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K-PROCESSES, SCALING LIMIT AND AGING FOR THE TRAP
MODEL IN THE COMPLETE GRAPH

BY L. R. G. FONTES1 AND P. MATHIEU

Instituto de Mathemática e Estatística and Université de Provence

We study K-processes, which are Markov processes in a denumerable
state space, all of whose elements are stable, with the exception of a sin-
gle state, starting from which the process enters finite sets of stable states
with uniform distribution. We show how these processes arise, in a particu-
lar instance, as scaling limits of the trap model in the complete graph, and
subsequently derive aging results for those models in this context.

1. Introduction. In this paper, we study some properties of a family of
Markov processes, which we call K-processes, in particular, their relationship in a
special case with the scaling limit of a trap model associated to the Random En-
ergy Model (REM) at low temperature—the trap model in the complete graph, as
well as with the aging phenomenon exhibited by that model [7]. These processes
are thus prototypes of infinite-volume dynamics for low-temperature (mean-field)
spin-glasses.

They have the following remarkable characteristic property. Their state space
is countably infinite (we take it to be {1,2, . . . ,∞}), with a single unstable state,
where by unstable we mean that the process spends zero time at that state at each
visit to it; as we will see, that state may be either instantaneous or fictitious (which
are standard terms) in different cases. When in a stable state, the process waits for
an exponential time and jumps to the unstable state, starting from which, and here
is the striking feature, it enters any finite set of stable states with uniform distri-
bution. In the context of spin-glasses, the stable states represent the low-energy
configurations, and the unstable state represents the high-energy configurations.
The apparent paradox of the uniformity property is elucidated by a summability
condition on the inverse of the jump rates.

It turns out that a class of processes with this uniformity property was introduced
by Kolmogorov as an example of a Markov process with an instantaneous state,
thus not satisfying his equations in their usual form [21], and it has subsequently
been considered by many authors. This class comprises all members of the family
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we study in the present paper but for an important special case, precisely the one
related to the trap model in the complete graph. See Remark 3.2 below for more
details.

We have two approaches: an analytical one, based on Dirichlet forms, intro-
duced in Section 2; and one based on an explicit probabilistic construction, in
Section 3, at the end of which we argue the equivalence of both points of view. In
Section 4, we derive a characterization result for K-processes. Section 5 is devoted
to the scaling limit of the trap model in the complete graph, and to deriving an
aging result for the associated K-process in this context, which can be seen as an
aging result for the trap model in the complete graph itself.

Aging is a dynamical phenomenon observed in disordered systems like spin-
glasses at low temperature, signaled by the existence of a limit of a given two-time
correlation function of the system started at a high-temperature configuration/state,
as both times diverge keeping a fixed ratio between them; the limit should be a
nontrivial function of the ratio. This is thus a far-from-equilibrium phenomenon.
It has been observed in real spin-glasses and studied extensively in the physics
literature. See [8] and references therein.

In [7], a phenomenological model for a Glauber dynamics for the Random En-
ergy Model (REM) is introduced, namely the trap model (in the complete graph),
and an aging result for it is established. See more on that model and what is meant
by an aging result in Section 5. Roughly speaking, the trap model is a symmet-
ric continuous-time random walk, typically in a regular graph, finite or infinite.
The jump rates at the vertices are i.i.d. random variables with a polynomial tail
at the origin, whose degree is related to temperature, so that degree less than 1 is
equivalent to low temperature. We will assume this regime throughout.

In the mathematics literature, much attention has recently been given to trap
models, and many aging results were derived for them. In [4, 5], the trap model in
the hypercube is studied, with the rates given by energies of the REM associated to
the vertices of the hypercube. The aging result obtained in [5] is for the same cor-
relation function as one considered in [7] with the same limit, thus giving support
to the phenomenology underlying the adoption of the trap model in the complete
graph by the authors of the latter paper. In [9], an alternative approach to studying
the trap model in the hypercube is developed, and the aging result in [7] alluded to
above is in this fashion reestablished.

The trap model in Z was considered in [16] and [1]; the one in Z2, in [2, 6,
10]; the one in Z

d , d ≥ 3 in [2, 10]. In [3], a comprehensive approach to obtaining
aging results for the trap model on a class of graphs, including Z

d and tori in two
and higher dimensions, the complete graph, the hypercube, is developed.

In most of the above cited work, aging is derived for given correlation functions,
without specific regard to the fact that it may arise as a scaling property of the full
dynamics. As in [16] and [1], we follow the latter approach for the trap model in the
complete graph, and derive its scaling limit (see Theorem 5.2 below); aging results
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follow (after a further limit is taken, as explained below; see also Theorem 5.11
and Corollary 5.15 below).

It should be noted that, since a time divergence is involved, the scaling limit of
the rates (or alternatively the average holding times) should be taken together with
the scaling limit of the dynamics, the limiting object acting as a disordered set of
parameters for the limiting dynamics. The rescaling is of time only (in such a way
that the lowest rates are of order 1), since space is not relevant for the model in
the complete graph. The scaling limit results as, roughly speaking, a dynamics
in the deepest traps (but the remainder states play a role: they are lumped together
in the limit in a single unstable state).

In this model, in the scaling limit, aging is a phenomenon of the dynamics at
vanishing times: at order 1 or larger times the dynamics is close enough to or in
equilibrium, in contrast to the one-dimensional case of [16] and [1], where it could
be said that aging occurs for fixed macroscopic times. This should be compared to
the aging result in [7] alluded to above, which takes place in a large microscopic
time regime (in our case, it occurs at short macroscopic times), and also to the ag-
ing result of [3] for the complete graph, taking place at mesoscopic time scales; as
far as the three regimes can be compared, they coincide, perhaps not surprisingly.
See Remarks 5.6 and 5.7.

By taking the scaling limit first, and the aging limit after, we can see aging as
a macroscopic phenomenon (taking place in the limiting dynamics). We point out
that the latter limit holds for almost every realization of the underlying (macro-
scopic) disorder: Theorem 5.11 and Corollary 5.15 are almost sure aging results.

The scaling limit for the trap model in the complete graph is not relevant only
as a background for aging, even though that is our main motivation for taking it
in this paper. It contains also information about other important features of the
dynamics at long microscopic times: from aging at short macroscopic times, to
approach to equilibrium at large macroscopic times. So it has an interest of its
own. Inasmuch as the REM is a prototype for a (mean-field) spin-glass, and the trap
model in the complete graph is a prototype for a Glauber dynamics for the REM
at low temperature, this scaling limit turns up as a prototype for an infinite-volume
dynamics of a (mean-field) spin-glass at low temperature. We expect the same
process to arise as an appropriate scaling limit for the trap model in the hypercube
(as dimension diverges), and also for the hopping dynamics for the REM, either in
the complete graph or the hypercube. It is conceivable that it will also be the scaling
limit of the Metropolis dynamics for the REM in the hypercube (see, e.g., [15] for
a definition of this dynamics). We also expect variants of the K-process to show up
as scaling limits for dynamics of other mean-field models at low temperature, like
the GREM, and that they will also exhibit aging.

Our first step in this study is to describe the class of processes that arise as the
scaling limit of the trap model in the complete graph. Since they are closely related
to the above mentioned class of processes introduced by Kolmogorov through the
above mentioned uniformity property, which turns out to characterize the family



K-PROCESSES, SCALING LIMIT AND AGING FOR THE TRAP MODEL 1325

consisting of both classes (see Section 4 and Theorem 4.1), we chose to start by
defining, constructing and studying relevant properties of that larger family, which
we refer to as K-processes.

As mentioned above, we do that analytically, through the Dirichlet form asso-
ciated to the process (in Section 2), and, alternatively, through a probabilistic con-
struction (in Section 3). The former way has the advantage that the K-processes
(are reversible and) have quite simple Dirichlet forms, which facilitate the analysis
of quantities like the Green function (see Sections 2.2 and 2.3).

The probabilistic construction, besides having its own interest, allows for a di-
rect analysis of the scaling limit for the trap model in the complete graph and the
aging issue, without the need of taking transforms (but we do rely on a Tauberian
theorem at a specific point of our argument; see proof of Theorem 5.11), and en-
tails the inclusion of more general aging functions in the analysis and results (see
Theorem 5.11 and Corollary 5.15), at little extra effort. See Sections 5 and 5.1.

The analytical construction also leads to simple derivations of aging results in
a weak sense, after taking Laplace transforms. See the paragraphs starting after
Remark 5.20, including Proposition 5.22, before the proof of Theorem 5.11.

In connection with another area of research, as we briefly discuss in Remark 4.2
in Section 4, a K-process can be viewed as a one-point extension of a Markov
process beyond its killing time, an object which is of current interest [11, 18].

2. Dirichlet forms approach.

2.1. Construction. Let N̄
∗ be the one-point compactification of N

∗ =
{1,2, . . .}, with ∞ denoting the extra point. In other words, we take N̄

∗ with any
fixed metric d making it compact. For definiteness, take

d(x, y) = |x−1 − y−1|, x, y ∈ N̄
∗(2.1)

(with ∞−1 = 0).
Let γ : N∗ → (0,∞) be such that∑

x∈N∗
γ (x) < ∞.(2.2)

We extend γ to N̄
∗ by declaring

γ (∞) = 0.(2.3)

Let C be the space on continuous real-valued functions on N̄
∗ and define

D =
{
f : N̄∗ → R s.t.

∑
x

(
f (x) − f (∞)

)2
< ∞

}
.(2.4)

(“
∑

x” usually stands for “
∑

x∈N∗ .”) Note that D is a dense subset of C.
For f,g ∈ D , consider the bilinear symmetric form

E(f, g) = ∑
x

(
f (x) − f (∞)

)(
g(x) − g(∞)

)
.(2.5)
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LEMMA 2.1. (E ,D) is a regular Dirichlet form acting on L2(N̄∗, γ ) in the
sense of [19].

PROOF. First note that γ has full support since we have assumed that γ (x) > 0
for all x ∈ N

∗.
Clearly E is bilinear and symmetric. We should check that D ⊂ L2(N̄∗, γ ): let

f ∈ D . Without loss of generality, assume that f (∞) = 0. Therefore E(f, f ) =∑
x f (x)2 < ∞ and

∑
x f (x)2γ (x) ≤ (supx γ (x))

∑
x f (x)2 < ∞.

It is easy to check that contractions act on E so that E is a Markovian form.
The last point is to prove that D is complete for the norm induced by the bilinear

form E : assume that fn ∈ D satisfies fn → 0 in L2(N̄∗, γ ) and E(fn − fm,fn −
fm) → 0 as n and m tend to ∞. Then we must have fn(x) → 0 for any x ∈ N

∗
[because γ (x) > 0]. Also, for any ε > 0 there exists n0 s.t. for any n,m ≥ n0 and
any x ∈ N

∗,

|fn(x) − fn(∞) − fm(x) + fm(∞)| ≤ ε.

