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A GEOMETRICAL STRUCTURE FOR AN INFINITE ORIENTED
CLUSTER AND ITS UNIQUENESS

BY XIAN-YUAN WU1 AND YU ZHANG2

Capital Normal University and University of Colorado

We consider the supercritical oriented percolation model. Let K be all
the percolation points. For each u ∈ K, we write γu as its rightmost path. Let
G = ⋃

u γu. In this paper, we show that G is a single tree with only one topo-
logical end. We also present a relationship between K and G and construct a
bijection between K and Z using the preorder traversal algorithm. Through
applications of this fundamental graph property, we show the uniqueness of
an infinite oriented cluster by ignoring finite vertices.

1. Introduction and statement of the results. We consider the graph with
vertices L = {(m,n) ∈ Z

2 :m + n is even} and oriented edges from (m,n) to (m +
1, n + 1) and to (m − 1, n + 1). The oriented edge from u to v is denoted by
[u, v〉. As usual, each edge is independently open or closed with a probability
of p or 1 − p. We denote by Pp the corresponding product measure and by Ep

the expectation with respect to Pp . For two vertices u, v ∈ L, we say v can be
reached from u, denoted by u → v, if there is a sequence of vertices and edges
v0 = u, e1, v1, . . . , vm−1, em, vm = v such that ei = [vi−1, vi〉 is open for 1 ≤ i ≤
m. If there is no such sequence, we say v cannot be reached from u and denote it
by u � v. We define the oriented percolation cluster at (x, y) ∈ L by

C(x,y) = {(z,w) ∈ L : (x, y) → (z,w)}.
Let

�(x,y) = {∣∣C(x,y)

∣∣ = ∞}
.

The percolation probability and the critical point are defined by

θ(p) = Pp

(
�(0,0)

)
and �pc = sup{p : θ(p) = 0}.

It is well known that

0 < �pc < 1.
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By definition, we know that

θ(p) = 0 if p < �pc and θ(p) > 0 if p > �pc.

Furthermore, Bezuidenhout and Grimmett [2] showed that

θ(p) = 0 ⇔ p ≤ �pc.(1.1)

We define (x, y) ∈ L to be a percolation point if |C(x,y)| = ∞. By (1.1), if
p ≤ �pc, there is no percolation point, but if p > �pc, there are infinitely many
percolation points. When p > �pc, we collect all percolation points and denote
them by

K = {
(x, y) ∈ L :

∣∣C(x,y)

∣∣ = ∞}
.(1.2)

To understand the oriented clusters, we need to establish their boundaries. For
(x, y) ∈ K, let γ(x,y) be the rightmost infinite open path starting at (x, y). More
precisely, let γ(x,y) be the infinite sequence of vertices and open oriented edges
v0 = (x, y), e1, v1, . . . , en, vn, . . . , with vn = (xn, yn) and en = [vn−1, vn〉 satisfy-
ing

{k ≥ 1 : (x, y) → (xn + k, yn) ∈ K} = ∅ for all n ≥ 1.

Similarly, we may define the leftmost infinite open path as �(x,y), starting at (x, y)

by changing k ≥ 1 in the above equation to k ≤ −1. With these definitions, note
that any infinite oriented path of C(x,y) will stay in the cone between γ(x,y) and
�(x,y).

For any infinite oriented open path � and vertex v ∈ �, let

br(v,�) := {u ∈ L \ � :u lies to the right of � and

v → u uses no edges of �},
(1.3)

bl(v,�) := {u ∈ L \ � :u lies to the left of � and

v → u uses no edges of �}.
These will be the right and left buds of � planted in v (see Figure 2). For two
vertices u and v of � such that u → v in �, we write �(u, v) for the finite piece of
� from u to v, and let

Cr(�(u, v)) := ⋃
v′∈�(u,v)\{v}

br(v
′,�),

(1.4)
Cl(�(u, v)) := ⋃

v′∈�(u,v)\{v}
bl(v

′,�).

