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THE LIL FOR CANONICAL U-STATISTICS

BY RADOSEAW ADAMCZAK' AND RAFAL LATALA2
Polish Academy of Sciences and Warsaw University

We give necessary and sufficient conditions for the (bounded) law of
the iterated logarithm for canonical U-statistics of arbitrary order d, extend-
ing the previously known results for d = 2. The nasc’s are expressed as
growth conditions on a parameterized family of norms associated with the
U -statistics kernel.

1. Introduction. U-statistics [i.e. statistics being averages of a measurable
kernel h(xi,...,xg) over an ii.d. sample X1, X»,..., X,;] were introduced by
Hoeffding [11] and Halmos [9] in the 1940s and since then have become an im-
portant tool in asymptotic statistics, appearing for instance as unbiased estimators
or higher-order terms in expansions of smooth statistics. Their relevance stems
mainly from the fact that they share many basic properties with sums of i.i.d. ran-
dom variables. Already in the 1960s Hoeffding proved that E|k| < oo is a sufficient
condition for a U -statistic to satisfy the SLLN [12], the CLT under the finiteness
of the second moment of the kernel (and complete degeneracy—a technical as-
sumption which will be explained in the sequel) was obtained by Rubin and Vitale
in 1980 [18], finally the LIL (under the same hypothesis) was proved by Arcones
and Giné in 1995 [2]. All the abovementioned results are occurrences of a general
phenomenon, manifesting itself in the fact that the necessary and sufficient condi-
tions for the classical triple of limit theorems for sums of i.i.d. random variables
(SLLN, CLT or LIL) are sufficient for analogous limit theorems for U -statistics.
It may be, therefore, somewhat surprising (and as a matter of fact remained for
some time unnoticed) that with the exception of the CLT, these conditions fail to
be necessary.

Recently we have witnessed a rapid development in the asymptotic theory of
U -statistics, following the discovery of the so-called decoupling technique (see
[3] and the references therein), which allows one to treat U -statistics as sums of
conditionally independent random variables. In particular, the sufficient conditions
for the CLT given by Rubin and Vitale were proven to be also necessary (Giné and
Zinn [7]). Also the necessary and sufficient conditions for the SLLN were found
([19] for d = 2, [15] for general d). In 1999 Giné et al. [8] obtained necessary
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and sufficient conditions for the law of the iterated logarithm for U -statistics of
order 2. The conditions they gave turned out to be less restrictive and more subtle
than just the square integrability of the kernel (as indicated already by Giné and
Zhang [5]). Completing the picture requires finding the nasc’s for the LIL in the
general case and identifying the limit set in the LIL (which in general is unknown
even for d = 2).

In this paper, we address the first of these questions, namely we give the nasc’s
on a kernel 4 (xy, ..., x4) to satisfy the (bounded) law of the iterated logarithm. In
particular we prove that a conjecture stated in [8] is false.

2. Notation. For an integer d, let (X;);enN, (Xl-(k)),-eNylsde be i.i.d. random
variables with values in a Polish space X, equipped with the Borel o-field .
Consider moreover a measurable function 4 : £¢ — R.

To shorten the notation, we will use the following convention. For i =
(i1, ... ig) € {1,...,n}¥ we will write X; (resp. X¥) for (X;,,..., X;,) (resp.
(Xl-(ll), e, Xi(j))) and €; (resp. eidec) for the product ¢;, - .. .- &;, (resp. si(ll) ... .-efj)),
the notation being thus slightly inconsistent, which however should not lead to a
misunderstanding. The U -statistics will, therefore, be denoted

Z h(Xj) (an undecoupled U -statistic)

ierd

Z h(X?ec) (a decoupled U -statistic)

lil<n

Z €ih(Xj) (an undecoupled randomized U -statistic)
ierd

> edecp (xdecy (a decoupled randomized U -statistic),

lil<n
where
= k:nll?f.).(,dik’
1?9 ={i:|i| <n,ij #i for j #k}.
Since in this notation {1, ...,d} = I[} we will write
I;={1,2,...,d}.

We will also occasionally write X for (Xi,...,Xg) and for I C I, X; =
(Xi)ier- Sometimes we will write simply 4 instead of /£(X).

Throughout the article we will write K, Ly, L to denote constants depending
only on the function %, only on d and universal constants, respectively. In all those
cases the values of a constant may differ at each occurrence.
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To avoid technical problems with small values of & let us also define LLx =
loglog(x Vv €°).

Let us also introduce some notation for conditional expectation. For j € I,
by E; we will denote expectation with respect to (X fj ))i, ((8,-0 ), X fj )))i or X;
(depending on the context). Similarly, for I C I;, we will denote by [E;, integration
with respect to (Xl'(]))jel,h ((sl-(J), ij)))jel,i or (X;)ics. Although at first this
notation may seem slightly ambiguous, it turns out to be quite natural at specific
instances and should not lead to misunderstanding.

In the article we will consider mainly canonical (or completely degenerate) ker-
nels, that is kernels %, such that for all j € I,

E;h(X1,...,Xq)=0 a.s.

3. The main result. Let us now introduce the quantities, that the necessary
and sufficient conditions for the LIL will be expressed in.

DEFINITION 1. For a finite set /, let $°; denote the family of all partitions of
I into disjoint, nonempty sets and for a partition § € &y let deg ¢ be the number
of elements of §. For a kernel #: £¢ — R, a partition § = {Ji,..., i} € &y, and
a nonnegative number u, define

1Al g.u = 1A (XN g.u

k
= sup{E[h(X) I1 fi(XJi):| A2 <1,

i=1

I fi(Xg)lloo Su,i=1,... k¢.

EXAMPLE. For d = 3, the above definition gives
1h (X1, X2, X3)11{1,2,3},u = sup{EA(X1, X2, X3) f (X1, X2, X3):
Ef(X1, X2, X3)* < 1 || flloo < u},
I1A(X1, X2, X3) {1,233} = SUp{ER(X1, X2, X3) f (X1, X2)8(X3):
Ef(X1, X2)*, Eg(X3)* <1,
I flloos lIglloo < u},
I1h(X1, X2, X3)l(1312)(3),u = sSup{EA (X1, X2, X3) f(X1)g(X2)k(X3):
Ef(X1)? Eg(X2)*, Ek(X3)* < 1,

I flloos Iglloos lklloe < u}.
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Although at first approach the || - ||, norms may seem quite unusual, they
resemble both the quantities appearing in tail estimates for canonical U -statistics
and in tail estimates for Rademacher chaoses (see Sections 4.2 and 4.3 below) and
they indeed play an important role in necessary and sufficient conditions for the
LIL, as can be seen in our main result, which is

THEOREM 1.  Forany symmetric h: £¢ — R, the law of the iterated logarithm

< 0 a.s.

li _ h(Xj
i (nloglogn)d/? i§i X3)

holds if and only if h is completely degenerate for the law of X1 and forall § € Py,

h;iso%p (loglogu)(@—dee$)/2 1ol < oo

(Recall that according to Definition 1, deg 4 denotes the number of elements of .)

REMARK. Obviously, although formally in the above theorem one consid-
ers all the partitions ¢, due to symmetry of the kernel and equidistribution of the
variables X1, ..., Xy, many of them give the same value of ||A] g ,. For instance
for d =3 we have ||All{1)12,3).u = I1ll2)(1.3).0 = [12]13)(1,2).u (nOte that we sup-
pressed the outer brackets in the lower index and wrote e.g. ||/]{2)(1,3},» instead
of ||All{123(1,3)),.- We will do so whenever there is no risk of confusion also with
similar norms, which will be introduced in Sections 4.2 and 4.3).

