j = 1, . . . ,m0,

Py

(
T∂D < τB(y,bj |k|−�)

) ≤ 1 − p
(
resp. Py

(
T̂∂D < τ̂B(y,bj |k|−�)

) ≤ 1 − p
)

for every y ∈ {(x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd < 0} implies that

Py

(
TMj,k(y) < τ

D
j,k
1 (y)

) ≥ exp
(
−c1

8(a0 − yd)|k|�
bj

)
(

resp. Py

(
T̂Mj,k(y) < τ̂

D
j,k
1 (y)

) ≥ exp
(
−c1

8(a0 − yd)|k|�
bj

))
for some c1 = c1(p0) > 0 independent of j, fj and y.

PROOF. Fix j and k satisfying the assumption of the lemma. We also fix a
y ∈ {(x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd < 0}. Let a := bj 10−1|k|−� ≤ r1 and

Dl :=
{
x in CSj : |x̃ − ỹ| < 5a

2
, (yd − a) ∨ fj (x̃) < xd < yd + al

}
, l ≥ 1,
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D̃l :=
{
x in CSj : |x̃ − ỹ| < 5a

2
, yd − a < xd < yd + al

}
, l ≥ 1,

Wl :=
{
x in CSj : |x̃ − ỹ| < 5a

2
, yd + a(l − 5) ≤ xd < yd + al

}
, l ≥ 4,

Vl := {x in CSj :x ∈ Dc
l , |x̃ − ỹ| < a,yd + a(l − 2) < xd < yd + al}, l ≥ 3,

Bl :=
{
x in CSj ;

∣∣∣∣x −
(
ỹ, a

(
l − 5

2

))∣∣∣∣ <
5a

2

}
, l ≥ 4

and

2Bl :=
{
x in CSj ;

∣∣∣∣x −
(
ỹ, a

(
l − 5

2

))∣∣∣∣ < 5a

}
, l ≥ 4.

Note that Vl ⊂ Bl+1 ⊂ Wl+1 ⊂ 2Bl+1 (see Figure 1). Since Py(T̂∂D <

τ̂B(y,bj |k|−�)) ≤ 1 − p, we have

Py(T̂V3 < τ̂B4) ≤ Py(T̂∂D4 < τ̂
D̃4

) ≤ (1 − p).(4.4)

Thus, by Lemma 2.8,

CapB4(V3) ≤ c1

(
inf

w∈K
G0

B(0,1)

((
0,−3

5

)
,w

))−1

ad−2(1 − p) ≤ c2a
d−2(1 − p)

FIG. 1. V3 ⊂ B4 ⊂ W4 ⊂ 2B4.
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for some constants c1, c2 > 0 and where

K := {|x̃| < 1/10,−1/5 < xd < 3/5}.(4.5)

By the translation invariance of Cap and the definition of Vl ,

CapBl+1(Vl) ≤ c2a
d−2(1 − p).

Since Wl+1 ⊂ 2Bl+1, by Lemma 2.8, for yl := y + (0̃, (l − 3)a),

Pyl
(T̂Vl

< τ̂Wl+1) ≤ Pyl
(T̂Vl

< τ2Bl+1)

≤ c3a
2−d

(
sup

w∈1/2K

G0
B(0,1)

((
0,− 3

10

)
,w

))
Cap2Bl+1(Vl)

≤ c4a
2−d Cap2Bl+1(Vl),

where K is defined in (4.5). But, by the definition of Cap, Cap2Bl+1(Vl) ≤
CapBl+1(Vl). Therefore,

Pyl
(T̂Vl

< τ̂Wl+1) ≤ c4a
2−d CapBl+1(Vl) ≤ c5(1 − p).

Applying the Harnack inequality (Theorem 3.9), we get

Px(T̂Vl
< τ̂Wl+1) ≤ c6(1 − p), |x̃ − ỹ| < a

2
, xd = yd + a(l − 3).(4.6)

Using our Lemma 4.5 and (4.6) instead of Lemma 2.3 and (2.5) of [2], the
remaining part of the proof is similar to the proof of Lemma 2.4 on page 414,
starting from the line 3, in [2] (after rescaling) with

D̂l := {x in CSj : |x̃ − ỹ| < a,yd − a < xd < yd + al},

Ml :=
{
x in CSj : |x̃ − ỹ| < a

2
, xd = yd + al

}
.

However, due to the possible killing inside the domain in our case, things are more
delicate. We include the details of the remaining part of the proof for the reader’s
convenience.

Let θ be the usual shift operator for Markov processes and define

Al :=
l⋂

m=1

{τ̂Dm = T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂l
}.

Note that by the strong Markov property applied at T̂M1 ,

Py

( 4⋂
m=1

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
}
)

= Ey

[
PŶ D

TM1

( 4⋂
m=2

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
}

∩ {T̂
∂D̂0

> τ̂
D̂4

}
)

: τ̂
D̂1

= T̂M1

]
.
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Thus, by Lemma 4.5 and the strong Markov property applied at T̂Mm , m = 1, . . . ,4,
we get

Py

( 4⋂
m=1

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
}
)

≥ c7 inf
x∈M1

Px

( 4⋂
m=2

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
} ∩ {T̂

∂D̂0
> τ̂

D̂4
}
)

= c7 inf
x∈M1

Ex

[
PŶ D

T̂M2

( 4⋂
m=3

{τ̂
D̂m

= T̂Mm,

T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
}(4.7)

∩ {T̂
∂D̂0

> τ̂
D̂4

, T̂
∂D̂1

> τ̂
D̂4

}
)

: τ̂
D̂2

= T̂M2

]

≥ c2
7 · · ·

≥ c4
7 inf

x∈M4
Px

( 4⋂
m=1

{T̂
∂D̂m−1

> τ̂
D̂4

}
)

= c4
7 inf

x∈M4
Px

( 4⋂
m=1

{T̂
∂D̂m−1

> 0}
)

= c4
7.