Clearly, if � is a rightmost (resp., leftmost) path, then all right (resp., left) buds of
� are finite, which implies that Cr(�(u, v)) [resp., Cl(�(u, v))] is finite.
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Let G be the random oriented graph consisting of γ(x,y) for (x, y) ∈ K. In other
words, the vertex set of G is in K and the edges of G are open edges in γ(x,y) for
(x, y) ∈ K. Clearly, there are no loops in G, and G is defined as a forest.

Each vertex u ∈ L is adjacent to two edges above u, denoted by upper edges,
and two edges below u, denoted by lower edges. Note that G consists of oriented
paths without loops, so each vertex u of G is adjacent to only one upper edge in G.
We define the other endpoint of the upper edge as the mother vertex of u. On the
other hand, u is also adjacent to one or two lower edges in G. We define the other
vertex or vertices of the lower edge or edges of u as the daughter vertex or the
daughter vertices. By the definition of G, every vertex of G has a mother vertex
and at most two daughter vertices. If u has two daughter vertices, they are sisters,
and the vertex at the left lower edge is the older sister and the vertex at the right
lower edge is the younger sister.

Let M(u) denote the mother vertex of u, and iteratively for n ≥ 1, let Mn(u) =
M(Mn−1(u)) denote the nth ancestor of u, where M0(u) = u. Define

Dn(u,G) := {v ∈ K :Mn(v) = u} for n ≥ 0

and

D(u,G) := ⋃
n≥0

Dn(u,G),

the nth generation and the set of all descendants of u. We call D(u,G) the branch
of u. If D(u,G) is finite for all u ∈ K, we say that G has finite branches. We say
that two vertices u, v ∈ K are connected if they have a common ancestor, that is,
there exist nonnegative integers n and m such that Mn(u) = Mm(v). This defines
an equivalence relation in K, and the equivalence classes are called connected
components. Moreover, a connected component of G is obviously a single tree.

In graph G, a one-way infinite path is called a ray. If we remove finitely many
vertices from a ray, the rest of the connected infinite part is still a ray that is called
the tail of the ray. Two rays R and R′ are equivalent if their tails differ in at most
finitely many sites. This is an equivalence relation on the set of rays in G, and the
equivalence classes are called topological ends (or, equivalently, graph-theoretical
ends) of G. Now, with these definitions, we state a fundamental property for graph
G as follows.

THEOREM 1.1. For any p ∈ ( �pc,1), and the oriented graph G defined above,
we have:

(i) G has a unique connected component,
(ii) G has finite branches, and

(iii) Each vertex of G has an ancestor with a younger sister almost surely.

Obviously, items (i) and (ii) of Theorem 1.1 tell us that any two rays R and R′
in G have the same tail. This gives the following corollary.
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COROLLARY 1.2. G has one topological end.

For any vertex u of G, let σ(u) = 1 if u is older than her sister, and let σ(u) = 2
otherwise. We associate to each vertex u the sequence of relative sister-order of its
ancestors: let σi(u) := σ(Mi(u)), i ≥ 0. For any vertices u and v of G, because
G is a single tree, u and v have common ancestors. Let z = Mi(u) = Mj(v) be
their closest common ancestor. We say u precedes v if σi−1(u) < σj−1(v), where
σ−1(u) = 0.

On the other hand, we define the successor of u ∈ K as u′ ∈ K if u precedes u′
and no vertex precedes u and u′. Conversely, u is the predecessor of u′ if and only
if u′ is the successor of u.

The successor of a vertex can be found by using the following algorithm. If
the vertex has a daughter, we choose the older one. Otherwise, we move up the
tree until we hit the first vertex that has a younger sister; this younger sister will
be the successor. Note that the existence of such a vertex is guaranteed by Theo-
rem 1.1(iii).

The predecessor vertex can be also found by using this algorithm. If the vertex
is the older sister, her mother will be the predecessor vertex. If the vertex has an
older sister, we move from her older sister down the tree and choose the younger
daughter at each step until we come to a vertex with no daughter. This will be the
predecessor. Because G has finite branches, the predecessor vertex can always be
found.