[This comes from the assumption E(fn − fm,fn − fm) → 0.] Letting m go to ∞
and then x go to ∞, we get that lim supm |fm(∞)| ≤ ε and therefore fm(∞) → 0
as m tends to ∞. By Fatou’s lemma,

E(fn, fn) = ∑
x

(
fn(x) − fn(∞)

)2

= ∑
x

lim inf
m

(
fn(x) − fm(x) − fn(∞) + fm(∞)

)2

≤ lim inf
m

∑
x

(
fn(x) − fm(x) − fn(∞) + fm(∞)

)2

= lim inf
m

E(fn − fm,fn − fm)

and therefore E(fn, fn) → 0. �

REMARK 2.2. We first recall from Chapter 1 of [19] that, to any Dirichlet
form, can be associated a Markovian semigroup. Thus there exists a strongly
continuous semi-group of symmetric, Markovian contractions of L2(N̄∗, γ ), say
(Pt , t ≥ 0), whose Dirichlet form is (E ,D) in the sense that, for any f,g ∈ D ,

1

t

∑
x

(
f (x) − Ptf (x)

)
g(x)γ (x) → E(f, g).

Since (E ,D) is also regular, we may apply Theorem 7.2.1 of [19] to conclude
that there also exists a symmetric Markov process, in fact a Hunt process, whose
Dirichlet form is (E ,D) on L2(N̄∗, γ ): there exists a Markovian family of prob-
ability measures on the space of càdlàg trajectories in N̄

∗, say (Px, x ∈ N̄
∗), with

the property that

Ex(f (Xt)) = Ptf (x),(2.6)
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for t ≥ 0, any x ∈ N̄
∗ and any f ∈ L2(N̄∗, γ ). (In the above expression, Xt is

the coordinate map and Ex is the expectation with respect to Px .) We refer to
Appendix A.2 of [19] for an introduction to Hunt processes. The Markov process
(Px, x ∈ N̄

∗) is uniquely determined by the Dirichlet form (E ,D) in the sense of
Theorem 4.2.7 of [19].

2.2. Computation of hitting times and capacities. Given the explicit enough
form of E it is easy to compute the law of some hitting times and entrance laws.

Let A be a subset of N̄
∗ and τA = inf{t ; X(t) ∈ A}. Let FA be the set of func-

tions in D that vanish on A. Let f : N̄∗ → R be bounded measurable and choose
λ > 0. Then the function y → Ey(f (XτA)e−λτA

) is the orthogonal projection of
the function f on the orthogonal complement of FA when D is equipped with the
Hilbert norm E(u,u)+λγ (u2); see Theorem 4.3.1 of [19]. We will repeatedly use
this fact to make explicit computations in the next lemmas

LEMMA 2.3. Let τx = inf{t ; X(t) 	= x}. Then

Ex(e
−λτx ) = 1

1 + λγ (x)
.(2.7)

PROOF. The function y → Ey(e
−λτx ) is the minimizer of the expression

E(u,u)+λγ (u2) among functions u satisfying u(y) = 1 for y 	= x. But, for such a
function u, we have E(u,u)+λγ (u2) = (u(x)− 1)2 +λγ (x)u(x)2 +λ(1 − γ (x))

that is minimal for u(x) = 1
1+λγ (x)

. �

LEMMA 2.4. Let σ∞ = inf{t ; X(t) = ∞}. Then

Ex(e
−λσ∞) = 1

1 + λγ (x)
.(2.8)

PROOF. We now have to minimize E(u,u) + λγ (u2) among functions u

satisfying u(∞) = 1. But for such a function u, we have E(u,u) + λγ (u2) =∑
x(u(x) − 1)2 + λγ (x)u(x)2 that is minimal for u(x) = 1

1+λγ (x)
. �

REMARK 2.5. In particular note that σ∞ < ∞ Px a.s. Hence P∞ is well de-
fined. Since Ex(e

−λσ∞) = Ex(e
−λτx ) and τx ≤ σ∞, we must have τx = σ∞ Px a.s.

In particular X(τx) = ∞ Px a.s.

LEMMA 2.6. Let A be a finite subset of N
∗ of size n, and τA = inf{t;

X(t) ∈ A}. Then, for any function f : A → R, any λ > 0 and any y /∈ A, we have

Ey(f (XτA)e−λτA

)
(2.9)

=
(
n + (

1 + λγ (y)
) ∑
x /∈A

λγ (x)/
(
1 + λγ (x)

))−1 ∑
x∈A

f (x).
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In particular, for λ = 0, we find that the law of X(τA) is uniform over A.

PROOF. We have to minimize E(u,u)+λγ (u2) among functions u satisfying
u(x) = f (x) for x ∈ A. For such a function E(u,u) + λγ (u2) = ∑

x∈A(f (x) −
u(∞))2 + ∑

x /∈A(u(x) − u(∞))2 + λγ (x)u(x)2 + λ
∑

x∈A γ (x)f (x)2. The solu-
tion has the form u(y) = u(∞)

1+λγ (y)
for y /∈ A and we find u(∞) by minimizing∑

x∈A(f (x) − u(∞))2 + u(∞)2 ∑
x /∈A

λγ (x)
1+λγ (x)

. �

After a similar computation, we get the following.

LEMMA 2.7. Let A be as in the previous lemma. Then

E∞(f (XτA)e−λτA

) = 1

n + ∑
x /∈A λγ (x)/(1 + λγ (x))

∑
x∈A

f (x).(2.10)

It is also possible to compute the Green kernel

gλ(x) = λ

∫ ∞
0

e−λs
P∞

(
X(s) = x

)
ds.(2.11)

The Markov property gives

gλ(x) = E∞
(
e−λτ {x})(

1 − Ex(e
−λτx )

) + E∞
(
e−λτ {x})

Ex(e
−λτx )gλ(x).(2.12)

[Remember that X(τx) = ∞ a.s.] Using Lemma 2.6, we get that

gλ(x) = λγ (x)/(1 + λγ (x))∑
y λγ (y)/(1 + λγ (y))

.(2.13)

We also have the following more general formula. Let gλ(x, y) = λ
∫ ∞

0 e−λs ×
Py(X(s) = x)ds. Then

gλ(x, y) = 1

1 + λγ (y)
gλ(x).(2.14)

The last formula describes some correlation function whose definition is moti-
vated by so-called aging.

LEMMA 2.8. Let

cλ(μ) =
∫ ∞

0
λe−λs ds

∫ ∞
0

μe−μt dt P∞
(
X(u) = X(s)∀u ∈ [s, s + t]).(2.15)

Then

cλ(μ) =
∑

x(λγ (x)/(1 + λγ (x)))(μγ (x)/(1 + μγ (x)))∑
x λγ (x)/(1 + λγ (x))

.(2.16)
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PROOF. As for the Green function, we use the Markov property to write that

cλ(μ) = ∑
x

∫ ∞
0

λe−λs ds

∫ ∞
0

μe−μt dt P∞
(
X(s) = x;X(u) = x ∀u ∈ [s, s + t])

= ∑
x

∫ ∞
0

λe−λs ds

∫ ∞
0

μe−μt dt P∞
(
X(s) = x

)
Px(τx > t)

= ∑
x

gλ(x)
(
1 − Ex(e

−μτx )
)
. �

2.3. Some extension. Let c > 0 and define the new measure γ c = γ + cδ∞.
The bilinear form (E ,D) turns out to be also a Dirichlet form when acting on
L2(N̄∗, γ c). The corresponding Markov process can be described as follows: let
L(t) be the local time of X at ∞. [L(t) is the unique additive functional whose
Revuz measure is δ∞.] Define

Ac(t) = t + cL(t) and Xc(t) = X(A−1(t)).(2.17)

Then, under Px , Xc is a Markov process and its Dirichlet form is (E ,D) acting on
L2(N̄∗, γ c). Call P

c
x its law when starting from x.

One can then reproduce the same computation as before. In particular we get
the expression of the Green function:

gc
λ(x) = λγ (x)/(1 + λγ (x))

cλ + ∑
y λγ (y)/(1 + λγ (y))

, x ∈ N
∗(2.18)

and, since gc
λ(∞) = 1 − ∑

x gc
λ(x),

gc
λ(∞) = cλ

cλ + ∑
x λγ (x)/(1 + λγ (x))

.(2.19)

We finally have that

gc
λ(x, y) = 1

1 + λγ (y)
gc

λ(x), x, y ∈ N̄
∗.(2.20)

REMARK 2.9. It follows from the character of the time change (2.17) that for
all c ≥ 0, at the entrance time of finite subsets A of N

∗ by Xc, starting outside A,
its distribution is uniform in A. See [19], Section 6.2, in particular Theorem 6.2.1.

3. Probabilistic point of view. In this section we make an explicit construc-
tion for the processes introduced in the previous section, and study some of its
properties which are relevant for what follows.

Let N = {(N(x)
t )t≥0, x ∈ N

∗} be i.i.d. Poisson processes of rate 1, with σ
(x)
j

the j th event time of N(x), and T = {T0; T
(x)
i i ≥ 1, x ∈ N

∗} be i.i.d. exponential
random variables of rate 1. N and T are assumed independent.
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For c ≥ 0 and y ∈ N̄
∗, let

�(t) = �c,y(t) = γ (y)T0 +
∞∑

x=1

γ (x)

N
(x)
t∑

i=1

T
(x)
i + ct,(3.1)

where, by convention,
∑0

i=1 T
(x)
i = 0 for every x.

Let c ≥ 0 be fixed. We define the process X̃c,y on N̄
∗ starting at y ∈ N̄

∗ as
follows. For t ≥ 0

X̃c(t) = X̃c,y(t) =

⎧⎪⎪⎨
⎪⎪⎩

y, if 0 ≤ t < γ (y)T0,
x, if �

(
σ

(x)
j −) ≤ t < �

(
σ

(x)
j

)
for some 1 ≤ j < ∞,

∞, otherwise.

(3.2)

DEFINITION 3.1. We call X̃c,y the K-process with parameters γ and c. We
will also call it sometimes the K(γ , c)-process for shortness.