On the other hand, since
{τ̂

D̃4
≤ T̂∂D4, τ̂D̂4

= T̂M4} = {τ̂
D̃4

≤ T̂∂D4 ≤ T̂M4 = τ̂
D̂4

≤ τ̂
D̃4

}
= {τ̂

D̃4
= T̂∂D4 = T̂M4} ⊂ {τ̂D4 = T̂M4},

we have

Py

( 4⋂
m=1

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
}
)

= Py

( 4⋂
m=1

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
} ∩ {τ̂

D̃4
≤ T̂∂D4}

)

+ Py

( 4⋂
m=1

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
} ∩ {τ̂

D̃4
> T̂∂D4}

)

≤ Py

( 3⋂
m=1

{τ̂
D̂m

= T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
} ∩ {τ̂D4 = T̂M4}

)

+ Py(τ̂D̃4
> T̂∂D4)
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≤ Py

( 3⋂
m=1

{τ̂Dm = T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂4
} ∩ {τ̂D4 = T̂M4}

)

+ Py(τ̂D̃4
> T̂∂D4)

= Py(A4) + Py(τ̂D̃4
> T̂∂D4) ≤ Py(A4) + 1 − p.

In the last inequality above, we have used (4.4). Letting p > 1 − c4
7/2 and combin-

ing the inequality above with (4.7), we have

Py(A2) ≥ Py(A3) ≥ Py(A4) ≥ c4
7/2.(4.8)

We claim that there exist c8 and p0, which will be chosen later, such that for every
p > p0,

Py(Al+1) ≥ c8Py(Al), l ≥ 2.(4.9)

We will prove this claim by induction. By (4.8), we know that the claim is valid for
l = 2,3. First, we note that by Lemma 4.5 and the strong Markov property applied
at T̂Ml+1 , we get

Py(Al+1 ∩ {τ̂
D̂l+2

= T̂Ml+2, T̂∂D̂l
◦ θT̂Ml+1

> τ̂
D̂l+2

})
= Ey[PŶ D

T̂Ml+1

(τ̂
D̂l+2

= T̂Ml+2, T̂∂D̂l
> τ̂

D̂l+2
) :Al+1]

≥ inf
x∈Ml+1

Px(τ̂D̂l+2
= T̂Ml+2, T̂∂D̂l

> τ̂
D̂l+2

)Py(Al+1)

≥ c7Py(Al+1).

On the other hand,

Py(Al+1 ∩ {τ̂
D̂l+2

= T̂Ml+2, T̂∂D̂l
◦ θT̂Ml+1

> τ̂
D̂l+2

})
= Py(Al+1 ∩ {τ̂Dl+2 = T̂Ml+2 = τ̂

D̂l+2
, T̂

∂D̂l
◦ θT̂Ml+1

> τ̂
D̂l+2

})
+ Py(Al+1 ∩ {τ̂Dl+2 �= T̂Ml+2, τ̂D̂l+2

= T̂Ml+2, T̂∂D̂l
◦ θT̂Ml+1

> τ̂
D̂l+2

})

= Py

(
l+1⋂
m=1

{τ̂Dm = T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂l+1
}

∩ {τ̂Dl+2 = T̂Ml+2 = τ̂
D̂l+2

, T̂
∂D̂l

◦ θT̂Ml+1
> τ̂

D̂l+2
}
)

+ Py

(
l−1⋂
m=1

{τ̂Dm = T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂l+1
}

∩ {τ̂Dl
= T̂Ml

, T̂
∂D̂l−1

◦ θT̂Ml
> τ̂

D̂l+1
, τ̂Dl+1 = T̂Ml+1,
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T̂
∂D̂l

◦ θT̂Ml+1
> τ̂

D̂l+2
, τ̂Dl+2 �= T̂Ml+2, τ̂D̂l+2

= T̂Ml+2}
)

≤ Py

(
l+1⋂
m=1

{τ̂Dm = T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂l+2
}

∩ {τ̂Dl+2 = T̂Ml+2 = τ̂
D̂l+2

}
)

+ Py

(
l−1⋂
m=1

{τ̂Dm = T̂Mm, T̂
∂D̂m−1

◦ θT̂Mm
> τ̂

D̂l−1
}

∩ {τ̂Dl
= T̂Ml

, T̂
∂D̂l−1

◦ θT̂Ml
> τ̂

D̂l+1
, τ̂Dl+1 = T̂Ml+1,

T̂
∂D̂l

◦ θT̂Ml+1
> τ̂

D̂l+2
, τ̂Dl+2 < τ̂

D̂l+2
= T̂Ml+2}

)
≤ Py(Al+2) + Py(Al−1 ∩ {T̂Vl+2 ◦ θT̂Ml−1

< τ̂Wl+3 ◦ θT̂Ml−1
}),

which is less than or equal to Py(Al+2)+ c6(1−p)Py(Al−1), by (4.6). Combining
the two inequalities above, we get, by induction,

Py(Al+2) ≥ c7Py(Al+1) − c6(1 − p)Py(Al−1)

≥ c7Py(Al+1) − c6(1 − p)c−2
8 Py(Al+1)

= (
c7 − c6(1 − p)c−2

8 2
)
Py(Al+1).

Choose c8 < c4
7/2 small and then choose p0 < 1 large so that for every p ∈ [p0,1),

c7 − c6(1 − p)c2
8 > c8.

Thus, the claim (4.9) is valid. Recall that l0 := l
j,k
0 (y) is the smallest integer greater

than (a0/2 − yd)/a. From (4.8) and (4.9), we conclude that

Py

(
T̂Mj,k(y) < τ̂

D
j,k
1 (y)

) ≥ Py(τ̂Dl0
= T̂Ml0

) ≥ Py(Al0)

≥ c
l0−2
8 Py(A2) ≥ c4

7

2
c
l0−2
8 ≥ exp

(
−c9

8(a0 − yd)|k|�
bj

)
for some positive constant c9. �

For any positive function h which is harmonic in D for either Y or Ŷ , we let
Sk := {x ∈ D :h(x) ≤ 2k+1}.

LEMMA 4.7. Suppose that D is one of the following types of bounded do-
mains:
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(a) a twisted Hölder domain of order α ∈ (1/3,1];
(b) a uniformly Hölder domain of order α ∈ (0,2);
(c) a domain which can be locally represented as the region above the graph of

a function.

Then, for any positive bounded function h which is harmonic in D for Y (resp. Ŷ ),
there exist c > 0 and β > 0 such that

sup
x∈D

Ex[τSk
] ≤ c|k|−1−β

(
resp. sup

x∈D

Ex[τ̂Sk
] ≤ c|k|−1−β

)
.(4.10)

PROOF. Note that by (2.4) and (2.6), we have

ĜD(x, y) = GD(y, x)H(y)

H(x)
≤ c|x − y|−d+2,

which implies that

sup
x∈D

Ex[τ̂Sk
] ≤ sup

x∈D

Ex[τ̂D] ≤ c1 sup
x∈D

∫
D

|x − y|−d+2 dy < ∞.