4. Preliminaries. Basic definitions and tools.

4.1. Hoeffding’s decomposition. We will now describe a decomposition of a
U -statistic with mean zero kernel into a sum of completely degenerate U -statistics,
introduced in [11], which is one of the basic tools in the analysis of U -statistics.
Recall that we are working with a fixed sequence (X;);en of i.i.d. X-valued ran-
dom variables. Then the classical definition of Hoeffding’s projections is as fol-
lows.

DEFINITION 2. For an integrable kernel 4 : ¥4 > Randk=0,1,...,d, de-
fine 7rxh : X — R with the formula

Th(X1, . X)) = (5, — P) X 8y —P) X -+ X (85, — P) x PA7F,

where P is the law of X.

In particular moh = Eh, mih(x1) =Ep,. ayh(x1, X2, ..., Xg) — Eh.

.....

We will however need to extend this definition (for k = d) to U -statistics based
not necessarily on an i.i.d. sequence. Let us thus introduce the following definition
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DEFINITION 3. Let h:X| x --- X X7 — R be a measurable function. Con-

sider independent sequences (Xﬁ.l)) Joeees (Xﬁ.d)) j of i.i.d. random variables with
values in Xy, ..., Xy respectively, such that Elh(X%l), e ng))| < 00. Define
wgh: 2] X -+ x X4z — R with the formula
wah(x1,...,x4) = (5x1 — ngl)) X -o0 X (8xd — ngd))h,
where PX(,-) is the law of XY).
1
Obviously for ¥1 =--- = X; and (X i(j ) )ien—independent copies of (X;);eN,

the above definitions of ;A are equivalent.

It is easy to check that for k > 1, wih is canonical for the law of X (note also
that moh = Eh).

In the sequel we will need the following comparison of moments for U-
statistics:

LEMMA 1. Consider an arbitrary family of integrable kernels hj: X1 x - - X
Yq— R, |i| <n. Forany p > 1 we have

<2
)4

> wahi(X{<)

lil<n

Z €idechi (X?GC)

lil<n

p

PROOF. For d = 1, the statement of the lemma is the classical symmetrization
inequality for sums of independent random variables. Now, we use induction with
respect to d. To simplify the notation let 7;_1h; denote the proper Hoeffding’s
projection of h; treated as a function of x3, ..., x4, with the first coordinate fixed,
that is

Ta—1hi(x) =8y, X (‘sz — ngz)) X oo X (5)&1 — PXEd))hi'

Assume now that the lemma is true for all kernels of degree smaller than d. Con-
sider ()N( i(k)) ieN.k<d» an independent copy of (X i(k)) ieN k<4 and denote by fEl inte-
gration with respect to X1, Then, the complete degeneracy of 74h; and Jensen’s
inequality yield

p

Ei| Y mahi(X{)

lil<n

p
=E| Y (mahi(X{" . XD) — By (XY X2, X))

lil=<n

p
<E(E; Z (ndhi(Xi(ll), . Xi(j)) — ”dhi(i(i(ll), Xi(22), el Xi(j)))

lil<n
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p
=EE Zz—: wah; X(l),...,Xi(j))—ndhi(f(i(ll),Xg),---’Xi(j)))

lil<n

1 d
—ElEl ZS 7Td 1h X()"“’Xi(d))

lil<n

p
_ (1 2 d
— ﬂd—lhi(X,'(l)a Xi(z)’ R Xi(d)))

’

s0, using the triangle inequality, we obtain

> wahi(X{)

li|l<n

<2
P P
Now, the Fubini theorem, together with the induction assumption applied to the
family of kernels fz(,-z ,,,,, i) (X25 ooy Xd) = D < 81-(11)hi(Xl-(1]), x2,...,xq) for fixed
values of X, g proves the lemma. [J

3 e g thi(X)

lij<n

We will also use the classical theorem due to Hoeffding, giving a decomposition
of a U -statistic into sum of uncorrelated, canonical U -statistics of different orders,
mentioned at the beginning of this paragraph.

LEMMA 2 (Hoeffding’s decomposition; see, e.g. [3], page 137). Forh:%% —
R, symmetric in its entries denote

U, (h)_

161‘1

Then
d

Unty =3 () Ui

k=0

4.2. Moment and tail estimates for canonical U -statistics. We will now
present a version of sharp moment estimates for canonical U -statistics, proved in
[1] (actually as we will not need these results in the whole generality, we will state
only a simplified corollary, adapted to our purposes, which follows immediately
from Theorem 6 there).

First let us introduce some quantities, which will appear in the moment esti-
mates.

DEFINITION 4. For any canonical kernel #:%? — R and each ¢ =
{J1,..., Jx} € P, define the norm

Ihllg = l1Allg.00 :sup{E|:h(X) Hf,-(XJi)} Efi(X,)2<1,i= 1,...,k}.

i=1
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Thus |2 4 is the norm of / viewed as a k-linear functional acting on the space
LZ(X]l) X +e0 X LZ(XJk), where LZ(X_][) is the space of all square integrable
random variables, measurable with respect to o(X,), the o-field generated by
X ;. In particular ||h|;, = (Eh2)1/2 and I ll¢1}...{ay 1s the norm of h seen as a
kernel of a d-linear functional.

We have the following (cf. [1], Theorem 6)

THEOREM 2. There exist constants Lg, such that for all canonical kernels
h:Ed—HRandpzl

p
> (X

lil<n

E

SLS|:ndp/2 Z ppdeg(f)ﬂ”h”;

[n]
S

+ ) MR EHORE, max(lElh(X?“f)”/z]’

1
1Clg re

REMARK. Note that (E Ih(Xidec)z)”/ 2 depends only on X; ,c» S0 the expression
max;,. (E Ih(X?ec)Z)P/ 2 in the above inequality is well defined.

Theorem 2 implies the following theorem.

THEOREM 3. There exist constants Lg, such that for all bounded, canonical
kernels h: %% — R and t > 0,

IP( > h(X{) zr)

lil<n

1 : 2/ deg(§)
<L N 1 -
= ”’e"p[ Ld<gz‘?¥3d(nd/2||h||g>

; 2/(d+#I€)
A mi :
1%1};(”#1/2||<E,h2)1/2||00> ﬂ

REMARK. We would like to stress that Theorem 3 has been obtained from
Theorem 2 by means of the Chebyshev inequality only. Therefore, the same tail
estimates hold for random variables whose moments are dominated by moments
of corresponding U -statistics, which together with Lemma 1 yields the following.

THEOREM 4. There exist constants Lg, such that for all bounded kernels
h:¥% > Randallt >0,
> l‘)

{

Y mah(X{)

lil<n
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| ¢\ 2/ de(@
< Lgexp|—— —
d p[ La (geJId<nd/2||h||g)

P 2/(d+#1°)
A mi .
?3@12(11#'/2||<E1h2>1/2||oo> )}

4.3. Moment and tail estimates for Rademacher chaoses.

LEMMA 3. Let (ai);cja be a d-indexed array of real numbers. Let us consider
n
a random variable

Z a; l_[ g(k) Z aie! edec|

li|l<n li|l<n
Moreover, for any partition § ={Ji, ..., Jn} € P, let us define
k k
@iy, , = sup{ Y a 1‘[ o) (@) < p,
li|<n llk

VimaxlkEIn Z(al(f:)z = 1,k: 1, ...,m},

LoJy

where o J;, = Ji\{max Ji} (here Zig ai = ay). Then, forall p > 1,

1
ISy = 7 > @y,

]
S

In particular for some constant cg,

P(SZCd > II(ai)llz,,,) >cqgne .