REMARK 3.2. The case c = 1 was introduced by Kolmogorov [21] as an
example of a Markov process in a countable state space with an instantaneous
state. It is known in this context as the first example of Kolmogorov or K1 (Kol-
mogorov also introduced a second such example, known as K2, which is not a
K-process by our definition for any c ≥ 0 and γ ). The case c = 1 was then studied
in [20] and [12] (Example 3 in Part II, Chapter 20 of the latter reference), where
an equivalent construction to the above one is given, and elsewhere (e.g., [17]).
The general case of c > 0 is not really different from the one introduced by Kol-
mogorov; one can go from one case to the other by a uniform deterministic time
rescaling. The c = 0 case is already considerably different. For one thing, it is not
strongly continuous (a Markov process Y in N̄

∗ is said to be strongly continuous if
limt→0 Px(Yt = y) = δxy , the Kronecker’s delta, for all x, y ∈ N̄

∗; see [13], Chap-
ter 2. As result of Lemma 3.15 below, this property is seen to fail for the K-process
with c = 0 for x = y = ∞), which the K1 process is; following Lévy’s classifi-
cation [22], the K-process is of the fourth kind for c = 0, and of the fifth kind
for c > 0. (A process in a countable state space with one unstable state is of the
fourth kind if the set of times when the process visits that state is an uncountable
set of null Lebesgue measure, and of the fifth kind if that set is a Cantor set of
positive Lebesgue measure; see [22], Chapter II. According to this classification,
∞ is termed a fictitious state when c = 0.) Even though the c = 0 case is a natural
extension of the c > 0 one, we did not find any explicit mention of it in the liter-
ature. (In [22], though, it is argued in general terms that by looking at a fifth-kind
process outside the instantaneous state, one gets a fourth-kind process.) Never-
theless we will show that precisely the c = 0 case arises as the scaling limit of a
(mean-field) disordered spin dynamics (the trap model in the complete graph) at
low temperatures. Its irregular behavior near ∞, associated in particular to its lack
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of strong continuity, is behind the aging phenomenon exhibited by such dynam-
ics at such temperatures [7] (see Remark 5.14 below).

REMARK 3.3. It is clear that X̃c,y(0) = y almost surely for all y ∈ N
∗. That

this also holds for y = ∞ follows readily from (3.2).

REMARK 3.4. Note on the one hand that T0, �(σ
(x)
j −), �(σ

(x)
j ) are contin-

uous random variables for every x ∈ N̄
∗ and j ≥ 1, and on the other hand that

X̃c,y is almost surely continuous off {γ (y)T0;�(σ
(x)
j −),�(σ

(x)
j ), x ∈ N̄

∗, j ≥ 1}.
These readily imply that every s ≥ 0 is almost surely a continuity point of X̃c,y .

REMARK 3.5. It readily follows from (3.2) that

X̃c,y(t) = X̃c,∞(t − γy T0) for t ≥ γy T0.(3.3)

PROPOSITION 3.6. X̃c is càdlàg and Markovian.

REMARK 3.7. A treatment of the case c = 1 can be found in [20] and [12].
Even though both have a construction equivalent to ours, complete proofs of some
key properties of the constructed process, like the Markov one, are not presented.
For this reason, and in order to include the c = 0 case as well, we present below a
proof of Proposition 3.6.

The proof is based on strongly approximating X̃c in Skorohod space by Markov
processes that we now define. For n ≥ 1 and y ∈ {1, . . . , n,∞}, let

�n(t) = �c,y
n (t) = γ (y)T0 +

n∑
x=1

γ (x)

N
(x)
t∑

i=1

T
(x)
i + ct(3.4)

and

X̃c,y
n (t) =

⎧⎪⎪⎨
⎪⎪⎩

y, if 0 ≤ t < γ (y)T0,
x, if �n

(
σ

(x)
j −) ≤ t < �n

(
σ

(x)
j

)
for some 1 ≤ x ≤ n, j ≥ 1,

∞, otherwise.

(3.5)

REMARK 3.8. We note that X̃
0,y
n never visits ∞, even when y = ∞. See next

remark.

REMARK 3.9. The order in which the sites of {1, . . . , n} are visited by X̃
c,y
n

(in case y is finite, after leaving the initial state) is given by the respective
(chronological) order of {σ (x)

j ; 1 ≤ x ≤ n, j ≥ 1}. Let us denote the latter set
by Sn = {Sn

1 , Sn
2 , . . .}, with Sn

1 < Sn
2 < · · · . Then Sn is a Poisson point process
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of rate n, each point of which is labeled according to a different element of an
i.i.d. family of uniform in {1, . . . , n} random variables. This implies that the jump
probabilities of X̃

c,y
n from any site in case c = 0, and from ∞ in case c > 0, are

uniform in {1, . . . , n}, and also implies that X̃0,∞
n (0) is uniformly distributed in

{1, . . . , n} (since it is the label of Sn
1 ; see previous remark).

In case c > 0, c(Sn
i −Sn

i−1), i ≥ 1, where Sn
0 ≡ 0, represent the successive hold-

ing times at ∞. It is clear then that these times form an i.i.d. sequence of exponen-
tial random variables of mean c/n.

We have the following two results.

LEMMA 3.10. X̃c
n is càdlàg and Markovian for every n ≥ 1 and y ∈

{1, . . . , n,∞}.
LEMMA 3.11. X̃c

n → X̃c as n → ∞ almost surely in the Skorohod norm for
every y ∈ N̄

∗.

PROOF OF THE FIRST ASSERTION OF PROPOSITION 3.6. The first assertions
of Lemmas 3.10 and 3.11 readily establish the first assertion of Proposition 3.6
(see [13]). �

PROOF OF LEMMA 3.10. Let the starting point y be fixed.
For c = 0, X̃c

n is the following Markov process on {1, . . . , n}. X̃
c,y
n starts at y

if y ∈ {1, . . . , n}; X̃c,∞
n has uniform initial distribution. When at x ∈ {1, . . . , n}, it

waits an exponential time of mean γ (x) and then jumps uniformly at random to a
site in {1, . . . , n} (which could be x again). See Remarks 3.8 and 3.9 above.

For c > 0, X̃c
n is the following Markov process on {1, . . . , n,∞}. X̃

c,y
n starts

at y. When at x ∈ {1, . . . , n}, it waits an exponential time of mean γ (x) and then
jumps deterministically to ∞. When at ∞, it waits an exponential time of mean
c/n, and then jumps uniformly at random to a site in {1, . . . , n}. See Remark 3.9
above. �

PROOF OF LEMMA 3.11. Let y be fixed, and suppose n ≥ y if y ∈ N
∗.

We show the almost sure validity of (c) of Proposition 5.3 in Chapter 3 of [13]
(page 119).

For m ∈ N
∗, let δm = diam{x ∈ N̄

∗ :x > m} = (m + 1)−1 and {Sm
1 < Sm

2 <

· · ·} = {σ (x)
j , j ≥ 1,1 ≤ x ≤ m}, with the latter being well defined almost surely.

Fix T > 0 and let

Lm
n = min{i ≥ 1 :�n(S

m
i ) ≥ T },(3.6)

which is almost surely finite, and make Sm
0 ≡ 0. Notice that Lm

n = Lm
n (y) is non-

increasing in γ (y) where y is the starting point, and thus

max
y∈N̄∗

Lm
n (y) = Lm

n (∞).(3.7)
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We can now almost surely find nm so large that min0≤i≤Lm
n −1[�n(S

m
i+1−) −

�n(S
m
i )] > 0 for n ≥ nm. (We can take nm ≡ 1 when c > 0.) For these n then

define λm
n : [0,�n(S

m
Lm

n
)] → R

+ inductively as follows:

λm
n (t) = t if 0 ≤ t < γ (y)T0,(3.8)

and for 0 ≤ i ≤ Lm
n − 1 and �n(S

m
i ) ≤ t ≤ �n(S

m
i+1), let

λm
n (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�(Sm
i ) + �(Sm

i+1−) − �(Sm
i )

�n(S
m
i+1−) − �n(S

m
i )

[t − �n(S
m
i )],

if �n(S
m
i ) ≤ t ≤ �n(S

m
i+1−),

�(Sm
i+1−) − �n(S

m
i+1−) + t, if �n(S

m
i+1−) ≤ t ≤ �n(S

m
i+1).

(3.9)

It has the following properties. For all T > 0, m ∈ N
∗ and n ≥ m ∨ nm ∨ y

λm
n (t) ≥ t, 0 ≤ t ≤ T ,(3.10)

sup
0≤t≤T

|λm
n (t) − t | ≤ max{�(Sm

i+1−) − �n(S
m
i+1−); 0 ≤ i ≤ Lm

n (∞) − 1}(3.11)

[where we have made use of (3.7)], and

the right-hand side of (3.11) vanishes almost surely as n → ∞.(3.12)

Furthermore,

sup
0≤t≤T

dist(X̃c(λm
n (t)), X̃c

n(t)) ≤ δm,(3.13)

since for t ∈ [0, T ], X̃c(λm
n (t)) and X̃c

n(t) coincide when either one is in
{1, . . . ,m}.

From (3.11), for every m ∈ N
∗ there almost surely exists n′

m ≥ nm such that for
n ≥ n′

m

sup
0≤t≤T

|λm
n (t) − t | ≤ δm(3.14)

and (3.13) hold. We may assume (n′
m) is strictly increasing.

For n ≥ n′
1, let mn = i when n′

i ≤ n < n′
i+1 and λ̃n = λ

mn
n . We then have for

T > 0

sup
0≤t≤T

dist(X̃c(λ̃n(t)), X̃
c
n(t)) → 0,(3.15)

sup
0≤t≤T

|λ̃n(t) − t | → 0,(3.16)

almost surely as n → ∞, and the above mentioned condition (c) is verified. �

REMARK 3.12. Since the right-hand side of (3.11) is independent of y ∈ N̄
∗,

the convergence in (3.16) is actually uniform in y ∈ N̄
∗.
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We will also need the following lemma to prove the second assertion of Propo-
sition 3.6.

LEMMA 3.13. For every t ≥ 0, X̃c,y(t) → X̃c,∞(t) as y → ∞ almost surely.

PROOF. The case t = 0 is clear. For t > 0, since we are taking y → ∞, we
may assume that γ (y)T0 ≤ t and then from (3.3) we have that

|X̃c,y(t) − X̃c,∞(t)| = ∣∣X̃c,∞(
t − γ (y)T0

) − X̃c,∞(t)
∣∣(3.17)

and the result follows from Remark 3.4. �

PROOF OF THE SECOND ASSERTION OF PROPOSITION 3.6. We will show
that the Markov property of X̃c

n survives in the limit. Before going into the ar-
gument, it is perhaps worth mentioning that not all limits of Markov processes
are Markovian. In the present case, a few regularity properties enjoyed by the
processes involved are behind the fact (or, to be more precise, behind our argu-
ment below), namely the Feller property of X̃c (see Remark 3.14 below), the al-
most sure continuity of X̃c(s) at all deterministic s (see Remark 3.4 above) and the
uniformity in y ∈ N̄

∗ of the convergence of λ̃n(t) to t (see Remark 3.12 above).
The argument below is perhaps a bit technical; all the above mentioned properties
enter it in due course.

