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MAX-PLUS DECOMPOSITION OF SUPERMARTINGALES
AND CONVEX ORDER. APPLICATION TO AMERICAN

OPTIONS AND PORTFOLIO INSURANCE

BY NICOLE EL KAROUI AND ASMA MEZIOU

CMAP, Ecole Polytechnique

We are concerned with a new type of supermartingale decomposition
in the Max-Plus algebra, which essentially consists in expressing any super-
martingale of class (D) as a conditional expectation of some running supre-
mum process. As an application, we show how the Max-Plus supermartingale
decomposition allows, in particular, to solve the American optimal stopping
problem without having to compute the option price. Some illustrative ex-
amples based on one-dimensional diffusion processes are then provided. An-
other interesting application concerns the portfolio insurance. Hence, based
on the “Max-Plus martingale,” we solve in the paper an optimization problem
whose aim is to find the best martingale dominating a given floor process (on
every intermediate date), w.r.t. the convex order on terminal values.

1. Introduction. One of the most important decompositions in modern prob-
ability theory is the Doob–Meyer decomposition of a supermartingale Z, into
the unique difference of a local martingale M and a predictable nondecreas-
ing process A. This additive representation can also be written in the form of
Zt = E[Aζ − At |Ft ] + E[Zζ |Ft ], where ζ is a stopping time defining the hori-
zon of the problem.

We provide in this paper another “additive” decomposition theorem for super-
martingales of class (D), in a nice mathematical structure called Max-Plus alge-
bra. This latter is an idempotent semiring structure endowed with the two binary
operations ⊕ = max and ⊗ = +. It introduces a linear algebra point of view to
dynamic programming problems and large deviations, and turns out to be very
effective to make algebraic computations (see [6]).

Specifically, given a quasi-left-continuous supermartingale Z of class (D), de-
fined on [0, ζ ] where ζ is a stopping time, our aim is to construct an optional
upper-right semi-continuous process L such that Z can be represented in terms of
the “running supremum” of L:

Zt = E
[

sup
t≤u≤ζ

Lu ∨ Zζ |Ft

]
= E

[∮
[t,ζ ]

Lu ⊕ Zζ |Ft

]
, 0 ≤ t ≤ ζ.
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Here
∮

denotes a nonlinear integral called Max-Plus integral. The running supre-
mum of L over [0, τ ] for any stopping time τ between 0 and ζ can be seen as
the value of a nondecreasing process �τ and, hence, the above representation is
analogous to the Doob–Meyer decomposition.

The martingale M⊕ defined as the conditional expectation of �ζ ⊕ Zζ is called
the martingale of the Max-Plus decomposition of Z and dominates �τ ⊕ Zτ for
any stopping time τ . We first focus on the martingale uniqueness in Section 2 and
show that the case is different for the nondecreasing process.

To establish the existence of such a decomposition, we essentially deal with
some easy convex duality methods, which turned out to be particularly useful
for the Bandit problem [19, 45], and for nonlinear representations of general
processes [7, 15].

An interesting application of the Max-Plus decomposition of supermartingales
is the problem of American Call options written on an underlying Y of class (D).
In fact, based on the representation of the Snell envelope of Y as a conditional
expectation of some running supremum L∗

t,ζ = supt≤u≤ζ Lu, we explicitly char-
acterize an optimal stopping time in terms of the index process L and, thus, the
simple knowledge of L completely solves the optimal stopping problem without
having to compute the price of the American option. Moreover, thanks to the Max-
Plus decomposition, we get an explicit characterization of American Call options
as lookback ones. This particularly generalizes the results of Darling, Liggett and
Taylor [10] on American options, only valid in the discrete case, where the under-
lying defines a partial sum of independent and identically distributed random vari-
ables with negative drift. Our extension to the case of geometric Lévy processes
(with only negative jumps) leads to an index process L, proportional to the super-
martingale underlying.

Our original interest in the Max-Plus decomposition of supermartingales comes
from portfolio insurance which is a popular example of dynamic asset allocation.
In fact, using the Max-Plus decomposition of supermartingales, the paper suggests
a new approach to the classic utility maximization problem with American con-
straints. The optimization is performed with respect to stochastic convex ordering
on the terminal value and this avoids arbitrary assumptions regarding the form of
the utility function of a decision maker.

To this aim, we first consider a martingale constrained optimization problem,
in terms of convex ordering. All admissible martingales must have the same initial
value and must dominate a given floor process Y . Then we note that the martingale
of the Max-Plus decomposition of the Snell envelope of Y solves the addressed
problem. We refer the interested reader to another paper [20] for more details about
the financial application to portfolio insurance.

The paper is organized as follows. In the next section we extend the Doob–
Meyer decomposition theorem for supermartingales in the Max-Plus algebra and
use it to generalize in Section 3, the point of view of Darling and his co-authors
concerning American optimal stopping problems. In Sections 3.2 and 3.3 we



MAX-PLUS DECOMPOSITION OF SUPERMARTINGALES 649

provide some illustrative examples based on multiplicative and additive Lévy
processes, highlighting the link between the Max-Plus decomposition and Amer-
ican options. Then, we focus on a parameterized problem which allows us to de-
rive an explicit decomposition for a given right-continuous supermartingale in the
Max-Plus algebra. In Section 4.4 we apply our Max-Plus decomposition theorem
to solve the American Call option problem, with a general underlying. In Sec-
tion 4.5 we reconsider the different steps of the Max-Plus decomposition in a
Markovian framework. Then in Section 5 we show that the martingale involved
in this Max-Plus decomposition is also characterized as the optimal solution of a
particular constrained optimization problem, expressed in terms of stochastic con-
vex ordering. Finally, we give some closed formulae of martingales involved in the
Max-Plus decomposition of multiplicative and additive Lévy processes. We then
exploit the Azéma–Yor martingale (see [5]) to provide the Max-Plus decompo-
sition of any concave increasing function of a continuous local martingale. This
last example proves to be very insightful and covers, among others all the consid-
ered cases of Lévy processes. The more technical arguments are relegated to the
Appendix.

2. Supermartingale decompositions.

2.1. Framework. We here give the notation and definitions which will be used
throughout the paper. Uncertainty is modeled by some filtered probability space
(�,F ,P) satisfying the usual conditions, that is, {Ft } is an increasing, right-
continuous family of σ -fields and F0 contains all the P-negligible events in F .
We further make the following assumption:

ASSUMPTION 2.1. {Ft } is assumed to be quasi-left-continuous, that is for any
predictable stopping time τ , one has Fτ = Fτ− .

The horizon of the problem is a stopping time denoted by ζ and may be infinite.
An adapted process X is said to be of class (D) if |X| is dominated by a uni-

formly integrable martingale. Another characterization of such processes, based on
stopping times, is given in Section 4. Note that in the particular case where X is a
martingale, X is of class (D) if and only if it is uniformly integrable, u.i. in short.
A supermartingale (martingale) Z of class (D) is called a (D)-supermartingale
[(D)-martingale].

2.2. Supermartingale decompositions. One of the most fundamental decom-
positions in the theory of stochastic processes is the Doob–Meyer decomposition
of a supermartingale as the unique difference between a local martingale and a pre-
dictable nondecreasing process. Recently, motivated by optimization problems in
Mathematical Finance, such a decomposition has been extended to a process defin-
ing a supermartingale for an infinite family of equivalent probability measures.
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Nevertheless, El Karoui and Quenez [21], and Kramkov [34] have established that
this decomposition only holds by relaxing the predictability property of the non-
decreasing process. In this paper, for different reasons, we are also concerned with
an optional supermartingale decomposition, but with a different meaning.