Thus, we only need to show (4.10) for negative k with |k| large.
(i) Assume D is a twisted Hölder domain of order α ∈ (1/3,1). Recall that z0 is

the point from Definition 4.1(2). By Lemma 3.1 in [2], there exists c1 = c1(D) > 0
such that for every x ∈ D, there exists a sequence of open balls contained in
D, with centers z1 = x, z2, . . . , zk = z0 and radii aj ≤ dist(zj , ∂D), such that
|zj −zj+1| < (aj ∧aj+1)/2 and k ≤ c1δ(x)1−1/α . Thus, by the Harnack inequality
(Theorem 3.9), there exists c2 = c2(z0) > 0 such that

h(x) ≥ exp(−c2δ(x)1−1/α).(4.11)

If x ∈ Sk , then from (4.11), we have

2k+1 ≥ h(x) ≥ exp(−c2δ(x)1−1/α),

which implies that there exists c3 > 0 such that

δ(x) ≤ c3|k|−α/(1−α).

Therefore, Sk ⊂ F(a) with a ≤ c3|k|−α/(1−α). We consider negative k with |k|
large enough so that

c3|k|−α/(1−α) ≤ a1 and 2c3b1|k|−α/(1−α) ≤ |k|−α+1/(4(1−α)),

where a1 and b1 are the constants in Lemma 4.3. Note that the above is always
possible because 1

4(α + 1) < α. For those k, we apply Lemma 4.3 and get

Px

(
τ̂Sk

< τ̂B(x,|k|−(α+1)/(4(1−α)))

)
≥ Px

(
τ̂Sk

< τ̂B(x,2c3b1|k|−α/(1−α))

)
≥ Px

(
τ̂F (c3|k|−α/(1−α)) < τ̂B(x,2c3b1|k|−α/(1−α))

)
≥ Px

(
T̂F (c3|k|−α/(1−α))c∩B(x,c3b1|k|−α/(1−α)) < τ̂B(x,2c3b1|k|−α/(1−α))

) ≥ c4
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for some c4 > 0. Thus, by Lemma 2.10, we have

Ex[τ̂Sk
] ≤ c5|k|−α+1/(2(1−α)) = c5|k|−1−β,

where β = (3α − 1)/(2 − 2α) > 0.
(ii) Assume that D is a John domain (i.e., a twisted Hölder domain of order

α = 1). It is well known that kD(x, z0) ≤ −c6 lnρD(x) + c7 for some positive
constants c6, c7 (see, e.g., page 185 in [1]). It is easy to see that the shortest length
of a Harnack chain connecting x and z1 is comparable to kD(x, z0). Thus, by our
Harnack inequality (Theorem 3.9),

h(x) ≥ exp(−c8kD(x, z1)) ≥ c9ρD(x)c10 ≥ c11δ(x)c10

for some positive constants c8, c9, c10. Using the above instead of (4.11), we can
repeat the argument in (i) to arrive at the desired conclusion. We omit the details.

(iii) We now assume that D is a uniformly Hölder domain of order α ∈ (0,2).
Recall that z1 is the point from Definition 4.2. Since the shortest length of a Har-
nack chain connecting x and z1 is comparable to kD(x, z1), by the Harnack in-
equality (Theorem 3.9) and Definition 4.2(1), there exists c11 = c11(z1) > 0 such
that

h(x) ≥ exp(−ckD(x, z1)) ≥ exp(−c11ρD(x)−α).(4.12)

If x ∈ Sk , from (4.12), we have

2k+1 ≥ h(x) ≥ exp(−c11ρD(x)−α),

which implies that there exists c12 > 0 such that

ρD(x) ≤ c12|k|−1/α.

Therefore, Sk ⊂ D(a) := {x ∈ D :ρD(x) < a} with a ≤ c12|k|−1/α . For each x ∈
Sk , choose a point Qx ∈ ∂D such that

|Qx − x| = 3c12

2
|k|−1/α.

We consider negative k with |k| large enough such that

c12|k|−1/α ≤ a2 and 7
2c12|k|−1/α ≤ |k|−(α+2)/(4α),

where a2 is the constant in Lemma 4.3(2). Note that the above is always possible
because 1

4(α + 2) < 1. We also note that for those negative k’s,

B(Qx,2c12|k|−1/α) ⊂ B
(
x, |k|−(α+2)/(4α)).

For those negative k’s, we apply Lemma 4.3 and get

Px

(
τ̂Sk

< τ̂B(x,|k|−(α+2)/(4α))

)
≥ Px

(
τ̂Sk

< τ̂B(Qx,2c12|k|−1/α)

)
≥ Px

(
τ̂D(c12|k|−1/α) < τ̂B(Qx,2c12|k|−1/α)

)
= Px

(
τ̂D(c12|k|−1/α)∩B(Qx,2c12|k|−1/α) < τ̂B(Qx,2c12|k|−1/α)

)
≥ Px

(
T̂Dc∩B(Qx,c12|k|−1/α) < τ̂B(Qx,2c12|k|−1/α)

) ≥ c4
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for some constant c13 > 0. Thus, by Lemma 2.10, we have

Ex[τ̂Sk
] ≤ c14|k|−(α+2)/(2α) = c14|k|−1−β

for some constant c14 > 0, where β = 1
2(2 − α)/α > 0.

(iv) Finally, we assume that D is a bounded domain which can be locally repre-
sented as the region above the graph of a function. Without loss of generality, we
may assume that max1≤i≤m0 fi < −ε for some positive ε = ε(D) so that

m0⋃
i=1

{(x̃, xd) in CSi : |x̃| < bi,0 ≤ xd ≤ a0}

is a compact subset of D. Thus, by the continuity of h, there exists k0 > 0 such
that h(x) ≥ 2−k0+1 for x ∈ K . We let

k1 := k0 ∨ max
1≤i≤m0

(
bi

r1

)1/�

where � = 1

2

(
1 + 1

4d − 2

)
.

Fix j and fj , and consider y ∈ {(x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd < 0}. Recall
that p0 is the constant in Lemma 4.6.

We claim that there exist p1 ∈ (p0,1) and k2 ≥ k1 such that for every

y ∈ Sk ∩ {(x̃, xd) in CSj : |x̃| < bj ,fj (x̃) < xd < 0}
and k < −k2, we have

Py

(
T̂∂D < τ̂B(y,bj |k|−�)

)
> 1 − p1.

