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EXIT FROM A BASIN OF ATTRACTION FOR STOCHASTIC
WEAKLY DAMPED NONLINEAR SCHRÖDINGER EQUATIONS

BY ERIC GAUTIER

ENS Cachan Bretagne and CREST

We consider weakly damped nonlinear Schrödinger equations perturbed
by a noise of small amplitude. The small noise is either complex and of addi-
tive type or real and of multiplicative type. It is white in time and colored in
space. Zero is an asymptotically stable equilibrium point of the deterministic
equations. We study the exit from a neighborhood of zero, invariant under the
flow of the deterministic equation, in L2 or in H1. Due to noise, large fluctua-
tions from zero occur. Thus, on a sufficiently large time scale, exit from these
domains of attraction occur. A formal characterization of the small noise as-
ymptotic of both the first exit times and the exit points is given.

1. Introduction. The study of the first exit time from a neighborhood of an
asymptotically stable equilibrium point, the exit place determination or the transi-
tion between two equilibrium points in randomly perturbed dynamical systems is
important in several areas of the mathematical sciences, including statistical and
quantum mechanics, chemical reactions, the natural sciences, macroeconomics for
modeling currency crises and escape in learning models.

For a fixed noise amplitude and for diffusions, the first exit time and the dis-
tribution of the exit points on the boundary of a domain can be characterized by
the Dirichlet and Poisson equations, respectively. However, when the dimension is
larger than one, we may seldom explicitly solve these equations and large deviation
techniques are precious tools when the noise is assumed to be small; see, for exam-
ple, [10, 13]. The techniques used in the physics literature are often called optimal
fluctuations or instanton formalism and are closely related to large deviations.

In that case, an energy generally characterizes the transition between two states
and the exit from a neighborhood of an asymptotically stable equilibrium point
of the deterministic equation. The energy is derived from the rate function of the
sample path large deviation principle (LDP). When an LDP holds, the first order of
the probability of rare events is that of the Boltzmann theory and the square of the
amplitude of the small noise acts as the temperature. The deterministic dynamics
is sometimes interpreted as the evolution at temperature 0 and the small noise as
the small temperature nonequilibrium case. The exit or transition problem is then
related to a deterministic least action principle. The paths that minimize the energy,
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also called minimum action paths, are the most likely exiting paths or transitions.
When the infimum is unique, the system has a behavior which is almost deter-
ministic, even though there is noise. Indeed, other possible exiting paths, points or
transitions are exponentially less probable. In the pioneering article [11], a non-
linear heat equation perturbed by a small noise of additive type is considered. In
that case, transitions prove to be the instantons of quantum mechanics. The prob-
lem is again studied in [14], where a numerical scheme is presented to compute
the optimal paths. In [20], mathematical and numerical predictions for a noisy exit
problem are confirmed experimentally.

In this article, we consider the case of weakly damped nonlinear Schrödinger
(NLS) equations in R

d . These equations provide a generic model for the propaga-
tion of the envelope of a wave packet in weakly nonlinear and dispersive media.
They appear, for example, in nonlinear optics, hydrodynamics, biology, field the-
ory, crystals and Fermi–Pasta–Ulam chains of atoms. The equations are perturbed
by a small noise. In optics, the noise corresponds to the spontaneous emission
noise due to amplifiers placed along the fiber line in order to compensate for loss,
corresponding to the weak damping, in the fiber. We shall consider here that there
remains a small weak damping term. In the context of crystals or of Fermi–Pasta–
Ulam chains of atoms, the noise accounts for thermal effects. The relevance of the
study of the exit from a domain in nonlinear optics is discussed in [19]. The noise
is of additive or multiplicative type. We define it as the time derivative in the sense
of distributions of a Hilbert-space-valued Wiener process (Wt)t≥0. The evolution
equation could be written in Itô form,

i duε,u0 = (�uε,u0 + λ|uε,u0 |2σ uε,u0 − iαuε,u0) dt + √
ε dW,(1.1)

where α and ε are positive and u0 is an initial datum in L2 or H1. When the noise
is of multiplicative type, the product is a Stratonovich product and the equation
may be written

i duε,u0 = (�uε,u0 + λ|uε,u0 |2σ uε,u0 − iαuε,u0) dt + √
εuε,u0 ◦ dW.(1.2)

In contrast to the heat equation, the linear part has no smoothing effects. In our
case, it defines a linear group which is an isometry on the L2-based Sobolev spaces.
Thus, we cannot treat spatially rough noises and consider colored-in-space Wiener
processes. This latter property is required to obtain bona fide Wiener processes in
infinite dimensions. The white noise often considered in physics seems to give rise
to ill-posed problems.

Results on local and global well-posedness and on the effect of a noise on the
blow-up phenomenon are proved in [4–7] in the case α = 0. The mixing prop-
erty and convergence to equilibrium are studied for weakly damped cubic one-
dimensional equations on a bounded domain in [9]. We consider these equations
in the whole space R

d and assume that the power of the nonlinearity σ satisfies
σ < 2/d . We may check that the above result still holds with the damping term
and that for such powers of the nonlinearity the solutions do not exhibit blow-up.
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In [15] and [16], we have proven sample paths LDPs for the two types of noises,
but without damping, and deduced the asymptotic of the tails of the blow-up times.
In [15], we also deduced the tails of the mass (defined later) of the pulse at the end
of a fiber optical line. We have thus evaluated the error probabilities in optical soli-
ton transmission when the receiver records the signal on an infinite time interval.
In [8], we have applied the LDPs to the problem of the diffusion in position of the
soliton and studied the tails of the random arrival time of a pulse in optical soliton
transmission for noises of additive and multiplicative types. Note that, in [17], we
study local well-posedness and large deviations and characterize the support when
the noise is a fractional in time additive noise.

The flow defined by the above equations can be decomposed into a Hamiltonian,
a gradient and a random component. The mass

N(u) =
∫

Rd
|u|2 dx

characterizes the gradient component. The Hamiltonian denoted by H(u), defined
for functions in H1, has a kinetic and a potential term and may be written

H(u) = (1/2)

∫
Rd

|∇u|2 dx − (
λ/(2σ + 2)

) ∫
Rd

|u|2σ+2 dx.

Note that the vector fields associated with the mass and Hamiltonian are orthogo-
nal. We could rewrite, for example, equation (1.1) as

duε,u0 =
(

δH(uε,u0)

δuε,u0
− (α/2)

δN(uε,u0)

δuε,u0

)
dt − i

√
ε dW.

Also, the mass and Hamiltonian are invariant quantities of the equation without
noise and damping. Other quantities, such as the linear or angular momentum, are
also invariant for nonlinear Schrödinger equations.

Without noise, solutions are uniformly attracted to zero in L2 and in H1. In this
article, we study the classical problem of exit from a bounded domain contain-
ing zero in its interior and invariant under the deterministic evolution. We prove
that the behavior of the random evolution is completely different from the de-
terministic evolution. Although, for finite times, the probabilities of large excur-
sions from neighborhoods of zero go to zero exponentially fast with ε if we wait
long enough—the time scale is exponential—such large fluctuations occur and exit
from a domain takes place. We give two types of results depending on the topol-
ogy we consider, L2 or H1. The L2-setting is less involved than the H1-setting.
This is due to the structure of the NLS equation and the fact that the L2-norm is
conserved for deterministic non damped equations. We have also chosen to work
in H1 because it is the mathematical framework in which to study perturbations of
solitons, a problem we hope to address in future research.

We give a formal characterization of the small noise asymptotic of the first exit
time and exit points. The main tool is a uniform large deviation principle at the
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level of the paths of the solutions. The behavior of the process is proved to be ex-
ponentially equivalent to that of the process starting from a little ball around zero.
Thus, if a multiplicative noise and the L2-topology is considered, such balls are
also invariant by the stochastic evolution and the exit problem is not interesting.
In infinite dimensions, we are faced with two major difficulties. Primarily, the do-
mains under consideration are not relatively compact. In bounded domains of R

d ,
it is sometimes possible to use compact embedding and the regularizing properties
of the semigroup. In [12], where the case of the heat semigroup and a space vari-
able in a unidimensional torus is treated, these properties are available. Also, in
[2], the neighborhood is defined for a strong topology of β-Hölder functions and
is relatively compact for a weaker topology, and the space variable is again in a
bounded subset of R

d . We are not able to use the above properties here since the
Schrödinger linear group is an isometry on every Sobolev space based on L2 and
we work on the whole space R

d . Another difficulty in infinite dimensions and with
unbounded linear operators is that, unlike ODEs, continuity of the linear flow with
respect to the initial data holds in a weak sense. The semigroup is strongly contin-
uous and not in general uniformly continuous. We see that we may use arguments
other than those used in the finite-dimensional setting, some of which are taken
from [3], and that the expected results still hold. We are also faced with particular
difficulties arising from the nonlinear Schrödinger equation, including the fact that
the nonlinearity is locally Lipschitz only in H1 for d = 1. To this end, we use the
hypercontractivity governed by the Strichartz inequalities which is related to the
dispersive properties of the equation.

In this article, we do not address the control problems for the controlled deter-
ministic PDE. We could expect that the upper and lower bound on the expected
first exit time are equal and could be written in terms of the usual quasi-potential.
The exit points could be related to solitary waves. These issues will be studied in
future works.

The article is organized as follows. In the first section, we introduce the main
notation and tools, the proof of the uniform large deviation principle is given in
the Appendix. In the next section, we consider the exit from a domain in L2 for
equations with additive noise, while in the last section, we consider the exit from
domains in H1 for equations with an additive or multiplicative noise.

2. Preliminaries. Throughout the paper, the following notation will be used.
The set of positive integers and positive real numbers are denoted by N

∗ and R
∗+,

respectively. For p ∈ N
∗, Lp is the Lebesgue space of complex-valued functions.

For k in N
∗, Wk,p is the Sobolev space of Lp-functions with partial derivatives

up to level k, in the sense of distributions, in Lp . For p = 2 and s in R
∗+, Hs is

the Sobolev space of tempered distributions v with Fourier transform v̂ such that
(1 + |ξ |2)s/2v̂ belongs to L2. We denote the spaces by Lp

R
, Wk,p

R
and Hs

R
when

the functions are real-valued. The space L2 is endowed with the inner product
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(u, v)L2 = Re
∫
Rd u(x)v(x) dx. If I is an interval of R, (E,‖ · ‖E) is a Banach

space and r belongs to [1,∞], then Lr (I ;E) is the space of strongly Lebesgue
measurable functions f from I into E such that t → ‖f (t)‖E is in Lr (I ).