Moreover, the additive decomposition is not the only one to present an interest.
For example, in Mathematical Finance, the multiplicative decomposition was paid
particular attention [30]. We first recall the standard version of the Doob–Meyer
decomposition theorem [31, 36] and [13], Theorem 4.10, page 24.

THEOREM 2.2. Let Z be a (D)-supermartingale defined on [0, ζ ].
1. There exists a unique predictable càdlàg (right-continuous, left-limited) non-

decreasing process A such that A0 = 0, Aζ integrable, and

Zt = E[Aζ − At |Ft ] + E[Zζ |Ft ], 0 ≤ t ≤ ζ.(2.1)

2. In addition, with this representation, we have

Zt + At = MA
t , 0 ≤ t ≤ ζ,(2.2)

where MA defined by MA
t = E[Aζ + Zζ |Ft ] is a (D)-martingale. This decompo-

sition is unique (up to indistinguishability).
3. Further, if Z is quasi-left-continuous, then A is continuous.

As mentioned above, there exist other decompositions relative to operations that
are different from addition, such as multiplication [29, 35].

THEOREM 2.3. Let Z be a positive (D)-supermartingale.
1. There exists a unique integrable predictable nondecreasing process B satis-

fying B0 = 1, such that

Zt = E
[
Zζ × Bζ

Bt

∣∣∣Ft

]
, 0 ≤ t ≤ ζ.(2.3)

2. In addition, with this representation, we have

Zt × Bt = MP
t , 0 ≤ t ≤ ζ,(2.4)

where MP defined by MP
t = E[Bζ × Zζ |Ft ] is a (D)-martingale. This decompo-

sition is unique (up to indistinguishability).

Note that since the conditional expectation is not linear w.r.t. multiplication, we
cannot replace, as in the Doob–Meyer decomposition, (2.3) by

Zt = E
[
Bζ

Bt

∣∣∣Ft

]
× E[Zζ |Ft ].

Now, we will focus on a new type of decomposition relative to the max opera-
tion that plays the role of addition in the Max-Plus semifield Rmax: the set of real
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numbers with the additional point −∞ endowed with the operations ⊕ and ⊗ such
that x ⊕ y = max(x, y) and x ⊗ y = x + y.

The problem then is to find an optional process L such that

Zt = E
[

sup
t≤u≤ζ

Lu|Ft

]
= E

[∮ ζ

t
Lu|Ft

]
.

Before that, we first introduce the Max-Plus algebra and describe its basic proper-
ties.

2.3. Max-Plus algebra. The Max-Plus framework is important for certain
problems in discrete mathematics and in computer science applications.

DEFINITION 2.4 (The algebraic structure Rmax). The symbol Rmax denotes
the set R ∪ {−∞} endowed with the two binary operations ⊕ = max and ⊗ = +.
This algebraic structure Rmax is called the Max-Plus algebra.

It is an idempotent commutative semifield, that is, the operation ⊕ is associative,
commutative and has 0⊕ = −∞ as zero element. The operation ⊗ defines a group
on R; it is distributive with respect to ⊕ and its identity element e⊗ satisfies 0⊕ ⊗
e⊗ = −∞ ⊗ 0 = 0 ⊗ −∞ = −∞ = 0⊕.

If we compare the properties of ⊕ and ⊗ with those of + and ×, we see that:

• we have lost the symmetry of addition [for a given a, an element b does not
exist such that a ⊕ b = 0⊕, or, equivalently, max(b, a) = −∞ whenever a 	=
0⊕ = −∞], but at the same time, we have gained the idempotency of addition:
a ⊕ a = a;

• there are no zero divisors in Rmax(a ⊗ b = 0⊕ = −∞ ⇒ a = 0⊕ = −∞ or b =
0⊕ = −∞).

The fact that ⊕ is idempotent instead of being invertible is the main original fea-
ture of this “exotic” algebra. This property is sufficient for the simplification of
formulae and Rmax is hence a very effective structure to make algebraic compu-
tations [6]. The simplest example of such computations is the resolution of linear
equations.

EXAMPLE 2.5 (Linear equation). Let us examine the solutions in x of

z ⊕ x = m.(2.5)

Note that the set of solutions can be empty unlike the classic linear equations.
When it is not empty, the set of solutions has a greatest element x = m.

PROOF. If m < z, then there is no solution.
If m > z, then x = m.
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If m = z, then any x ≤ z is a solution, but x = m is the maximal one. �

The interested reader is referred to the book by Baccelli, Cohen, Olsder and
Quadrat [6] and the references therein. It gives a comprehensive account of de-
terministic and stochastic Max-Plus linear discrete event systems, together with
recent algebraic results (such as symmetrization). The Max-Plus algebra appears
to be the right tool to handle synchronization in a linear manner, whereas this phe-
nomenon seems to be very nonlinear, or even nonsmooth, “through the glasses” of
conventional algebraic tools. Although the initial motivation was essentially found
in the study of discrete event systems, it turns out that the theory of linear systems
on the Max-Plus algebra may be appropriate for other purposes too.

There also exist several excellent survey articles on the subject as the one by
Gaubert [28], who presents what he believes to be the minimal core of Max-Plus
results, and illustrates these results by typical applications, at the frontier of lan-
guage theory, control and operations research (performance evaluation of discrete
event systems, analysis of Markov decision processes with average cost). The alge-
braic structure Rmax introduces a linear algebra point of view to dynamic program-
ming problems and large deviations. A theory of nonlinear Max-Plus probabilities
has been introduced to formalize this point of view (see, e.g., [1] by Akian, [2]
by Akian, Quadrat and Viot, [11] by Del Moral and Doisy), where the Max-Plus
probability of an event corresponds to the gain of a set of decisions. When the de-
cision space is R+ and the gain process a deterministic real function, this nonlinear
probability is defined as a nonlinear integral:

EXAMPLE 2.6 (Max-Plus integral via a running supremum). Let (lt )t∈[0,ζ ] be
a real valued function. For any 0 ≤ s ≤ t ≤ ζ , the running supremum of l between
s and t is by definition a Max-Plus integral on [s, t] w.r.t. l,

l∗s,t = sup
s≤u≤t

lu =
∮ t

s
lu = I+([s, t[).(2.6)

The function t → l∗s,t defined on [s, ζ ] is nondecreasing, right-continuous, pro-
vided that l is upper-right semi-continuous (u.r.s.c.), that is, lim supε↓↓0 lt+ε ≤ lt .

The Max-Plus additivity property (
∮ t
s lv) ⊕ (

∮ u
t lv) = ∮ u

s lv comes from the fol-
lowing relation:

sup
s≤v≤t

lv ∨ sup
t≤v≤u

lv = sup
s≤v≤u

lv.

The process (l∗0,t ) only increases at points in time s satisfying ls = l∗0,s .