Recall that D
j,k
1 (y), D

j,k
2 (y) and Mj,k(y) are defined in (4.1)–(4.3). If we sup-

pose that

Py

(
T̂∂D < τ̂B(y,bj |k|−�)

) ≤ 1 − p,

then

Py

(
T̂Dc∩B(y,(1/2)bj |k|−�) < τ̂B(y,bj |k|−�)

) ≤ Py

(
T̂∂D < τ̂B(y,bj |k|−�)

) ≤ 1 − p.

Since bj |k|−� ≤ r1, by Lemma 2.8 with K := B(0,1/2) , we have

c−1
15 (bj |k|−�)2−d

(
inf

w∈K
G0

B(0,1)(0,w)

)
CapB(y,bj |k|−�)(Dc ∩ B(y, bj |k|−�/2)

)
≤ Py

(
T̂Dc∩B(y,(1/2)bj |k|−�) < τ̂B(y,bj |k|−�)

) ≤ 1 − p.

Thus,

CapB(y,bj |k|−�)(Dc ∩ B(y, bj |k|−�/2)
) ≤ c16(1 − p)bd−2

j |k|−(d−2)�.(4.13)

Using the facts that Dc ∩ D
j,k
2 (y) ⊂ Dc ∩ B(y, 1

2bj |k|−�) and

|A ∩ B(z, r/2)|(d−2)/d ≤ c17 CapB(z,r)(A ∩ B(z, r/2)
)
, z ∈ Rd,
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we have, from (4.13), that

|Dc ∩ D
j,k
2 (y)| ≤ ∣∣Dc ∩ B

(
y, 1

2bj |k|−�)∣∣
≤ c18

(
CapB(y,bj |k|−�)(Dc ∩ B(y, bj |k|−�/2)

))d/(d−2)

≤ c19(1 − p)d/(d−2)bd
j |k|−d�.

If we choose p1 ∈ (p0,1) and let c20 := c19(1 − p1)
d/(d−2) max1≤i≤m0 bd

i be such
that

|Dc ∩ D
j,k
2 (y)| ≤ c20|k|−d� = 1

2 |Dj,k
2 (y)|,

then

|D ∩ D
j,k
2 (y)| > c20|k|−d�/2.

Note that since D is bounded, D is an Ld -domain (a domain which can be locally
represented as the region above the graph of an Ld function). Now, we can follow
the proof of Lemma 2.6 (with p = d and � = r there) on the second half of page
417 in [2] (after rescaling) to get

(a0 − yd)/|k|−� ≤ c21|k|�(d−1)/d |k|� = c21|k|1−1/(4d).(4.14)

Since p1 ∈ (p0,1), by Lemma 4.6,

Py

(
T̂Mj,k(y) < τ̂

D
j,k
1 (y)

) ≥ exp
(
−c22

8(a0 − yd)|k|�
bj

)
.(4.15)

Using our (4.14)–(4.15) instead of (2.10)–(2.11) in [2], we can follow the argument
in the proof of Lemma 2.6 after (2.11) in [2] (after rescaling) to conclude that
y /∈ Sk if −k is sufficiently large. Thus, we have proven the claim by contradiction.
Moreover,

Py

(
τ̂Sk

< τ̂B(y,bj |k|−�)

) ≥ Py

(
τ̂D < τ̂B(y,bj |k|−�)

)
> 1 − p1, y ∈ Sk.

Thus, by Lemma 2.10, we have

Ey[τ̂Sk
] ≤ c23

(
max

1≤i≤m0
bi

)−�

|k|−2� = c24|k|−1−β,

where β = 1/(4d − 2) > 0. �

5. Parabolic boundary Harnack principle and intrinsic ultracontractivity.
Throughout this section, we will assume that D is one of the following types of
bounded domains:

(a) a twisted Hölder domain of order α ∈ (1/3,1];
(b) a uniformly Hölder domain of order α ∈ (0,2);
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(c) a bounded domain which can be locally represented as the region above the
graph of a function.

Recall that t1 is the constant from (3.1) and τ̂B = inf{t > 0 : Ŷt /∈ B}. For any
δ > 0, we put Dδ := {x ∈ D :ρD(x) < δ}.

LEMMA 5.1. There exist constants c, R1 > 0 and a point x1 in D such

that B1 := B(x1,
1
2R1) ⊂ D \ D(1/4)R1 and for every R ≤ R1, rD(t, x, y) ∧

r̂D(t, x, y) ≥ cR−d for all x, y ∈ B(x1,
1
2R) and 1

3 t1R
2 ≤ t ≤ t1R

2.

PROOF. Choose R1 = R1(D) ≤ √
t0 and x1 ∈ D such that B(x1,R1) ⊂ D. We

then apply Lemma 3.1 with δ = 1
3 and use the monotonicity of the density to get

the desired assertion. �

We fix x1, R1 and B1 in the lemma above for the remainder of this section. Let
h1(x) := GD(x, x1) and h2(x) := ĜD(x, x1). h1 and h2 are regular harmonic for
Y and Ŷ in D \ B1, respectively. Moreover, by (2.4) and (2.6), h1 and h2 are
bounded by 2k0+1 for some k0 = k0(R1) on D \B1. Let (Ph

x, Y
D
t ) and (Ph

x, Ŷ
D
t ) be

the h-transforms of (Px, Y
D
t ) and (Px, Ŷ

D
t ), respectively.

LEMMA 5.2. For every s > 0, there exists a positive constant δ0 = δ0(s) ≤
1
4R1 such that(

inf
x∈D

Ph1
x

(
TD\Dδ <

s

4

))
∧

(
inf
x∈D

Ph2
x

(
T̂D\Dδ <

s

4

))
≥ 1

2
.

PROOF. For k ≤ k0, let

V δ
k := {x ∈ Dδ :h2(x) ≤ 2k+1}, Uk := {x ∈ D \ B1 :h2(x) ≤ 2k+1}.

Clearly, V δ
k ⊂ Uk for δ ≤ 1

4R1. For each k, by (2.4) and (2.6), we have

sup
x∈D

Ex[τ̂V δ
k
] ≤ c sup

x∈D

∫
V δ

k

dy

|x − y|d−2

for some c > 0. So, supx∈D Ex[τ̂V δ
k
] goes to zero as δ → 0 by the uniform integra-

bility of |x − y|−d+2 over D. Note that D \ B1 is also one of the types of domains
we assumed at the beginning of this section. So, by Lemma 4.7,

k0∑
k=−∞

sup
x∈D

Ex[τ̂Uk
] < ∞.