Now for the argument. Lemma 3.10 implies that for arbitrary m ≥ 1, 0 ≤ t1 <

· · · < tm+1 and bounded continuous functions f1, . . . , fm+1, we have that

E[f1(X̃
c
n(t1)) · · ·fm(X̃c

n(tm)) fm+1(X̃
c
n(tm+1))]

(3.18)
= E[f1(X̃

c
n(t1)) · · ·fm(X̃c

n(tm))	n
tm+1−tm

fm+1(X̃
c
n(tm))],

where 	n is the semigroup of X̃c
n, that is, for t ≥ 0, a continuous function f and

y ∈ N̄
∗

	n
t f (y) = E[f (X̃c,y

n (t))].(3.19)

By Lemma 3.11, the left-hand side of (3.18) converges to

E[f1(X̃
c(t1)) · · ·fm(X̃c(tm)) fm+1(X̃

c(tm+1))](3.20)

as n → ∞. Let us estimate the right-hand side of (3.18) by

E[f1(X̃
c
n(t1)) · · ·fm(X̃c

n(tm))	tm+1−tmfm+1(X̃
c
n(tm))] + εn,(3.21)

where for t ≥ 0, a continuous function f and y ∈ N̄
∗

	tf (y) = E[f (X̃c,y(t))](3.22)

and

|εn| ≤ const sup
y

|	n
tm+1−tm

fm+1(y) − 	tm+1−tmfm+1(y)|.(3.23)
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From Lemma 3.13, we have that 	tm+1−tmfm+1(·) is continuous, and now
Lemma 3.11 implies that the left term of (3.21) converges to

E[f1(X̃
c(t1)) · · ·fm(X̃c(tm))	tm+1−tmfm+1(X̃

c(tm))](3.24)

as n → ∞.
Let us now examine the right-hand side of (3.23). We first relabel fm+1 = g,

tm+1 − tm = s and γ (y) = γy . We have that

	n
tm+1−tm

fm+1(y) − 	tm+1−tmfm+1(y)

= E[g(X̃c,y
n (s)) − g(X̃c,y(s))]

(3.25)
= E[g(X̃c,y

n (s)) − g(X̃c,y(λ̃n(s)))]
+ E[g(X̃c,y(λ̃n(s))) − g(X̃c,y(s))],

with λ̃n as defined in the paragraph of (3.15), with T > s. From (3.13), it follows
that the sup in y of the absolute value of the first expected value in the right-
hand side of (3.25) vanishes as n → ∞ (since g is continuous, and thus uniformly
continuous since N̄

∗ is compact).
Remark 3.4 now implies that there exists a sequence kn going to infinity as

n → ∞ such that as n → ∞
max

1≤y≤kn

|E[g(X̃c,y(λ̃n(s))) − g(X̃c,y(s))]| → 0.(3.26)

We now note that, from (3.10), (3.12), λ̃n(s) ≥ s, and that λ̃n(s) → s as n → ∞
uniformly in y almost surely (see Remark 3.12 above). From this and (3.3) we then
have

sup
y>kn

|E[g(X̃c,y(λ̃n(s))) − g(X̃c,y(s))]|

≤ sup
y>kn

E
[∣∣g(

X̃c,∞(
λ̃n(s) − γyT0

))
(3.27)

− g
(
X̃c,∞(s − γy T0)

)∣∣;γyT0 < δn

]
+ 2‖g‖ sup

y>kn

P(γy T0 ≥ δn),

where δn is chosen so that δn → 0 and supy>kn
P(γy T0 ≥ δn) = e−δn/(supy>kn

γy) →
0 as n → ∞. Then we have that the latter summand in the right-hand side of (3.27)
vanishes as n → ∞. The former one can be bounded above by

E

[
sup
y>kn

sup
0≤t≤δn

∣∣g(
X̃c,∞(

λ̃n(s) − t
)) − g

(
X̃c,∞(s − t)

)∣∣]

and as n → ∞ that vanishes as well by Remark 3.4 above [(any) s is almost surely
a continuity point of X̃c,∞(·)].
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We have thus concluded that |εn| → 0 as n → ∞, and then from (3.18)–(3.24)
we have that

E[f1(X̃
c(t1)) · · ·fm(X̃c(tm)) fm+1(X̃

c(tm+1))]
(3.28)

= E[f1(X̃
c(t1)) · · ·fm(X̃c(tm))	tm+1−tmfm+1(X̃

c(tm))],
and the Markov property is established. �

REMARK 3.14. 	 defined in (3.22) is the semigroup of X̃c. Lemma 3.13
implies that 	tf (·) is continuous for any t ≥ 0 and f : N̄∗ → R continuous. We
thus have that X̃c is a Feller process. This and the Markov property just proved
imply the strong Markov property of X̃c.

Next follows a result establishing in particular the lack of strong continuity of
the K-process with c = 0.

LEMMA 3.15. For every y ∈ N̄
∗, we have that P(X̃0,y(t) = ∞) = 0 for every

t > 0.

REMARK 3.16. The statement of Lemma 3.15 does not hold for c > 0. In this
case, it can actually be shown that P(X̃c(t) = ∞) > 0 for every t > 0, y ∈ N̄

∗. It
can also be shown that the process is strongly continuous in this case.

REMARK 3.17. We note that X̃c,∞(0) = ∞ almost surely for every c ≥ 0.

PROOF OF LEMMA 3.15. For m ≥ 1, and t > 0, let θm,t be the time spent by
X̃0,y outside {1, . . . ,m} up to time t . Clearly

θm,t = ∑
x>m

γ (x)

N
(x)
�t∑

i=1

T
(x)
i ,(3.29)

where � is the inverse function of �. It is also clear that∫ t

0
1{∞}(X̃0,y(s)) ds ≤ θm,t(3.30)

for every m ≥ 1 and t > 0, where 1· is the usual indicator function, and that

θm,t → 0(3.31)

almost surely as m → ∞ for every t > 0. Thus the left-hand side of (3.30) vanishes
almost surely and dominated convergence implies that

E

(∫ t

0
1{∞}(X̃0,y(s)) ds

)
=

∫ t

0
P

(
X̃0,y(s) = ∞)

ds = 0(3.32)
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for every t . This proves the assertion of the lemma for Lebesgue-almost every t .
The Markov property of X̃0,y can now be used to extend the result to every t . �

We close this section with a computation related to the Green function of X̃c;
this will lead to an identification of X̃c above and Xc defined in Section 2.3.

Let τ {x} = inf{t ; X̃c(t) = x}. We have that under P∞

τ {x} = �(x)
c

(
σ

(x)
1

)
,(3.33)

where for x ∈ N
∗, s ≥ 0

�(x)
c (s) = ∑

y 	=x

γy

N
(y)
s∑

i=1

T
(y)
i + cs.(3.34)

It is now straightforward to compute the Laplace transform of τ {x} for the process
started at ∞. We obtain

E∞
(
e−λτ {x}) = E∞

(
e−λ�

(x)
c (σ

(x)
1 )) =

∫ ∞
0

E
(
e−λ�

(x)
c (s))e−s ds

(3.35)

=
∫ ∞

0
E

(
exp

{
−λ

∑
y 	=x

γy

N
(y)
s∑

i=1

T
(y)
i

})
e−(1+c)s ds,

for λ > 0, where in the second equality we have used the independence of σ
(x)
1 and

(the random variables in)
∑

y 	=x γy

∑N
(y)
s

i=1 T
(y)
i . We leave it as an exercise to com-

pute the expectation inside the integral in (3.35), and to conclude that the integral
equals

(
1 + cλ + ∑

y 	=x

λγy

1 + λγy

)−1

.(3.36)

We note that this expression is the same as that for the corresponding transform
for Xc in Section 2.

Now, since the only transitions are from states in N
∗ to ∞ and back, we have

a decomposition as in (2.12) for the Green kernel of X̃c starting at ∞, and we get
the case of general initial condition from the case of ∞ initial condition as in the
computation in Section 2. We readily conclude from the remark at the end of the
previous paragraph that the Green functions of X̃c and Xc coincide, and thus, since
these are both càdlàg Markov processes, they must have the same distribution for
any initial law.
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4. A characterization result. The striking property of K-processes that at the
entrance time of the process in finite subsets (starting from outside) the distribution
is uniform (see Remark 2.9) leads to a natural question: which other processes have
this property? Below we see that, under natural assumptions, the answer is none;
that is, that property characterizes K-processes.

THEOREM 4.1. Let γ be as in (2.2) and Y = (Y (t), t ≥ 0) be a process on N̄
∗

with the following four properties:

(i) Y is càdlàg.
(ii) Y is strong Markov.

(iii) Starting from any point i ∈ N
∗, Y waits for an exponential time of mean

γ (i) before jumping.
(iv) Starting from ∞, for any finite A ⊂ N

∗, we have τA < ∞ almost surely,
where

τA = inf{t ≥ 0 :Y(t) ∈ A},(4.1)

with inf ∅ = ∞, and the law of Y(τA) is uniform on A.

Then, Y is a K-process with parameters γ and c, for some c ≥ 0.

REMARK 4.2. Fukushima and collaborators, as well as other authors, have re-
cently studied one-point extensions of certain Markov processes beyond a killing
time (see [11, 18] and references therein). The K-processes can be viewed as one-
point extensions of processes in N

∗ that are killed after the first jump. With this
point of view, and even though the K-processes do not satisfy some of the con-
ditions in the above references (like Condition (A.2) in [11]; another condition
would require c = 0 in our case), Theorem 4.1 is similar (in its particular context)
to their results. But there is an important difference in that, while they depart from
a reversibility condition (more generally, a duality condition) with respect to an
excessive measure for the process, we have a condition on the jump rates and en-
trance laws. It is nevertheless remarkable that entrance laws play a crucial role in
their approach (it also could be said that for the K-processes the jump rates are
directly related to a stationary measure for the process).

PROOF OF THEOREM 4.1. The strategy is to consider the process restricted to
{1, . . . , n,∞}, and show that it must have the same distribution as X̃c

n. The result
then follows by taking n → ∞.

We start by showing that from any state in N
∗, Y jumps to ∞ almost surely. Let

i, j ∈ N
∗ be such that i 	= j , and for n ≥ i ∨ j let

An = {1, . . . , n}.(4.2)

Then

{Y(τAn+1) = j} ∪ {Y(τAn+1) = i, Y (τ ′
n+1) = j} ⊂ {

Y
(
τAn+1\{i}

) = j
}
,(4.3)
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where

τ ′
n = inf{t ≥ τAn :Y(t) 	= Y(τAn+1)}.(4.4)

Thus,

P∞
(
Y(τAn+1) = j

) + P∞
(
Y(τAn+1) = i, Y (τ ′

n+1) = j
)

(4.5)
≤ P∞

(
Y

(
τAn+1\{i}

) = j
)
,

and using (ii)–(iv)

1

n + 1
+ 1

n + 1
pij ≤ 1

n
,(4.6)

where pij is the transition probability from i to j . It follows that pij ≤ 1/n, and
since n can be taken arbitrarily large, we conclude that pij = 0, and the claim at
the beginning of the paragraph follows.