We say that there is a succession line from u to v if there exists a finite se-
quence of vertices u = v0, . . . , vk = v such that vi−1 is the successor of vi for
i = 1,2, . . . , k. We say G has a unique infinite succession line if, for every couple
of vertices u and v, there is a unique succession line either from u to v or from v

to u.
With these definitions, by Theorem 1.1, we have the following corollary.

COROLLARY 1.3. G has a unique infinite succession line. The maps �(u,

G) = u′ (the successor of u) and �−1(u′,G) = u (the predecessor of u′) are well
defined, and one is the inverse of the other. Furthermore, K = {�n(u,G) :n ∈ Z}
for all u ∈ K.

The succession line was first studied in Ferrari, Landim and Thorisson [5] for
Poisson trees defined from the two- or three-dimensional Poisson point processes.
By constructing succession lines of Poisson trees, Ferrari, Landim and Thoris-
son [5] proved the point-stationary property of the Palm version of the Poisson
point processes. The concept point-stationary is defined in Thorisson [10] and is
shown to be the characterizing property of the Palm version of any stationary point
process in R

d .
In view of point processes, K is a (discrete version) translation-invariant point

process of R
2. On event �(0,0), if we let K0 := {(x, y) ∈ L : |C(x,y)| = |C(0,0)| =
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∞}, then by Theorem 5.1 of [5] and Corollary 1.3, we know that K0 is point-
stationary and K0 is the Palm version of K.

With Theorem 1.1 in hand, we may try to ask the question: when properly
rescaled, does G converge to the Brownian Web? (See the definition of the Brown-
ian Web and the related theorems by Fontes, Isopi, Newman and Ravishankar [6,
7].) Note that by using the convergence criteria given in [6, 7], Ferrari, Fontes and
Wu [4] proved that the two-dimensional Poisson trees converge to the Brownian
Web. In fact, one of the original motivations for this paper was to investigate the
convergence of the percolation system to the Brownian Web. At this point, we are
unable to show this argument.

By applying this fundamental graph property of G, we will try to characterize
infinite oriented clusters. In fact, one of the most important questions in percola-
tion models is to investigate the uniqueness of infinite clusters. For two different
percolation points (x1, y1) and (x2, y2), Grimmett and Hiemer [8] worked on the
first step of uniqueness to show that, for some (x3, y3) ∈ K,

C(x1,y1) ∩ C(x2,y2) ⊃ C(x3,y3).

Recall that for a general percolation model, Aizeman, Kesten and Newman [1]
showed the uniqueness of infinite clusters. We may ask the uniqueness of infinite
oriented clusters. Clearly, C(x1,y1) = C(x2,y2) for two percolation points (x1, y1)

and (x2, y2), since we are investigating oriented paths. However, even though two
infinite oriented clusters are always different, they might be different only in fi-
nitely many vertices. In other words, the main infinite parts of two oriented clusters
are the same. With this observation, we may modify the definition of uniqueness
to investigate infinite parts of C(x1,y1) and C(x2,y2). More precisely, for two perco-
lation points (x1, y1) and (x2, y2), we say

C(x1,y1) � C(x2,y2) if C(x1,y1) = C(x2,y2) except finitely many vertices.

With this new “�,” we may ask what the uniqueness of infinite oriented clusters
is. As expected, we show the following result.

THEOREM 1.4. Under the definition of “�,” there is only one infinite oriented
cluster.

2. Kuczek’s construction, coalescing random walks and CLT. We use the
notation in Kuczek [9] in Section 2. For A ⊂ (−∞,∞), we denote a random subset
by

ξA
n = {x :∃x′ ∈ A such that (x′,0) → (x, n)}, n > 0.

The right edge of ξ
(−∞,0]
n is defined by

rn = sup ξ (−∞,0]
n (where sup ∅ = −∞).
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We know (see page 1004 in [3]) by using a subadditive argument that there
exists a nonrandom constant α(p) such that

lim
n→∞

rn

n
= inf

n

{
Ep(rn)

n

}
= α(p) a.s. and in L1.

It has been proved in Benzuidenhout and Grimmett [2] and Durrett [3] that

α(p) = −∞ if p < �pc and α( �pc) = 0 and 1 ≥ α(p) > 0 if p > �pc.