Thus, by the dominated convergence theorem, we have

lim
δ↓0

k0∑
k=−∞

sup
x∈D

Ex[τ̂V δ
k
] = 0.(5.1)
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On the other hand, since 1 is excessive for Ŷ D , it is easy to see that
(1/h2(Ŷ

D),Ft ) is a supermartingale with respect to Ph2
x , where Ft is the nat-

ural filtration of {Ŷ D} (see, e.g., page 83 in [14]). Thus, with the same proof, one
can see that the first inequality in equation (8) on page 179 of [8] is true. Thus,
there exists c1 independent of h2 and δ such that

sup
x∈D

Eh2
x [τ̂Dδ ] ≤ c1

k0∑
k=−∞

sup
x∈D

Ex[τ̂V δ
k
].(5.2)

Combining (5.1)–(5.2), we have that for each s > 0, there exists δ > 0 such that
supx∈D Eh2

x [τ̂Dδ ] < s/8. We can now apply Chebyshev’s inequality to get

Ph2
x

(
τ̂Dδ <

s

4

)
≥ 1

2
.

On the other hand, using (2.2), (2.4) and (2.6), it is elementary to show that
the strictly positive function ĜD(x, y) is ∞ if and only if x = y ∈ D, and for
every x ∈ D, ĜD(x, ·) and ĜD(·, x) are extended continuous in D (see the proof
in Theorem 2.6 in [16]). Thus, the condition (H) in [22] holds. Also, the strict
positivity of ĜD(x, y) and Proposition 2.6 imply that the set W on page 5 of [22]
and the set Z defined in [9] [equation (12) on page 179] are empty. Thus, by
Theorem 2 in [22], for every x �= x1, the lifetime ζ̂ h2 of Ŷ D is finite Ph2

x -a.s. and

lim
t↑ζh2

Ŷ D
t = x1, Ph2

x -a.s.(5.3)

Thus, for x ∈ Dδ , the conditioned process Ŷ D with respect to Ph2
x cannot be killed

before hitting D \ Dδ , due to the continuity of Ŷ D . Therefore, we have

Ph2
x

(
T̂D\Dδ <

s

4

)
= Ph2

x

(
τ̂Dδ <

s

4

)
≥ 1

2
. �

For a parabolic function g(t, x) in � = (T1, T2] × D for Y (resp. Ŷ ), let
(Pg

t,x,Z
�
s ) [resp. (Pg

t,x, Ẑ
�
s )] be the killed space-time process (Pt,x,Z

�
s ) [resp.

(Pt,x, Ẑ
�
s )] conditioned by g. For each u > 0, we let

Wk = Wk(u) := {(s, y) ∈ [u/2, u] × D : 2k ≤ g(s, x) ≤ 2k+1}
and

Wn = Wn(u) :=
n⋃

k=−∞
Wk.

LEMMA 5.3. For every M > 0 and u > 0, there exists k1 = k1(M,u,h1, h2,

B1) < −3 such that for every positive parabolic function g(t, x) in (u/2, u] × D

for Y (resp. Ŷ ),

g(s, x) ≥ Mh1(x) [resp. g(s, x) ≥ Mh2(x)], (s, x) ∈ [u/2, u]× (D \B1)
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implies

Eg
u,x[τWk1 ] ≤ u

8

(
resp. Eg

u,x[τ̂Wk1 ] ≤ u

8

)
, x ∈ D,

where τWk1 = inf{t > 0 :Zt /∈ Wk1} and τ̂Wk1 = inf{t > 0 : Ẑt /∈ Wk1}.
PROOF. Let m1 be the smallest integer greater than log2 M and Uk := {x ∈

D \B1 : h2(x) ≤ 2k+1} so that Wk ⊂ Uk+m1 ×[u/2, u] for small k. By Lemma 4.7,
we get, for small n,

n∑
k=−∞

sup
(s,y)∈Wk

Es,y[τ̂Wk
] ≤

n∑
k=−∞

sup
(s,y)∈Uk+m1

Es,y[τ̂Uk+m1
] < ∞.(5.4)

Similarly to the argument in the proof of the previous lemma, using the esti-
mates in [8], there exists c1, independent of g, n and u and such that

sup
y∈D

Eg
u,y[τ̂Wn] ≤ c1

n∑
k=−∞

sup
(s,y)∈Wk

Es,y[τ̂Wk
].(5.5)

Combining (5.4)–(5.5), we have that, for small n,

sup
x∈D

Eg
u,x[τ̂Wn] < ∞.

Now, choose k1 = k1(u) < 0 small so that

sup
x∈D

Eg
u,x[τ̂Wk1 ] <

u

8
. �

The idea of the proof of the next lemma comes from the proof of Lemma 5.1 in
[2]. We spell out the details for the reader’s convenience.

LEMMA 5.4. For every u ∈ (0, 1
2 t1R

2
1), there exists c > 0 such that for all

x ∈ D,

Px(Yu ∈ B1, τD > u) ≥ cPx(τD > u)

and

Px(Ŷu ∈ B1, τ̂D > u) ≥ cPx(τ̂D > u).

PROOF. In this proof, for A ⊂ [0,∞)×V , T̂A will denote the first hitting time
of A for Ẑs .

We fix u ≤ 1
2 t1R

2
1, let δ0 = δ0(u) ≤ 1

4R1 be the constant from Lemma 5.2 and let
D2 := Dδ0 . Note that B1 ⊂ D \ D2. Let fε(x) = ε on D \ B1 and 1 on B1. Define
a parabolic function gε on (0,∞) × D by

gε(t, x) : =
∫
D

r̂D(t, x, y)fε(y) dy = Ex[fε(Ŷ
D
t ) : Ŷ D

t ∈ D], 0 < ε < 1.
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Clearly,

εPx(τ̂D > t) ≤ gε(t, x) ≤ Px(τ̂D > t).(5.6)

We claim that there exists c1 > 0 independent of ε such that

gε(t, x) ≥ c1h2(x), (x, t) ∈ (D \ B1) × [u/2, u].(5.7)

First, we note that since 2u ≤ t1R
2
1, by Theorem 3.8 and a chain argument, we get

inf
(t,x)∈[u/4,u]×(D\D2)

gε(t, x) ≥ c1gε(u/8, x1)

(5.8)
≥ c1

∫
B1

r̂D(u/8, x1, y) dy = c2

for some c2 > 0. Let h(t, x) := h2(x) for (t, x) ∈ [u/4, u] × (D \ B1). Since
h(t, x) ≤ 2k0+1, by (5.8), we have

gε(t, x) ≥ c22−k0−1h(t, x), (t, y) ∈ [u/4, u] × (
D \ (D2 ∪ B1)

)
.