Let � be some “sample space,” and Q a function defined on � with nega-
tive values and such that supω∈� Q(ω) = 0. Then for any A ⊂ �, the Max-Plus
probability of A is P +(A) = supω∈A Q(ω). Q(ω) is called the likelihood of ω,
and Q the Max-Plus probability density function. A Max-Plus random variable is
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any Rmax-valued function Z on �. The Max- Plus expectation of Z is E+(Z) =∮
� Z(ω) ⊗ P +(dω) = supω∈�[Z(ω) + Q(ω)]. Note that if E+(Z) < +∞, then Z

is Max-Plus integrable. It is also immediate that E+ is stable by increasing limit
and linear under Max-Plus addition and scalar multiplication.

In the particular case where � = R+ and Z(ω) = l]s,t](ω) where l]s,t] stands for
the Max-Plus indicator function which equals 0 if ω ∈]s, t] and −∞ otherwise,
E+(Z) comes down to our Max-Plus integral (2.6).

The theory of the Max-Plus probability calculus has been deeply developed by
W. H. Fleming who has considered the notion of Max-Plus additive integral in his
paper [25]. This paper is also concerned with a concept of Max-Plus martingale,
which is similar to the concept of exponential-maxingale as defined in [41]. The
results presented there were intended as initial steps toward a Max-Plus stochastic
calculus (review of some aspects of Max-Plus probability, concept of Max-Plus
stochastic differential equation and associated backward and forward partial dif-
ferential equations, etc.).

2.4. Main result. We here give the main theorem of the paper, in a simi-
lar form to that of Theorem 2.2. The first part is the Max-Plus version of the
supermartingale-decomposition, expressed in terms of the running supremum of
some process L. In contrast with what happens in the additive or multiplicative
decomposition [equations (2.2) and (2.4)], here the identity E[�T |Ft ] = Zt ⊕ �t

does not hold true at any time t in [0, ζ ]. We just have an inequality.
We now formulate the main theorem of the paper. The proof of existence of a

process satisfying the properties below is relegated to Section 4. It is established
in the case where Z is quasi-left-continuous. Let us first focus on the question of
uniqueness.

THEOREM 2.7. Let Z be a (D)-supermartingale defined on [0, ζ ], quasi-left-
continuous and assume that the filtration {Ft } is quasi-left-continuous.

1. Z admits the following Max-Plus decomposition:

Zt = E
[

sup
t≤u≤ζ

Lu ∨ Zζ |Ft

]
= E

[∮
[t,ζ ]

Lu ⊕ Zζ |Ft

]
, 0 ≤ t ≤ ζ,(2.7)

where L = (Lt )0≤t≤ζ is an optional upper-right semi-continuous process, sat-
isfying Lζ ≤ Zζ .

2. Let L∗
t,s be the càdlàg running supremum of Lu :L∗

t,s = supt≤u≤s Lu = ∮
[t,s] Lu.

Define the (D)-martingale M⊕ by

M⊕
t := E[L∗

0,ζ ∨ Zζ |Ft ] ∀t ∈ [0, ζ ].(2.8)

Then M⊕ ≥ max(Z,L∗
0,·) = Z ⊕ L∗

0,·,(2.9)

and at any stopping time S ≤ ζ ,

LS = L∗
0,S ⇒ M⊕

S = ZS ⊕ L∗
0,S = ZS.(2.10)
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In particular, the following “flat-off ” condition holds true:∫
[0,ζ ]

(M⊕
s − Zs)dL∗

0,s = 0.(2.11)

3. This decomposition is unique in the sense of Theorem 2.8 below.

PARTIAL PROOF. 1. See Section 4 for the construction of the process Lu.
2. For any time t in [0, ζ ], by the ⊕ additivity of L∗, we have that

M⊕
t = E[L∗

0,ζ ∨ Zζ |Ft ] = E[L∗
0,t ∨ L∗

t,ζ ∨ Zζ |Ft ]
≥ L∗

0,t ∨ E[L∗
t,ζ ∨ Zζ |Ft ] = L∗

0,t ∨ Zt .

Moreover, if S is a stopping time at which LS = L∗
0,S , then L∗

S,ζ = L∗
0,ζ and so

ZS = M⊕
S . �

The above representation (2.7) provides an additive decomposition for super-
martingales in the algebraic structure Rmax, analogous to the Doob–Meyer’s one,
but here the nondecreasing process is only optional and not necessarily predictable.
This restriction is similar to that appearing in the Kramkov decomposition [34].

We have also to note that, contrary to what occurs with the Max-Plus decompo-
sition, in the preceding decompositions the equality MA

S = ZS , where MA is the
martingale of the additive Doob–Meyer decomposition (resp. MP

S = ZS , where
MP is the martingale of the multiplicative decomposition) only holds before the
first stopping time at which the nondecreasing process A (resp. B) increases.

2.4.1. Uniqueness result. For the uniqueness, we have not to assume a pri-
ori that the nondecreasing process, involved in the Max-Plus decomposition, is a
running supremum. We only use the “flat-off” condition (2.11).

THEOREM 2.8 (Uniqueness). Let {Ft } be a quasi-left-continuous filtration
and Z a (D)-supermartingale. Assume there exists a (D)-martingale M with
M0 = Z0, and a càdlàg adapted nondecreasing process � taking values in
[−∞,+∞), such that, almost surely,

Mt ≥ Zt ∀t ∈ [0, ζ ], Mζ = �ζ ∨ Zζ .(2.12)

We further assume that � only increases at times t ≤ ζ when Mt = Zt , that is �,
satisfies the “flat-off condition”∫

[0,ζ ]
(Mt − Zt) d�t = 0 a.s.(2.13)

Then the martingale M is unique and denoted by M⊕ in the sequel.
In addition, given such a martingale M⊕, the set K of the nondecreasing
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processes � satisfying (2.12) and (2.13) has a maximal element, which also satis-
fies condition (2.13). It is denoted by �max.

REMARK 2.9. (a) When � is a running supremum L∗
0,t , � only increases

when L∗
0,t = Lt . So, the “flat-off condition” implies that condition (2.10) holds

true.
(b) At maturity, “the flat-off condition” means that on the subset {�ζ >

�ζ−ε,∀ε > 0}, �ζ ≤ Zζ . This inequality also holds true if �+
ζ > �ζ , where

�+
ζ = �ζ ∨ Zζ .

(c) Observe that if Z is bounded by below by a real c, M⊕ is also bounded
by below by c, and the nondecreasing process � ⊕ c satisfies conditions (2.9)
and (2.10).

REMARK 2.10 (Dynamic programming). Unlike the other supermartingale
decompositions where, for any stopping time τ , the decomposition on the time
interval [0, ζ ] is also the decomposition on [0, τ ], here this property only holds
true if M⊕

τ = Zτ ⊕ �τ .

Before establishing the uniqueness result, let us give some examples associ-
ated with degenerated supermartingales, first as a decreasing process and then as a
martingale.

EXAMPLE 2.11. (a) Case of a nonincreasing process: if Z is an adapted inte-
grable nonincreasing process, then, for each t ∈ [0, ζ ],

M⊕
t = �max

t = Z0 a.s.

In fact, it can be easily seen that Z0 is a martingale that satisfies the Max-Plus
decomposition. It is also the only one since the martingale involved in the decom-
position is unique.

(b) Case of a martingale: if Z is a martingale, then, for each t ∈ [0, ζ ],
M⊕

t = Zt and �max
t ≤ Zt = E[Zζ |Ft ].