[2d
FASE#

PROOF. We will use induction with respect to d. For d = 1 the inequalities of
the lemma have been proved in [10], for d =2 in [14] (as a part of much sharper
two-sided inequalities). Let us thus assume that the moment estimate holds for
chaoses of order smaller than d > 3.

First, consider the partition § = {I;}. We have

p
ES? =E4E;,_,|Y e Y a ]‘[ el
1[d71 k=1
d k !
>Ey Zgi(d)Eld—l Z aj 1_[ 8( )
id k=1

iy
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12
28@(2 2)
iq

i,

172 p
L”L” sup{Za,d(Za> :Zaizdip,l%‘lfl} :

lld 1 id

p

P
d

where the first inequality follows from Jensen’s inequality, the second one from

hypercontractivity of Rademacher chaos (see [3], Theorem 3.2.5, page 115) and

the contraction principle for Rademacher averages (see, for instance, [16], Theo-

rem 4.4, page 95), whereas the third one follows from the induction assumption.
It remains to show that

1/2
sup{z%<za) 12y <P, |ai|51} > 1@z, p-
11d 1 ld

Let thus (y;) be a d-indexed matrix, such that ) ; )/iz <p. 2 i )/iz <1 forall iy.
Then

< Z|y1||al| < Z(Z Y, )1/2<Z a?)l/z

ld Mgy iy

1/2
gsup{zolid<z 6112) 22“%, =p.lail = 1}-

id

i, id
Letnow § ={J1,..., Jn}, m > 2. We have
1 o ¢ p\ Up
o lale(z9), [,,)
! iy keJi UAVREAN Y
l@l .

~ La—#, Ly,
by the induction assumption and Jensen’s inequality. [J

4.4. Basic consequences of the integrability condition. Now we would like to
present some basic facts, following from the integrability condition E(h% A u) =
O ((loglog 1)@=, which is necessary for the LIL for U -statistics of order d, as
proved by Giné and Zhang [5]; cf. Lemma 7 below.

LEMMA 4. IfE(h?* Au) = O((loglogu)?=") then for I C Iy, I # @,1; and
a >0,

oo 0
Z Z 21+#ICH]P)IC (]EI (hz A 2an) > 221+#I“n logd l’l) < 00.
I=0n=3
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As a consequence, for k > 0,

> 2 log n) TPy (Ep (h* A 22 > 2H°" (logn)? ) < co.

n

PROOF. For fixed [ and k we have
Z 2l+#lcn]P)IC (]E[ (hz A zan) > 22[+#Icn 10gd n)

2k <logn<2k+1
I+HIC 2 2kt 2U#In+dk
< Y 2P (Br(RP A20 ) 2R
2k <logn<2k+1

< 21E[(7 Z 2#]”n1
n

(B (h2 202 Ty > 0201 Cnvaky

2k+1 k+1
E;(h2 A2%¢7 ) _, . (logae* H)d-1
1 1 l
52E1(7|:2 221+dk ]52 KT
_ /log?'a
—1 —k
<2 K< S T 2 )

with K depending only on % (recall the convention explained in Section 2), which
proves the first part of the lemma. To obtain the other inequality, it is enough
to make an approximate change of variable 2#/" (logm)—* ~ 2#/" and use the
convergence of the inner sum for / = 0 in the first inequality, for a > 2d. [

LEMMA 5. IfE(h® A u) = O((loglogu)P) then

(loglog s)ﬁ>

ElALjn)=s) = 0( E

. B .
PROOF. Indeed, since P(|h| > u) < K (k)gl%”), we have for sufficiently
large s,

(loglog 2s)P
Ela|1yp>s) = ]{X(:)E|h|1{2"s<|h|<2k+'s} =K ZZHI STk

ok Z (loglog 2ks)p _ (9((10g logs)ﬂ>.
N
LEMMA 6. IfE(h? A u) = O((loglogu)P) then

|n|?
——— <0
(LL |n])Pte

for each ¢ > 0.
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PRrROOF. For large n,

n+1
|h|2 ) - KE(|h|2 /\222 ) - Igz(n-i—l)ﬂ
(loglog [A)FTe 22" <in<22""') = n(Bre) = pn(Bte)
= K2f27e, O

5. The equivalence of several LIL statements. We will now state general
results on the correspondence of the LIL for various kinds of U -statistics (as de-
fined in Section 2) based on the same kernel, that we will use extensively in the
sequel. Let us start with the following lemma, proved in [5].

LEMMA 7. Leth:X% — Rbea symmetric function. There exist constants L,
such that if

1

1 li _— hX)|l<C .S,
M s (nloglogn)d/2 i§1 ) = “
then
0
) ZIP’( > efenXie)| > D2”d/210gd/2n> <00
n=1 li|<2n
for D = L4iC. Moreover (2) implies
Eh2(X) A
3) limsup KNG o

u—oo (loglogu)d—1

LEMMA 8. For a symmetric function h: £¢ — R, the LIL (1) is equivalent to
the decoupled LIL

4 limsup ——
) P (nloglogn)d/2

> h(Xe)

ierd

<D a.s.,

meaning that (1) implies (4) with D = L4C, and conversely (4) implies (1) with
C=L;4D.

PROOF. We can equivalently write (1) as

lim P _—_— hXp)|=>C =0,

P (igfk’ (nloglogn)d/? i;; (X)) = €+ 8)

for all & > 0, which can be rewritten as

() kILH;O]P)( Z /’l|i|yk(Xi)' >C+ 8) =0,
li|]<oo 00

I#j=0u#ij
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where for i, k € N, h; i is an [*°-valued kernel defined as

h h h
hix = , e .
ok <(k loglogk)4/2” ((k + 1) loglog(k + 1))4/2 (nloglogn)d/? )

fori <k and

h
hix=10,...,0, ———,
vk <T (i loglogi)d/2

i

h h
(G + Dloglog(i +1))4/2" """ (nloglogn)d/2” " )
otherwise. Now the decoupling inequalities by de la Pefia and Montgomery—Smith

(see [4]) show that (5) is up to constant equivalent to its decoupled version, which
is equivalent to (4). [

LEMMA 9. There exists a universal constant L < 00, such that for any kernel
h:%1 x -+ x g — Rand variables (Xl-(J)),',j like in Definition 3, we have

P(nfllax > h(X{ec) zt) sLdIP’( > (X zt/Ld>.
Ji=n

i i <jk,k=1,..., d li|l<n

PROOF. We will prove by induction with respect to d a stronger statement,
namely the inequality in question for Banach space valued U -statistics, with the
absolute value replaced by the norm. For d = 1, it is a result by Montgomery—
Smith [17]. Assume therefore that the statement holds for kernels of degree
smaller than d and consider a kernel 4: X% — B, for some Banach space B.
Then, conditioning on X®, applying the induction assumption to I?.(B) and
glx1, ..., xq-1) = (Zidflh(xl, ey Xd—1, Xl.(j)):l < n) and finally using the Fu-
bini theorem, we obtain

P(max D 6. ol = z)
W=nlli. i <o k=l,...d B
<Ld 1P<max > A zt/L"_l).
j=<n|,. ; .
lil<n:ig<j B

Now it is enough to apply the result by Montgomery—Smith, conditionally on
(xM, o x@=Dy, O

COROLLARY 1. Consider a kernel h: Xy x - -+ x g — R, an array of vari-
ables (X,'(]))i,j like in Definition 3 and o > 0. If

ZP( D> (X

n=1 li|<2n

> C2" log® n) < 00,
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then

limsuyp ——
n—oo (nloglogn)“

Z h (X?CC)

lil<n
> D)

<P su max ki
k>|log N/log2] 2k—1<n=<2k (2klog k)«

< > ]P’(maLi

k
k>|logN/log2| #-tsns2t (2 logh)

<LgsC a.s.