Let � := (0,∞) × D. For (s, x) ∈ [u/2, u] × D2,

gε(s, x) ≥ Es,x

[
gε

(
Ẑ�

T̂(0,∞)×(D\D2)

)
: T̂(0,∞)×(D\D2) ≤ u/4

]
≥ c22−k0−1h(s, x)Ph

s,x

(
T̂(0,∞)×(D\D2) ≤ u/4

)
= c22−k0−1h2(x)Ph

s,x

(
T̂(0,∞)×(D\D2) ≤ u/4

)
= c22−k0−1h2(x)Ph2

x (T̂D\D2 ≤ u/4),

which is greater than or equal to c22−k0−2h2(x), by Lemma 5.2. The claim is
proved.

We now apply Lemma 5.3 to gε(s, x) and get

Egε
u,x[τ̂Wk1 (ε)] ≤ u

8
, x ∈ D.(5.9)

Let ε1 := 2k1−1 < 1
4 , g(s, x) := gε1(s, x) and

E := Wk1 = {(s, x) ∈ [u/2, u] × D :g(s, x) ≤ 4ε1}.
By Chebyshev’s inequality, from (5.9), we get

Pg
u,x

(
τ̂E ≤ u

4

)
≥ 1

2
, x ∈ D.(5.10)

Let S1 be the first hitting time of ∂(D × [0,∞)) of Ẑ. The conditioned process
(Pg

t,x, Ẑ
�) cannot be killed before time t . In fact,

Pg
t,x(Ẑ

�
S1− ∈ {0} × D) = Et,x

[
g(Ẑ�

S1−)

g(t, x)
:Z�

S1− ∈ {0} × D

]
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= Ex

[
g(0, Ŷ D

t )

g(t, x)
: Ŷ D

t ∈ D

]

= 1

g(t, x)
Ex[fε1(Ŷ

D
t ) : Ŷ D

t ∈ D] = 1.

Thus, we get

Pgε
u,x

(
T̂∂1E ≤ u

4

)
= Pgε

u,x

(
τ̂E ≤ u

4

)
≥ 1

2
, x ∈ D,(5.11)

where ∂1E := ∂E ∩ ((0,∞) × D).
Note that, by (5.6),

Px(Ŷu ∈ B1, τ̂D > u)
/

Px(τ̂D > u) ≥ ε1Px(Ŷu ∈ B1, τ̂D > u)
/
g(u, x)

(5.12)
≥ ε1Pg

u,x(Ẑ
�
S1− ∈ {0} × B1).

Thus, it is enough to bound Pg
u,x(Ẑ

�
S1− ∈ {0}×B1). By the strong Markov property

and (5.11),

Pg
u,x(Ẑ

�
S1− ∈ {0} × B1) ≥ Pg

u,x

(
Ẑ�

S1− ∈ {0} × B1, T̂∂1E ≤ u

4

)
= Eg

u,x

[
Pg

Ẑ�
T̂∂1E

(Ẑ�
S1− ∈ {0} × B1) : T̂∂1E ≤ u

4

]
(5.13)

≥ 1

2
inf

(s,x)∈∂1E
Pg

s,x(Ẑ
�
S1− ∈ {0} × B1).

Since g = 4ε1 on ∂1E by the continuity of g, for (s, x) ∈ ∂1E,

4ε1 =
∫
D

r̂D(s, x, y)fε1(y) dy

= Px(Ŷ
D
s ∈ B1) + ε1Px(Ŷ

D
s ∈ D \ B1)

= Ps,x(ẐS1 ∈ {0} × B1) + ε1Ps,x

(
ẐS1 ∈ {0} × (D \ B1)

)
≤ Ps,x(ẐS1 ∈ {0} × B1) + ε1.

Thus,

Ps,x(ẐS1 ∈ {0} × B1) ≥ 3ε1.

Since Pg
s,x(Ẑ

�
S1− ∈ {0} × D) = 1, applying the above inequality, we get

Pg
s,x(Ẑ

�
S1− ∈ {0} × B1)

= 1

4ε1
Es,x[g(Ẑ�

S1−); Ẑ�
S1− ∈ {0} × B1](5.14)

= 1

4ε1
Ps,x(ẐS1 ∈ {0} × B1) ≥ 3

4
> 0, (s, x) ∈ ∂1E.
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Combining (5.11)–(5.14), the proof is completed. �

Let p(t, x, y) := rD(t, x, y)/H(y). Recall that H(y) = ∫
V G(x, y) dx and

ξ(dy) = H(y)dy. For any t > 0, define

P D
t f (x) :=

∫
D

rD(t, x, y)f (y) dy =
∫
D

p(t, x, y)f (y)ξ(dy)

and

P̂ D
t f (x) :=

∫
D

r̂D(t, x, y)f (y) dy =
∫
D

p(t, y, x)f (y)ξ(dy).

By definition, we have∫
D

f (x)P D
t g(x)ξ(dx) =

∫
D

g(x)P̂ D
t f (x)ξ(dx).

It is easy to check that {Pt } and {P̂t } are both strongly continuous contraction
semigroups in L2(D, ξ(dx)). We will use L and L̂ to denote the L2(D, ξ(dx))-
infinitesimal generators of {P D

t } and {P̂ D
t }, respectively.

LEMMA 5.5.
(1)

p(t, x, y)

p(t, x, z)
≥ c1

p(t,w,y)

p(t,w, z)
∀w,x, y, z ∈ D

implies that for every s > t and w,x, y, z ∈ D,

p(s, y, x)

p(s, z, x)
≥ c1

p(t, y,w)

p(t, z,w)
and

p(s, x, y)

p(s, x, z)
≤ c−1

1
p(t,w,y)

p(t,w, z)
.

(2)

p(t, y, x)

p(t, z, x)
≥ c2

p(t, y, v)

p(t, z, v)
∀v, x, y, z ∈ D

implies that for every s > t and v, x, y, z ∈ D,

p(s, x, y)

p(s, x, z)
≥ c2

p(t, v, y)

p(t, v, z)
and

p(s, y, x)

p(s, z, x)
≤ c−1

2
p(t, y, v)

p(t, z, v)
.