Hence, �max is the greatest càdlàg nondecreasing process dominated by Z, and
defines the conditional infimum of the random variable Zζ with respect to the σ -
algebra Ft :

�max
t = Ft − ess inf{Zζ } = ess sup{Yt ∈ Ft |Yt ≤ Zζ a.s.} ∀t ∈ [0, ζ ].

In fact, for any r ∈ Q, where Q denotes the field of rationals, let us define �max
r

as the conditional infimum of Zζ with respect to Fr . The sequence (�max
r )r∈Q is

nondecreasing with right-continuous regularization �max
t . It is clear that �max

t ≤
E(Zζ |Ft ) = Zt . Moreover, if � is a càdlàg nondecreasing process such that �t ≤
�ζ ≤ Zζ , then �t ≤ �max

t .
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REMARK 2.12. The conditional infimum is defined in Barron, Cardialaguet
and Jensen [9]. The concept of maxingale is also introduced, as associated with the
conditional infimum with respect to a filtration, and used to develop the new theory
of optimal stopping in L∞, as well as the concept of an absolutely optimal stopping
time. In our case, �max defines a maxingale since �max

t = Ft − essinf{�max
ζ },

a.s. for each t ∈ [0, ζ ]. In contrast to martingales, it turns out that maxingales are
easier to analyze since they basically always converge. It should be also noted
that these processes are different from those appearing in the theory of Fleming or
Puhalskii [25, 41], since it is not the probability Max-Plus which is used here but
the usual one.

The proof of uniqueness is essentially based on the observation that Mζ is equal
to the terminal value �+

ζ of a nondecreasing process. This kind of argument was
first introduced by El Karoui and Jeanblanc-Picqué in [16]. It also appears in the
papers [17] by El Karoui, Jeanblanc-Picqué and Lacoste and [7] by Bank and El
Karoui.

PROOF OF THEOREM 2.8. In the proof, we use the short notation �+ intro-
duced in Remark 2.9 for the process � jumping at time ζ , such that �+

ζ = �ζ ∨Zζ .
�+ still satisfies the flat-off condition.

Assume that there exists two decompositions (M1,�+,1) and (M2,�+,2) satis-
fying the previous conditions (2.12) and (2.13). For the sake of simplicity, we first
suppose that �

+,1
0 and �

+,2
0 are finite (note that this assumption is automatically

satisfied if Z is bounded by below). Then at the end of the proof, we will show
how this artificial assumption can be relaxed.

(a) Let f be an arbitrary positive, regular, convex function in C2
b , null in zero

[e.g., the C2-bounded regularization of x �→ x+ on the intervals of the form [−ε, ε]
and (−∞,−1

ε
] ∪ [1

ε
,∞)(ε > 0)]. Since f (0) = 0, the convexity of f yields

f (M1
ζ − M2

ζ ) ≤ f ′(M1
ζ − M2

ζ )(M1
ζ − M2

ζ ) = f ′(�+,1
ζ − �

+,2
ζ )(M1

ζ − M2
ζ ).

We use the classic differential rule for finite variation processes; it is convenient to
introduce the discrete derivative of f ′, f ′′

d as⎧⎨
⎩f ′′

d (x, δ) = 1

δ

(
f ′(x + δ) − f ′(x)

)
, if δ 	= 0,

f ′′
d (x,0) = f ′′(x), if δ = 0.

In the sequel, we set �1,2
s = (�+,1

s −�+,2
s )− (�

+,1
s− −�

+,2
s− ) for s in (0, ζ ]. Thus,

f ′(�+,1
ζ − �

+,2
ζ ) = f ′(�+,1

0 − �
+,2
0 )

+
∫
(0,ζ ]

f ′′
d (�

+,1
s− − �

+,2
s− ,�1,2

s ) d(�+,1
s − �+,2

s ).
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Since f is a convex regular function in C2
b , f ′′

d is positive and bounded. As we do
not really need the explicit form of f ′′

d , we introduce the short notation f̃ ′′
d (s) :=

f ′′
d (�

+,1
s− − �

+,2
s− ,�1,2

s ).
Moreover, note that the current value of the uniformly integrable martingale

M1 − M2 at any time s is nothing else but the conditional expectation of its termi-
nal value w.r.t. the filtration Fs , whence

E[f ′(�+,1
ζ − �

+,2
ζ )(M1

ζ − M2
ζ )]

= E
[
f ′(�+,1

0 − �
+,2
0 )(M1

ζ − M2
ζ )

]
+ E

[∫
(0,ζ ]

(M1
s − M2

s )f̃ ′′
d (s) d(�+,1

s − �+,2
s )

]
.

In addition, �+,1 (resp. �+,2) only increases at times t ≤ ζ when M1
t = Zt (resp.

M2
t = Zt ), whence∫

(0,ζ ]
(M1

s − M2
s )f̃ ′′

d (s) d(�+,1
s − �+,2

s )

=
∫
(0,ζ ]

f̃ ′′
d (s)

(
(Zs − M2

s ) d�+,1
s − (M1

s − Zs)d�+,2
s

) ≤ 0.

Thus, these considerations lead to

E[f ′(�+,1
ζ − �

+,2
ζ )(M1

ζ − M2
ζ )] ≤ E[f ′(�+,1

0 − �
+,2
0 )(M1

0 − M2
0 )] = 0,

whence E[f (M1
ζ −M2

ζ )] ≤ 0 for all convex functions in C2
b , and the desired result

follows at once.

(b) In the case where �1
0 and �2

0 are infinite, we just have to set −∞+∞ = 0.
(c) Let us consider the set of nondecreasing processes in K satisfying∫

[0,ζ ]
(M⊕

t − Zt) d�+
t = 0, M⊕

ζ = �+
ζ = �ζ ∨ Zζ .

This set is stable by Max-Plus addition. In fact, if M⊕
ζ = �1

ζ ∨ Zζ = �2
ζ ∨ Zζ ,

the same equality holds for �1 ∨ �2 as it has been shown in Example 2.5 on the
linear equation (2.5) in the Max-Plus algebra. Moreover, since �+,1 and �+,2

only increase at points in time t when M⊕
t = Zt , �+,1 ∨ �+,2 satisfies the same

property.
The idea now is to introduce the essential supremum of this family of nonde-

creasing processes. To do so, we consider for any r ∈ Q+, �̃r = ess sup{�r;� ∈
K}. The family (�̃r)r∈Q+ is clearly nondecreasing, and for any real t in [0, ζ ), we
define by �max

t = limr↓↓t �̃r , the right-regularization of �̃r . �
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3. Generalization of Darling–Liggett–Taylor’s point of view on American
options. Mathematical finance has popularized a particular kind of optimal stop-
ping problems, called American options.

In this section we generalize the ideas of Darling, Liggett and Taylor, who con-
sidered in their paper [10] American Call options written on partial sums Sn of
independent and identically distributed random variables with negative drift, and
characterized optimal stopping times in terms of the running supremum of the un-
derlying Sn.

3.1. Max-Plus decomposition and American Call options. Hence, based on
a supermartingale representation in terms of a running supremum of some index
process Lt , we characterize an optimal stopping time in terms of L and represent
the value function using the running supremum of Bank and Föllmer that have
provided in [8] the same kind of representation based on another decomposition
(see Remark 3.7).

THEOREM 3.1. Let Z be a supermartingale of class (D) with the follow-
ing Max-Plus decomposition in terms of an upper-right semi-continuous process
Lt :Zt = E[supt≤s≤ζ Ls ∨ Zζ |Ft ] = E[L∗

t,ζ ⊕ Zζ |Ft ], where the filtration (Ft ) is
assumed to be quasi-left-continuous.