Now let us consider the process obtained from Y by suppressing jumps outside
Ān := An ∪ {∞} [see (4.2)]. Let us call it Yn. More precisely, let

An(t) =
∫ t

0
1Ān

(Y (s)) ds and Yn(t) = Y(A−1
n (t)),

where 1A is the usual indicator function of a set A, and A−1
n is the right-continuous

inverse of An.
It is readily seen that An(t) ↑ t as n ↑ ∞ uniformly in t ≤ T for every T .
We can also prove that

Yn → Y as n → ∞ in Skorohod space.(4.7)

This can be argued through parallel steps to those in the proof of Lemma 3.11, with
A−1

n replacing �n, and the Sm
i ’s replaced by the successive exit times of {1, . . . ,m}

by Yn. Notice that (iv) implies the existence of nm as in that proof.
We observe that Yn also satisfies (i) and (ii) (see [23], Theorem 65.9). Starting

at i ≤ n, it waits an exponential time of mean γ (i) and then jumps.
The state space of Yn may be either Ān or An. [The latter possibility happens

if Y is the K(γ,0)-process; note that
∫ ∞

0 1{∞}(Y (s)) ds = 0 almost surely in that
case—see the proof of Lemma 3.15 for an argument.] If the latter case happens,
then Yn is a continuous-time Markov chain on An satisfying (i)–(iii). To completely
characterize it, we need only determine the transition probabilities. But property
(iv) of Y implies that these must be uniform, that is, pij ≡ 1/n. This means that Yn

is equidistributed with X̃0
n defined in (3.5). Now this, Lemma 3.11 and (4.7) imply

that Y is equidistributed with X̃0.
It remains to consider the case where the state space of Yn is Ān. In this case

Yn clearly also satisfies (iii)–(iv). We need only determine the mean holding time
at ∞, say γn(∞). For that we reason as follows.
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We can obtain Yn by suppressing jumps of Yn+1 outside {1, . . . , n}∪{∞}. Since
upon leaving ∞, the process Yn+1 has probability 1/(n + 1) to jump to n + 1, we
see that the holding time at ∞ in Yn can be seen as a sum of independent holding
times at ∞ in Yn+1. The number of terms in the sum is a geometric random variable
with success parameter 1/(n + 1), independent of the holding times at ∞ in Yn+1.
We conclude that

γn(∞) = γn+1(∞)
n + 1

n
,

and thus that γn(∞) = c/n for some constant c ≥ 0. We then see that Yn is equidis-
tributed with X̃c

n defined in (3.5) for every n ≥ 1, and the conclusion that Y is
equidistributed with X̃c follows exactly as above. �

5. A scaling limit for the trap model in the complete graph. The trap model
in the complete graph [7] can be described as a continuous-time symmetric Markov
chain Yn = {Yn(t), t ≥ 0} in the complete graph Kn with n vertices such that the
average holding times τ := {τx, x ∈ Kn} are an i.i.d. family of positive random
variables equidistributed with a r.v. τ0 which is in the basin of attraction of a stable
law of degree α < 1, that is,

P(τ0 > t) = L(t)

tα
, t > 0,(5.1)

where L is a slowly varying function at infinity.
We will show in this section that in an appropriate sense, in an appropriate time

scale, Yn converges in distribution as n → ∞ to a K-process with c = 0.
We start by identifying the vertices of Kn with An = {1, . . . , n} for all n ≥ 1, in

such a way that {τ (n)
i , 1 ≤ i ≤ n} is in decreasing order, that is, (τ

(n)
1 , . . . , τ

(n)
n ) is

the reverse order statistics of (τ1, . . . , τn), an i.i.d. sample of size n of τ0.
We can describe Yn then as a continuous-time Markov chain in An with mean

holding time at i ∈ An given by τ
(n)
i and uniform in An transition probabilities for

all starting point i ∈ An.
Let us view (τ

(n)
1 , . . . , τ

(n)
n ) as a random measure γn on N

∗ such that

γn({i}) =
{

τ
(n)
i , if i ∈ An,

0, otherwise.
(5.2)

We refer the reader to Section 3 of [16] for more on the context of the next
result. We present the main points below.

Consider the increasing Lévy process Vx, x ∈ R, V0 = 0, with stationary and
independent increments given by

E
[
eir(Vx+x0−Vx0 )] = eαx

∫ ∞
0 (eirw−1)w−1−α dw(5.3)
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for any x0 ∈ R and x ≥ 0. Let ρ be the (random) Lebesgue–Stieltjes measure on
the Borel sets of R associated to V , that is,

ρ((a, b]) = Vb − Va, a, b ∈ R, a < b.(5.4)

Then

dρ = dV = ∑
j

wj δ(x − xj ),(5.5)

where the (countable) sum is over the indices of an inhomogeneous Poisson point
process {(xj ,wj )} on R × (0,∞) with density dx αw−1−α dw.

Let γ = {γ (i), i ∈ N
∗} denote the weights of ρ in [0,1] in decreasing order,

that is, making R = {γ ({x}), x ∈ [0,1]},
γ (1) = maxR; γ (i) = max[R \ {γ (1), . . . , γ (i − 1)}], i ≥ 2.(5.6)

REMARK 5.1. γ thus defined almost surely satisfies the conditions on the
paragraph of (2.2).

Let now

cn = (
inf{t ≥ 0 : P(τ0 > t) ≤ n−1})−1

.(5.7)

and γ̃n = cnγn, that is, γ̃n is a (random) measure in N
∗ such that

γ̃n({i}) =
{

cnτ
(n)
i , if i ∈ An,

0, otherwise.
(5.8)

THEOREM 5.2. Let Ỹn be the process in An such that for t ≥ 0, Ỹn(t) =
Yn(c

−1
n t). Suppose Ỹn(0) ≡ Yn converges weakly to a random variable Y in N̄

∗.
Then, as n → ∞,

(Ỹn, γ̃n) ⇒ (Y, γ ),(5.9)

where, given γ , Y is a K(γ,0)-process with Y(0) distributed as Y, and ⇒ denotes
weak convergence in the product of the Skorohod topology and the vague topology
in the space of finite measures on N̄

∗.

REMARK 5.3. Given our choice of N̄
∗ as state space of both Yn and Y in

the above convergence result, the ordering of τ and γ is a natural imposition: in
this way we have that the τi’s that matter in the chosen scaling limit get naturally
assigned to the points of the state space. (Without the ordering of τ , the locations
of the τi’s that do not vanish in the limit go to infinity.)

Other choices of state space would not require the ordering. For example, one
could rescale the space variable by n, and take the state space as the interval [0,1];
then the pairs (rescaled τ ’s, their rescaled locations) would converge in distribution
to the Poisson point process alluded to above [right below (5.5)] in [0,1]× (0,∞).
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REMARK 5.4. As is apparent from the proof of Theorem 5.2, the result re-
mains valid whenever the rescaled (and reordered) τ (its distribution could also
depend on n), possibly under a different scaling, converges to some γ satisfying
the conditions on the paragraph of (2.2). In the case of a different scaling for τ , the
time of Ỹ should of course be rescaled likewise.

PROOF OF THEOREM 5.2. We may assume that Yn → Y as n → ∞ almost
surely. Following the strategy in Section 3 of [16], we will couple (Ỹn, γ̃n) to (Y, γ )

and establish (5.9) as a strong convergence.
For i ∈ An, let

τ̄
(n)
i = 1

c n
gn

(
Vi/n − V(i−1)/n

)
,(5.10)

where gn is defined as follows. Let G : [0,∞) → [0,∞) satisfy

P
(
V1 > G(x)

) = P(τ0 > x) for all x ≥ 0(5.11)

and let gn : [0,∞) → [0,∞) be defined as

gn(x) = cnG
−1(n1/αx) for all x ≥ 0.(5.12)

Let {τ̂ (n)
i , i ∈ An} be {τ̄ (n)

i , i ∈ An} in decreasing order, and

γ̂n({i}) =
{

cnτ̂
(n)
i , if i ∈ An,

0, otherwise.
(5.13)

It readily follows from Proposition 3.1 in [16] that γ̂n and γ̃n have the same distri-
bution for every n, and that almost surely

γ̂n → γ as n → ∞(5.14)

[where the first → in (5.14) means vague convergence].
Let now N and T be as in Section 3. For t ≥ 0, let

�̂n(t) = γ̂n(Yn)T0 +
n∑

x=1

γ̂n(x)

N
(x)
t∑

i=1

T
(x)
i ,(5.15)

�̂(t) = γ (Y) T0 +
∞∑

x=1

γ (x)

N
(x)
t∑

i=1

T
(x)
i ,(5.16)

where we write γ̂n(x) and γ (x) for γ̂n({x}) and γ ({x}), respectively, and

Ŷn(t) =
⎧⎪⎨
⎪⎩

Yn, if 0 ≤ t < γ̂n(Yn)T0,

x, if �̂n

(
σ

(x)
j −) ≤ t < �̂n

(
σ

(x)
j

)
for some 1 ≤ x ≤ n, j ≥ 1.

(5.17)

Ŷ (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Y, if 0 ≤ t < γ (Y) T0,

x, if �̂
(
σ

(x)
j −) ≤ t < �̂

(
σ

(x)
j

)
for some 1 ≤ x < ∞, j ≥ 1

∞, otherwise.

(5.18)
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See (3.1), (3.2), (3.4), (3.5) above. One readily checks that (Ŷn, γ̂n) has the same
distribution as (Ỹn, γ̃n) for every n ≥ 1 (see Proposition 3.1 of [16]).

We claim now that

Ŷn → Y as n → ∞(5.19)

almost surely in Skorohod space.
The proof of (5.19) is similar to that of Lemma 3.11, with modifications to

account for a dependence of γ̂n on n. Equation (5.14) is of course crucial. We
indicate the main steps next.

For n ≥ y, m ∈ N
∗, let δm, {Sm

1 < Sm
2 < · · ·} and Lm

n be as in that proof. We
now have that min0≤i≤Lm

n −1[�̂n(S
m
i+1−) − �̂n(S

m
i )] > 0 almost surely for n ≥ 1.

Define next λ̂m
n : [0, �̂n(S

m
Lm

n
)] → R

+ as follows:

λ̂m
n (t) = γ (Y)

γ̂n(Yn)
t if 0 ≤ t < γ̂n(Yn)T0,(5.20)

and for 0 ≤ i ≤ Lm
n − 1 and �̂n(S

m
i ) ≤ t ≤ �̂n(S

m
i+1), let

λ̂m
n (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�̂(Sm
i ) + �̂(Sm

i+1−) − �̂(Sm
i )

�̂n(S
m
i+1−) − �̂n(S

m
i )

[t − �̂n(S
m
i )],

if �̂n(S
m
i ) ≤ t ≤ �̂n(S

m
i+1−),

�̂(Sm
i+1−) + �̂(Sm

i+1) − �̂(Sm
i+1−)

�̂n(S
m
i+1) − �̂n(S

m
i+1−)

[t − �̂n(S
m
i+1−)],

if �̂n(S
m
i+1−) ≤ t ≤ �̂n(S

m
i+1).

(5.21)

It has the following properties. For all T > 0, m ∈ N
∗ and n ≥ m ∨ y

sup
0≤t≤T

|λ̂m
n (t) − t |

(5.22)
≤ max{|�̂(Sm

i −) − �̂n(S
m
i −)|, |�̂(Sm

i ) − �̂n(S
m
i )|;0 ≤ i ≤ Lm

n },
where �̂n(0−) ≡ �̂(0−) = 0, and the right-hand side of (5.22) vanishes almost
surely as n → ∞. Furthermore,

sup
0≤t≤T

dist(Ŷ (λ̂m
n (t)), Ŷn(t)) ≤ δm,(5.23)

since for t ∈ [0, T ], Ŷ (λ̂m
n (t)) and Ŷn(t) coincide when either one is in {1, . . . ,m}.