PROOF. We give the proof of (2) only. The proof of (1) is similar.
Since

p(t,w,y) ≥ c2
p(t,w, z)

p(t, v, z)
p(t, v, y) ∀w,x, y, z ∈ D,
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we get

p(s, x, y) =
∫
D

p(s − t, x,w)p(t,w, y)ξ(dw)

≥ c2
p(t, v, y)

p(t, v, z)

∫
D

p(s − t, x,w)p(t,w, z)ξ(dw)

= p(t, v, y)

p(t, v, z)
p(s, x, z).

On the other hand, since

p(t, y,w) ≤ c−1
2

p(t, y, v)

p(t, z, v)
p(t, z,w) ∀w,x, y, z ∈ D,

we get

p(s, y, x) =
∫
D

p(t, y,w)p(s − t,w, x)ξ(dw)

≤ c−1
2

p(t, y, v)

p(t, z, v)

∫
D

p(t, z,w)p(s − t,w, x)ξ(dw)

= p(t, y, v)

p(t, z, v)
p(s, z, x). �

THEOREM 5.6. For each u ∈ (0, 1
2 t1R

2
1), there exists c = c(D,u) > 0 such

that

p(t, x, y)

p(t, x, z)
≥ c

p(s, v, y)

p(s, v, z)
,

p(t, y, x)

p(t, z, x)
≥ c

p(s, y, v)

p(s, z, v)
(5.15)

for every s, t ≥ u and v, x, y, z ∈ D.

PROOF. Let τ1 := inf{t > 0 :Yt /∈ D}, τ2 := inf{t > 0 : Ŷt /∈ D}, ϕ1(x) :=
Px(τ1 > u/3) and ϕ2(y) := Py(τ2 > u/3). By (2.1) with T = 1

2 t1R
2
1 , there exists

c1 > 0 such that

p(u, x, y) =
∫
D

p

(
u

3
, x, z

)∫
D

p

(
u

3
, z,w

)
p

(
u

3
,w, y

)
ξ(dw)ξ(dz)

≤ c1u
−d/2

∫
D

p

(
u

3
, x, z

)
ξ(dz)

∫
D

p

(
u

3
,w, y

)
ξ(dw)

= c1u
−d/2ϕ1(x)ϕ2(y).

For the lower bound, we use Lemmas 5.1 and 5.4, and get

p(u, x, y) ≥
∫
B1

p

(
u

3
, x, z

)∫
B1

p

(
u

3
, z,w

)
p

(
u

3
,w, y

)
ξ(dw)ξ(dz)
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≥ c2u
−d/2

∫
B1

p

(
u

3
, x, z

)
ξ(dz)

∫
B1

p

(
u

3
,w, y

)
ξ(dw)

= c2u
−d/2Px(Yu/3 ∈ B1, τ1 > u)Py(Ŷu/3 ∈ B1, τ2 > u)

≥ c3u
−d/2ϕ1(x)ϕ2(y)

for some positive constants c2 and c3. Thus, both inequalities in (5.15) are true
for s = t = u ≤ 1

2 t1R
2
1 . We now apply Lemma 5.5(1)–(2) and get, for s > u and

v, x, y, z ∈ D,

p(s, y, x)

p(s, z, x)
≥ c4

p(u, y, v)

p(u, z, v)
,

p(s, x, y)

p(s, x, z)
≤ c−1

4
p(u, v, y)

p(u, v, z)
(5.16)

and
p(s, x, y)

p(s, x, z)
≥ c4

p(u, v, y)

p(u, v, z)
,

p(s, y, x)

p(s, z, x)
≤ c−1

4
p(u, y, v)

p(u, z, v)
.(5.17)

Thus, both inequalities in (5.15) are true for s > t = u. Moreover, combining
(5.16)–(5.17), both inequalities in (5.15) are also true for t = s > u. Again ap-
plying Lemma 5.5(1)–(2), we complete the proof. �

By (2.6), we have proven the parabolic boundary Harnack principle for YD .

COROLLARY 5.7. For each positive u ∈ (0, 1
2 t1R

2
1), there exists c = c(D,

u) > 0 such that

rD(t, x, y)

rD(t, x, z)
≥ c

rD(s,w,y)

rD(s,w, z)
,

rD(t, y, x)

rD(t, z, x)
≥ c

rD(s, y,w)

rD(s, z,w)

for every s, t ≥ u and w,x, y, z ∈ D.

Since, for each t > 0, p(t, x, y) is bounded in D ×D, it follows from Jentzsch’s
theorem (Theorem V.6.6 on page 337 of [26]) that the common value λ0 :=
sup Re(σ (L)) = sup Re(σ (L̂)) is an eigenvalue of multiplicity 1 for both L and
L̂, that an eigenfunction φ0 of L associated with λ0 can be chosen to be strictly
positive with ‖φ0‖L2(D,ξ(dx)) = 1 and an eigenfunction ψ0 of L̂ associated with
λ0 can be chosen to be strictly positive with ‖ψ0‖L2(D,ξ(dx)) = 1.

DEFINITION 5.8. The semigroups {P D
t } and {P̂ D

t } are said to be intrinsically
ultracontractive if for any t > 0, there exists a constant ct > 0 such that

p(t, x, y) ≤ ctφ0(x)ψ0(y) ∀(x, y) ∈ D × D.

Now, the next theorem, which is the main result of this paper, can be easily
proven from Lemma 5.4 and the continuity of φ0 and ψ0. But we give the proof
that Theorem 5.6 implies the intrinsic ultracontractivity.
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THEOREM 5.9. The semigroups {P D
t } and {P̂ D

t } are intrinsically ultracon-
tractive. Moreover, for any t > 0, there exists a constant ct > 0 such that

c−1
t φ0(x)ψ0(y) ≤ p(t, x, y) ≤ ctφ0(x)ψ0(y) ∀(x, y) ∈ D × D.(5.18)

PROOF. Integrating both sides of (5.15) with respect to y over D for t = s =
u ≤ 1

2 t1R
2
1 , we get

p(t, x, z)∫
D p(t, x, y)ξ(dy)

≤ ct

p(t,w, z)∫
D p(t,w,y)ξ(dy)

(5.19)

and
p(t, z, x)∫

D p(t, y, x)ξ(dy)
≤ ct

p(t, z,w)∫
D p(t, y,w)ξ(dy)

(5.20)

for all w,x, z ∈ D. We fix x0 ∈ D. The above (5.20) implies that for any positive
function f and z ∈ D,

P D
t f (z) =

∫
D

p(t, z, x)f (x)ξ(dx)

≤ ct

(∫
D

p(t, y, x0)ξ(dy)

)−1 ∫
D

∫
D

p(t, y, x)ξ(dy)p(t, z, x0)f (x)ξ(dx)

= ct

p(t, z, x0)∫
D p(t, y, x0)ξ(dy)

∫
D

∫
D

p(t, y, x)ξ(dy)f (x)ξ(dx)

= ct

p(t, z, x0)∫
D p(t, y, x0)ξ(dy)

∫
D

P D
t f (y)ξ(dy).