The problem to find an optimal stopping time τ ∗
t (m) to the American Call option

CAm(Z,m) written on Z, and with strike m,

CAm
t (Z,m) = ess supt≤s≤ζ E[(Zs − m)+|Ft ] = E

[(
Zτ∗

t (m) − m
)+|Ft

]
,

has an explicit universal solution (w.r.t. the strike m ≥ 0) given by

τ∗
t (m) = Tt (m) ∧ ζ := inf{s ≥ t;L∗

t,s ≥ m} ∧ ζ
(3.1)

= inf{s ≥ t;Ls ≥ m} ∧ ζ.

Moreover, the American Call option CAm(Z,m) is explicitly characterized as a
lookback one:

CAm
t (Z,m) = E[(L∗

t,ζ ∨ Zζ − m)+|Ft ]
(3.2)

= E
[(

sup
t≤s≤ζ

Ls ∨ Zζ − m

)+∣∣∣Ft

]
, t ≤ ζ.

Hence thanks to equation (3.1) which links the optimal stopping time Tt (m) to the
index process Lt , we do not need to compute the value function in order to solve
the optimal stopping problem, if we have the Max-Plus decomposition of Z.

The key point is that we can omit the conditioning by FS in the Max-Plus rep-
resentation of ZS and thus replace Z by L∗·,ζ , when computing the American Call
price.
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PROOF OF THEOREM 3.1. First note that the process (E[(L∗
t,ζ ∨ Zζ −

m)+|Ft ])t∈[0,ζ ] defines a supermartingale since it is the conditional expectation
of a nonincreasing process. Moreover, since ZS = E[L∗

S,ζ ∨ Zζ |FS] for any stop-
ping time S ≤ ζ , Jensen’s inequality implies

E[(L∗
S,ζ ∨ Zζ − m)+|FS] ≥ (E[L∗

S,ζ ∨ Zζ |FS] − m)+ = (ZS − m)+,

for any stopping time S ≤ ζ . Thus, the supermartingale (E[(L∗
t,ζ ∨ Zζ −

m)+|Ft ])t∈[0,ζ ] dominates the process (Zt − m)+, and necessarily its Snell en-
velope CAm

t (Z,m) as well.
Define Tt(m) as the first stopping time after t , at which the process (L∗

t,u)u≥t

goes beyond m:

Tt (m) := inf{s ∈ [t, ζ ];L∗
t,s ≥ m}, = ∞+ if the set is empty.

On the set {Tt (m) ≤ ζ }, L∗
Tt (m),ζ ∨ Zζ ≥ m and, hence, ZTt (m) = E[L∗

Tt (m),ζ ∨
Zζ |FTt (m)] ≥ m. This yields

E[(L∗
t,ζ ∨ Zζ − m)+|Ft ] = E

[
E

[
1{Tt (m)≤ζ }

(
L∗

Tt (m),ζ ∨ Zζ − m
)+|FTt (m)

]|Ft

]
= E

[
1{Tt (m)≤ζ }E

[
L∗

Tt (m),ζ ∨ Zζ − m|FTt (m)

]|Ft

]
= E

[
1{Tt (m)≤ζ }

(
ZTt (m) − m

)+|Ft

]
= E

[(
ZTt (m)∧ζ − m

)+|Ft

]
, a.s.,

where the last equality follows from the fact that Zζ (m) > Zζ on the set {Tt (m) =
∞+}, and since Zζ (m) = Zζ ∨ m, it comes that Zζ < m.

Hence, E[(L∗
t,ζ ∨ Zζ − m)+|Ft ] = E[(ZTt (m)∧ζ − m)+|Ft ] ≤ CAm

t (Z,m) by
definition of the Snell envelope. This completes the proof since we have already
shown the reverse inequality. �

Supermartingale processes Z with independent and stationary additive or mul-
tiplicative increments give us nice examples where the Max-Plus decomposition
is obvious. We hereafter give some illustrative examples which show that we can
completely solve the American Call problem with no need to the explicit price. We
just have to compute the expectation of the running supremum of Z, and not its
probability distribution. Similar ideas are used by Darling, Liggett and Taylor [10]
to solve the optimal stopping problem in the discrete case.

3.2. Positive multiplicative Lévy processes. Running suprema of Lévy pro-
cesses have been, in particular, studied in [4] by Asmussen, Avram and Pistorius,
who have derived explicit formulae for the pricing of Russian and perpetual Amer-
ican put options, under exponential phase-type Lévy models.

Let Z be a positive multiplicative Lévy process with initial value x and such
that E[sup0≤t≤ζ Zt ] < +∞. Since Z0 = x, it comes that Zt = xZt , where Z is the
process that equals Z when Z0 = 1. We first assume the maturity ζ to be infinite.
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3.2.1. Infinite horizon. Thanks to the independence property of the rela-
tive increments of Z, we can easily determine a nondecreasing process L∗

0,t =
sup0≤u≤t Lu, satisfying the Max-Plus decomposition of Z. Then applying Theo-
rem 3.1, we immediately obtain an explicit characterization of an optimal stop-
ping time without computing the American Call price. The only quantity we need
to calculate is xE[supt≥0 Zt ]−1 = xE[Z∗

0,∞]−1 = E[Z∗
0,∞]−1, which does not de-

pend on the initial value x. We assume in the following proposition that (Ft ) is a
quasi-left-continuous filtration.

PROPOSITION 3.2. Let Z be a positive multiplicative Lévy process defining a
supermartingale with initial value x and such that E[sup0≤t≤∞ Zt ] < +∞. Then
using the notation Z∗

t := Z∗
0,t = sup0≤u≤t Zu, we get:

1. Zt = bE[Z∗
t,∞|Ft ] and L∗

0,t = bZ∗
t where b = 1

E[Z∗
0,∞] .

2. An exercise boundary to the perpetual American Call option CAm(Z,m) is
given by Ec(m) = mE[Z∗

0,∞] and the corresponding optimal stopping time is
explicitly characterized by

Tt (m) = inf{s ≥ t;bZs ≥ m} = inf{s ≥ t;Zs ≥ mE[Z∗
0,∞]}.

PROOF. 1. We use the previous notation Z∗
s,t = sups≤u≤t Zu. Thanks to the

independence of relative increments and the integrability property of Z∗
0,∞, we

have that

Zt = bE[Z∗
t,∞|Ft ], 1

b
= 1

x
E

[
sup
0≤u

Zu

]
= E[Z∗

0,∞], Lt = bZt ,(3.3)

since

E[Z∗
t,∞|Ft ] = ZtE

[
sup
t≤u

Zu

Zt

∣∣∣Ft

]

= ZtE
[
sup
0≤u

(
Zu+t

Zt

)∣∣∣Ft

]
= ZtE

[
sup
0≤u

Zu

]
. �

We also note that, in light of Theorem 3.1, a perpetual American Call written
on Z with strike m is nothing else but a perpetual lookback option written on the
index process L and with the same strike m:

CAm
0 (Z,m) = E[(bZ∗

0,∞ − m)+] = E
[(

Z∗
0,∞

E[Z∗
0,∞] − m

)+]
.(3.4)

REMARK 3.3. When the time horizon is finite and denoted by T , the constant
b in the Max-Plus decomposition of Z is replaced by a function b(·) such that, at
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any time t ,

Zt = E
[

sup
t≤u≤T

b(T − u)Zu|Ft

]
.