Moreover, α(p) is infinitely differentiable for all p ∈ ( �pc,1) (see Zhang [11]).
Let us now denote

ξ ′
0 = ξ

{0}
0 ,

and for all n ≥ 0,

ξ ′
n+1 =

{ {x : (y, n) → (x, n + 1) for some y ∈ ξ ′
n}, if this set is nonempty;

{n + 1}, if otherwise.

Let r ′
n = sup ξ ′

n. On the event �(0,0), we know that

r ′
n = rn ≥ γ(0,0)(n),

where γ(0,0)(n) ∈ Z satisfies (γ(0,0)(n), n) ∈ γ(0,0).
Let T0 = 0 and Tm = inf{n ≥ Tm−1 + 1 : (r ′

n, n) ∈ K} for m ≥ 1. Define τ0 = 0
and

τ1 = T1, τ2 = T2 − T1, . . . , τm = Tm − Tm−1, . . . ,

where τi = 0 if Ti and Ti−1 are infinity. Also define X0 = 0 and

X1 = r ′
T1

, X2 = r ′
T2

− r ′
T1

, . . . ,Xm = r ′
Tm

− r ′
Tm−1

, . . . ,

where Xi = 0 if Ti and Ti−1 are infinity. The collection of points (r ′
Tm

, Tm), m ≥ 0,
are called break points for point (0,0).

In the case of p ∈ ( �pc,1), with these definitions, Kuczek [9] proved the follow-
ing Central Limit Theorem (CLT).

PROPOSITION 2.1. For p ∈ ( �pc,1), on �(0,0), {(Xm, τm) :m ≥ 1} are inde-

pendently identically distributed with all moments, and γ(0,0)(n)−α(p)n√
nσ 2

converges to

N(0,1) in distribution as n → ∞, where σ 2 = E(X1Eτ1 − τ1EX1)
2 > 0 and E is

the expectation with respect to the conditional measure Pp(· | �(0,0)).

Actually, Kuczek [9] proved the above CLT for rn; we point out here that the
same argument is also valid for γ(0,0)(n).

Now we turn to our rightmost infinite paths. On �(0,0), the rightmost infinite
path γ(0,0) is well defined and all break points (r

Tm
, Tm), m ≥ 1, are well embedded
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in γ(0,0). By Proposition 2.1, on event �(0,0), we define an integer-valued random
walk ζ(0,0) = {ζ(0,0)(t) : t ≥ 0} as follows:

ζ(0,0)(0) := 0 and ζ(0,0)(t) :=
N(t)∑
i=0

Xi for t > 0,

where N(t) is the largest integer m such that Tm ≤ t . Note that a break point
defined above is also a jump point of ζ(0,0). In the same way, we define the ran-
dom walk ζ(x,y) := {ζ(x,y)(t) : t ≥ y} on event �(x,y), (x, y) ∈ L. For any vertices
u1 = (x1, y1), u2 = (x2, y2), . . . , uk = (xk, yk) in L, on event �u1 ∩ · · · ∩ �uk

, we
say random walks ζui1

, ζui2
meet if two walks jump synchronously to the same po-

sition at some time t0(∈ Z) ≥ yi1 ∨ yi2 . By this definition of meeting, once two
walks meet, they will coalesce into one thenceforth. This defines a finite system
of coalescing random walks. For random walks and our rightmost infinite paths,
we have the following proposition to describe the relationship between the jump
points in two random walks and the meeting points in two rightmost open paths.

PROPOSITION 2.2. For any p ∈ ( �pc,1) and any pair u1, u2 ∈ L, conditioned
on �u1 ∩ �u2 , the following two statements are equivalent:

(i) ζu1 meets ζu2 ,
(ii) the rightmost infinite paths γu1 and γu2 meet.

PROOF. It is clear that (i) implies (ii), so it suffices to prove that (ii) implies (i).
Let �1 and �2 be two realizations of γu1 and γu2 , respectively. Without loss of

generality, we may assume that �1 and �2 meet at u1,2 ∈ K and u1 precedes u2.
Recall that the concept of precedes is defined in Section 1.