The space of linear continuous operators from B into B̃ , where B and B̃ are
Banach spaces, is Lc(B, B̃). When B = H and B̃ = H̃ are Hilbert spaces, such an
operator is Hilbert–Schmidt when

∑
j∈N ‖
eH

j ‖2
H̃

< ∞ for every complete ortho-
normal system (ej )j∈N of H . The set of such operators is denoted by L2(H, H̃ ),
or Ls,r

2 when H = Hs and H̃ = Hr . When H = Hs
R

and H̃ = Hr
R

, we denote it by
Ls,r

2,R. When s = 0 or r = 0, the Hilbert space is L2 or L2
R

.

We also denote by B0
ρ and S0

ρ the open ball and the sphere centered at 0 of radius
ρ in L2, respectively. We denote these by B1

ρ and S1
ρ in H1. We write N 0(A,ρ) for

the ρ-neighborhood of a set A in L2 and N 1(A,ρ) for the neighborhood in H1. In
the following, we require that compact sets satisfy the Hausdorff property.

In Lemma 3.6 below, we use the integrability of the Schrödinger linear group
which is related to the dispersive property. Recall that (r(p),p) is an admissible
pair if p is such that 2 ≤ p < 2d/(d − 2) when d > 2 (2 ≤ p < ∞ when d = 2 and
2 ≤ p ≤ ∞ when d = 1) and r(p) satisfies 2/r(p) = d(1/2 − 1/p).

For every (r(p),p) admissible pair and T positive, we define the Banach spaces

Y (T ,p) = C([0, T ];L2) ∩ Lr(p)(0, T ;Lp)

and

X(T,p) = C([0, T ];H1) ∩ Lr(p)(0, T ;W1,p),

where the norms are the maxima of the norms in the two intersecting Banach
spaces. The Schrödinger linear group is denoted by (U(t))t≥0; it is defined on L2

or on H1. Let us recall the Strichartz inequalities (see [1]):

(i) there exists C positive such that for u0 in L2, T positive and (r(p),p) an
admissible pair

‖U(t)u0‖Y (T ,p) ≤ C‖u0‖L2;
(ii) for every T positive, (r(p),p) and (r(q), q) admissible pairs, s and ρ such

that 1/s + 1/r(q) = 1 and 1/ρ + 1/q = 1, there exists C positive such that,
for f in Ls(0, T ;Lρ),∥∥∥∥

∫ ·

0
U(· − s)f (s) ds

∥∥∥∥
Y (T ,p)

≤ C‖f ‖Ls (0,T ;Lρ).

Similar inequalities hold when the group is acting on H1, replacing L2 by H1,
Y (T ,p) by X(T,p) and Ls(0, T ;Lρ) by Ls(0, T ;W1,ρ).

It is known that, in the Hilbert space setting, only direct images of uncorre-
lated spacewise Wiener processes by Hilbert–Schmidt operators are well defined.
However, when the semigroup has regularizing properties, the semigroup may act
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as a Hilbert–Schmidt operator and a white-in-space noise may be considered. It
is not possible here since the Schrödinger group is an isometry on the Sobolev
spaces based on L2. The Wiener process W is thus defined as 
Wc, where Wc is
a cylindrical Wiener process on L2 and 
 is Hilbert–Schmidt. 

∗ is then is the
correlation operator of W(1). It has finite trace.

We consider the following Cauchy problems:{
i duε,u0 = (�uε,u0 + λ|uε,u0 |2σ uε,u0 − iαuε,u0) dt + √

ε dW,

uε,u0(0) = u0,
(2.1)

with u0 in L2 and 
 in L0,0
2 or u0 in H1 and 
 in L0,1

2 , and⎧⎪⎨
⎪⎩

i duε,u0 = (�uε,u0 + λ|uε,u0 |2σ uε,u0 − iαuε,u0) dt

+ √
εuε,u0 ◦ dW,

uε,u0(0) = u0,

(2.2)

with u0 in H1 and 
 in L0,s
2,R, where s > d/2 + 1. When the noise is of multiplica-

tive type, we may write the equation in terms of an Itô product,

i duε,u0 = (
�uε,u0 + λ|uε,u0 |2σ uε,u0 − iαuε,u0 − (iε/2)uε,u0F


)
dt

+ √
εuε,u0 dW,

where F
(x) = ∑
j∈N(
ej (x))2 for x in R

d and (ej )j∈N is a complete orthonor-
mal system of L2. We consider mild solutions, for example, the mild solution of
(2.1) satisfies

uε,u0(t) = U(t)u0 − i

∫ t

0
U(t − s)

(
λ|uε,u0(s)|2σ uε,u0(s) − iαuε,u0(s)

)
ds

− i
√

ε

∫ t

0
U(t − s) dW(s), t > 0.

The Cauchy problems are globally well-posed in L2 and H1 with the same argu-
ments as in [5].

The main tools in this article are the sample paths LDP’s for the solutions of
the three Cauchy problems. They are uniform in the initial data. Unlike in [8, 15,
16], we use a Freidlin–Wentzell-type formulation of the upper and lower bounds
of the LDP’s. Indeed, it seems that the restriction in [16] that initial data must
be in compact sets is a real limitation for stochastic NLS equations. The linear
Schrödinger group is not compact due to the lack of smoothing effect and to the
fact that we work on the whole space R

d . This limitation disappears when we work
with the Freidlin–Wentzell-type formulation; we may now obtain bounds for initial
data in balls of L2 or H1 for ε small enough. It is well known that in metric spaces
and for nonuniform LDP’s, the two formulations are equivalent. A proof is given in
the Appendix and we stress, in the multiplicative case, the slight differences with
the proof of the result in [16].
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We denote by S(u0, h) the skeleton of equation (2.1) or (2.2), that is, the mild
solution of the controlled equation⎧⎨

⎩ i

(
du

dt
+ αu

)
= �u + λ|u|2σ u + 
h,

u(0) = u0,

where u0 belongs to L2 or H1 in the additive case and the mild solution of⎧⎨
⎩ i

(
du

dt
+ αu

)
= �u + λ|u|2σ u + u
h,

u(0) = u0,

where u0 belongs to H1 in the multiplicative case.
The rate functions of the LDP’s are always defined as

I
u0
T (w) = (1/2) inf

h∈L2(0,T ;L2) : S(u0,h)=w

∫ T

0
‖h(s)‖2

L2 ds.

For T and a positive, we denote by K
u0
T (a) = (I

u0
T )−1([0, a]) the sets

K
u0
T (a) =

{
w ∈ C([0, T ];L2) :w = S(u0, h), (1/2)

∫ T

0
‖h(s)‖2

L2 ds ≤ a

}
.

We also denote by dC([0,T ];L2) the usual distance between sets of C([0, T ];L2) and
by dC([0,T ];H1) the distance between sets of C([0, T ];H1).

We write S̃(u0, f ) for the skeleton of equation (2.2), where we replace 
h by
∂f
∂t

, where f belongs to H1
0(0, T ;Hs

R
), the subspace of C([0, T ];Hs

R
) of functions

that vanishes at zero and whose time derivative is square integrable. Also, Ca de-
notes the set

Ca =
{
f ∈ H1

0(0, T ;Hs
R
) :

∂f

∂t
∈ im
,

IW
T (f ) = (1/2)

∥∥∥∥
−1
|(ker
)⊥

∂f

∂t

∥∥∥∥
2

L2(0,T ;L2)

≤ a

}

and A(d) the set [2,∞) when d = 1 or d = 2 and [2,2(3d − 1)/(3(d − 1))) when
d ≥ 3. The above IW

T is the good rate function of the LDP for the Wiener process.
The uniform LDP with the Freidlin–Wentzell formulation that we will need

in the sequel is then as follows. In the additive case, we consider the L2 and
H1-topologies, while in the multiplicative case we consider the H1-topology only.
As has been explained previously, we do not consider the L2-topology for multi-
plicative noises since then the L2-norm remains invariant for the stochastic evolu-
tion.

THEOREM 2.1. In the additive case and in L2, we have, for every a, ρ, T , δ

and γ positive:
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(i) there exists ε0 positive such that for every ε in (0, ε0), u0 such that ‖u0‖L2 ≤ ρ

and ã in (0, a],
P

(
dC([0,T ];L2)(u

ε,u0,K
u0
T (ã)) ≥ δ

)
< exp

(−(ã − γ )/ε
);

(ii) there exists ε0 positive such that for every ε in (0, ε0), u0 such that ‖u0‖L2 ≤ ρ

and w in K
u0
T (a),

P
(‖uε,u0 − w‖C([0,T ];L2) < δ

)
> exp

(−(
I

u0
T (w) + γ

)
/ε

)
.

In H1, the result holds for additive and multiplicative noises replacing in the above
‖u0‖L2 by ‖u0‖H1 and C([0, T ];L2) by C([0, T ];H1).

The proof of this result is given in the Appendix.

REMARK 2.2. The extra condition “For every a positive and K compact in
L2, the set KK

T (a) = ⋃
u0∈K K

u0
T (a) is a compact subset of C([0, T ];L2)” often

appears to be part of a uniform LDP. It is not used in the following.

3. Exit from a domain of attraction in L2.

3.1. Statement of the results. In this section, we only consider the case of an
additive noise. Recall that for the real multiplicative noise, the mass is decreasing
and thus exit is impossible.

We may easily check that the mass N(S(u0,0)) of the solution of the determin-
istic equation satisfies

N(S(u0,0)(t)) = N(u0) exp(−2αt).(3.1)

With noise, though, the mass fluctuates around the deterministic decay. Recall how
the Itô formula applies to the fluctuation of the mass (see [5] for a proof),

N(uε,u0(t)) − N(u0) = −2
√

εIm

∫
Rd

∫ t

0
uε,u0 dW dx

(3.2)
− 2α‖uε,u0‖2

L2(0,t;L2)
+ εt‖
‖2

L0,0
2

.

We consider domains D which are bounded measurable subsets of L2 containing
0 in its interior and invariant under the deterministic flow, that is

∀u0 ∈ D, ∀t ≥ 0 S(u0,0)(t) ∈ D.