However, we do not have an explicit formula for the function b(·).
Let us give some examples of positive multiplicative Lévy processes Z for

which the corresponding perpetual American Call option can be solved explic-
itly. Since we only need to know the exercise boundary, the following examples
come down to calculate the expectation of the maximum of Z. We start with the
geometric Brownian motion motivated by financial applications.

Examples of calculations of the expectation of the maximum Geometric
Brownian motion. Let us consider a geometric Brownian motion with negative
drift (r ≥ 0) and positive initial value, so as to be a supermartingale:

dZt

Zt

= −r dt + σ dWt, Z0 = x > 0.

Set γ = 1 + 2r
σ 2 . It is well known that P[Z∗

0,∞ ≥ m] = ( x
m

∧ 1)γ ,E[Z∗
0,∞] = γ

γ−1x

and, thus, E[Z∗
0,∞] = γ

γ−1 . This classic result is proven in Section 5.

Geometric Lévy process. The same decomposition holds for a jumping geo-
metric Lévy process Z that defines a supermartingale. However, we have to intro-
duce other assumptions so as to satisfy the condition E[Z∗

0,∞] < ∞. We follow
hereafter the notation of Mordecki in his paper [38].

Let us consider the particular case where the horizon ζ is infinite and Zt = xeXt ,
where X defines an upper semi-continuous process, or equivalently, a Lévy process
with no positive jumps:

EeiμXt = exp
{
t

[
iμa − 1

2σ 2μ2 +
∫ 0

−∞
(
eiμy − 1 − iμy1{−1<y<0}

)

(dy)

]}
,

with a and σ ≥ 0 two real constants, and 
 a positive measure supported on the
set (−∞,0) such that

∫
(1 ∧ y2)
(dy) < +∞. The Laplace exponent is defined

for λ ≥ 0 by

κ(λ) = aλ + 1
2σ 2λ2 +

∫ 0

−∞
(
eλy − 1 − λy1{−1<y<0}

)

(dy),

and satisfies E(eλXt ) = etκ(λ). We also assume that the process ert eXt defines a
martingale, which implies that E[eXt ] = e−rt , that is, κ(1) = −r .

Since κ(0) = 0, κ is convex and limλ→+∞ κ(λ) = +∞, there exists γLévy > 1
such that κ(γLévy) = 0. Hence, in light of the paper [38], we deduce that

E[Z∗
0,∞] = γLévy

γLévy − 1
where γLévy > 1 is such that κ(γLévy) = 0.
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Closed formulae. Numerically, thanks to equation (3.4), we can compute the
price of the perpetual American Call CAm

0 (Z,m) with simply two Monte-Carlo
simulations, one for E[Z∗

0,∞] and the other for the whole expectation. We just
have to check beforehand that E[Z∗

0,∞] < +∞.
However, in many cases of Lévy processes, these expectations are easy to cal-

culate and can be got in an explicit form. For example, the next proposition gives
the explicit expression of CAm

t (Z,m) in the case where Z evolves according to a
geometric Brownian motion, but since this price is needless to solve the optimal
stopping problem, we relegate the proof to Section 5.

PROPOSITION 3.4. Let us assume the filtration (Ft ) to be quasi-left-continu-
ous and consider a geometric Brownian motion Z with parameters (−r, σ ). The
price of the American Call option written on the underlying Z, with strike m is
given by

CAm
t (Z,m) = E

[(
γ − 1

γ
Z∗

t,∞ − m

)+∣∣∣Ft

]

=
⎧⎪⎨
⎪⎩

(
m

γ − 1

)1−γ (
Zt

γ

)γ

, if
γ − 1

γ
Zt ≤ m,

Zt − m, otherwise.

American Put options. Note that the American Call option CAm(Z,m) with
no discount factor comes down to a “classic” American Put by a simple change of
probability measure.

In fact, using the martingale property of the positive continuous process ertZt ,
we define a new equivalent probability measure QZ on Ft by its Radon–Nikodym
density with respect to P:

dQZ

dP

∣∣∣∣
Ft

= ert Zt

Z0
= ert Zt

x
.

Then taking xZ−1 as a new numéraire, we transform our American Call option
into a classic American Put option with new underlying mxZ−1 and new strike x:

CAm
0 (Z,m) = sup

τ
EP[(Zτ − m)+]

= sup
τ

EQZ [xe−rτZ−1
τ (Zτ − m)+]

(3.5)
= sup

τ
EQZ [e−rτ (x − mxZ−1

τ )+]

= mxPutAm
0 (x−1,m−1).

Observe that the new underlying Z−1 defines a submartingale under the probabil-
ity measure QZ and evolves according to a positive multiplicative Lévy process.
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Moreover, the exercise boundary Ep(m−1) of this new “classic” Put option is noth-
ing else but the inverse of Ec(m), that is, Ep(m−1) = γ−1

γ
m−1.

This Put-Call duality formula (3.5), based on an adequate change of probability
measure, can be more generally extended to one-dimensional time homogeneous
diffusion processes with a volatility function. However, the two “dual” underlyings
will not necessarily have the same dynamics any more. We refer the reader to [24]
for more details about the duality between prices of Put and Call options.

In the case where Z = xeXt , where X defines a Lévy process with no positive
jumps, it can be shown that, by an adequate change of probability, CAm

t (Z,m) is
nothing else but the price of a perpetual Put option, written on the underlying asset
me−Xt and with a strike K = x. Based on [38], we deduce a closed formula for
CAm

t (Z,m) as a function of Zt . This function is the same as in Proposition 3.4,
but with the parameter γLévy.

3.2.2. Independent exponential r.v. horizon. Assume now that the time hori-
zon ζ defines an independent exponential r.v. with parameter β > 0. Let Gt be
the right-continuous augmented filtration generated by Ft∧ζ ∨ σ(t ∧ ζ ). Then one
can observe that, on the set {t < ζ }, any Gt -measurable r.v. on � × R+ is also
Ft -measurable. So, for any r.v. X ∈ Gζ ,

E[X|Gt ]1{t<ζ } = E[X1{t<ζ }|Ft ]
E[1{t<ζ }|Ft ] 1{t<ζ } = eβtE

[
X1{t<ζ }|Ft

]
1{t<ζ }.(3.6)

In order to derive an explicit decomposition of Z in the Max-Plus algebra relative

to the G-filtration, we first observe that, on the set {t < ζ }, Z∗
t,ζ

Zt
is conditionally

independent of Zt given Gt and has the same distribution as
Z∗

0,ζ

x
. We hence obtain

Zt1{t<ζ } = E
[∫ ∞

t
βe−β(s−t)