The remainder of the argument follows along the exact same lines as those in
the proof of Lemma 3.11. �

REMARK 5.5. It is natural to ask about the marginal distribution of the limit-
ing process Y of Theorem 5.2. Even though we do not study this process at length
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here, one thing that can be readily checked is that it is not Markovian, since in
particular the distribution of the waiting times is not exponential (but a mixture
thereof), and the waiting times at different sites are also not independent (due to
the dependence of the distribution on the mixture kernels of different sites).

One positive thing that can be said of Y is that it exhibits aging. See Theo-
rem 5.11 and Remark 5.12, which obviously holds for Corollary 5.15 as well.

5.1. Aging. Aging results can be viewed as scaling limits for averaged two-
time correlation functions of a given dynamics of a disordered system. The averag-
ing is with respect to the disorder distribution. The system should be started at high
temperature, and then abruptly cooled down, evolving thence on at low tempera-
ture. Loosely speaking, aging would amount to the following. Given a dynamics
described by the process X with a disordered set of parameters τ , the following
would be an aging result:

lim
t,t ′→∞
t ′/t→θ

E{Eμ[�(t, t ′;X)|τ ]} = R(θ),(5.24)

where μ is a measure on state space; Eμ(·|τ) indicates the expectation with respect
to X with initial distribution given by μ, with parameters fixed at τ ; �(t, t ′;X) is
a function of the piece of trajectory X([t, t + t ′]) = {X(s), s ∈ [t, t + t ′]}; and
R is a nontrivial function of real scaling factor θ > 0. The initial distribution μ

should reflect a high temperature, and the distribution of the parameters, a low
temperature. See [8] and references therein.

For a mean-field model like the trap model in the complete graph, there is a
volume dependence, and one must take the infinite volume limit (n → ∞); that
should be done before or together with the time limit. The former is done in [7] for

�1(t, t
′;X) = 1{X(s) = X(t), s ∈ [t, t + t ′]}.(5.25)

μ = μn is taken uniformly distributed in {1, . . . , n}, reflecting the high temperature
of the initial state, and the tail parameter α < 1 corresponds to the low temperature
thence prevailing.

One other function that is often considered is

�2(t, t
′;X) = 1{X(t) = X(t + t ′)}.(5.26)

One could also take the volume and time limits together, using the scaling
limit of Theorem 5.2. For that let us suppose that, for all t, t ′ > 0, �(t, t ′; ·) is
almost surely continuous [with respect to the distribution of (Y, γ )]. Then, by The-
orem 5.2,

lim
n→∞ E{Eμn[�(t, t ′; Ỹn)|τ ]} = E{E∞[�(t, t ′;Y)|γ ]},(5.27)

with Y(0) = ∞, where for x ∈ N̄
∗, Ex(·|γ ) denotes the expectation with respect

to the distribution of Y started at x, with parameters fixed at γ . t, t ′ > 0 are now
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macroscopic. On those times the dynamics is already close enough to equilibrium
to disallow aging: the right-hand side of (5.27) is not a function of the ratio t ′/t

only. To find aging, we should move away from equilibrium, by taking the further
limit as t, t ′ → 0 while t ′/t → θ > 0. We then say that aging takes place in this
context (for both the trap model in the complete graph and the limiting disordered
K-process) if

lim
t,t ′→0
t ′/t→θ

E{E∞[�(t, t ′;Y)|γ ]} = R′(θ)(5.28)

exists and R′ is nontrivial.

REMARK 5.6. In taking the volume and time limits as in [7], one enters what
could be termed a (long) microscopic-time aging regime for the trap model in the
complete graph, while the latter way of taking those limits gets one in a (short)
macroscopic-time aging regime. Our next result indicates that, at least as far as �1
is concerned, the two regimes agree.

REMARK 5.7. Instead of scaling time as in (5.27), namely with the scale of
the largest τx’s in Kn, in view of the further limit limt,t ′→0; t ′/t→θ , it is natural to
use a lower-order (divergent) scaling. This could be termed a mesoscopic aging
regime, and it is the approach of [3] to establishing aging for the trap model in the
complete graph. As far as �1 is concerned, the mesoscopic aging regime agrees
with the microscopic and macroscopic regimes; see [3].

Next we state an aging result for � in a certain class of functions including the
usual examples �1 and �2 and satisfying some continuity and spatial homogeneity
conditions (which seem natural if one sees this as a mean-field model), with no
intention at full generality, however. Let � be the space of càdlàg paths on N̄

∗,
and consider the class of functions � : R+ × R

+ × � → R with the following
properties:

�(t, t ′; ζ ) = �
(
t, t ′; ζ([t, t + t ′])),(5.29)

where ζ([t, t + t ′]) is ζ restricted to [t, t + t ′], with the scaling property: for all
t, t ′ > 0,

�(t, t ′; ζ ) = �(1, t ′/t; ζ t ),(5.30)

where ζ t (·) = ζ(t ·). Notice that �1 and �2 above have this property. Consider
now the following path segments: for θ > 0, x ∈ N̄

∗: ηx,θ = ηx,θ ([1,1 + θ)) ≡ x;
η̄x,θ = ηx,θ ([1,1 + θ ]) ≡ x. We make the following further assumptions on �:

�(1, θ; η̄x,θ ) = 	1(θ) ∀x ∈ N
∗,(5.31)
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for some real function 	1, that is, �(1, θ; η̄x,θ ) does not depend on x for finite x;
for 0 < s < θ ,

�(1, θ;ηx,s ◦ η) = �(x, s, η) ∀x ∈ N
∗(5.32)

for all segment η = η([1 + s,1 + θ ]) in [1 + s,1 + θ ] of a path in Skorohod space
with η(1 + s) 	= x, where ◦ stands for concatenation, and � is a given function
with the following properties. We first give some definitions. For r > 0, let �u

be the space of càdlàg paths in N̄
∗ of length u, and for v > 0 fixed, let Xv =⋃

u∈[0,v]({u} × �v−u). Let now θ > 0 be fixed. We then have that � : N̄
∗ × Xθ →

R is such that:

(i)

� is uniformly bounded;(5.33)

(ii)

for all η ∈ �θ−s, �(x, s, η) = �(y, s, η) whenever x, y /∈ η;(5.34)

(iii)

for all x ∈ N
∗, the function η → �(x, s, η) is continuous in the sup

norm on �θ−s for η = η̂∞,θ−s ∈ �θ−s with η̂∞,θ−s ≡ ∞,(5.35)

uniformly in 0 < s < θ.

REMARK 5.8. �1 and �2 given in (5.25), (5.26) satisfy (5.29)–(5.35). Other
examples can be obtained by taking �(x, s, η) = f (s) for all x ∈ N

∗, η ∈ �θ−s ,
where f is any continuous function in [0, θ ].

REMARK 5.9. The uniformity assumption in (5.35) above is for simplicity.
See Remarks 5.18 and 5.20 below.

REMARK 5.10. The lack of dependence on finite x assumed in both (5.31)
and (5.34) is not artificial if one takes into account that the model where � will be
measured is mean-field, and thus the space coordinate is not relevant. The distinc-
tion between finite x and infinity is nevertheless desirable.

For x ∈ N
∗ and 0 < s < θ , let 	2(s, θ) = �(x, s, η̂∞,θ−s). Notice that the latter

function does not depend on x ∈ N
∗ by assumption (ii). We make the following

assumptions on 	2, for simplicity: for all θ > 0

	2(0, θ) := lim
s↓0

	2(s, θ), 	2(θ, θ) := lim
s↑θ

	2(s, θ) exist(5.36)

and

	 ′
2(s, θ) := d

ds
	2(s, θ) ∈ L1([0, θ ], dx).(5.37)

We can now state the main results of this subsection. For simplicity, we make
t ′ = θt . We start with a particular case.
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THEOREM 5.11. For γ as in (5.3)–(5.6), �1 as in (5.25), and t, θ > 0, let

�t(θ) = E∞[�1(t, θ t;Y)|γ ].(5.38)

Then almost surely for every θ > 0

lim
t→0

�t(θ) = �(θ),(5.39)

where � is a (nontrivial) function to be exhibited below [see (5.95), and also
Proposition 5.22].

REMARK 5.12. This is an almost sure aging result. The averaged form
of (5.27) follows by dominated convergence.

REMARK 5.13. As anticipated in Remark 5.6 above, � is the same as the one
obtained in [7] by taking limits in a different order and in a different way (see the
discussion before and up to that remark).

REMARK 5.14. Were Y a K(γ, c)-process with c > 0, then the limit in (5.39)
would be a trivial one. Indeed, Y would be strongly continuous in this case, mean-
ing that P∞(Yt = ∞) → 1 as t → 0 (see the definition of “strongly continuous”
in Remark 3.2, and see Remark 3.16 above). We would thus have � ≡ 1. See (end
of) Remark 3.2 above.

COROLLARY 5.15. Let � be as in (5.29)–(5.37). If (5.39) holds, then

lim
t→0

E∞[�(t, θt;Y)|γ ]
(5.40)

= 	2(0, θ) + [	1(θ) − 	2(θ, θ)]�(θ) +
∫ θ

0
	 ′

2(s, θ)�(s) ds.

REMARK 5.16. For the above result, we may take γ fixed such that (5.39)
holds [as well as the assumptions on the paragraph of (5.6)].

REMARK 5.17. For both �1 and �2 [see (5.25), (5.26)], we have 	1 ≡ 1 and
	2 ≡ 0, so, from (5.40), �(θ) is their common aging limit.

REMARK 5.18. � turns out to be continuously differentiable in [0,∞); we
can thus integrate by parts in the right-hand side of (5.40) to obtain that

lim
t→0

E∞[�(t, θt;Y)|γ ] = 	1(θ)�(θ) −
∫ θ

0
	2(s, θ)�′(s) ds,(5.41)

where �′(s) = d
ds

�(s). For the result in this form we do not require the uniformity
assumption in (5.35), nor assumptions (5.36), (5.37). See Remark 5.20 below.
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REMARK 5.19. In the proof of Corollary 5.15 below, we will use the fact
that for each γ satisfying the conditions of the paragraph of (2.2)—in particular,
for each γ in a full measure event; see Remark 5.1 above—and all t > 0, the
distribution of Y t given γ is the same as that of Y given γ t := t−1γ . This follows
immediately from the definition of K-processes (see Definition 3.1 and preceding
paragraphs). We thus have that for all such γ , and all bounded measurable function
F on Skorohod space,

E[F(Y t )|γ ] = E[F(Y )|γ t ].(5.42)

PROOF OF COROLLARY 5.15. Consider the conditional expectation on the
left-hand side of (5.40). By the scaling property of � (5.29), (5.30), we have that
it can be written as

E[�(1, θ;Y t)|γ ] = E[�(1, θ;Y)|γ t ].(5.43)

(From now on we write P∞ and E∞ as P and E, resp., using the subscript only for
finite initial points.) For computing the right-hand side of (5.43), we first condition
on Y(1) and on whether or not there is a jump of Y in [1,1 + θ ], and then if there
is, at which time point it takes place. We get from that and (5.31), (5.32)

E[�(1, θ;Y)|γ t ]
= 	1(θ)

∑
x∈N∗

P(Y1 = x|γ t )e−θt/γx(5.44)

+ ∑
x∈N∗

P(Y1 = x|γ t )

∫ θ

0

t

γx

e−st/γx E
[
�

(
x, s, Y[0,θ−s]

)|γ t ]ds,(5.45)

where the sum can be taken in N
∗ due to Lemma 3.15, and we have used time

homogeneity of Y . (We have made notation more compact by substituting paren-
theses with subscripts.)