It is thus possible to consider balls. There exists R positive such that D ⊂ BR .
We define by

τ ε,u0 = inf{t ≥ 0 :uε,u0(t) ∈ Dc}
the first exit time of the process uε,u0 from the domain D.
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Simple information on the exit time is obtained as follows. The expectation of an
integration via the Duhamel formula of the Itô decomposition, the process uε,u0 be-
ing stopped at the first exit time, gives E[exp(−2ατε,u0)] = 1 − 2αR/(ε‖
‖2

L0,0
2

).

Without damping, we obtain E[τ ε,u0] = R/(ε‖
‖2
L0,0

2
). To obtain more precise

information for small noises, we use LDP techniques.
Let us introduce

e = inf{I 0
T (w) :w(T ) ∈ D

c
, T > 0}.

When ρ is positive and small enough, we set

eρ = inf{Iu0
T (w) :‖u0‖L2 ≤ ρ, w(T ) ∈ (D−ρ)c, T > 0},

where D−ρ = D \N 0(∂D,ρ) and ∂D is the boundary of ∂D in L2. We then define

e = lim
ρ→0

eρ.

In this section, we shall denote by ‖
‖c the norm of 
 as a bounded operator
on L2. Let us start with the following lemma.

LEMMA 3.1. 0 < e ≤ e.

PROOF. It is clear that e ≤ e. Let us check that e > 0. Let d denote the pos-
itive distance between 0 and ∂D. Take ρ sufficiently small so that the distance
between B0

ρ and (D−ρ)c is larger than d/2. Multiplying the evolution equation

by −iS(u0, h), taking the real part, integrating over space and using the Duhamel
formula, we obtain

N(S(u0, h)(T )) − exp(−2αT )N(u0)

= 2
∫ T

0
exp

(−2α(T − s)
)
Im

(∫
Rd

S(u0, h)
hdx ds

)
.

If S(u0, h)(T ) ∈ (D−ρ)c and corresponds to the first escape from D, then

d/2 ≤ 2‖
‖c

∫ T

0
exp

(−2α(T − s)
)‖S(u0, h)(s)‖L2‖h(s)‖L2 ds

≤ 2R‖
‖c

(∫ T

0
exp

(−4α(T − s)
)
ds

)1/2

‖h‖L2(0,T ;L2),

thus

αd2/(8R2‖
‖2
c) ≤ ‖h‖2

L2(0,T ;L2)
/2

and the result follows. �
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REMARK 3.2. We would expect e and e to be equal. We may check that it
is enough to prove approximate controllability. The argument is difficult, how-
ever, since we are dealing with noises which are colored spacewise, since the
Schrödinger group does not have global smoothing properties and because of the
nonlinearity. If these two bounds were indeed equal, they would also correspond
to

E(D) = (1/2) inf
{‖h‖2

L2(0,∞;L2)
:∃T > 0 : S(0, h)(T ) ∈ ∂D

}
= inf

v∈∂D
V (0, v),

where the quasi-potential is defined as

V (u0, uf ) = inf{Iu0
T (w) :w ∈ C([0,∞);L2), w(0) = u0, w(T ) = uf , T > 0}.

In this section, we prove the two following results. The first theorem characterizes
the first exit time from the domain.

THEOREM 3.3. For every u0 in D and δ positive, there exists L positive such
that

lim
ε→0

ε log P
(
τ ε,u0 /∈ (

exp
(
(e − δ)/ε

)
, exp

(
(e + δ)/ε

))) ≤ −L(3.3)

and for every u0 in D,

e ≤ lim
ε→0

ε log E(τ ε,u0) ≤ lim
ε→0

ε log E(τ ε,u0) ≤ e.(3.4)

Moreover, for every δ positive, there exists L positive such that

lim
ε→0

ε log sup
u0∈D

P
(
τ ε,u0 ≥ exp

(
(e + δ)/ε

)) ≤ −L(3.5)

and

lim
ε→0

ε log sup
u0∈D

E(τ ε,u0) ≤ e.(3.6)

The second theorem formally characterizes the exit points. We shall define, for
ρ positive and small enough, N a closed subset of ∂D,

eN,ρ = inf
{
I

u0
T (w) :‖u0‖L2 ≤ ρ, w(T ) ∈ (

D \ N 0(N,ρ)
)c

, T > 0
}
.

We then define

eN = lim
ρ→0

eN,ρ.

Note that eρ ≤ eN,ρ and thus e ≤ eN .
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THEOREM 3.4. If eN > e, then, for every u0 in D, there exists L positive such
that

lim
ε→0

ε log P
(
uε,u0(τ ε,u0) ∈ N

) ≤ −L.

Thus, the probability of an escape from D via points of N such that eρ ≤ eN,ρ

goes to zero exponentially fast with ε.
Supposing that we are able to solve the previous control problem, then, as the

noise goes to zero, the probability of an exit via closed subsets of ∂D where the
quasi-potential is not minimal goes to zero. As the expected exit time is finite, an
exit occurs almost surely. It is exponentially more likely that it occurs via infima of
the quasi-potential. When there are several infima, the exit measure is a probability
measure on ∂D. When there is only one infimum, we may state the following
corollary.

COROLLARY 3.5. Assume that v∗ in ∂D is such that, for every δ positive and
N = {v ∈ ∂D :‖v − v∗‖L2 ≥ δ}, we have eN > e. We then have

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : lim
ε→0

ε log P
(‖uε,u0(τ ε,u0) − v∗‖L2 ≥ δ

) ≤ −L.

3.2. Preliminary lemmas. Let us define

σε,u0
ρ = inf{t ≥ 0 :uε,u0(t) ∈ B0

ρ ∪ Dc},
where B0

ρ ⊂ D.

LEMMA 3.6. For every ρ and L positive with B0
ρ ⊂ D, there exist T and ε0

positive such that, for every u0 in D and ε in (0, ε0),

P(σ ε,u0
ρ > T ) ≤ exp(−L/ε).

PROOF. The result is straightforward if u0 belongs to B0
ρ . Suppose, now, that

u0 belongs to D \ B0
ρ . From equation (3.1), the bounded subsets of L2 are uni-

formly attracted to zero by the flow of the deterministic equation. Thus, there ex-
ists a positive time T1 such that, for every u1 in the ρ/8-neighborhood of D \ B0

ρ

and t ≥ T1, S(u1,0)(t) ∈ B0
ρ/8. We shall choose ρ < 8 and follow three steps.

Step 1. Let us first recall why there exists M ′ = M ′(T1,R,σ,α) such that

sup
u1∈N 0(D\B0

ρ,ρ/8)

‖S(u1,0)‖Y (T1,2σ+2) ≤ M ′.(3.7)

From the Strichartz inequalities, there exists C positive such that

‖S(u1,0)‖Y (t,2σ+2) ≤ C‖u1‖L2 + C
∥∥|S(u1,0)|2σ+1∥∥

Lγ ′
(0,t;Ls′ )

+ Cα‖S(u1,0)‖L1(0,t;L2),
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where γ ′ and s′ are such that 1/γ ′ +1/r(p̃) = 1 and 1/s′ +1/p̃ = 1, and (r(p̃), p̃)

is an admissible pair. Note that the first term is smaller than C(R + 1). From the
Hölder inequality, setting

2σ

2σ + 2
+ 1

2σ + 2
= 1

s′ ,
2σ

ω
+ 1

r(2σ + 2)
= 1

γ ′ ,

we can write∥∥|S(u1,0)|2σ+1∥∥
Lγ ′

(0,t;Ls′ )

≤ C‖S(u1,0)‖Lr(2σ+2)(0,t;L2σ+2)‖S(u1,0)‖2σ
Lω(0,t;L2σ+2)

.

It is easy to check that since σ < 2/d , we have ω < r(2σ + 2). Thus, it follows
that

‖S(u1,0)‖Y (t,2σ+2) ≤ C(R + 1) + Ct(ωr(2σ+2))/(r(2σ+2)−ω)‖S(u1,0)‖2σ+1
Y (t,2σ+2)

+ Cα
√

t‖S(u1,0)‖Y (t,2σ+2) .

The function x �→ C(R + 1) + Ct(ωr(2σ+2))/(r(2σ+2)−ω)x2σ+1 + Cα
√

tx − x is
positive on a neighborhood of zero. For t0 = t0(R,σ,α) small enough, the function
has at least one zero. Also, the function goes to ∞ as x goes to ∞. Thus, denoting
by M(R,σ) the first zero of the above function, we obtain, by a classical argument,
that ‖S(u1,0)‖Y (t0,2σ+2) ≤ M(R,σ) for every u1 in N 0(D \ B0

ρ, ρ/8).
Also, as for every t in [0, T ], S(u1,0)(t) belongs to N 0(D \B0

ρ, ρ/8), repeating
the previous argument, where u1 is replaced by S(u1,0)(t0) and so on, we obtain

sup
u1∈N 0(D\B0

ρ,ρ/8)

‖S(u1,0)‖Y (T1,p) ≤ M ′,

where M ′ = �T1/t0�M , proving (3.7).
Step 2. Let us now prove that for T large enough (to be specified later) and

larger than T1, we have

Tρ = {w ∈ C([0, T ];L2) :∀t ∈ [0, T ], w(t) ∈ N 0(D \ B0
ρ, ρ/8)}

(3.8)
⊂ K

u0
T (2L)c.

Since K
u0
T (2L) is included in the image of S(u0, ·), it suffices to consider w in

Tρ such that w = S(u0, h) for some h in L2(0, T ;L2). For h such that S(u0, h)

belongs to Tρ , we have

‖S(u0, h) − S(u0,0)‖C([0,T1];L2) ≥ ‖S(u0, h)(T1) − S(u0,0)(T1)‖L2 ≥ 3ρ/4.

Thus, for the admissible pair (r(2σ + 2),2σ + 2), we have

‖S(u0, h) − S(u0,0)‖Y (T1,2σ+2) ≥ 3ρ/4.(3.9)
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Denote by SM ′+1 the skeleton corresponding to the following control problem:⎧⎨
⎩ i

(
du

dt
+ αu

)
= �u + λθ

(‖u‖Y (t,2σ+2)

M ′ + 1

)
|u|2σ u + 
h,

u(0) = u1,

where θ is a C∞ function with compact support, such that θ(x) = 0 if x ≥ 2 and
θ(x) = 1 if 0 ≤ x ≤ 1. (3.9) then implies that

‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (T1,2σ+2) ≥ 3ρ/4.