Z∗
t,s

Zt

ds
∣∣∣Ft

]−1

× E[Z∗
t,ζ |Gt ]1{t<ζ }

(3.7)
= bβE[Z∗

t,ζ |Gt ]1{t<ζ },

where 1
bβ

= E[Z∗
0,ζ

x
] = E[Z∗

0,ζ ]. Note here that E[Z∗
t,ζ |Gt ] = E[Z∗

t,ζ−|Gt ], and thus,

Z∗
t,ζ = Z∗

t,ζ− a.s.
The previous representation (3.7) cannot be considered as a Max-Plus decom-

position of Z since it only holds for t < ζ . To obtain such a decomposition in this
case, we must rather consider the filtration Gt instead of Ft and introduce the fol-
lowing process Z̃t = Zt1{t<ζ } = Zt∧ζ − Zζ 1{ζ≤t}. Thanks to the positivity of Z,
Z̃ is clearly a Gt -supermartingale, as it is the difference between a supermartin-
gale and a nonincreasing process. Let us also observe that Z̃ζ = 0, which leads to
the same properties as the previous case. Moreover, the positivity properties of Z

imply that, for t < ζ ,

Z∗
t,ζ = sup

t≤u≤ζ

Zu = sup
t≤u<ζ

Zu = sup
t≤u<ζ

(
Zu1{u<ζ }

) = sup
t≤u<ζ

Z̃u = sup
t≤u≤ζ

Z̃u = Z̃∗
t,ζ .
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Observe that, for t = ζ , supt≤u≤ζ Zu = Zζ 	= supt≤u≤ζ Z̃u = Z̃ζ = 0.
We hence obtain the following Max-Plus decomposition of Z̃:

LEMMA 3.5. Let Z̃t = Zt1{t<ζ } and bβ = 1
E[Z∗

ζ ] . Then for any t ≤ ζ ,

Z̃t = bβE[Z∗
t,ζ |Gt ]1{t<ζ } = bβE[Z̃∗

t,ζ |Gt ] and L
z̃,∗
0,t = bβZ̃∗

t = bβZ∗
t .

Then the results of Proposition 3.2 can be extended to the exponential horizon time
and remain the same. We just have to replace Z by Z̃, b by bβ and the filtration Ft

by Gt .

EXAMPLE 3.6 (Geometric Brownian motion). We show in Section 5 that if Z

defines a geometric Brownian motion with parameters (−r, σ ), bβ = δ−1
δ

, where

δ is the root greater than γ = 1 + 2r
σ 2 of the equation y2 − γy − 2β

σ 2 = 0.

REMARK 3.7. Equation (3.7) leads to the following representation of Z on
the set {t < ζ }:

Zt = 1

bβ

E
[∫ +∞

t
βe−β(s−t)Z∗

t,s ds|Ft

]
.(3.8)

Let μ be a nonnegative optional random measure and let f = f (ω, t, x) :� ×
[0,+∞] × R → R be a random field with the following properties:

1. For any x ∈ R, the mapping (ω, t) �→ f (ω, t, x) defines a progressively mea-
surable process in L1(P(dω) ⊗ μ(ω,dt)).

2. For any (ω, t) ∈ �×[0,+∞], the mapping x �→ f (ω, t, x) is continuous and
strictly decreasing from +∞ to −∞.

Then, for any given optional process X = (Xt)t∈[0,+∞] with X+∞ = 0, Bank
and El Karoui have constructed in [7] a progressively measurable process ξ =
(ξν)ν∈[0,+∞) with upper-right continuous paths such that

f

(
s, sup

ν∈[t,s)
ξν

)
1(t,+∞](s) ∈ L1(

P ⊗ μ(ds)
)

and

Xt = E
[∫

(t,+∞]
f

(
s, sup

ν∈[t,s)
ξν

)
μ(ds)|Ft

]

for any stopping time t ∈ T . This stochastic representation of X in terms of run-
ning suprema of ξ comes down to equation (3.8), in the particular case where
Xt = Zte

−βt , ξ = Z and f (s, l) = βe−βsl.
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3.3. Additive Lévy processes. Let Z define a supermartingale with indepen-
dent additive increments and initial value x, such that E[Z∗

0,∞] < +∞. Let Z be
the process Z starting from 0: Zt = Zt − x. We assume the maturity ζ to be infi-
nite.

Using the same notation as before and setting b = E[sup0≤u Zu] − x =
E[Z∗

0,∞] − x = E[Z∗
0,∞], it can be easily seen that Zt takes the simple form of

Zt = E[Z∗
t,∞ −b|Ft ], thanks to the independence property of the increments of Z.

Then we need only to compute the expectation E[Z∗
0,∞] and apply Theorem 3.1 to

solve the American Call problem. The value function is still useless in this case.

PROPOSITION 3.8. Let (Ft ) be a quasi-left-continuous filtration, and Z an
additive Lévy process defining a supermartingale with initial value x, and such
that E[Z∗

0,∞] < +∞. Then:

1. Zt = E[Z∗
t,∞ − b|Ft ] and L

Z,∗
0,t = Z∗

t − b, where b = E[Z∗
0,∞].

2. An optimal stopping time to the perpetual American Call option CAm
S (Z,m),

where S is a stopping time, is explicitly characterized by

T Z
S (m) = inf{t ≥ S;Zt − b ≥ m} = inf{t ≥ S;Zt ≥ m + E[Z∗

0,∞]},
and the exercise boundary is hence given by Ec(m) = m + E[Z∗

0,∞].
3. The price at time t of the perpetual American Call CAm(Z,m) is given by

CAm
t (Z,m) = E

[
(Z∗

t,∞ − E[Z∗
0,∞] − m)+|Ft

]
.

EXAMPLE 3.9 (Brownian motion). Let us consider a Brownian motion with
negative drift, defining a supermartingale Z:

dZt = −μdt + σ dWt,Z0 = 0, μ ≥ 0,(3.9)

and set γ = 2μ

σ 2 . The law of Z∗
0,∞ can be deduced from the example of the Geo-

metric Brownian motion and we get b = 1
γ

. We can also derive a closed formula

of CAm
t (Z,m) as a function of Zt .

4. Existence of the supermartingale decomposition in the Max-Plus alge-
bra. In the present section our purpose is to establish the existence of the pre-
ceding decomposition in the Max-Plus algebra. To do so, convex duality methods
can be used with great efficiency. In our context, it was Whittle (see [45]) who
first introduced a convex family of optimal stopping problems, in order to solve
the Bandit problem. Since then, the same idea has been exploited by other authors,
El Karoui–Karatzas for the Bandit problem [19], or by Bank–El Karoui [7] or El
Karoui–Föllmer [15] to obtain nonlinear representation of general processes (see
Remark 3.7 and Section 4.5).
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4.1. Review of the main results on optimal stopping problems. In general, each
process X that we consider in the paper is defined on [0, ζ ] and assumed to be
adapted and càdlàg. As usual, a stopping time can take infinite values. To avoid
any confusion with the horizon ζ , we use the notation ∞+ when it is infinite.
By convention, all processes are null at this time. The family of all stopping times
(finite or not) is denoted by T and for any stopping time S, TS is the set of stopping
times posterior to S :TS = {τ ≥ S; τ ∈ T }.

The adapted processes such that the family {Xτ∧ζ }τ∈T is uniformly integrable
are of class (D). [A useful criterion to show uniform integrability is the La Vallée–
Poussin criterion (see [23] for further details). It states that if there exists a positive,
nondecreasing, convex function φ(t) defined on [0,∞) such that limt→∞ φ(t)

t
=

+∞ and supτ∈T E(φ ◦ |Xτ |) < ∞, then X is uniformly integrable.] This property
is in fact a necessary and sufficient condition for a process X to be of class (D),
and it is then equivalent to the characterization given in Section 2 (see [31]).