Note that u1,2 is a break point for u1, so it is also a jump point for ζu1 . To prove
Proposition 2.2, it suffices to find a point v1,2 ∈ �1 ∩ �2 preceding u1,2 such that
v1,2 is a common jump point of ζu1 and ζu2 .

Now let {vm = (xm, ym) :m ≥ 0} be jump (or break) points of ζu2 such that
v0 = u2, v1 precedes v0, . . . , and vm precedes vm−1. If u1,2 is also one of the
jump points for ζu2 , then u1,2 should be the meeting point of ζu1 and ζu2 . Propo-
sition 2.2 follows by taking v1,2 = u1,2. If u1,2 is not a jump point for ζu2 ,
then there exists some k ≥ 1 such that u1,2 ∈ �2(vk−1, vk). By the definition
of break point, yk , which is the second coordinate of vk , is greater than y for
any (x, y) ∈ Cr(�2(vk−1, vk)), where Cr(�2(vk−1, vk)) is defined in (1.4). Note
that Cr(�1(u1,2, vk)) = Cr(�2(u1,2, vk)) ⊂ Cr(�2(vk−1, vk)), so yk > y for any
(x, y) ∈ Cr(�1(u1,2, vk)). By the fact that u1,2 is a jump (or break) point for ζu1

and by the definition of break point, we know that vk is a jump (or break) point
of ζu1 . Proposition 2.2 follows by taking v1,2 = vk . �

Write Rα(p) for the line in R
2 with the equation y = x/α(p). Conditioned on

�(0,0), let us consider the behavior of the rightmost infinite path γ(0,0). By Propo-
sition 2.1, we have the following proposition.
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PROPOSITION 2.3. Suppose that p ∈ ( �pc,1); then, conditioned on �(0,0), al-
most surely, the rightmost infinite path γ(0,0) crosses the line Rα(p) infinitely many
times.

3. Proof of Theorem 1.1. Before our proofs, we need to introduce a few no-
tations (see Figure 1). For any u = (x, y) ∈ L, we define∨

u
:= {v ∈ L : there is an oriented path from u to v}.

Note that the oriented path in the definition of
∨

u does not need to be open, so
Cu ⊂ ∨

u. Similarly, we define∧
u

:= {v ∈ L : there is an oriented path from v to u}.
For any n ≥ 0 and u = (x, y), let

∧
u
(n) :=

{
v = (x′, y′) ∈ ∧

u

:y − y′ ≤ n

}
.

For a finite set A ⊂ L contained in a horizontal line, we define∧
A

:= {v ∈ L : there is an oriented path from v to some point u of A}
and

∧
A
(n) :=

{
v = (x′, y′) ∈ ∧

A
:y − y′ ≤ n

}
for n ≥ 0,

FIG. 1. This figure reveals that Area(1,�) and Area(2,�) are edge-disjoint areas. The
situation for large k is similar.
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where y is the second coordinate of some vertex in A.
In our proofs, we need to use the following anti-oriented open path. Given u

and v ∈ ∧
u, we say there is an anti-oriented open path from u to v, if v → u. For

any u ∈ L, let

Canti
u := {v ∈ L :v → u};

clearly, Canti
u is a random subset of

∧
u. On event {|Canti

u | = ∞}, we write �anti
u for

the leftmost anti-oriented infinite open path from u.
When p > �pc, we have

Pp(|Canti
u | = |Cu| = ∞) = θ(p)2 > 0 ∀u ∈ L.(3.1)

Vertex u, satisfying |Canti
u | = |Cu| = ∞, is called a bidirectional percolation point.

Let K̃ denote the set of all bidirectional percolation points.

PROOF OF THEOREM 1.1(i). It suffices to prove that, for any vertices u1 =
(x1, y1), u2 = (x2, y2) ∈ L with y1 = y2, conditioned on �u1 ∩ �u2 , γu1 and γu2

will meet almost surely. In fact, in the case that y1 = y2, on �u1 ∩�u2 , there exists
some u′

i = (x′
i , y

′
i ), i = 1,2, almost surely in K with y′

1 = y′
2 = b such that

x′
1 < min

{
x : (x, b) ∈ ∨

u1
∪∨

u2

}
≤ max

{
x : (x, b) ∈ ∨

u1
∪∨

u2

}
< x′

2.