PROOF. We have for0 < D < o0

> (X

li|<n

1
Pl sup ———
n>N (nloglogn)“

Z h (Xdec)

lil<n

Z (Xdec

lil<n

>D)
-p).

To prove further statements concerning the equivalence of various types of the
LIL, we will have to show that the contribution to a decoupled U -statistics from
the “diagonal,” that is from the sum over multiindices i ¢ I,‘f is negligible. One of
our tools will be the following.

so the result follows from Lemma 9. [

LEMMA 10. Ifh: %% — R is canonical and satisfies
E(h® A u) = O((loglogu)?),

for some B, then

1
6 li _ h(X9e)| = .
© i (nloglogn)d/? |i|2<:n Xi™) a.s
3jki =ik

PROOF. We will decompose the diagonal into several sums, depending on the
“level sets” of the multiindex i. For § € #y, let Ag(n) be the set of all |i| < n such
that the index 1 is constant on all J € . Let us notice that the contribution to the
sum in (6) from i € Ag(n) that is

Ugn):= Y h(X{),
icAg(n)

can be treated as a canonical decoupled U -statistic of order deg ¢ if we only treat
the variables X?Jec as one variable for any J € §.
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Let us now denote for j <k, j, k€ Iy, Ajy ={i:]i| <n,i; =iy} and A =
{(j, k) < I(%: Jj < k}. From the inclusion—exclusion formula we get for every
il <n,

(2 .
13, i y=in) = WG pen A = D ) (=D LAy N0 -

I=1 (ji,k1),.... G, ke
Vryés (]‘rskr)#(.]'s ks)

Hence we have
Yo hXE) = > agUgn),

lij<n FeP,
Ajepd j=ix deg g <d

for some numbers ag, whose absolute values are bounded by a constant, depending
only on d. Since the number of summands on the right-hand side does not depend
on n either, it is enough to prove that

. [Ug(n)|
msup ————5 =
n—oo (nloglogn)d/2

for all § such thatdeg ¢ <d.
Therefore, by Corollary 1, it is enough to prove that for deg § < d,

(7) ]P(
1

n=

Y Taeggh(X{)
icAg(n)

> C2"/210gd/? n) <00

for any C > 0. (Here mgeg g denotes the Hoeffding projection of the kernel /4 con-
sidered a U -statistics of order deg 4, as mentioned above. We have thus actually
Tdeggh = h.) It is relatively easy to prove (7), as the number of summands is of
much smaller order than 2"¢. Obviously #A g(2") =2" degd < pnd=1) [et [ be
any subset of /4, such that for any J € ¢, #(I N J) = 1. For hy, = hlj5nay We
have by Lemma 5

B log?
og'n _ log"n

) N
Bl ) e X < 2" VR, | < k2D =50 2

17
icAg(2m)

’

and the convergence of (7) with & replaced by h, follows easily from Lemma 1
and the Chebyshev inequality. On the other hand, for h, = h1y;,|<onay We have

El Yieagn 6 X _#ag@MER _ 2" VER
C227d Jog? n ~ C22ndlogn T C22ndlogén
<KC 2 logﬁ_dn,

which (again via Lemma 1 and the Chebyshev inequality) allows us to finish the
proof. [
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COROLLARY 2. The randomized decoupled LIL

1
8 li T ——
®) P (nloglogn)d/2

Z € idec h (X?ec)

li|<n

<C

is equivalent to (2), meaning that if (8) holds then so does (2) with D = L;C and
(2) implies (8) with C = Ly4D.

PROOF. Implication (2) = (8) follows from Corollary 1. To get (2) from (8),
it is enough to show that E(h?> Au)=0 ((loglog u)?), since then by Lemma 10 we
can skip the diagonal and by Lemma 8 undecouple to obtain

1
lim sup > €h(X;)

_ < 00,
n—soo (nloglogn)d/2 !

(]))l

which gives (2) by Lemma 7 [note that if (&;);, (¢ j=1,...,d, are inde-

pendent Rademacher sequences, then so are (g; 8(] )) ]. This is, however, easy by a
simple modification of arguments from [7], Wthh we will present here for the sake
of completeness. Notice that by the Paley—Zygmund inequality and hypercontrac-
tivity of Rademacher chaos, we have

1/2 1
©9) ( >L; (Zh(xd“> )zL—d.

li|<n
Moreover if E(h% A n) > 1, then

]E(Z (h(X3)2 A n)>2

lil<n

=> Y Y Eh&E) AnlhX{)? An]

IClylil<sn  [jlzn
{k:ik=jk}=I

<nME@ AP+ Y T aEnm? An)
ey

<n>[EMh? An))? + Q4 — Dn*?Eh?* An)

Z Edec h (Xdec

lil<n

2
<29 [Eh? An))? =24 (E > (h(X{)? A n)) .

li|l<n

Thus again by Paley—Zygmund, we have

(Z h(X3)2 > ndE(h2 /\n)) > Li

lil<n d
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which together with (9) yields
4 1
P( D ChX)| = Ly nt2ER? w) =
d

lij<n
which gives E(h? A n) = O((loglogn)?), since by assumption the sequence

1 dec dec
1 1ooloon\d/2 Z & hXi™)
(nloglogn)d/ i

is stochastically bounded. [

COROLLARY 3. For a symmetric, canonical kernel h »4 > R, the LIL (1) is
equivalent to the decoupled LIL “with diagonal”’

> h(X{e)

lil<n

(10) lim sup <D a.s.

n—soo (nloglogn)d/2

again meaning that there are constants Lg such that if (1) holds for some D then
so does (10) for D = L4C, and conversely, (10) implies (1) for C = Ly D.

PROOF. To show that (1) implies (10) it is enough to use Lemma 8 and then
Lemma 10 to add the diagonal (the integrability condition on % follows from
Lemma 7).

To obtain the converse implication, it is enough to prove E(h(X)* A u) =
O ((loglog u)?) since then we are allowed to delete the diagonal by means of
Lemma 10 and use Lemma 8 to undecouple the LIL.

From the assumption it follows that for every ¢ > 0 and sufficiently large n,

IP’( > (X

li|<n
Now, by Lemma 9, for arbitrary subsets Ay, ..., Ag C I,
IP’( Yo X

i€EAI XX Ay
Moreover, for fixed values of (si(j ) ), the expression ngn eidech(Xidec) is a sum of
2¢ expressions of the form £ A x - xAy h(X{C), where Ay = {i :el.(k) = +1}.
Thus, using the above estimate conditionally, together with the Fubini theorem,
we get for sufficiently large n,

]P( > elecn(xie)

lil<n
Now we can finish just like in Corollary 2 by applying the Paley—Zygmund in-
equality and hypercontractive estimates for chaoses. [J

> (D + Dn?/?loglog?/? n) <e.

> LYD + 1n/? loglogd/2n> < L%.