We shall now split the interval [0, T1] into many parts. We shall here denote
by Y s,t,2σ+2, for s < t , the space Y t,2σ+2 on the interval [s, t]. Applying the
Strichartz inequalities on a small interval [0, t] with the computations in the proof
of Lemma 3.3 in [4], we obtain

‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (t,2σ+2)

≤ Cα
√

t‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (t,2σ+2)

+ CM ′+1t
1−dσ/2‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (t,2σ+2)

+ C
√

t‖
‖c‖h‖L2(0,t;L2),

where CM ′+1 is a constant which depends on M ′ + 1. Now, take t1 small enough
so that CM ′+1t

1−dσd/2
1 + Cα

√
t1 ≤ 1/2. We then obtain

‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (t1,2σ+2) ≤ 2C
√

t1‖
‖c‖h‖L2(0,t1;L2).

In the case where 2t1 < T1, let us see how such an inequality propagates on
[t1,2t1]. We now have two different initial data, SM ′+1(u0, h)(t1) and SM ′+1(u0,

0)(t1). We similarly obtain

‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (t1,2t1,2σ+2)

≤ 2C
√

t1‖
‖c‖h‖L2(0,t1;L2)

+ 2‖SM ′+1(u0, h)(t1) − SM ′+1(u0,0)(t1)‖L2

≤ 2C
√

t1‖
‖c‖h‖L2(0,T1;L2)

+ 2‖SM ′+1(u0, h)(t1) − SM ′+1(u0,0)(t1)‖Y (0,t1,2σ+2) .

Then, iterating on each interval of the form [kt1, (k + 1)t1] for k in {1, . . . ,

�T1/t1 − 1�}, the remaining term can be treated similarly and, using the triangle
inequality, we obtain that

‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (T1,2σ+2) ≤ 2�T1/t1�+1C
√

t1‖
‖c‖h‖L2(0,T1;L2).

We may then conclude that

‖h‖2
L2(0,T1;L2)

/2 ≥ M ′′,
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where M ′′ = ρ2/(8C(t1, T1)‖
‖2
c) and C(t1, T1) is a constant which depends only

on t1 and T1. Note that we have (used for later purposes) that 3ρ/2 > ρ/2.
Similarly replacing [0, T1] by [T1,2T1] and u0 by S(u0, h)(T1) and S(u0,0)(T1),

respectively, in (3.9), the inequality still holds true. Thus, thanks to the inverse tri-
angle inequality, we obtain the following on [T1,2T1]:

‖SM ′+1(u0, h) − SM ′+1(u0,0)‖Y (T1,2T1,2σ+2)

= ‖SM ′+1(SM ′+1(u0, h)(T1), h) − SM ′+1(SM ′+1(u0,0)(T1),0)‖Y (0,T1,2σ+2)

≥ 3ρ/4.

Thus, from the inverse triangle inequality, along with the fact that for both
SM ′+1(u0, h)(T1) and SM ′+1(u0,0)(T1) as initial data, the deterministic solutions
belong to the ball B0

ρ/8, we obtain

‖SM ′+1(SM ′+1(u0, h)(T1), h) − SM ′+1(SM ′+1(u0, h)(T1),0)‖Y (0,T1,2σ+2) ≥ ρ/2.

We finally obtain the same lower bound

‖h‖2
L2(T1,2T1;L2)

/2 ≥ M ′′

as before.
Iterating the argument, we obtain, if T > 2T1, that

‖h‖2
L2(0,2T1;L2)

/2 = ‖h‖2
L2(0,T1;L2)

/2 + ‖h‖2
L2(T1,2T1;L2)

/2 ≥ 2M ′′.

Thus, for j positive and T > jT1, we obtain, iterating the above argument, that

‖h‖2
L2(0,jT1;L2)

/2 ≥ jM ′′.

The result (3.8) is obtained for T = jT1, where j is such that jM ′′ > 2L.
Step 3. We may now conclude from part (i) of Theorem 2.1 since

P(σ ε,u0
ρ > T ) = P

(∀t ∈ [0, T ], uε,u0(t) ∈ D \ B0
ρ

)
= P

(
dC([0,T ];L2)(u

ε,u0,T c
ρ ) > ρ/8

)
,

≤ P
(
dC([0,T ];L2)(u

ε,u0,K
u0
T (2L)) ≥ ρ/8

)
,

taking a = 2L, ρ = R where D ⊂ BR , δ = ρ/8 and γ = L.
Note that if ρ ≥ 8, we should replace R+1 by R+ρ/8 and M ′+1 by M ′+ρ/8.

In any case, we will use the lemma for small ρ. �

LEMMA 3.7. For every ρ positive such that B0
ρ ⊂ D and u0 is in D, there

exists L positive such that

lim
ε→0

ε log P
(
uε,u0(σ ε,u0

ρ ) ∈ ∂D
) ≤ −L.
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PROOF. Take ρ positive satisfying the assumptions of the lemma and take u0
in D. When u0 belongs to B0

ρ the result is straightforward. Suppose, now, that u0

belongs to D \ B0
ρ . Letting T be defined as

T = inf{t ≥ 0 : S(u0,0)(t) ∈ B0
ρ/2},

then since S(u0,0)([0, T ]) is a compact subset of D, the distance d between
S(u0,0)([0, T ]) and Dc is well defined and positive. The conclusion then follows
from the fact that

P
(
uε,u0(σ ε,u0

ρ ) ∈ ∂D
) ≤ P

(‖uε,u0 − S(u0,0)‖C([0,T ];L2) ≥ (ρ ∧ d)/2
)
,

the LDP and the fact that, from the compactness of the sets K
u0
T (a) for a positive,

we have

inf
h∈L2(0,T ;L2) : ‖S(u0,h)−S(u0,0)‖C([0,T ];L2)

≥(ρ∧d)/2
‖h‖2

L2(0,T ;L2)
> 0.

We have used the fact that the upper bound of the LDP in the Freidlin–Wentzell
formulation implies the classical upper bound. Note that this is a well-known result
for nonuniform LDP’s. Indeed, we do not need a uniform LDP in this proof. �

The following lemma replaces Lemma 5.7.23 in [10]. Indeed, the case of a
stochastic PDE is more intricate than that of an SDE since the linear group is only
strongly and not uniformly continuous. However, it is possible to prove that, when
acting on bounded sets of H1, the group on L2 is uniformly continuous. We shall
proceed in a different manner though in order to keep working in L2.

LEMMA 3.8. For every ρ and L positive such that B0
2ρ ⊂ D, there exists

T (L,ρ) < ∞ such that

lim
ε→0

ε log sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]
(
N(uε,u0(t)) − N(u0)

) ≥ 3ρ2
)

≤ −L.

PROOF. Take L and ρ positive. Note that for every ε in (0, ε0) where ε0 =
ρ2/‖
‖2

L0,0
2

, for T (L,ρ) ≤ 1, we have εT (L,ρ)‖
‖2
L0,0

2
< ρ2. Thus, from equa-

tion (3.2), we know that it is enough to prove that there exists T (L,ρ) ≤ 1 such
that for ε1 small enough, ε1 < ε0, and for all ε < ε0,

ε log sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]

(
−2

√
εIm

∫
Rd

∫ t

0
uε,u0,τ dW dx

)
≥ 2ρ2

)
≤ −L,

where uε,u0,τ is the process uε,u0 stopped at τ
ε,u0

S0
2ρ

, the first time when uε,u0 hits

S0
2ρ . Setting Z(t) = Im

∫
Rd

∫ t
0 uε,u0,τ dW dx, it is enough to show that

ε log sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]
|Z(t)| ≥ ρ2/

√
ε

)
≤ −L
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and thus to show exponential tail estimates for the process Z(t). Our proof
now closely follows that of Theorem 2.1 in [21]. We introduce the function
fl(x) = √

1 + lx2, where l is a positive parameter. We now apply the Itô formula
to fl(Z(t)) and the process decomposes into 1 + El(t) + Rl(t), where

El(t) =
∫ t

0

2lZ(t)√
1 + lZ(t)2

dZ(t) − (1/2)

∫ t

0

(
2lZ(t)√

1 + lZ(t)2

)2

d〈Z〉t
and

Rl(t) = (1/2)

∫ t

0

(
2lZ(t)√

1 + lZ(t)2

)2

d〈Z〉t +
∫ t

0

l

(1 + lZ(t)2)3/2)
d〈Z〉t .

Moreover, given (ej )j∈N, a complete orthonormal system on L2,

〈Z(t)〉 =
∫ t

0

∑
j∈N

(uε,u0,τ ,−i
ej )
2
L2(s) ds,

and we prove with the Hölder inequality that |Rl(t)| ≤ 12lρ2‖
‖2
L0,0

2
t for every u0

in D. We may thus write

P

(
sup

t∈[0,T (L,ρ)]
|Z(t)| ≥ ρ2/

√
ε

)

= P

(
sup

t∈[0,T (L,ρ)]
exp(fl(Z(t))) ≥ exp

(
fl

(
ρ2/

√
ε
)))

≤ P

(
sup

t∈[0,T (L,ρ)]
exp(El(t))

≥ exp
(
fl

(
ρ2/

√
ε
) − 1 − 12lρ2‖
‖2

L0,0
2

T (L,ρ)
))

.

The Novikov condition is also satisfied and El(t) is such that (exp(El(t)))t∈R+ is
a uniformly integrable martingale. The exponential tail estimates follow from the
Doob inequality, optimizing the parameter l. We may then write

sup
u0∈S0

ρ

P

(
sup

t∈[0,T (L,ρ)]
|Z(t)| ≥ ρ2/

√
ε

)
≤ 3 exp

(
− ρ2

48ε‖
‖2
L0,0

2
T (L,ρ)

)
.

We now conclude by setting T (L,ρ) = ρ2/(50‖
‖2
L0,0

2
L) and choosing ε1 < ε0

small enough. �

3.3. Proofs of Theorem 3.3 and Theorem 3.4. We first prove Theorem 3.3.

PROOF OF THEOREM 3.3. Let us first prove (3.6) and then deduce (3.5). Fix
δ positive and choose h and T1 such that S(0, h)(T1) ∈ D

c
and

I 0
T1

(S(0, h)) = (1/2)‖h‖2
L2(0,T ;L2)

≤ e + δ/5.
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Let d0 denote the positive distance between S(0, h)(T1) and D. With similar argu-
ments as in [5] or with a truncation argument, we may prove that the skeleton is
continuous with respect to the initial datum for the L2-topology. Thus, there exists
ρ positive, a function of h which has been fixed, such that if u0 belongs to B0

ρ ,
then

‖S(u0, h) − S(0, h)‖C([0,T1];L2) < d0/2.