If γu′
1

and γu′
2

meet then γu1 and γu2 meet.
By translation invariance, we choose u2 = (0,0) and u1 = (−n0,0) for some

n0 ≥ 1. Let us focus on γ(0,0). For any realization of � of γ(0,0), by Proposition 2.3,
we may assume that � crosses the line Rα(p) infinitely many times. For some
vertex v ∈ �, let e = [u, v〉 be the lower (oriented) edge of v in �. We call v a
crossing point if [u, v〉 ∩ Rα(p) = ∅.

Given such a realization of �, we define a series of independent events E(k,�),
k ≥ 1, as follows.

We fix ε0 > 0 such that∫ −ε0

−∞
1√
2π

exp
(
−1

2
x2

)
dx >

1

3
.

By Proposition 2.2, we choose N0 large enough such that

Pp

(
γ(0,0)(n

2) − α(p)n2 < −nσε0 | �(0,0)

) ≥ 1
3 for all n ≥ N0.(3.2)

Let v0(�) = (x0, y0) = (0,0). We go along � from (0,0) to meet v1(�) = (x1, y1)

(see Figure 1), one of crossing points, with y1 > max{n0/(ε0σ),N0}2. Iteratively,
we go along � from vk−1(�) to meet vk(�) = (xk, yk), one of crossing points, with

yk − yk−1 > max{2yk−1/(ε0σ),N0}2.(3.3)

Now we define E(1,�) to be the event that there is an anti-oriented open path
from v1(�) to the half-line (−∞,−n0] × {0}. Iteratively, for k ≥ 2, we define
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E(k,�) to be the event that there is an anti-oriented open path from vk(�) to the
half-line (−∞, xk − 2yk−1] × {yk−1} and then to the line (−∞,+∞) × {0}. By
this definition, E(k,�), k ≥ 1, depends on the edges (see Figure 1) in Area(k,�) =∧

vk(�)(yk − yk−1) ∪ ∧
Ak

(yk−1), where

A1 =
{
u = (x, y) ∈ ∧

v1(�)
(y1) :x ≤ −n0, y = 0

} (
= ∧

A1
(y0) = ∧

A1
(0)

)
,

Ak =
{
u = (x, y) ∈ ∧

vk(�)
(yk − yk−1) :x ≤ xk−1 − 2yk−1, y = yk−1

}
, k ≥ 2.

Note that Area(k,�), k ≥ 1, are edge-disjoint areas, so for a fixed oriented path �,
E(k,�), k ≥ 1, are independent (see Figure 1). Furthermore, by (3.2), (3.3) and by
using Proposition 2.2 for �anti

vk(�), the leftmost anti-oriented infinite open path from
vk(�), we have

Pp(E(k,�)) ≥ Pp

(∣∣Canti
vk(�)

∣∣ = ∞ and �anti
vk(�) ∩ Ak = ∅

)
= Pp

(
�anti
vk(�) ∩ Ak = ∅ | ∣∣Canti

vk(�)

∣∣ = ∞) · Pp

(∣∣Canti
vk(�)

∣∣ = ∞)
(3.4)

≥ 1
3θ(p) > 0.

We point out here that � is only used to determine the vertex set {vk(�) :k ≥
0}. Furthermore, we need to work on the event family {E(k,�) :k ≥ 1} on event
{γ(0,0) = �}. Now, on event {γ(0,0) = �}, let E∗(1,�) be the event that there is an
anti-oriented open path from �(0, v1(�)) to A1, and let E∗(k,�), k ≥ 2, be the
event that there is an anti-oriented open path from �(vk−1(�), vk(�)) to Ak and
then to (−∞,+∞) × {0}. On {γ(0,0) = �}, note that � is open, so event E∗(k,�)

only depends on the configurations of the edges of Area(k,�) lying on the left side
of � (see Figure 1). Note also that event {γ(0,0) = �} can be decomposed into the
intersection of the following two events:

1. A(�) = {� is open},
2. B(�) = {v → ∞ in R(�) for each vertex v ∈ �},
where R(�) is the edge set to the right of �. It follows from the definition that
B(�) only depends on the configurations of the edges in R(�); this implies that
E∗(k,�), k ≥ 1, are independent of B(�) conditioned on A(�). By this decom-
position and the fact that E∗(k,�) ∩ A(�) = E(k,�) ∩ A(�), we have

Pp

(
E∗(k,�) | γ(0,0) = �

) = Pp(E∗(k,�) | A(�))
(3.5)

= Pp(E(k,�) | A(�)).

For any k ≥ 1, let Ak(�) be the event that all edges in �(vk−1(�), vk(�)) are open.
Note that Ak(�), k ≥ 1, are increasing events, so by the FKG inequality,

Pp(E(k,�) | A(�)) = Pp(E(k,�) | Ak(�)) ≥ Pp(E(k,�)).(3.6)
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On the other hand, we know that E∗(k,�) for k ≥ 1 depend on the different edge
layers to the left of � (see Figure 1). Therefore, E∗(k,�) for k ≥ 1 are independent
and, by (3.5), (3.6) and then (3.4), have probabilities bounded away from θ(p)/3
on {γ(0,0) = �}. With these observations, by the second Borel–Cantelli lemma,
on {γ(0,0) = �}, E∗(k,�), k ≥ 1, occur infinitely often almost surely. Using the
definition of rightmost open path, we know that if E∗(k,�) occurs for some k,
then γu1 will meet γ(0,0) = � in �(0, vk(�)). Thus, this shows that γu1 and γu2

meet, so Theorem 1.1(i) follows. �

PROOF OF THEOREM 1.1(ii). For any u ∈ K, by the definition of D(u,G), we
know that D(u,G) ⊂ Canti

u . Note that if u ∈ K \ K̃, that is, u is a percolation point
but not a bidirectional percolation point, then |Canti

u | < ∞ and |D(u,G)| < ∞, so
it suffices to prove that |D(u,G)| < ∞ for u ∈ K̃.

By translation invariance, it suffices to prove that |D((0,0),G)| < ∞ almost
surely when (0,0) ∈ K̃.

Let �anti
(0,0) be the leftmost anti-oriented infinite open path from (0,0) and let

Lanti be a possible realization of �anti
0 crossing Rα(p) infinitely many times. Then,

it suffices to prove that, on �anti
(0,0) = Lanti, |D((0,0),G)| < ∞ almost surely.

By the proof of Theorem 1.1(i), we know that, on �anti
(0,0) = Lanti, with probability

1, for any n ≥ 1, there exists some point vn(L
anti) in Lanti from which there is an

oriented open path to [n,∞) × {0}. On the other hand, by (3.1) and the standard
ergodic theorem, with probability 1, there exist infinitely many m > 0 such that
(m,0) ∈ K̃. These observations imply that, on �anti

(0,0) = Lanti, with probability 1,

there exist some m0 > 0 and v′ ∈ Lanti such that (m0,0) ∈ K̃ and there is an ori-
ented open path from v′ to some v′′ ∈ [m0,∞)×{0}. We denote this oriented open
path by π = π(v′, v′′).

Let

∧
(0,0)

(Lanti, π) :=
{
u ∈ ∧

(0,0)
\Lanti :u lies to the right of Lanti and above π

}

and

C̄l(L
anti(v′, (0,0))) :=

⎧⎪⎨
⎪⎩w /∈ Lanti :

w lies to the left of Lanti and for some
z ∈ Lanti(v′, (0,0)), z = v′, w → z

uses no open edges of Lanti

⎫⎪⎬
⎪⎭ .