>2¢24(D + 1)n??*1og logd/2n> <2914,
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6. The canonical decoupled case. Before we state the necessary and suffi-
cient conditions for the LIL, let us notice that the integrability condition E(h? A
u) = O((loglog 1)@=y can be equivalently expressed in the language of the || - || 7.,
norms (see Section 3 for the definition). More precisely, we have the following.

LEMMA 11. For any function h we have

limsu E@> A u)'? = limsu 17z,
M SUP Goglogm) @ D72 — RSP togu)d D72

PROOF. Let us denote the lim sup on the right-hand side by a, and the other
one by b. Let us also assume without loss of generality that # > 0. We will first
prove that a < b. Indeed, either E(h% Au) <1 or we can use

hAJu

(E(h2 A u))'/?

as a test function in the definition of || ||{;,},., thus obtaining for u > 1
E(h* A Juh) .
(E(h? Au)l/2 —
so we have (E(h? A u))1/? <1+ ||h|l(1,).u» which immediately yields a < b. To
prove the other inequality, let us notice that if a < oo, then for u large enough and
any f with [| fll2 < 1, || flloo < u Lemma 5 gives

Ehf < JER?1y, <2 + uE|h| 15,2

K (logl
12, (log 05;’“
u

fi=

”h”{ld},u ZEhf: (E(hZ/\u))l/Z’

Z)d—l

< (E(h® A u*))

which gives b < a since
loglog u* _q

U0 loglogu U

THEOREM 5. Let h be a canonical symmetric kernel in d variables. Then the
decoupled LIL

1
11 li h(Xd) < ¢ 5.
(11) im sup nd/2(log log n)4/2 liZ;n XiH| = a.s
holds if and only if for all § € Py,
(12) lim sup sIhllg.u = D,

u—oco (loglogu)(d—degd)/

that is, if (11) holds for some C then (12) is satisfied for D = L;C and conversely,
(12) implies (11) with C = LgD.



1040 R. ADAMCZAK AND R. LATALA

PROOF.
Necessity. Let us first prove the following.

LEMMA 12. Let g: X% — R be a square integrable function. Then

Var(z g(X?eC)> <% = Dn* "Eg(X)%.

li|<n

PROOF. We have

Var( > g(X?eC)>

li|<n

2
= E( 3 (g(Xfee) — Eg(X?e°>)>

li|<n

=22 ) E[(eX) - Eg(X{)(s(X*) — Eg(X{))]

ICI, lilsn  |jl<n:
{k:ir=jix}=1

= 2 2 2 Ell({) —EgX{)(s(X*) ~ Eg(X)*))]
ICIy I#£Dil<n  lj|<n:
{k:ix=jr}=1

< > M Vare(X)) = @4 - DT Eg(X)7,
I1CI, 140 O

Moving to the proof of (12), let us first note that from Corollary 3 and Lemma 7,
the series (2) is convergent and (3) holds. Since lim,_, Z%’;n % = log?2, there

exists Ng, such that for all N > N, there exists N <n < 2N, satisfying

1

Y elCnXie)| > Lyc2m/ logd/2n> <—

(13) IP’( .
= 10n

Let us thus fix N > Np and consider n as above. Let § = {Ji,..., Ji} € #y,.
Let us also fix functions f; : >#*i 5> R, j=1,...,k,such that

Ifi(Xspll2 =1,
17 (X g lloo < 27D,
The Chebyshev inequality gives

1
(14) IP’( > fiX{)logn < IO-ZdZ#anlogn) >1— 02
lig 12" ! '
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Moreover, for sufficiently large N,

1 decs? 2n#<>Jj22n/(2k+1)lOgn
> n#; fi X, ec) logn < n#;

|i<>Jj Iszn

220/2k+D Jog
< ° <
= o <
Without loss of generality we may assume that the sequences (X i(j )),-, j and
(81.(] ))i, ;j are defined as coordinates of a product probability space. If for each
j=1,...,k we denote the set from (14) by Ay, we have }P’(ﬂ’j‘-:1 Ar) > 0.9. Re-
call now Lemma 3. On ﬂ’;zl Ay we can estimate the || - ||§z,1ogn norms of the matrix
(h (X?ec))mszn by using the test sequences

Xdec) J/logn
Y = 101/22d/22n#1,/2
Therefore, with probability at least 0.9, we have

” (h(X?ec))MEZ" ” ;,logn

(logn)*/2

(15 = 2dk/210k/20 (22, #Jj)n/2

Z h(deC) 1_[ f] (Xdec

lij<2n j=l1

Z h(deC) l_[ f] XdZC) .

i <2" Jj=1

(logn)*/?

= Hdk/21(k/22dn/2

Our aim is now to further bound from below the right-hand side of the above
inequality, to have, via Lemma 3, control from below on the conditional tail prob-

ability of 3" ;<on €/°¢h(X{°), given the sample (Xl(j ).
From now on let us assume that

> 1.

k
(16) ‘Ehoo [175&X5)

j=1

By Corollary 3 and Lemma 7 we have E(h? A u) = O((loglog u)4~1). Thus, the
Markov inequality and Lemma 5 give

{

dec d
Z h(X €c )l{lh(Xdec)|>2n 1_[ fj X CC

li|=<2"

"duEh [T, f,-|>
4

215y 1 lloo) - ElALgaps2m)

(17)
24 (ERTTA, £
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42nk/(2k+l)E|h|1{|h|>2n}
IEhl_[ -1 fjl

)d—l

(logn
<Ak T

Let now h,, = h1jj,<ony. By the Chebyshev inequality, Lemma 12 and (3),

{

)

k
Eha [ fi
j=1

k nd
d d nd
mee%nijff)—z e[| %5

i|<2"
Var(¥ i< hn (X [T, f <X?;°j°>>
<25
22”d|Eh 1—[ lfJ

2
nl_[fj

j=1

(2d _ 1)2n(2d—1)
= T 2
22 |Bh, [T, ]

(18)

22nk/(2k+l)Eh2
n

2B, [T5, £i12
d—1 n

<2524 - 1)

log

<25K2¢ - 1)
2n/(2k+1)|Ehn l—[1]§:1 fj|2

Let us also notice that for large n, by (3), Lemma 5 and (16),

k
‘Eh [151]= IElhl_[fj 'Ehl{h|>2ﬂ}]_[f/
j=1 j=1 =
k d—1
logn)
19 > |Eh . _2nk/(2k+1)K(7
(19) > [[f,‘ >
5 5
—|Eh > -
=S| =

Inequalities (17), (18) and (19) imply, that for large n with probability at least
0.9 we have

Z h(xdeC) 1_[ f] XdzC)

lij<2"

Z I’l (XdeC) l_[ f/ (Xdec

li|<2n j=1
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dec d
= 20 AL ey 2y ]_[ £ X859)

li|<2n

nd 4 .
>2 (5 ‘Ehn ,1:[1 fi
>2"d< ‘Ehnf ‘Ehnf>>gEth
5°% J J J
Together with (15) this yields that for large n with probability at least 0.8,

Z”d/2 log k2 k
En[] fil-
j=1

1
— Z'Eh 1;[1fj

|| (hi)jij<2n ||;z logn = 4 . 2dk/21(0k/2

Thus, by Lemma 3, for large n

]P’( Y Eh X)) = cq
lij<2"

which together with (13) gives

k
En ] £

j=1

k

En]] f;

j=1

ond/2 1ng/2n
4 . 2dk/210k/2

ndk/210k/2
<2V @,
Cd

In particular for sufficiently large N, for arbitrary functions f;: > SR, j=
1,..., k, such that

LX)l <1, 1f(X)lleo < 2N/ KD
WASER) (X
we have
k dk/210k/2
4.2 10 -
Eh [] fi| < LaC " 10g@ /2 p < [4Clog P2 .
Jj=1

Thus, for large u (u > uyg),

k
sup{

Er(X) [ £i(Xs)
and so

Xl < LI (Xl < Ml/(2k+1)}
j=1

< Ly(loglogu) =072,

k
sup{ ‘Ehm [1 5

j=1

Xl < LX) llee < M}

< I:d (loglog u)(d_k)/z,

1/(2k+1)

forall u > u,, , which proves the necessity part of the theorem.
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Sufficiency. The proof consists of several truncation arguments. In the first
part, until the || - ||,, norms come into play, we follow the lines of the proof of the
special case d = 2, presented in [8], with some modifications. At each step we will
show that

(20) > IP(
n=1

with /1, = h1,, for some sequence of sets A,.