We may assume that ρ is such that B0
ρ ⊂ D. From the triangle inequality and part

(ii) of Theorem 2.1, there exists ε1 positive such that for all ε in (0, ε1) and u0 in
B0

ρ ,

P(τ ε,u0 < T1) ≥ P
(‖uε,u0 − S(0, h)‖C([0,T1];L2) < d0

)
≥ P

(‖uε,u0 − S(u0, h)‖C([0,T1];L2) < d0/2
)

≥ exp
(
−

(
I

u0
T1

(S(u0, h)) + δ

5

)/
ε

)
.

From Lemma 3.6, there exists T2 and ε2 positive such that for all ε in (0, ε2),

inf
u0∈D

P(σ ε,u0
ρ ≤ T2) ≥ 1/2.

Thus, for T = T1 + T2, from the strong Markov property we obtain that for all
ε < ε3 < ε1 ∧ ε2,

q = inf
u0∈D

P(τ ε,u0 ≤ T ) ≥ inf
u0∈D

P(σ ε,u0
ρ ≤ T2) inf

u0∈B0
ρ

P(τ ε,u0 ≤ T1)

≥ (1/2) exp
(−(

I
u0
T1

(S(u0, h)) + δ/5
)
/ε

)
≥ exp

(−(
I

u0
T1

(S(u0, h)) + 2δ/5
)
/ε

)
.

Thus, for any k ≥ 1, we have

P
(
τ ε,u0 > (k + 1)T

) = [
1 − P

(
τ ε,u0 ≤ (k + 1)T |τ ε,u0 > kT

)]
P(τ ε,u0 > kT )

≤ (1 − q)P(τ ε,u0 > kT )

≤ (1 − q)k.

We may now compute, since I
u0
T1

(S(u0, h)) = I 0
T1

(S(0, h)) = (1/2)‖h‖2
L2(0,T ;L2)

,

sup
u0∈D

E(τ ε,u0) = sup
u0∈D

∫ ∞
0

P(τ ε,u0 > t)dt

≤ T

[
1 +

∞∑
k=1

sup
x∈D

P(τ ε,u0 > kT )

]

≤ T/q

≤ T exp
(
(e + 3δ/5)/ε

)
.
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This implies that there exists ε4 small enough such that for ε in (0, ε4),

sup
u0∈D

E(τ ε,u0) ≤ exp
(
(e + 4δ/5)/ε

)
.(3.10)

Thus, the Chebyshev inequality gives that

sup
u0∈D

P
(
τ ε,u0 ≥ exp

(
(e + δ)/ε

)) ≤ exp
(−(e + δ)/ε

)
sup
u0∈D

E(τ ε,u0),

in other words,

sup
u0∈D

P
(
τ ε,u0 ≥ exp

(
(e + δ)/ε

)) ≤ exp
(−δ/(5ε)

)
.(3.11)

Relations (3.10) and (3.11) imply (3.6) and (3.5).
Let us now prove the lower bound on τ ε,u0 . Take δ positive. Recall that we have

proven that e > 0. Take ρ positive and small enough so that e − δ/4 ≤ eρ and
B0

2ρ ⊂ D. We define the following sequences of stopping times, for θ0 = 0 and k

in N,

τk = inf{t ≥ θk :uε,u0(t) ∈ B0
ρ ∪ Dc},

θk+1 = inf{t > τk :uε,u0(t) ∈ S0
2ρ},

where θk+1 = ∞ if uε,u0(τk) ∈ ∂D. Fix T1 = T (e − 3δ/4, ρ) given in Lemma 3.8.
We know that there exists ε1 positive such that for all ε in (0, ε1), for all k ≥ 1 and
u0 in D,

P(θk − τk−1 ≤ T1) ≤ exp
(−(e − 3δ/4)/ε

)
.

For u0 in D and an m in N
∗, we have

P(τ ε,u0 ≤ mT1) ≤ P(τ ε,u0 = τ0) +
m∑

k=1

P(τ ε,u0 = τk)

+ P(∃k ∈ {1, . . . ,m} : θk − τk−1 ≤ T1)
(3.12)

= P(τ ε,u0 = τ0) +
m∑

k=1

P(τ ε,u0 = τk)

+
m∑

k=1

P(θk − τk−1 ≤ T1).

In other words, the escape before mT1 can occur either as an escape without pass-
ing in the small ball B0

ρ (if u0 belongs to D \ B0
ρ ) or as an escape with k in

{1, . . . ,m} significant fluctuations off B0
ρ , that is, crossing S0

2ρ , or at least one of

the first m transitions between S0
ρ and S0

2ρ happens in less than T1. The latter is
known to be arbitrarily small. Let us prove that the remaining probabilities are
small enough for small ε.
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For every k ≥ 1 and T2 positive, we may write

P(τ ε,u0 = τk) ≤ P(τ ε,u0 ≤ T2; τ ε,u0 = τk) + P(σ ε,u0
ρ > T2).

Fix T2 as in Lemma 3.6, with L = e − 3δ/4. Thus, there exists ε2 small enough so
that for ε in (0, ε2),

P(σ ε,u0
ρ > T2) ≤ exp

(−(e − 3δ/4)/ε
)
.

Also, from part (i) of Theorem 2.1, we obtain that there exists ε3 positive such that
for every u1 in B0

ρ and ε in (0, ε3),

P(τ ε,u1 ≤ T2) ≤ P
(
dC([0,T2];L2)

(
uε,u1,K

u1
T2

(eρ − δ/4)
) ≥ ρ

)
≤ exp

(−(eρ − δ/2)/ε
)

≤ exp
(−(e − 3δ/4)/ε

)
.

Thus, the above bound holds for P(τ ε,u0 ≤ T2; τ ε,u0 = τk), replacing u1 by
uε,u0(τk−1), since, as k ≥ 1, uε,u0(τk−1) belongs to B0

ρ and τk − τk−1 ≤ T2, and
by using the Markov property. The inequality (3.12) gives that, for all ε in (0, ε0),
where ε0 = ε1 ∧ ε2 ∧ ε3,

P(τ ε,u0 ≤ mT1) ≤ P
(
uε,u0(σ ε,u0

ρ ) ∈ ∂D
) + 3m exp

(−(e − 3δ/4)/ε
)
.

Fix m = �(1/T1) exp((e − δ)/ε)�. Then, for all ε in (0, ε0),

P
(
τ ε,u0 ≤ exp

(
(e − δ)/ε

)) ≤ P(τ ε,u0 ≤ mT1)

≤ P
(
uε,u0(σ ε,u0

ρ ) ∈ ∂D
) + (3/T1) exp

(−δ/(4ε)
)
.

We may now conclude by using Lemma 3.7 and obtain the expected lower bound
on E(τ ε,u0) from the Chebyshev inequality. �

Let us now prove Theorem 3.4.

PROOF OF THEOREM 3.4. Let N be a closed subset of ∂D. When eN = ∞,
we shall replace, in the proof that follows, eN by an increasing sequence of
positive numbers. Take δ such that 0 < δ < (eN − e)/3, ρ positive such that
eN − δ/3 ≤ eN,ρ and B0

2ρ ⊂ D. Define the same sequences of stopping times
(τk)k∈N and (θk)k∈N as in the proof of Theorem 3.3.

Take L = eN − δ and T1 and T2 = T (L,ρ) as in Lemmas 3.6 and 3.8.
Thanks to Lemma 3.6 and the uniform LDP, with a computation similar to
the one following inequality (3.12), we obtain that for ε0 small enough and
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ε ≤ ε0,

sup
u0∈S0

2ρ

P
(
uε,u0(σ ε,u0

ρ ) ∈ N
)

≤ sup
u0∈S0

2ρ

P
(
uε,u0(σ ε,u0

ρ ) ∈ N,σε,u0
ρ ≤ T1

) + sup
u0∈S0

2ρ

P(σ ε,u0
ρ > T1)

≤ sup
u0∈B0

2ρ

P
(
dC([0,T1];L2)

(
uε,u0,K

u0
T1

(eN,ρ − δ/3)
) ≥ ρ

)

+ sup
u0∈D

P
(
σε,u0

ρ > T1
)

≤ 2 exp
(−(eN − δ)/ε

)
.

Possibly choosing ε0 smaller, we may assume that for every positive integer l and
every ε ≤ ε0,

sup
u0∈D

P(τl ≤ lT2) ≤ l sup
u0∈S0

ρ

P

(
sup

t∈[0,T2]
(
N(uε,u0(t)) − N(u0)

) ≥ ρ

)

≤ l exp
(−(eN − δ)/ε

)
.

Thus, if u0 belongs to B0
ρ , then

P
(
uε,u0(τ ε,u0) ∈ N

) ≤ P(τ ε,u0 > τl)

+
l∑

k=1

P
(
uε,u0(τ ε,u0) ∈ N,τε,u0 = τk

)

≤ P(τ ε,u0 > lT2) + P(τl ≤ lT2)

+ l sup
u0∈S0

2ρ

P
(
uε,u0(σ ε,u0

ρ ) ∈ N
)

≤ P(τ ε,u0 > lT2) + 3l exp
(−(eN − δ)/ε

)
.

Now, taking l = �(1/T2) exp((e + δ)/ε)� and using the upper bound (3.11), possi-
bly choosing ε0 smaller, we obtain that for ε ≤ ε0,

sup
u0∈B0

ρ

P
(
uε,u0(τ ε,u0) ∈ N

)

≤ exp
(−δ/(5ε)

) + (4/T2) exp
(−(eN − e + 2δ)/ε

)
≤ exp

(−δ/(5ε)
) + (4/T2) exp(−δ/ε).

Finally, when u0 is any function in D, we conclude the proof by using

P
(
uε,u0(τ ε,u0) ∈ N

) ≤ P
(
uε,u0(σ ε,u0

ρ ) ∈ ∂D
) + sup

u0∈B0
ρ

P
(
uε,u0(τ ε,u0) ∈ N

)

and Lemma 3.7. �
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REMARK 3.9. It is proposed in [22] to introduce control elements to reduce
or enhance exponentially the expected exit time or to act on the exiting points, for
a limited cost. We could then optimize these external fields. However, the problem
is computationally involved since the optimal control problem requires double op-
timization.