We first note that the sum in (5.44) equals �t(θ). Indeed

�t(θ) = ∑
x∈N∗

P(Yt = x|γ )Px(no jump of Y in [t, t + θt]|γ )

(5.46)
= ∑

x∈N∗
P(Yt = x|γ ) e−θt/γx = ∑

x∈N∗
P(Y1 = x|γ t ) e−θt/γx ,

where we have used the fact alluded to in Remark 5.19 above in the third equality.
We now write the expression in (5.45) as∫ θ

0
E

[
�

(
1, s, Y[0,θ−s]

)|γ t ] ∑
x∈N∗

P(Y1 = x|γ t )
t

γx

e−st/γx ds(5.47)

plus an error that is bounded above by

sup
x∈N∗,s∈(0,θ)

∣∣E[
�

(
1, s, Y[0,θ−s]

)|γ t ] − E
[
�

(
x, s, Y[0,θ−s]

)|γ t ]∣∣.(5.48)
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From (5.34), the absolute value of the difference of expectations in (5.48) can be
bounded above by constant times

sup
x∈N∗

P
[
1, x /∈ Y[0,θ ]|γ t ] = sup

x∈N∗
P

[
1, x /∈ Y[0,tθ ]|γ ]

(5.49)
= sup

x∈N∗
P

[
�(1,x)(tθ) < σ 1

1 ∨ σx
1 |γ ]

,

where for s > 0

�(1,x)(s) = ∑
y 	=1,x

γx

N
(y)
s∑

i=1

T
(y)
i .(5.50)

Thus, the right-hand side of (5.49) is bounded above by

P[�(tθ) < T ′|γ ],(5.51)

where T ′ is a continuous random variable independent of �. It is clear from the
fact that lims→0 �(s) = 0 that (5.51) vanishes as t → 0.

We thus only have to consider (5.47). It can be written as∫ θ

0
	2(s, θ)

∑
x∈N∗

P(Y1 = x|γ t )
t

γx

e−st/γx ds = −
∫ θ

0
	2(s, θ)�′

t (s) ds,(5.52)

where �′
t (s) = d

ds
�t(s) (it is a straightforward exercise to show that the differen-

tiation sign commutes with the sum), plus an error that is bounded above by

sup
s∈(0,θ)

∣∣E[
�

(
1, s, Y[0,θ−s]

)|γ t ] − 	2(s, θ)
∣∣

(5.53)
= sup

s∈(0,θ)

∣∣E[
�

(
1, s, Y[0,θ−s]

)|γ t ] − �(1, s, η̂∞,θ−s)
∣∣.

From (5.34), (5.35), given ε > 0, there exists δ > 0 such that the difference
in (5.53) can be bounded above by constant times

ε + P

(
sup

0≤s≤θ

dist(Y (s),∞) > δ
∣∣∣γ t

)
.(5.54)

Since, under γ t , Y[0,θ ] converges in the sup norm to the identically in [0, θ ] infinity
path as t → 0, we conclude that the expression in (5.53) vanishes as t → 0.

We are thus left with taking the limit of∫ θ

0
	2(s, θ)�′

t (s) ds

(5.55)

= 	2(θ, θ)�t(θ) − 	2(0, θ) −
∫ θ

0
	 ′

2(s, θ)�t(s) ds

as t → 0, where we have used the assumptions we made on 	2 (5.36)–(5.37) to
integrate by parts; note that �t(0) ≡ 1. Collecting (5.44)–(5.55) and the above
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arguments together with the L1 assumption (5.37) on 	 ′
2, the result then follows

by (5.39) and dominated convergence, since �t is bounded (by 1). �

REMARK 5.20. An alternative, longer argument for the validity of (5.40) in
the form (5.41) for almost every γ , which has the advantage of requiring neither the
uniformity assumption in (5.35) nor assumptions (5.36), (5.37)—see Remark 5.18
above—is to establish the convergence of �′

t as t → 0 to a (deterministic) function
�′ (which turns out to be the derivative of �) for almost every γ . This can be done
in an entirely similar fashion as in the proof of Theorem 5.11 below. We leave the
details for the interested reader.

Laplace transforms and Theorem 5.11. Before proving Theorem 5.11, we start
with a simpler argument (at this point) for a weaker result, namely the a.s. con-
vergence of a (double) Laplace transform of E[�1(·, ·;Y)|γ ]. This requires the
construction and results of Section 2 only. We shall then indicate how this compu-
tation can be used to identify the limit �(θ). Consider the function cλ(μ) defined
in (2.15). We can represent it as follows:

cλ(μ) = λμ

∫ ∞
0

∫ ∞
0

e−λse−μt
E[�1(s, t;Y)|γ ]ds dt

(5.56)

= λμ

∫ ∞
0

∫ ∞
0

e−λse−μt�s

(
t

s

)
ds dt,

with cλ defined in (2.15). For an aging result, it is natural to take λ = θμ, and then
take the limit as λ → ∞. From (2.16), we have

cλ(λ/θ) =
∑

x(λγ (x)/(1 + λγ (x))λγ (x)/(θ + λγ (x)))∑
x(λγ (x)/(1 + λγ (x)))

.(5.57)

Before taking the limit, we note that both sums in (5.57) can be seen as sums over
the increments of the Lévy process V in [0,1] [see paragraph of (5.8) above] of
a function of the increments. We thus have by the scale invariance property of V

that the right-hand side of (5.57) for every λ > 0 has the same distribution as∑
y∈[0,λα](γ ′(y)/(1 + γ ′(y)))(γ ′(y)/(θ + γ ′(y)))∑

y∈[0,λα] γ ′(y)/(1 + γ ′(y))
,(5.58)

where the sum is over the increments {γ ′
x} of V in [0, λα]. Multiplying each factor

of the quotient on the right-hand side of (5.58) by λ−α and taking the limit as
λ → ∞, we get by the law of large numbers for sums of i.i.d. integrable variables
that that quotient converges almost surely to

E
∑

y∈[0,1](γ ′(y)/(1 + γ ′(y)))(γ ′(y)/(θ + γ ′(y)))

E
∑

y∈[0,1] γ ′(y)/(1 + γ ′(y))
(5.59)

=
∫ ∞

0 (w/(1 + w))(w/(θ + w))w−1−α dw∫ ∞
0 (w/(1 + w))w−1−α dw

as λ → ∞.
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REMARK 5.21. That in principle says that the convergence of cλ(λ/θ) as λ →
∞ holds in probability; standard arguments relying on large deviation estimates for
the sums on the right-hand side of (5.59) imply convergence almost everywhere.

In the forthcoming discussion, we shall use the notation

c(θ) =
∫ ∞

0 (w/(1 + w))(w/(θ + w))w−1−α dw∫ ∞
0 (w/(1 + w))w−1−α dw

.

We have thus proved that, for a given value of θ , cλ(λ/θ) converges to c(θ). The
monotonicity of cλ and the continuity of c imply that we can in fact choose a set of
γ ’s of full measure such that the convergence holds for all θ > 0 simultaneously.

Although the above computation does not seem to be sufficient to prove the
convergence of �t(θ), it can be used to identify its limit, as stated next.

PROPOSITION 5.22. Suppose that, for (Lebesgue-almost) every θ ≥ 0, �t(θ)

converges to some limit �(θ) as t → 0 (as stated in Theorem 5.11). Then � equals
�0 given in (5.63) below.

PROOF. After a simple change of variables in (5.56) we observe that

cλ(λ/θ) =
∫ ∞

0

∫ ∞
0

se−se−st�s/λ(θt) ds dt.(5.60)

The dominated convergence theorem then implies that

cλ(λ/θ) →
∫ ∞

0

∫ ∞
0

se−se−st�(θt) ds dt =
∫ ∞

0

1

(1 + t)2 �(θt) dt.(5.61)

We thus conclude that∫ ∞
0

1

(1 + t)2 �(θt) dt

(5.62)

= c(θ) =
∫ ∞

0 (w/(1 + w))(w/(θ + w))w−1−α dw∫ ∞
0 (w/(1 + w))w−1−α dw

.

The solution to (5.62) is easily seen to be given by the arcsine law. Indeed let

�0(θ) = sin(πα)

π

∫ 1

θ/(1+θ)
s−α(1 − s)α−1 ds(5.63)

be the distribution function of the arcsine law. Observe that∫ ∞
0

1

(1 + t)2 dt

∫ 1

θt/(1+θt)
s−α(1 − s)α−1 ds

(5.64)

=
∫ ∞

0

1

(1 + t)2 dt

∫ ∞
θt

w−α dw

1 + w

=
∫ ∞

0

w

θ + w
w−α dw

1 + w
by Fubini,(5.65)
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and therefore ∫ ∞
0

1

(1 + t)2 �0(θt) dt = c(θ).(5.66)

The next step is to invert (5.66), that is, prove that the transform∫ ∞
0

1

(1 + t)2 φ(θt) dt(5.67)

uniquely determines the probability distribution function φ. This is an easy exer-
cise in analysis: one can, for instance, write

1

(1 + t)2 =
∫ ∞

0
s e−s(1+t) ds(5.68)

and invert the two Laplace transforms.
We conclude that

�(θ) = �0(θ).(5.69) �

PROOF OF THEOREM 5.11. It is enough to get the result for a fixed θ > 0.
That we can find a full measure set of γ ’s, such that the result holds for all θ > 0
simultaneously, follows from the monotonicity of �1 and the continuity of � in θ .

We now give a full argument (independent of the above one). This argument
uses the construction and results of Section 3 only.

The argument relies on an estimate for

P(Yt = x|γ ).(5.70)

For x ∈ N
∗, {Yt = x} can be decomposed in the disjoint union of{

�(x)(σ (x)
1

) ≤ t,�(x)(σ (x)
1

) + γxT
(x)
1 > t

}
,(5.71)

where �(x) := �
(x)
0 as in (3.34), and an event where γx T

(x)
1 ≤ t and �(x)(σ

(x)
2 ) ≤ t .