3 wahn (X{)

lij<2"

> C2"/2 1ogd/? n) < 00,

Step 1. Inequality (20) holds for any C > 0 if

A, C {x:h%(x) > 2" 1og? n).

We have, by the Chebyshev inequality and the inequality E|mgh,| < 2¢E|h,|
(which follows directly from the definition of m; or may be considered a trivial
case of Lemma 1),

ZP( > wah (X8
n

lij<2"

-y Bl Tahn (X{)|
- C21d/210g?? n

n

> C21d/21pgd)2 n)

d
<2y 2RI 22 10912 )
- C27d/210g?/% n

n

o ond/2
- ; Ml{\h|zz'ld/2logd/2n}

<L,C7'E i
— < 00,
R (PAT Y
where the last inequality follows from Lemma 6, Lemma 11 and condition (12) for
F={1a}.
Step 2. Inequality (20) holds for any C > 0 if
Ap Clx e in?(x) <229 3145 1, By (W2 A 22 > 2# M 0 n).
By Lemma 1 and the Chebyshev inequality, it is enough to prove that
Z El > jij<n edecq,, (Xdeo)|
2nd/21ogd/? p

n

< Q.
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The set A, can be written as

U 4.,

ISy, 1#14,9
where the sets A, (/) are pairwise disjoint and
An(D) C {x:h%(x) <22 E (W2 A220) > 2" 10g? ).
Therefore, it suffices to prove that

. El Y < €2h(X$) 1 4, (1) (X))
1) 3 Vi log oy <00

n

Letforl/ e N,
An (D) = {x:h?(x) < 22",
QAFLHHIN 00d 1 oy (2 A 221Y > 22N 100 iy (4 AL (D).
Then hyla, ) = 2720 hn,i» Where hy ji=hyla, 1)
We have

> € hn (X

lij<2"

< Y EpE

lije]<2"

< Z Eje (E[

ijc|<2n
1

E

ds d
Z EiIec nl (Xi ec)

lif|<2"

2>1/2

S 2(#I‘+d/2)n+l+1 logd/2 n]P)]L' (]EI (h2 A 22nd) Z 221+#I”n logd l’l).

Z Ggechn,l (X?CC)

liy|<2"

< 2(#16+#1/2)nE1L‘ (El |hn,l |2)1/2

Therefore, to get (21), it is enough to show that

o
ZZzl-‘r#Icn]P)lc (]E] (h2 A 22nd) > 22[+#lcn logd I’l) < 00.
=0 n

But this is just the statement of Lemma 4 for a = 2d.

Step 3. Inequality (20) holds for any C > 0 if

A, CHx: 272 < p2(x) <2 logdn

and Vyzg 1, By (h* A 22"0) < 2* M 1og? n).
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By Lemma 1 and the Chebyshev inequality, it is enough to show that

E| Y jij<on €0%h, (Xe0) [+
Z 22nd logzd n =

n

Q.

The Khintchine inequality for Rademacher chaoses gives

4 2
< E( 3 hn(X?“ﬂ)

lij<2"

— Z Z Z Eh” (X?eC)Zh” (deec)Z

IC]y lijl<2" jl<2n:
(k:ik=jit=1I

< Y 2M DR, (X b (X)),

I1Cly

L7'E| Y efh, (X

lij<2"

where X = (X1, ..., Xa) and X(I) = (X)ier, (X{icre).
To prove the statement of this step it thus suffices to show that for I C I; we
have

—ni#l
- 2 o 2
Z logZdnE[hn(X) h, (X (1))"] < o0.

n
(a) I =1;.Then

k) Eh* ! 1
Z W = Xn: W {h2<2nd 10g? n)

n

1

< LjER*—
=S AL e =

by Lemma 6. ~

(b) I +#1;4,2.Letusdenote by E;, Ejc, [Ejc respectively the expectation with
respect to (X;)ier, (X;)iese and (Xl.(l)),-ep. Let also A, ﬁn stand respectively for
h(X(I)), h,(X(I)). Then

E(h2 - h2)
Z on#l logz‘l n

n

<2} Ehy bl <iiy)
-5 2m#l Jog?d p

< 2Eh%*h*1 - §:71 1 .
- {lr1<|nl} n#l logZdn (E je (h2A22nd)y <2#In 1ogd p, h2<22nd)
n
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<2ER*h*1,, _: 2;1 " i 7
= {lh|<|h|} — on#l 10g2dn (Ejc (h2Ah2)<2#In]og? n,h2<22nd)

. 1
272 ;
= L =i G ~ iy il
= LB Ejch®Byeh®1,, !
R RS (12 A R2) (LI
52
<L;E——— <00
(LL|A])4
by Lemma 6.
(¢) I = 9. We have,
(Eh2)? Eh2
Z lo 2'2 = K Z 1 d«lfll
n log™n - log® ' n
(22) |
2
S K]Eh ; 10gd+1 n1{2ndn—2d<h2§2nd10gdn}.

For M > 0 let us now estimate #{n:2"p=2d < p < 2nd (logn)?}. Let
Nmax, Pmin denote the greatest and the smallest element of this set. Then

logM
Nmin 10g 2+ IOg 10gnmin = T»

logM
d 9

Nmax 1022 — 210g nmax <
hence
(Mmax — Nmin) log2 < 21og nmax + loglog nmin < 310g nmax
< Lloglog M.
The right-hand side of (22) is thus bounded by

|h|2LL|A]| h? -
= <
(LL|A[)d+! (LL|A[)4

by Lemma 6.
Step 4. Inequality (20) holds for any C > 0 if

A, C {x th? <272 g B (B2 A 220 < 2 jogd g,

142,01 e~ < Er(h” A279) 1.
log" n
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The only difference between this step and the previous one is the proof of con-
vergence in the case (c), as in the two other cases we were using only bounds from
above on h? and E;(h% A 22"?), which are still valid.

Let us notice, that

2 2 2nd
Bhy< D0 B0 A2 YL gogy-nre comsicns, 12 2 < rogmy)
I1C1;,1#2,14

d+#I°¢

2 2nd
= 2 2L BrBr( A2 oyt comicn (12 a2y <(lognyi k)
I1Cly 1#2,1; k=1

d+#I¢
< Z Z 2#1‘1’1(logn)d—i-]—kPIC(El(hZ A 22nd) > 2#1Ln(10gl’l)d_k).
I1CIy,1#2,1; k=1

Thus
22nd(Eh%)2
- 22”d(10gn)2d
. Eh2
<K __—n_
Xn: (logn)d+1
d+#I¢ c
<k ) +Z > o Pre(Ep(h? A 22) > 2#1 (1og n)d=*)
= (Qogn)F 1e(Ef g
I1Cly 1#2,1; k=1 n
<0
by Lemma 4.