4. Exit from a domain of attraction in H1.

4.1. Preliminaries. We now consider a measurable bounded subset D of H1,
invariant under the flow of the deterministic equation and which contains zero in
its interior. We choose R such that D ⊂ B1

R . We consider both (2.1) and (2.2),
where the noise is either of additive or of multiplicative type. In this section, we
are interested in both the fluctuation of the L2-norm and that of the L2-norm of the
gradient. The Hamiltonian and a modified Hamiltonian are thus of particular in-
terest. We first distinguish the case where the nonlinearity is defocusing (λ = −1)
where the Hamiltonian takes nonnegative values from the case where the nonlin-
earity is focusing (λ = 1) where the Hamiltonian may take negative values.

We may prove—see, for example, [18]—that

d

dt
H(S(u0,0)(t)) + 2α�(S(u0,0)) = 0,

where S(u0,0) is the solution of the deterministic weakly damped nonlinear
Schrödinger equation with initial datum u0 in H1 and

�(S(u0,0)) = ‖∇S(u0,0)‖2
L2/2 − λ

∫
Rd

|S(u0,0)(x)|2σ+2 dx/2.

Thus, when the nonlinearity is defocusing, we have

0 ≤ H(S(u0,0)(t)) ≤ H(u0) exp(−2αt).(4.1)

As in [9], we consider in the focusing case, a modified Hamiltonian denoted by
H̃(u), defined for u in H1 by

H̃(u) = H(u) + β(σ, d)C‖u‖2+4σ/(2−σd)

L2 ,

where the constant C is that of the third inequality in the following sequence of
inequalities, where we use the Gagliardo–Nirenberg inequality

‖u‖2σ+2
L2σ+2/(2σ + 2) ≤ C‖u‖2σ+2−σd

L2 ‖∇u‖σd
L2 ≤ ‖∇u‖2

L2/4 + C‖u‖2+4σ/(2−σd)

L2

and β(σ, d) = 2σ(2−σd)
(σ+2)(2−σd)+2σ(4σ+3)

∨ 2. When evaluated at the deterministic so-
lution, the modified Hamiltonian satisfies

0 ≤ H̃(S(u0,0)(t)) ≤ H̃(u0) exp
(
−2α

3(σ + 1)

4σ + 3
t

)
.(4.2)
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Also, when the nonlinearity is defocusing, we now have, for every β positive,

0 ≤ H̃(S(u0,0)(t)) ≤ H̃(u0) exp(−2αt).(4.3)

From the Sobolev inequalities, for ρ positive, the sets

H̃ρ = {u ∈ H1 : H̃(u) = ρ} = H̃−1({ρ}), ρ > 0,

are closed subsets of H1 and

H̃<ρ = {u ∈ H1 : H̃(u) < ρ} = H̃−1([0, ρ)), ρ > 0,

are open subsets of H1.
Also, H̃ is such that

‖∇u‖2
L2/2 + βC‖u‖2+4σ/(2−σd)

L2
(4.4)

≤ H̃(u) ≤ 3‖∇u‖2
L2/4 + (β + 1)C‖u‖2+4σ/(2−σd)

L2

when the nonlinearity is defocusing and

‖∇u‖2
L2/4 + C‖u‖2+4σ/(2−σd)

L2 ≤ H̃(u)
(4.5)

≤ ‖∇u‖2
L2/2 + β(σ, d)C‖u‖2+4σ/(2−σd)

L2

when it is focusing. Thus, the sets H̃<ρ for ρ positive are bounded in H1 and a
bounded set in H1 is bounded for H̃. Note that the domain of attraction D may be
a domain of the form H̃<ρ .

We no longer distinguish the focusing and defocusing cases and take the same
value of β , that is, β(σ, d). Also, to simplify the notation, we now sometimes drop
the dependence of the solution on ε and u0.

The fluctuation of H̃(uε,u0(t)) is of particular interest. We have the following
result when the noise is of additive type.

PROPOSITION 4.1. When u denotes the solution of equation (2.1) and (ej )j∈N

is a complete orthonormal system on L2, the following decomposition holds:

H̃(u(t)) = H̃(u0) − 2α

∫ t

0
�(u(s)) ds

− 2βC
(
1 + 2σ/(2 − σd)

)
α

∫ t

0
‖u(s)‖2+4σ/(2−σd)

L2 ds

+ √
ε

(
Im

∫
Rd

∫ t

0
∇u(s)∇ dW(s) dx

− λIm

∫
Rd

∫ t

0
|u(s)|2σu(s) dW(s) dx

+ 2βC
(
1 + 2σ/(2 − σd)

)
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× Im

∫
Rd

∫ t

0
‖u(s)‖4σ/(2−σd)

L2 u(s) dW(s) dx

)

− (λε/2)
∑
j∈N

∫ t

0

∫
Rd

[|u(s)|2σ |
ej |2

+ 2σ |u(s)|2σ−2(Re(u(s)
ej ))
2]dx ds

+ (ε/2)‖∇
‖2
L0,0

2
t

+ εβC
(
1 + 2σ/(2 − σd)

)‖
‖2
L0,0

2

∫ t

0
‖u(s)‖4σ/(2−σd)

L2 ds

+ εβC
(
4σ/(2 − σd)

)(
1 + 2σ/(2 − σd)

)
× ∑

j∈N

∫ t

0
‖u(s)‖2(2σ/(2−σd)−1)

L2

(
Re

∫
Rd

u(s)
ej dx

)2

ds.

PROOF. The result follows from the Itô formula. The main difficulty is in jus-
tifying the computations. We may proceed as in [5]. �

Also, when the noise is of multiplicative type, we obtain the following proposi-
tion.

PROPOSITION 4.2. When u denotes the solution of equation (2.2) and (ej )j∈N

is a complete orthonormal system on L2, the following decomposition holds:

H̃(u(t)) = H̃(u0) − 2α

∫ t

0
�(u(s)) ds

− 2βC
(
1 + 2σ/(2 − σd)

)
α

∫ t

0
‖u(s)‖2+4σ/(2−σd)

L2 ds

+ √
εIm

∫
Rd

∫ t

0
u(s)∇u(s)∇ dW(s) dx

+ (ε/2)
∑
j∈N

∫ t

0

∫
Rd

|u(s)|2|∇
ej |2 dx ds.

The first exit time τ ε,u0 from the domain D in H1 is defined as in Section 2. We
also define

e = inf{I 0
T (w) :w(T ) ∈ D

c
, T > 0}

and, for ρ positive and small enough,

eρ = inf{Iu0
T (w) : H̃(u0) ≤ ρ, w(T ) ∈ (D−ρ)c, T > 0},
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where D−ρ = D \ N 1(∂D,ρ). We then set

e = lim
ρ→0

eρ.

Also, for ρ positive and small enough and N a closed subset of the boundary of D,
we define

eN,ρ = inf
{
I

u0
T (w) : H̃(u0) ≤ ρ, w(T ) ∈ (

D \ N 1(N,ρ)
)c

, T > 0
}

and

eN = lim
ρ→0

eN,ρ.

We also finally introduce

σε,u0
ρ = inf{t ≥ 0 :uε,u0(t) ∈ H̃<ρ ∪ Dc},

where H̃<ρ ⊂ D.
Again, we have the following inequalities.

LEMMA 4.3. 0 < e ≤ e.

PROOF. We need only prove the first inequality. Integrating the equation de-

scribing the evolution of H̃(S(u0, h)(t)) via the Duhamel formula, where the skele-
ton is that of the equation with an additive noise, we obtain

H̃(S(u0, h)(T )) − exp
(
−2α

3(σ + 1)

4σ + 3
T

)
H̃(u0)

≤
∫ T

0
exp

(
−2α

3(σ + 1)

4σ + 3
(T − s)

)

×
[
Im

∫
Rd

(∇S(u0, h)∇
h)(s, x) dx

− λIm

∫
Rd

(|S(u0, h)|2σ S(u0, h)
h)(s, x) dx

− 2Cβ
(
1 + 2σ/(2 − σd)

)
Im

∫
Rd

(S(u0, h)
h)(s, x) dx

]
ds,

with a focusing or defocusing nonlinearity. Let d denote the positive distance be-
tween 0 and ∂D. Take ρ such that the distance between B1

ρ and (D−ρ)c is larger
than d/2. We then have, from the Sobolev injection of H1 into L2σ+2,
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d/2 ≤
∫ T

0
exp

(
−2α

3(σ + 1)

4σ + 3
(T − s)

)

× [
R‖
‖Lc(L2,H1)‖h‖L2

+ CR2σ+1‖
‖Lc(L2,H1)‖h‖L2

+ 2Cβ
(
1 + 2σ/(2 − σd)

)
R‖
‖Lc(L2,L2)‖h‖L2

]
ds.

We conclude as in Lemma 3.1 and use the fact that from the choice of β ,
the complement of a ball is included in the complement of a set H̃<a . In the
case of the skeleton of the equation with a multiplicative noise, it is enough
to replace the bracketed term in the right-hand side of the above formula by
Im

∫
Rd (∇S(u0, h)S(u0, h)∇
h)(s, x) dx. Recall that we can proceed as in the ad-

ditive case since we have required that 
 belongs to L0,s
2,R, where s > d/2 + 1. In

particular, 
 belongs to Lc(L2,W1,∞). �

4.2. Statement of the results. The theorems of Section 2 still hold for a domain
of attraction in H1 and a noise of additive or multiplicative type.

THEOREM 4.4. For every u0 in D and δ positive, there exists L positive such
that

lim
ε→0

ε log P
(
τ ε,u0 /∈ (

exp
(
(e − δ)/ε

)
, exp

(
(e + δ)/ε

))) ≤ −L,(4.6)

and for every u0 in D,

e ≤ lim
ε→0

ε log E(τ ε,u0) ≤ lim
ε→0

ε log E(τ ε,u0) ≤ e.(4.7)

Moreover, for every δ positive, there exists L positive such that

lim
ε→0

ε log sup
u0∈D

P
(
τ ε,u0 ≥ exp

(
(e + δ)/ε

)) ≤ −L(4.8)

and

lim
ε→0

ε log sup
u0∈D

E(τ ε,u0) ≤ e.(4.9)

REMARK 4.5. Again, the control argument to prove that e = e seems difficult.
It should be even more difficult for multiplicative noises.