Similarly, (5.20) also implies the lower bound

P D
t f (z) ≥ c−1

t

p(t, z, x0)∫
D p(t, y, x0)ξ(dy)

∫
D

P D
t f (y)ξ(dy), z ∈ D.

Using (5.19), we also get the corresponding result for P̂ D
t . Thus, we have, for all

z,w ∈ D,

c−1
t

p(t, z, x0)∫
D p(t, y, x0)ξ(dy)

≤ P D
t f (z)∫

D P D
t f (y)ξ(dy)

(5.21)

≤ ct

p(t, z, x0)∫
D p(t, y, x0)ξ(dy)

and

c−1
t

p(t, x0,w)∫
D p(t, x0, y)ξ(dy)

≤ P̂ D
t f (w)∫

D P̂ D
t f (y)ξ(dy)

(5.22)

≤ ct

p(t, x0,w)∫
D p(t, x0, y)ξ(dy)

.
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Applying (5.21) to φ0 and a sequence of functions approaching the point mass at
w appropriately, we get that for any z,w ∈ D,

c−2
t φ0(z) ≤ p(t, z,w)∫

D p(t, y,w)ξ(dy)
≤ c2

t φ0(z),

which implies that

c−4
t

φ0(z)

φ0(x0)
≤ p(t, z,w)

p(t, x0,w)
≤ c4

t

φ0(z)

φ0(x0)
, z,w ∈ D.(5.23)

Similarly, applying (5.22) to ψ0 and a sequence of functions approaching the point
mass at z, we get that for any z,w ∈ D,

c−4
t

ψ0(w)

ψ0(x0)
≤ p(t, z,w)

p(t, z, x0)
≤ c4

t

ψ0(w)

ψ0(x0)
.(5.24)

Thus, combining (5.23)–(5.24), we conclude that for any t ≤ 1
2 t1R

2
1 and any z,w ∈

D,

p(t, z,w) = p(t, x0, x0)
p(t, x0,w)

p(t, x0, x0)

p(t, z,w)

p(t, x0,w)

≤ c8
t p(t, x0, x0)

φ0(z)ψ0(w)

φ0(x0)ψ0(x0)
.

Let T := 1
2 t1R

2
1 . Since

p(s, x, y) =
∫
D

p(T , x, z)p(s − T , z, y)ξ(dz)

≤ c8
T c8

s−T φ0(x)ψ0(y)

∫
D

φ0(z)ψ0(z)ξ(dz)

≤ c8
T c8

s−T φ0(x)ψ0(y), s ∈ (T ,2T ],
we can easily get the intrinsic ultracontractivity by induction. The fact that intrinsic
ultracontractivity implies the lower bound is proved in [18] (Proposition 2.5 in
[18]). �

Let

φ(x) := φ0(x)
/∫

D
φ0(y)2 dy,

(5.25)
ψ(x) := ψ0(x)H(x)

/∫
D

ψ0(y)2H(y)2 dy.

Note that 0 <
∫
D ψ0(y)2H(y)2 dy < ∞ because of (2.6). Since

eλ0tφ0(x) =
∫
D

p(t, x, y)φ0(y)ξ(dy) =
∫
D

rD(t, x, y)φ0(y) dy
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and

eλ0tψ0(x)H(x) = H(x)

∫
D

p(t, y, x)ψ0(y)ξ(dy)

=
∫
D

rD(t, y, x)ψ0(y)H(y)dy,

we have

eλ0tφ(x) =
∫
D

rD(t, x, y)φ(y) dy,

(5.26)
eλ0tψ(x) =

∫
D

rD(t, y, x)ψ(y) dy.

We say that the common value eλ0t is an eigenvalue for rD(t, x, y) and the pair
(φ,ψ) are the corresponding eigenfunctions if (5.26) is true and if φ and ψ are
strictly positive with ‖φ‖L2(D,dx) = 1 and ‖ψ‖L2(D,dx) = 1. So, the intrinsic ultra-
contractivity of {P D

t } and {P̂ D
t } can be rephrased as follows.

COROLLARY 5.10. For any t > 0, there exists a constant ct > 0 such that

c−1
t φ(x)ψ(y) ≤ rD(t, x, y) ≤ ctφ(x)ψ(y) ∀(x, y) ∈ D × D.(5.27)

PROOF. This is clear from (5.18) and (5.25). �

Applying Theorem 2.7 of [18], we have the following.

THEOREM 5.11. There exist positive constants c and a such that for every
(t, x, y) ∈ (1,∞) × D × D,∣∣∣∣(e−λ0t

∫
D

φ0(z)ψ0(z)ξ(dz)

)
rD(t, x, y)

φ0(x)ψ0(y)H(y)
− 1

∣∣∣∣ ≤ ce−at .(5.28)

We are going to use SH+ to denote families of nonnegative superharmonic
functions of Y in D. For any h ∈ SH+, we use Ph

x to denote the law of the
h-conditioned diffusion process YD and Eh

x to denote the expectation with respect
to Ph

x . Let ζ h be the lifetime of the h-conditioned diffusion process YD .
In [18], the bound for the lifetime of the conditioned YD is proved using Theo-

rem 5.11.

THEOREM 5.12 (Theorem 2.8 in [18]).
(1)

sup
x∈D,h∈SH+

Eh
x[ζ h] < ∞.
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(2) For any h ∈ SH+, we have

lim
t↑∞ e−λ0tPh

x(ζ
h > t) = φ0(x)

h(x)

∫
D

ψ0(y)h(y)ξ(dy)
/∫

D
φ0(y)ψ0(y)ξ(dy).

In particular,

lim
t↑∞

1

t
log Ph

x(ζ
h > t) = λ0.
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