Step 5. Inequality (20) holds for some C < L4 D if

#1n
A, = {x th* <2 g, By (B A 2P < ——— }
log™ n

This is the only part of the proof in which we use the assumptions on the || - || 4,4
norms of & for deg & > 1. Our aim is to estimate ||4, (¢ and then use Theorem 4.
Let us note that we can assume that

(23) D=1

[if D # 0 then we simply scale the function, otherwise (12) for § = {{1}, ..., {d}}
gives h = 0].
Let us thus consider § = {Jy,...,Jx} € £, and denote as usual X =
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(X1,...,Xq), X7 = (X;)ics. Recall that

k
lnllg = sup{E[hnoo I fi(XJ,-):| Ef2(Xy) < 1}.
i=1
In what follows, to simplify the already quite complicated notation, let us sup-
press the arguments of all the functions and write just 4 instead of 2(X) and f;
instead of f;(X.).
LetusnoticethatifIEfi2 <1,i=1,...,k,thenforeach j=1,...,kand J C
Jj by the Schwarz inequality applied conditionally to X\ s,

k 1/2
2 2172
E <Ej\ |:<E(Jj\1)c [14 ) L, 2202 Ewjyorhy) / }

i=I

k
i [ filig, 22

1=

24172 2\1/2
SEJj\J[(Eij) / I{Ejf'jZZaZ}(E(fj\J)Chn) / ]
#JIN\J)/2 20172
< 2MINDPE (B D P, 2o 2]
< zn#(.lj\J)/Za—I.

This way we obtain

k
17nllg < sup{ﬂ-z[hn I fl} fila <1,
i=1

By A2 0o < 2#UND/2 for J ¢ J,-}
k
(24) +Y @M -1
i=1

k
<Li+ sup{E[hn I ﬁ} A fill <1,
i=1

IE 1|0 < 2FUND2 for ] C J; ]

Let us thus consider arbitrary f;, i = 1,...,k, such that | fill» < 1,
I (E, fiz)l/ 2|loo < 2MUND/2 for J C J; (note that the latter condition means in

particular that || ;]| < 2"#/i/2),
We have, by assumptions (12) and (23) for large n,

E[h]ﬁ[ﬁ}

i=l

(25) S ”h”g’znd/z S Ld log(d—deg g)/Z n.
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For sufficiently large n,

k Jnlogd"n
= E|h|1{|h|22nd/2nd} l_[ [ filloo < K2/ ond/2y,d =L

i=1

k
E‘h1{|h|22”d/2nd} 1_[ fl
i=1

where the second inequality follows from Lemma 5.
Moreover, if we denote i,, = |h| A 24-¢xP([logn]) e getfor I C 1y, I #@, 1,

E

k
<Eje [(Emﬁﬂﬂlm,ﬁgzwn} H(E]inlf,»2>1/2]

i=1

k
hn 1_[ fil{EIf,%ZQn#lﬂn}
i=1

k
#(J;NI°)/2 72\1/2
< 1_[271 ( )/ E[‘[(Elhn) / I{E[E%ZZ"#ICVI}]
i=1

I d—1
< 2 Eh2 log?~'n

NG =K Jn =1

for large n.
By the last three inequalities we obtain

o

k
En[] fi

i=l

=

k
+ ‘Ehu; I17

i=1

k
h l_[ ﬁ1{|h|22”d/2n_d}

i=1

< Lglog=9ed2y + |

k

Iy <onarz-ay [ ] Filig g ngzndy 081 ogmy-1%)
i=1

+ Y E

I1C1y,1#2,1y
< Lglog@=deed /2, 41 4 (Elh|21{2nd/2n—d§|h|§2nd/2nd})1/2
+ 2

1€y, 1#2,14

< Lqlogd=deed/2 )y 4 2d 4 > da(D),
1<y

k
E\hn H fiI{Elﬁ%ZZ'l#lc(logn)—#Ic}
i=1

where
dy (1)2 = Eﬁzl{zn#lcnﬁSElﬁgszn#lcn} for I # @, 1,

dn (@)2 = ]Ehzl{znd/Zn—dSIhlizndﬁnd}.
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Using (24) we eventually obtain
(26) Ihnllg < Lalog=4€®/2n + D,

where D,, = Zlgd d,(I).
This estimate will allow us to finish the proof by means of the following

LEMMA 13.  For sufficiently large C = L4A and all § € &y,
Z Clog?/?n 2/deg 4
exp ( (o ) )<
- A(logl=ded/2y 1 D,)

PROOF. Letus notice that fork =1, 2, ...

2 2
Z h" Y ona/2y—d < <nds2nay < La(k + 1) 1{|h|S2,16k+l/2ed(k+])}
k<logn<k+1

and

72
Z Elhnl{Z”#Icn_l§Elﬁ%§2”#1€n}
k<logn<k+1

72
= E Elhek+1 1{2’1#16n71§E152k+] <n#Ip)
k<logn<k+1 ¢

k+1

< LaBhli (k4 1) = La(k + DE;(h* A2%¢7),

since for any numbers 1 <a, b <d and x > 0, the number of intervals of the form
[2M9p b 2napby with k < logn <k + 1, containing x is smaller than Ly (k + 1).

Integrating the above inequalities and using Lemma 11, assumption (12) for
J = {14}, assumption (23) and the Cauchy—Schwarz inequality we get

Y. Dp=@i=D Y Y d(D?<Latk+ D7

k<logn<k+1 k<logn<k+11C1,
Thus
#{n:k <logn<k+1,D, > 1} < Ly(k + 1)¢

and therefore for C large enough (since D,, < Ly log(d_l)/ 2 n)

Z Clogd/Zn 2/deg g
oo~ ) )
p A(logld=deed /2y 4 D,)

<Y exp(—(C/24)* * Jogn)
n

Clogd/zn )Z/degg)

+ exp((— —
Dnzz:l A(l + Lg)log=b/2p
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= Y exp(—(C/24) 42 logn)
n
+ Ly Z(k +1)? exp(—(C/A(1 + Ld))z/deggkl/deg%) e
k

for C = I:dA. O

Going back to the proof of Step 5, let us notice that by Theorem 4 and (26), we

have
IP’( 3 wahn (X{)

lij<2"

> C2nd/2 lOgd/2 n)

C21d/21gd/2 \ 2/ deg 7
<L L} —) >
<Li ), exp( d ( 244727, 4

[2d
FeP1,

» €212 1092 2/(d+#I°)
+1a 3 exn(ig <2n#1/2||<E1h2)1/2||oo) )
n

ICly
Clog?/? n 2/deg
cru 5 oo () )

+ Ly ex (Ll( - -
Igd P\ a \ Susrjaonwe log#/2p

B Clogd/zn 2/deg g
1
<Lg Z exp<Ld (Ldlog(d—degg)/2n+Dn) )

P
f,’e/;d

+Lg ) exp(LEICZ/(dJF#IC) logn),
I1Cly

so convergence of the series in (20) for C large enough (C = Lq = Ly D) follows
from Lemma 13. This completes the proof of Step 5.