THEOREM 4.6. If eN > e, then for every u0 in D, there exists L positive such
that

lim
ε→0

ε log P
(
uε,u0(τ ε,u0) ∈ N

) ≤ −L.
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Again, we may deduce the corollary

COROLLARY 4.7. Assume that v∗ in ∂D is such that for every δ positive and
N = {v ∈ ∂D :‖v − v∗‖L2 ≥ δ}, we have eN > e. Then,

∀δ > 0, ∀u0 ∈ D, ∃L > 0 : lim
ε→0

ε log P
(‖uε,u0(τ ε,u0) − v∗‖L2 ≥ δ

) ≤ −L.

4.3. Proof of the results. The proofs of these results still rely on three lemmas
and the uniform LDP. Let us now state the lemmas for both a noise of additive and
of multiplicative type.

LEMMA 4.8. For every ρ and L positive with H̃<ρ ⊂ D, there exist T and ε0
positive such that for every u0 in D and ε in (0, ε0),

P(σ ε,u0
ρ > T ) ≤ exp(−L/ε).

PROOF. We proceed as in the proof of Lemma 3.6.
Let d denote the positive distance between 0 and D \ H̃<ρ . Take α positive such

that αρ < d . The domain D is uniformly attracted to 0, thus there exists a time T1
such that for every initial datum u1 in N 1(D \ H̃<ρ,αρ/8), for t ≥ T1, S(u1,0)(t)

belongs to B1
αρ/8.

We could also prove (see [5]) that there exists a constant M ′ which depends on
T1, R, σ and α such that

sup
u1∈N 1(D\H̃<ρ,αρ/8)

‖S(u1,0)‖X(T1,2σ+2) ≤ M ′.(4.10)

Step 2, corresponding to that of Lemma 3.6, in the proof of the additive case
uses the truncation argument and an upper bound similar to that in [5] derived
from the Strichartz inequalities on smaller intervals. We shall also replace ρ/8 by
αρ/8 in the proof of Lemma 3.6.

In Step 2 for the multiplicative case, we also introduce the truncation in front of
the term u
h in the controlled PDE.

The end of the proof is identical to that of Lemma 3.6. The LDP is the LDP in
C([0, T ];H1) for additive or multiplicative noises. �

LEMMA 4.9. For every ρ positive such that H̃ρ ⊂ D and u0 in D, there exists
L positive such that

lim
ε→0

ε log P
(
uε,u0(σ ε,u0

ρ ) ∈ ∂D
) ≤ −L.

PROOF. It is the same proof as for Lemma 3.7. We have only to replace
B0

ρ/2 by any ball in H1 centered at 0 and included in H̃<ρ and to use the LDP

in C([0, T ];H1). �
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LEMMA 4.10. For every ρ and L positive such that H̃2ρ ⊂ D, there exists
T (L,ρ) < ∞ such that

lim
ε→0

ε log sup
u0∈H̃ρ

P

(
sup

t∈[0,T (L,ρ)]
(
H̃(uε,u0(t)) − H̃(u0)

) ≥ ρ

)
≤ −L.

PROOF. Integrating the Itô differential relation using the Duhamel formula
allows for the removal of the drift term that does not originate from the bracket.
Indeed, the event {

sup
t∈[0,T (L,ρ)]

(
H̃(uε,u0(t)) − H̃(u0)

) ≥ ρ

}

is included in{
sup

t∈[0,T (L,ρ)]

(
H̃(uε,u0(t)) − exp

(
−2α

(
3(σ + 1)

4σ + 3

)
T (L,ρ)

)
H̃(u0)

)
≥ ρ

}
.

Then, setting c(σ ) = 3(σ+1)
4σ+3 and m(σ,d) = 1 + 2σ/(2 − σd), and dropping the

exponents ε and u0 to have more concise formulas, we obtain, in the additive case,

H̃(u(t)) − exp(−2αc(σ )t)H̃(u0)

≤ √
ε

(
Im

∫
Rd

∫ t

0
exp

(−2αc(σ )(t − s)
)∇u(s)∇ dW(s) dx

− λIm

∫
Rd

∫ t

0
exp

(−2αc(σ )(t − s)
)|u(s)|2σ u(s) dW(s) dx

+ 2βCm(σ, d)Im

∫
Rd

∫ t

0
exp

(−2αc(σ )(t − s)
)

× ‖u(s)‖4σ/(2−σd)

L2 u(s) dW(s) dx

)

− (λε/2)
∑
j∈N

∫ t

0
exp

(−2αc(σ )(t − s)
)

×
∫

Rd
[|u(s)|2σ |
ej |2

+ 2σ |u(s)|2σ−2(Re(u(s)
ej ))
2]dx ds

+ (
ε/(4αc(σ ))

)(
1 − exp

(−2αc(σ )t
))‖∇
‖2

L0,0
2

+ εβCm(σ, d)

(
‖
‖2

L0,0
2

∫ t

0
exp

(−2αc(σ )(t − s)
)‖u(s)‖4σ/(2−σd)

L2 ds

+ (
4σ/(2 − σd)

)
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× ∑
j∈N

∫ t

0
exp

(−2αc(σ )(t − s)
)

× ‖u(s)‖2(2σ/(2−σd)−1)

L2

×
(
Re

∫
Rd

u(s)
ejdx

)2

ds

)
.

We again use a localization argument and replace the process u by the process
uτ stopped at the first exit time from H̃<2ρ . We use (4.4) and (4.5) and ob-
tain

‖uτ‖2
H1 ≤ 8ρ + (

2ρ/(Cσ)
)1/(1+2σ/(2−σd))

.

We denote the right-hand side of the above by b(ρ,σ, d).
From the Hölder inequality, along with the Sobolev injection of H1 into L2σ+2,

we obtain the following upper bound for the drift:(
ε/(4αc(σ ))

)[(1 + 2σ)c(1,2σ + 2)2σ+2‖
‖2
L0,1

2
b(ρ,σ, d)2σ + ‖∇
‖2

L0,0
2

]

+ m(σ,d)
(
εβC/(2αc(σ ))

)(
1 + 4σ/(2 − σd)

)‖
‖2
L0,0

2
b(ρ,σ, d)4σ/(2−σd),

where we denote by c(1,2σ + 2) the norm of the continuous injection of H1 into
L2σ+2.

Thus, choosing ε small enough, it is enough to show the result for the sto-
chastic integral replacing ρ by ρ/2. Also, it is enough to show the result for
each of the three stochastic integrals replacing ρ/2 by ρ/6. With the same one-
parameter families and similar computations as in the proof of Lemma 3.8, we
know that it is enough to obtain upper bounds of the brackets of the stochastic
integrals

Z1(t) = Im

∫
Rd

∫ t

0
exp(2αc(σ )s)∇uτ (s)∇ dW(s) dx,

Z2(t) = Im

∫
Rd

∫ t

0
exp(2αc(σ )s)|uτ (s)|2σ uτ (s) dW(s) dx,

Z3(t) = 2βCm(σ, d)Im

∫
Rd

∫ t

0
exp(2αc(σ )s)

× ‖uτ (s)‖4σ/(2−σd)

L2 uτ (s) dW(s) dx.

We then obtain

d〈Z1〉t ≤ exp(4αc(σ )t)
∑
j∈N

(∇uτ (t),−i∇
ej)
2
L2 dt,

d〈Z2〉t ≤ exp(4αc(σ )t)
∑
j∈N

(|uτ (t)|2σ uτ (t),−i
ej )
2
L2 dt,
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d〈Z3〉t ≤ 4β2C2m(σ,d)2 exp(4αc(σ )t)‖uτ (t)‖8σ/(2−σd)

L2

× ∑
j∈N

(uτ (t),−i
ej )
2
L2 dt.

Using the Hölder inequality and, for Z2, the continuous Sobolev injection of H1

into L2σ+2, we obtain

d〈Z1〉t ≤ exp(4αc(σ )t)‖
‖2
L0,1

2
b(ρ,σ, d) dt,

d〈Z2〉t ≤ exp(4αc(σ )t)c(1,2σ + 2)2(2σ+2)‖
‖2
L0,1

2
b(ρ,σ, d)2σ+1 dt,

d〈Z3〉t ≤ 4β2C2m(σ,d)2 exp(4αc(σ )t)b(ρ, σ, d)(1+4σ/(2−σd))‖
‖2
L0,1

2
dt.

We can then bound each of the three remainders (Ri
l (t))i=1,2,3 similarly to

what was done in the proof of Lemma 3.8, using the inequality Ri
l (t) ≤

3l
∫ t

0 d〈Zi〉t .
We conclude that it is possible to choose T (L,ρ) equal to

1

4αc(σ )
log

(
αc(σ )ρ2

90b(ρ,σ, d)‖
‖2
L0,1

2
max(1, c(1,2σ + 2)2(2σ+1)b(ρ,σ, d)2σ ,4β2C2m(σ,d)2b(ρ,σ, d)4σ/(2−σd))

)
.

When the noise is of multiplicative type, we obtain

H̃(u(t)) − exp(−2αc(σ )t)H̃(u0)

≤ √
εIm

∫
Rd

∫ t

0
exp

(−2αc(σ )(t − s)
)
u(s)∇u(s)∇ dW(s) dx

+ (ε/2)
∑
j∈N

∫ t

0
exp

(−2αc(σ )(t − s)
) ∫

Rd
|u(s)|2|∇
ej |2 dx ds.

Again, we use a localization argument and consider the process u stopped at the
exit from H̃2ρ . As 
 is Hilbert–Schmidt from L2 into Hs

R
, the second term of the

right-hand side is less than ε
4αc(σ )

‖
‖2
L0,s

2
b(ρ,σ, d) and, for ε small enough, it is

enough to prove the result for the stochastic integral replacing ρ by ρ/2. We know
that it is enough to obtain an upper bound of the bracket of

Z(t) = Im

∫
Rd

∫ t

0
exp(2αc(σ )s)uτ (s)∇uτ (s)∇ dW(s) dx.

We obtain

d〈Z〉t ≤ exp(4αc(σ )t)
∑
j∈N

(∇uτ (t),−iuτ (t)∇
ej )
2
L2 dt.

Denoting by c(s,∞) the norm of the Sobolev injection of Hs
R

into W1,∞
R

, we
deduce that

d〈Z〉t ≤ exp(4αc(σ )t)c(s,∞)2‖
‖2
L0,s

2
b(ρ,σ, d)2 dt.
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Finally, we conclude that we may choose

T (L,ρ) = 1

4αc(σ )
log

(
αc(σ )ρ2

10b(ρ,σ, d)2c(s,∞)2‖
‖2
L0,s

2
L

)
. �

We may now prove Theorems 4.6 and 4.7.