We thus have∣∣P(Yt = x|γ ) − P
(
�(x)(S1) ≤ t,�(x)(σ (x)

1

) + γxT
(x)

1 > t |γ )∣∣
(5.72)

≤ (1 − e−t/γx )P
(
�(x)(S2) ≤ t |γ )

,

where S1 and S2 − S1 are i.i.d. rate 1 exponentials which are independent of all
other random variables around.

To establish the result we will prove the two following assertions:∑
x∈N∗

e−θt/γx P
(
�(x)(S1) ≤ t,�(x)(σ (x)

1

) + γxT
(x)

1 > t |γ ) → �(θ),(5.73)

∑
x∈N∗

e−θt/γx P
(
�(x)(S2) ≤ t |γ ) → 0,(5.74)
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as t → 0 for almost every γ . We rewrite the probability in (5.73) as follows:

P
(
�(x)(S1) ≤ t |γ ) − P

(
�(x)(σ (x)

1

) + γx T
(x)
1 ≤ t |γ )

,(5.75)

and note that the second term equals∫ t

0
e−(t−s)/γx P

(
�(x)(S1) ≤ s|γ )

ds

(5.76)

=
∫ 1

0
e−(1−s)t/γx P

(
�(x)(S1) ≤ st |γ )

ds.

Substituting in the left-hand side of (5.73), one sees that in order to prove the
convergence in that display, it is enough to establish∑

x∈N∗
e−θt/γx P

(
�(x)(S1) ≤ t |γ ) → �̂(θ),(5.77)

∫ 1

0

∑
x∈N∗

e−((1+θ)−s)t/γxP
(
�(x)(S1) ≤ st |γ )

ds → �̃(θ),(5.78)

as t → 0 for almost every γ , where �̂ and �̃ are functions of θ only to be given
below [see (5.89) and (5.94)]; we then have � = �̂ − �̃.

REMARK 5.23. We note that the left-hand sides of (5.77), (5.78) are both
bounded above by

∑
x∈N∗ e−θt/γx , which is almost surely finite for every θ, t > 0,

since
∑

x∈N∗ γx is almost surely finite. They are thus almost surely finite.

We now observe that for almost every γ , �(1) ≤ �(x) ≤ � for all x ∈ N
∗, where

the first domination is a stochastic one (given γ ), and follows from the decreasing
monotonicity of γ .

To get (5.74), it suffices then to prove that for almost every γ

P
(
�(1)(S2) ≤ t |γ ) ∑

x∈N∗
e−θt/γx → 0 as t → 0.(5.79)

For (5.77), (5.78), it suffices to prove that for i = 0,1

P
(
�(i)(S1) ≤ t |γ ) ∑

x∈N∗
e−θt/γx → �̂(θ),(5.80)

∫ 1

0
P

(
�(i)(S1) ≤ st |γ ) ∑

x∈N∗

t

γx

e−((1+θ)−s)t/γx ds → �̃(θ),(5.81)

as t → 0, where �(0) = �.
The next step is to replace, for 0 < s ≤ 1, i = 0,1, j = 1,2, P(�(i)(Sj ) ≤ st |γ )

by constant times ωij ((st)
−1), where for r > 0 ωij (r) := E(exp{−r �(i)(Sj )}|γ ).

This relies on a Tauberian theorem (see Theorem 3, Section 5, Chapter XIII
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of [14]), stating that as t → 0, the quotient of the former quantity to the latter
one converges to 1/G(jα) provided that for almost every γ

lim
r→∞

ωij (qr)

ωij (r)
= q−jα for all q > 0,(5.82)

where, for a > 0, G(a) = ∫ ∞
0 tae−t dt .

Equation (5.82) is established in Lemma 5.29 below. From Lemma 5.27
and (5.99), we have that

0 ≤ ω12(t
−1)

∑
x∈N∗

e−θt/γx ≤
∑

x e−θ/t−1γx

(
∑

x t−1γx/(1 + t−1γx))2 .(5.83)

Arguing as in the sentences above (5.58), we have that the right-hand side
of (5.83) for every t > 0 has the same distribution as

∑
y∈[0,t−α] e−θ/γ ′

y

(
∑

y∈[0,t−α] γ ′
y/(1 + γ ′

y))
2 = tα

tα
∑

y∈[0,t−α] e−θ/γ ′
y

(tα
∑

y∈[0,t−α] γ ′
y/(1 + γ ′

y))
2 ,(5.84)

where the sum is over the increments {γ ′
x} of V in [0, t−α]. Now the law of large

numbers says that each factor in the quotient on the right-hand side of (5.84) con-
verges almost surely to positive finite numbers as t → 0. The extra factor of tα in
front of that expression then makes it vanish in that limit. That the same holds for
the right-hand side of (5.83) follows as in Remark 5.21 above.

To get (5.80), we again need only get the limit for

ωi1(t
−1)

∑
x∈N∗

e−θt/γx ,(5.85)

which by Lemma 5.27 and (5.99) is bounded above and below by

∑
x e−θ/t−1γx

k + ∑
x t−1γx/(1 + t−1γx)

,(5.86)

k = 0 and 1, respectively. As in (5.83)–(5.84), for every t > 0, (5.86) has the same
distribution as ∑

y∈[0,t−α] e−θ/γ ′
y

k + ∑
y∈[0,t−α] γ ′

y/(1 + γ ′
y)

.(5.87)

We can now multiply each term in the above quotient by tα and take the limit as
t → 0. By the law of large numbers, this almost surely equals

E(
∑

y∈[0,1] e−θ/γ ′
y )

E(
∑

y∈[0,1] γ ′
y/(1 + γ ′

y))
=

∫ ∞
0 e−θ/ww−(1+α) dw∫ ∞

0 (w/(1 + w))w−(1+α) dw
.(5.88)
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An analogue of Remark 5.21 holds also here. We thus have from the above that

�̂(θ) = 1

G(α)

∫ ∞
0 e−θ/ww−(1+α) dw∫ ∞

0 (w/(1 + w))w−(1+α) dw
.(5.89)

It remains to get (5.81). Since P(�(i)(Sj ) ≤ st |γ )/ωij ((st)
−1) → 1/G(α) as

t → 0 uniformly in s ∈ (0,1], it suffices to get the limit for∫ 1

0
ωi1((st)

−1)
∑

x∈N∗

t

γx

e−((1+θ)−s)t/γx ds,(5.90)

which by Lemma 5.27 and (5.99) reduces to getting the limit for

∫ 1

0

∑
x(t/γx)e

−((1+θ)−s)t/γx

k + ∑
x(st)

−1γx/(1 + (st)−1γx)
ds,(5.91)

k = 0,1. It is clear that the quotient in the above integral, call it �̂s,t (θ), is bounded
above by �̂1,t (θ), and the latter converges as t → 0 almost surely [to �̂(θ), as we
just saw]. It thus suffices to establish the almost sure limit of �̂s,t (θ) as t → 0
(independent of k = 0,1) for every s ∈ (0,1]. That works similarly as above: we
first multiply numerator and denominator of �̂s,t (θ) by (st)α , and get

�̂s,t (θ) = sα tα
∑

x(t/γx)e
−((1+θ)−s)t/γx

k(st)α + (st)α
∑

x(st)
−1γx/(1 + (st)−1γx)

.(5.92)

Now the sums in the numerator and denominator of (5.92) are (marginally)

equidistributed with
∑

y∈[0,t−α] 1
γ ′
y
e−((1+θ)−s)/γ ′

y and
∑

y∈[0,(st)−α]
γ ′
y

1+γ ′
y
, respec-

tively [by the very same argument made in between (5.57)–(5.58)]. By the law
of large numbers, the quotient in (5.92), with the sums replaced by the respective
ones just mentioned, converges almost surely as t → 0 to

E(
∑

y∈[0,1](1/γ ′
y)e

−((1+θ)−s)/γ ′
y )

E(
∑

y∈[0,1] γ ′
y/(1 + γ ′

y))
=

∫ ∞
0 e−((1+θ)−s)/ww−(2+α) dw∫ ∞
0 (w/(1 + w))w−(1+α) dw

.(5.93)

We have an analogue of Remark 5.21 here as well, and thus can conclude that so
does the original quotient. We thus have from the above that

�̃(θ) = 1

G(α)

∫ 1
0

∫ ∞
0 sα e−((1+θ)−s)/ww−(2+α) dw ds∫ ∞

0 (w/(1 + w))w−(1+α) dw
.(5.94)

The result for fixed θ > 0 is thus established with

� = �̂ − �̃,(5.95)

with �̂, �̃ given in (5.89), (5.94), respectively. �
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REMARK 5.24. By (5.46), we see that

�t(θ) = E(e
−θt/γ

Yt |γ ),(5.96)

so Theorem 5.11 and Proposition 5.22 establish that, for almost every γ , t/γ
Yt

con-
verges in distribution as t → 0 to the random variable Z whose Laplace transform
E(e−θ Z) is �0(θ). This is another way of understanding the basic mechanism for
the aging phenomenon in this process (there is no change for a time of order t

when the process has aged t units of time). It is also a macroscopic version of the
last assertion of Proposition 2.10 of [9].

REMARK 5.25. Lemma 2.11 of [9] establishes the continuity of the distrib-
ution of the random variable Z in Remark 5.24. From (5.89), (5.94), one readily
finds its density with respect to Lebesgue measure, given by

1

G(α)
∫ ∞

0 w−α (1 + w)−1 dw
zα−1

∫ 1

0
αsα−1e−(1−s)z ds, z > 0.(5.97)

REMARK 5.26. The convergence in Remark 5.24 suggests that a stronger re-
sult holds, namely, that the process {Z(ε)

t := ε−1γYεt , t ≥ 0}, with Y(0) = ∞, and
thus Z

(ε)
0 ≡ 0, converges in distribution as ε → 0 to a nontrivial limit for almost

every γ . This result would contain Theorem 5.11. A related scaling limit, namely
that of {ε−1�(εαt), t ≥ 0} as ε → 0 (to an α-stable subordinator), would also
imply Theorem 5.11, and would be a macroscopic version of the corresponding
mesoscopic convergence of the clock process proved in [3]. We believe both these
limits can be established, for example, by checking standard convergence criteria;
these are points of our current research.

LEMMA 5.27. For i = 0,1, j = 1,2, and almost every γ ,

ωij (r) =
(

1 + ∑
x 	=i

rγx

1 + rγx

)−j

.(5.98)

PROOF. Exercise. �

REMARK 5.28. The condition x 	= 0 in the sum in (5.98) (in the case when
i = 0) is empty since x ≥ 1. From (5.98), we have that for i = 0,1, j = 1,2

(
1 + ∑

x

rγx

1 + rγx

)−j

≤ ωij (r) ≤
(∑

x

rγx

1 + rγx

)−j

.(5.99)

LEMMA 5.29. Equation (5.82) holds for almost every γ .
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PROOF. For a fixed λ > 0, and then for all rational λ > 0, it follows
from (5.98) and a law of large number argument as in the proof of Theorem 5.11.
The result for all λ > 0 can be argued from that, using the monotonicity of ωij (·)
and the continuity of the limit. �
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