We declare that

D((0,0),G) ⊂ C̄l(L
anti(v′, (0,0))) ∪ Lanti(v′, (0,0)) ∪ ∧

(0,0)
(Lanti, π).(3.7)

In fact, for any vertex u in Canti
(0,0)(⊂ K) but outside the set of the right-hand side

of (3.7), it is easy to find an open oriented path from u to (m0,0). This finding
implies u /∈ D((0,0),G).
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Now, by the definition of leftmost anti-oriented infinite open path, we have

|C̄l(L
anti(v′, (0,0)))| < ∞.(3.8)

Using (3.7), (3.8) and the following fact:∣∣∣∣∣Lanti(v′, (0,0)) ∪ ∧
(0,0)

(Lanti, π)

∣∣∣∣∣ < ∞,

we have |D((0,0),G)| < ∞, so Theorem 1.1(ii) follows. �

PROOF OF THEOREM 1.1(iii). For any u = (x, y) ∈ K, by the standard er-
godic theorem, there exists some u′ = (x′, y′) ∈ K such that x′ > x and y′ = y

almost surely. It follows from the proof of Theorem 1.1(i) that γu will meet γu′ at
some point v of K almost surely. Thus, v has two daughters such that the older
one is just the ancestor of u and the other one is her younger sister. �

4. Proof of Theorem 1.4. It suffices to prove that, for any u1, u2 ∈ K,
|Cu1�Cu2 | < ∞, where Cu1�Cu2 is the symmetric difference of Cu1 and Cu2 .
By Theorem 1.1, with probability 1,

γu1 ∩ γu2 = ∅ and �u1 ∩ �u2 = ∅.

Let

vr
1,2 = (xr , yr) ∈ γu1 ∩ γu2 and vl

1,2 = (xl, yl) ∈ �u1 ∩ �u2

be the vertices with the smallest second coordinates. With these definitions, we
will prove that

|Cu1 \ Cu2 | < ∞.(4.1)

By (4.1) and symmetry, we also have |Cu2 \ Cu1 | < ∞, so Theorem 1.4 follows.
Now it remains to show (4.1). Without loss of generality, we divide the problem

into the following two cases (see Figure 2):

1. u2 lies within the cone between �u1 and γu1 ;
2. u2 does not lie within the cone between �u1 and γu1 .

We focus on case 1 [see Figure 2(a)]. Let Bu1,u2 be the finite butterfly shape en-
closed by γu2(u2, v

r
1,2), γu1(u1, v

r
1,2), �u2(u2, v

l
1,2), �u1(u1, v

l
1,2), and the vertices

surrounded by them. It is clear that

Cu1 \ Cu2 ⊂ Bu1,u2 ∪ Cr(γu1(u1, v
r
1,2)) ∪ Cl(�u1(u1, v

l
1,2)).

Note that Cr(γu1(u1, v
r
1,2)) and Cl(�u1(u1, v

l
1,2)) are defined in (1.4). By the defi-

nition of γu1 and �u1 , we have

|Cr(γu1(u1, v
r
1,2))| < ∞, |Cl(�u1(u1, v

l
1,2))| < ∞.
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FIG. 2. Bu1,u2 , �u1,u2 , and the left (resp., right) buds planted in �u1 (resp., γu1 ) are all finite.
Note that Cl(�u1(u1, vl

1,2)) consists of all such finite left buds planted in �u1(u1, vl
1,2) \ {vl

1,2}, so it
is finite. The situations for Cr(γu1(u1, vr

1,2)) and Cr(γu1(u1, v1,2)) are the same.

This tells us that |Cu1 \ Cu2 | < ∞, so (4.1) follows when case 1 holds.
Let us focus on case 2 [see Figure 2(b)]. Without loss of generality, we may fur-

ther assume that u1 and u2 have the relative position such that γu1 ∩ �u2 = ∅.
Let v1,2 ∈ γu1 ∩ �u2 be the vertex with the smallest second coordinate. More-
over, let �u1,u2 be the finite triangle shape enclosed by γu1(u1, v1,2), �u1(u1, v

l
1,2),

�u1(v1,2, v
l
1,2), and the vertices surrounded by them. It is clear that

Cu1 \ Cu2 ⊂ �(u1, u2) ∪ Cr(γu1(u1, v1,2)) ∪ Cl(�u1(u1, v
l
1,2)).

The same argument for the first case tells us that |Cu1 \ Cu2 | < ∞, so (4.1) also
follows when case 2 holds.
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