To prove sufficiency of (12), by Corollary 1 it is enough to show convergence
of the series

(27) > ]P’(

for C = L4 D. To this end for each n we simply decompose X into five disjoint
sets Ail, i=1,...,5, with Af1 being a set of the form defined at the ith step above
(which clearly can be done as the union of the sets from Steps 1-5 is the whole X).
For C = L4 D, from the triangle inequality and Steps 1-5, we get the convergence

> h(Xe)

lij<2"

> Cznd/Z logd/2 l’l)
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of the series

> wah(X{)

lij<2"

> C21/2 109"/ n>’

e

which is exactly (27), since by the complete degeneracy mgh =h. U

7. The undecoupled case. We are now ready to prove our main result.

PROOF OF THEOREM 1. Sufficiency follows from Corollary 3 and Theorem 5.
To prove the necessity assume that (1) holds and observe that from Lemma 7 and
Corollary 2, & satisfies the randomized decoupled LIL (8) and thus, by Theorem 5,
the growth conditions on functions ||| g, are also satisfied [note that the || - || g,
norms of the kernel 2(X1y,..., Xy) and €1 ---e4h(X1, ..., X4) are equal]. Thus,
the only thing that remains to be proved is the complete degeneracy of 4. The in-
tegrability condition (3) implies that E|mzh|” < oo for all p < 2 and thus from the
Marcinkiewicz type laws of large numbers for completely degenerate U -statistics
by Giné and Zinn [6] it follows that

1
m Z T[dh(Xl) —0 a.s.
ierd
as n — 00. Moreover, from the LIL, we have also
1
i > hXp)—>0  as.
ierd

Let us notice that by Hoeffding’s decomposition (Lemma 2),

> (X)) — mah (X))

ierd
d—1
d\ (m—k)! n!
(28) =Z( ): - Y (X Xi)
= k n! (n—d)! Woien
ij#i; for j#l
=(—d+1) Y gXiy, ... Xi),
i1y.0lg—1=<n
ij#i; for j#l

where
1 .
gxy, ... xq_1) = @-n ;g(Xa(l), e Xg(d—1))s

where the sum is over all permutations of /;_; and
d—1

gxt,....xa—) =Y (Z)nkh(xl,...,xk).

k=0
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We thus obtain

n—d+1
ap > eXi.. Xiy )| >0 as.
n i1ye0sig—1=<n
ij#i; for j#l
Therefore
1
ey D DR {09
[1yes ig—1<n
ij#i; for j#l

is stochastically bounded. Putting p = 2d/(d + 1) we obtain the CLT normaliza-
tion for U -statistics of order d — 1 (see for instance [3], Theorem 4.2.4) and from
the results by Giné and Zinn ([7], Theorem 1, or [3], Theorem 4.2.6) we get that g
is canonical and Eg? < co. Now the CLT for canonical U-statistics yields that

g(X1,...,Xq-1)=0 a.s.

and (28) for n = d gives h = wgh, which proves the complete degeneracy of A.
O

8. Final remarks.

REMARK. InTheorem 5 the necessary and sufficient conditions for the decou-
pled LIL were found, under an additional assumption that the kernel is canonical.
We would like to remark that the canonicity actually follows from the decoupled
LIL, similarly as in the proof of Theorem 5. The proof would however require de-
veloping “a decoupled counterpart” of all the limit theorems for U -statistics (like
CLT and Marcinkiewicz LLN), which would make it quite lengthy and would not
involve genuinely new ideas.

The cluster set. 'When Eh? < oo, the limit set in the LIL (1) is almost surely
equal to

(E(X1,..., X)) f(X1) - f(Xa):Ef (X)) < 1}

as is proven in [2]. In general this is not the case. For d = 2 it is known that the
cluster set is an interval [8], whose end-points are known in some special cases
[13]. In these special cases, the limsup turns out to be a relatively complicated
function of the “deterministic” lim sup’s appearing in the nasc’s conditions. It is
natural to conjecture that in general the lim sup is also a function of these quanti-
ties.

Now we would like to state the following.

THEOREM 6. The cluster set in the LIL (1) is an interval.
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PROOF. It is enough to show that
Zie]}{ h(Xi) Zielnd_l h(Xi) .
nd/2loglog??n  (n — 1)@/21oglog??(n — 1)|

lim sup
n—o0

a.s.,

which will follow if we prove that

1
lim sup =0 a.s.

n—oo n/2loglog?/*n

Y h(Xp

ield ig=n

We can reduce the last statement to

(29) > P( > k(X))

noon—lak<2r MNieldig=k

> §2M4/210gd/? n) <00

for all § > 0. Let 74— stand for the Hoeffding projection with respect to the first
d — 1 variables only. Then, the complete degeneracy of h, gives 7;_1h = h, thus
to get (29) it suffices to prove that

> ¥

n on—1 j<on

> Fa—1h(Xi)

. od -
el ig=k

> 82412 10gd/? n) < 00.

We will now proceed similarly as in the first steps of the proof of Theorem 5,
that is we will prove the above convergence with 4 replaced by h, = hl,, for
suitable sets A,,.

Step 1.

A, C{x e =4 h%(x) = 2" log? n).
Since for 21 < k < 2", #li e I,f g =k} < 2nd=1) e can use the Chebyshev
inequality, exactly as in the first step of the proof of Theorem 5.
Step 2.
Ap C{x kP (x) <2 og%n, 31y, 120 Br(h? A 2219) > 2# M 1004 ),

Note that by the decoupling inequalities for the moments of U -statistics (see, e.g.,
[3], Theorem 3.1.1) and Lemma 1 applied conditionally on X, we have

E > maoh(X()

ield iq=k

> Ta-1h(X))

- d
i€l ig=k

< L4JE

<2NLGE[ YT efecn(xie)

ierd ig=k
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Therefore if we define the sets A,(I) and A, ;(I) (for I C I;_1,1 # @) like in
Step 2 of the proof of Theorem 3, it is enough to prove

1 o
ZZWZE

noon—1_j<n -0

> €, (Xi)| < oo,

. d .
i€l ig=k

where for fixed [ the function h,; are defined as in the proof of Theo-
rem 5. But for each 2"~! < k < 2" | we have by a similar computation as
there

E < [2(#I‘+d/2—1)n+1+1 logd/? n]

Y h,(Xi)

. d
i€l ig=k

x Pre(By(h? A 2214y = 22H# 1 o0d ),

Thus

> E

2n=l<f<n

> €, (X))

- d -
el ig=k

< [2(#[c+d/2)n+l+1 logd/Z n]
X ]P)[C (EI (hz A 22nd) 2 22[+#1C}’l logd n)

and we can finish this step just as Step 2 in the proof of Theorem 5.

Step 3.
A C {x k2 (x) <2"0g% n,Vicr, 120 Er(h? A 22y < 2 og? p).

Using the same arguments as above and the Khintchine inequality for Rademacher
chaoses we obtain

4 4
El Y #athX)| <LJE| Y #a_th(X¥)
ield ig=k ield iq=k
4
524(d_1)LdE Z €idech(Xidec)
ierd ig=k
2
deIE( > hz(X?“)>,
[i|<k,ig=k

where in the last inequality we have added the diagonal summands just to make
the proof more similar to the analogous step (Step 3) in the proof of Theorem 5.
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Therefore, it suffices to prove

5 2ME(Y i <on i mon 2 (X(1))? _
22nd 10g2d n

n

oQ.

But again this can be done just as in Step 3 in the proof of Theorem 5, by consider-
ing just the cases (a), (b) there. The case (c) (which made all the consequent work
in the proof of Theorem 5 necessary) cannot appear here because the index iy is
fixed. The proof of the theorem may be thus complete just as for Theorem 5, by
splitting ¢ into 3 parts (for each 1), corresponding to Steps 1-3 above. [
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