ELEMENTS OF THE PROOF OF THEOREM 4.6. There is no difference in the
proof of the upper bound on τ ε,u0 . Let us thus focus on the lower bound. Take δ

positive. Since e > 0, we now choose ρ positive such that e − δ/4 ≤ eρ , H̃2ρ ⊂ D

and H̃2ρ ⊂ Dc−ρ . We define the sequences of stopping times θ0 = 0 and, for k in N,

τk = inf{t ≥ θk :uε,u0(t) ∈ H̃<ρ ∪ Dc},
θk+1 = inf{t > τk :uε,u0(t) ∈ H̃2ρ},

where θk+1 = ∞ if uε,u0(τk) ∈ ∂D. Let us fix T1 = T (e − 3δ/4, ρ), given by
Lemma 4.10. We now use the fact that for u0 in D and m a positive integer,

P(τ ε,u0 ≤ mT1) ≤ P(τ ε,u0 = τ0) +
m∑

k=1

P(τ ε,u0 = τk)

(4.11)

+
m∑

k=1

P(θk − τk−1 ≤ T1)

and conclude as in the proof of Theorem 3.3. �

We may check that the proof of Theorem 3.4 also applies to Theorem 4.6. The
LDP’s are those in H1 and the sequences of stopping times are those defined above.

REMARK 4.11. In [12], reaction-diffusion equations perturbed by an additive
white noise are considered. When the space dimension is larger than one, the case
where the vector field can be decomposed into a gradient and a second field which
is orthogonal is treated. The quasi-potential is then equal to the potential at the end-
point. It again involves a control argument. In our case, since we consider colored
noises and nonlinear equations, the orthogonality is lost for the geometry of the
reproducing kernel Hilbert space of the law of W(1). We thus obtain extra com-
mutator terms. Under suitable assumptions on the space correlations of the noise,
going to zero, it is possible that we obtain a nontrivial minimization problem. Re-
call that solitary waves are solutions of variational problems where we minimize
the Hamiltonian for fixed levels of the mass.
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APPENDIX: PROOF OF THEOREM 2.1

The following lemma is at the core of the proof of the uniform LDP’s. It is often
called the Azencott lemma or the Freidlin–Wentzell inequality. The differences
with the result of [16] are that here, the initial data are the same for the random
process and the skeleton and that the “for every ρ positive” precedes the “there
exists ε0 and γ positive.” We shall only stress the differences in the proof.

LEMMA A.1. For every a, L, T , δ and ρ positive, f in Ca and p in A(d),
there exist ε0 and γ positive such that for every ε in (0, ε0), ‖u0‖H1 ≤ ρ,

ε log P
(‖uε,u0 − S̃(u0, f )‖X(T,p) ≥ δ; ∥∥√εW − f

∥∥
C([0,T ];Hs

R
) < γ

) ≤ −L.

ELEMENTS OF THE PROOF. There are still three steps in the proof of this
result. The first step is a change of measure to center the process around f . It uses
the Girsanov theorem and is the same as in [16].

The second step is a reduction to estimates for the stochastic convolution. It
strongly involves the Strichartz inequalities, but differs slightly from that in [16].
The truncation argument must hold for all ‖u0‖H1 ≤ ρ. Thus, we use the fact that
there exists M = M(T,ρ,σ ) positive such that

sup
u1∈B1

ρ

‖S̃(u1, f )‖X(T,p) ≤ M.

The proof of this fact follows from the computations in [5]; we have recalled the
arguments in L2 in the proof of Lemma 3.6. The result in H1 is again used in the
proof of Lemma 4.8. As the initial data are the same for the random process and
the skeleton, the remainder of the argument does not require restrictions on ρ.

The third step corresponds to estimates for the stochastic convolution. It is the
same as in [16].

The extra damping term in the drift is easily treated using the Strichartz inequal-
ities. �

ELEMENTS OF THE PROOF OF THEOREM 2.1. Let us start with the case of an
additive noise. Recall that, in that case, the mild solution of the stochastic equation
could be written as a function of the perturbation in the convolution form. Let
vu0(Z) denote the solution of⎧⎨

⎩ i
∂v

∂t
− (

�v + |v − iZ|2σ (v − iZ) − iα(v − iZ)
) = 0,

v(0) = u0

or, equivalently, a fixed point of the functional FZ such that

FZ(v)(t) = U(t)u0 − iλ

∫ t

0
U(t − s)

(|(v − iZ)(s)|2σ (v − iZ)(s)
)
ds

− α

∫ t

0
U(t − s)(v − iZ)(s) ds,
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where Z belongs to C([0, T ];L2) (resp. C([0, T ];H1)). If uε,u0 is defined
as uε,u0 = vu0(Zε) − iZε , where Zε is the stochastic convolution Zε(t) =√

ε
∫ t

0 U(t − s) dW(s), then uε,u0 is a solution of the stochastic equation. Conse-
quently, if G(·, u0) denotes the mapping from C([0, T ];L2) (resp. C([0, T ];H1))
to C([0, T ];L2) (resp. C([0, T ];H1)) defined by G(Z,u0) = vu0(Z)− iZ, then we
obtain uε,u0 = G(Zε,u0). We may also check with arguments, similar to those of
[5, 15], involving the Strichartz inequalities that the mapping G is equicontinuous
in its first arguments for second arguments in bounded sets of L2 (resp. H1). The
result now follows from Proposition 5 in [23].

Let us now consider the case of a multiplicative noise. Initial data belong to H1

and we consider paths in H1. The proof is very close to that in [16].
The main tool is again the Azencott lemma or the almost continuity of the Itô

map. We need a slightly different result from that in [16].
Let us see how the above lemma implies (i) and (ii).
We start with the upper bound (i). Take a, ρ, T and δ positive. Take L > a. For

ã in (0, a], we define

A
u0
ã

= {
v ∈ C([0, T ];H1) :dC([0,T ];H1)(v,K

u0
T (ã)) ≥ δ

}
.

Note that we have A
u0
a ⊂ A

u0
ã

and Cã ⊂ Ca . Take ã ∈ (0, a] and f such that
IW
T (f ) < ã.

We shall now apply the Azencott lemma and choose p = 2. We obtain
ερ,f,δ and γρ,f,δ positive such that for every ε ≤ ερ,f,δ and u0 such that
‖u0‖H1 ≤ ρ,

ε log P
(‖uε,u0 − S̃(u0, f )‖X(T,p) ≥ δ;∥∥√εW − f

∥∥
C([0,T ];Hs

R
) < γρ,f,δ

) ≤ −L.

Let us denote by Oρ,f,δ the set Oρ,f,δ = BC([0,T ];Hs
R
)(f, γρ,f,δ). The family

(Oρ,f,δ)f ∈Ca is a covering by open sets of the compact set Ca , thus there exists a
finite subcovering of the form

⋃N
i=1 Oρ,fi ,δ. We can now write

P(uε,u0 ∈ A
u0
ã

)

≤ P

(
{uε,u0 ∈ A

u0
ã

} ∩
{√

εW ∈
N⋃

i=1

Oρ,fi ,δ

})

+ P

(√
εW /∈

N⋃
i=1

Oρ,fi ,δ

)

≤
N∑

i=1

P
({uε,u0 ∈ A

u0
ã

} ∩ {√
εW ∈ Oρ,fi ,δ

})

+ P
(√

εW /∈ Ca

)
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≤
N∑

i=1

P
({‖uε,u0 − S̃(u0, f )‖X(T,p) ≥ δ

} ∩ {√
εW ∈ Oρ,fi ,δ

})
+ exp(−a/ε)

for ε ≤ ε0, for some positive ε0. We have used the fact that

dC([0,T ];H1)(S̃(u0, f ),A
u0
ã

) ≥ δ,

which is a consequence of the definition of the sets A
u0
ã

.
As a consequence, for ε ≤ ε0 ∧ (mini=1,...,N εu0,fi

), we obtain, for u0 in B1
ρ ,

that

P(uε,u0 ∈ A
u0
ã

) ≤ N exp(−L/ε) + exp(−a/ε)

and, for ε1 small enough, for every ε ∈ (0, ε1), that

ε log P(uε,u0 ∈ A
u0
ã

) ≤ ε log 2 + (ε logN − L) ∨ (−a).

If ε1 is also chosen such that ε1 <
γ

log(2)
∧ L−a

log(N)
, we obtain

ε log P(uε,u0 ∈ A
u0
ã

) ≤ −ã − γ,

which holds for every u0 such that ‖u0‖H1 ≤ ρ.
We now consider the lower bound (ii). Take a, ρ, T and δ positive. The con-

tinuity of S̃(u0, ·), to be proven as in [16], along with the compactness of Ca ,
give that for u0 such that ‖u0‖H1 ≤ ρ and w in K

u0
T (a), there exists f such that

w = S̃(u0, f ) and I
u0
T (w) = IW

T (f ). Take L > Iu0(w). Choose ερ,f,δ positive and
Oρ,f,δ , the ball centered at f of radius γρ,f,δ as defined previously, such that, for
every ε ≤ ερ,f,δ and u0 such that ‖u0‖H1 ≤ ρ,

ε log P
(‖uε,u0 − S̃(u0, f )‖X(T,p) ≥ δ;∥∥√εW − f

∥∥
C([0,T ];Hs

R
) < γρ,f,δ

) ≤ −L.

We obtain

exp
(−IW

T (f )/ε
)

≤ P
(√

εW ∈ Oρ,f,δ

)
≤ P

({‖uε,u0 − S̃(u0, f )‖X(T,p) ≥ δ
} ∩ {√

εW ∈ Oρ,f,δ

})
+ P

(‖uε,u0 − S̃(u0, f )‖X(T,p) < δ
)
.

Thus, for ε ≤ ερ,f,δ and every u0 such that ‖u0‖H1 ≤ ρ,

−Iu0(w) ≤ ε log 2 + (
ε log P

(‖uε,u0 − S̃(u0, f )‖X(T,p) < δ
)) ∨ (−L)

and for ε1 small enough and such that ε1 log(2) < γ , for every positive ε such that
ε < ε1 and every u0 such that ‖u0‖H1 ≤ ρ,

−Iu0(w) − γ ≤ ε log P
(‖uε,u0 − S̃(u0, f )‖X(T,p) < δ

)
.

This completes the proof of (i) and (ii). �
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