As we shall essentially work with stopping times, the following criteria are very
useful to show the path regularity ([13], Theorem 48–49, page 120):

• An optional process X of class (D) is right-continuous (X = X+) if and only if
E[Xτn1τn<∞+] → E[Xτ 1τ<∞+], for every nonincreasing sequence of stopping
times (τn)n≥0 ⊆ T , with τ = limn→∞ τn a.s.

• For the left-hand regularity, we need to be more precise. A process X of
class (D) is said to be quasi-left-continuous if E[Xτn10<τn<∞+] tends to
E[Xτ 10<τ<∞+], for every increasing sequence of stopping times (τn)n≥0, tend-
ing toward τ almost surely. τ is said to be predictable.

Then, X is left-limited (with process of left limits X−) and E[X−
τ 1τ<∞+] =

E[Xτ 1τ<∞+] for any predictable stopping time τ . Despite this equality, in gen-
eral, X− 	= X and, hence, X is not left-continuous. The main reason is that
X− is predictable and X optional. The difficulty disappears by introducing the
predictable projection X(p) of X, characterized by the identity X

(p)
τ 1{τ<∞+} =

E(Xτ |Fτ−)1{τ<∞+}, for any predictable stopping time τ . So E[Xτ−1τ<∞+] =
E[X(p)

τ 1τ<∞+] = E[Xτ 1τ<∞+], and both predictable processes X− and X(p)

are indistinguishable (cf. [13] by Dellacherie–Meyer).
In what follows, a quasi-left-continuous process X belonging to the class XD

[of càdlàg processes of class (D)] is said to be (D)-regular.
• All martingales of class (D) are regular.
• Any predictable nondecreasing process A associated with the Doob–Meyer

decomposition of a regular supermartingale Z is continuous since it satis-
fies the following identity, E[Aτ 1τ<∞+] = E[Aτ−1τ<∞+] for any predictable
stopping time τ .

Let us state a lemma, which will be useful in the sequel, on the convex transfor-
mation of quasi-left-continuous processes.
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LEMMA 4.1. If X− ≡ X(p), then, for any continuous convex function ϕ, we
have that ϕ(X−) ≤ ϕ(X)(p). In particular, for any real m, X−∨m ≤ (X∨m)(p).

PROOF. For any predictable stopping time τ , we have that

E[ϕ(Xτ−)1τ<∞+] = E
[
ϕ

(
X(p)

τ

)
1τ<∞+

] = E
[
ϕ(E[Xτ |Fτ−])1τ<∞+

]
≤ E

[
E[ϕ(Xτ )|Fτ−]1τ<∞+

] = E
[
ϕ(Xτ )

(p)1τ<∞+
]
,

where the inequality follows from the convex property of ϕ. �

4.2. A convex family of supermartingales. Let Z = (Zt ; t ∈ [0, ζ ]) be a
(D)-regular supermartingale. We hence introduce the Snell envelope Z.(m) =
(Zt (m); t ∈ [0, ζ ]) of Z ∨ m = (Zt ∨ m; t ∈ [0, ζ ]), that is, the smallest càdlàg
supermartingale dominating Z ∨ m, indexed by the real parameter m, and study
the properties of this supermartingale family as a function of the parameter m. The
key property is the convexity w.r. to m of this random field.

The dual characterization of Z·(m) is well known: for any stopping time S ∈
T0,ζ , ZS(m) is in the form of

ZS(m) = ess sup
τ∈TS,ζ

E[Zτ ∨ m|FS],(4.1)

where TS,ζ denotes the collection of F -stopping times with values in [S, ζ ]. The
following observations are useful:

• If Z is a martingale M , then M ∨ m is a submartingale and it is never optimal
to stop before maturity. Thus, M·(m) is a martingale, and

MS(m) = E[Mζ ∨ m|FS].(4.2)

• When Z is a (D)-regular supermartingale and thus of the class (D), there exist
two u.i. martingales U and V , such that U ≤ Z ≤ V ; then the Snell envelope
Z·(m) belongs to the class (D), and E[Uζ ∨ m|FS] ≤ ZS(m) ≤ E[Vζ ∨ m|FS].
The main properties of (ZS(m))S∈T0,ζ

essentially lie on properties related to the
Snell envelope and optimal stopping theory. The following proposition precises
the regularities of this parameterized family of supermartingales with respect to
the parameter m.

PROPOSITION 4.2. 1. There exists a 1-Lipschitzian regular version of the ran-
dom field (S,m) �→ ZS(m), such that m �→ ZS(m) is convex and nondecreasing
and m �→ ZS(m) − m is convex, nonincreasing. Moreover, for any FS -measurable
r.v. �S ,

ZS(�S) = ess sup
S≤τ≤ζ

E[Zτ ∨ �S |FS], τ ∈ TS,ζ .
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2. The boundary m is absorbing for the process Z·(m). In particular, if

θS(m) := inf{t ∈ [S, ζ ];Zt(m) = m}, (= ∞+ if {·} = ∅),

then, on the set {θt (m) ≤ ζ }, ZU(m) = m for all U ∈ [θt (m), ζ ].

PROOF. 1. The proof of the first item is technical and relegated to the Appen-
dix.

2. It is a classic property of nonnegative supermartingales that 0 is absorbing.
Applying this result to the nonnegative supermartingale Z·(m) − m, we obtain the
desired result. The same property holds when m is replaced by an FS-measurable
r.v. �S . �

4.2.1. Optimal stopping times. In this section we briefly outline some basic
facts concerning the optimal stopping theory without proof (see [14] and [32] for
more general treatments), and especially the links between the Snell envelope and
optimal stopping times. We directly express these results in terms of the process
Z·(m). The filtration (Ft ) is assumed to be quasi-left-continuous in the following
theorem.

THEOREM 4.3. Assume Z to be a (D)-regular supermartingale. Then:
1. Z·(m) is a (D)-regular supermartingale.
2. Moreover, let TS(m) := inf{t ∈ [S, ζ ];Zt(m) = Zt },= ∞+ if the set is empty.
The stopping time TS(m) ∧ ζ is an optimal stopping time:

ZS(m) = E
[
sup

(
ZTS(m)∧ζ ,m

)|FS

]
and ZTS(m)∧ζ (m) = sup

(
ZTS(m)∧ζ ,m

)
,

but the smallest optimal stopping time is T̂S(m) := TS(m) ∧ θS(m).
3. The family m �→ TS(m) ∧ ζ is nondecreasing and left-continuous.

REMARK 4.4. The proof of the left-continuity of the family m �→ TS(m) ∧ ζ

is the most technical part of the work. It can be omitted in a first reading.

PROOF OF THEOREM 4.3. 1. If the supermartingale Z is continuous (in the
case of a Brownian filtration, e.g.), the process Z ∨ m is also continuous, and the
classic theory may be applied to explain the first part of the theorem (see [19]).
In the general case where Z is only quasi-left-continuous, the process Z ∨ m is
only upper-quasi-left-continuous, since from Lemma 4.1, Z− ∨ m ≤ (Z ∨ m)(p).
Equivalently and in terms of stopping times, for any increasing sequence of stop-
ping times Sn ↑ S, limn→∞ E[ZSn ∨ m] ≤ E[ZS ∨ m] (cf. the second prelimi-
nary remark). To conclude, we have to use general results on optimal stopping
problems; in particular, the desired result follows immediately from [14], Theo-
rem 2.43, page 142.
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2. We first observe that

ZTS(m)∧ζ (m) = ZTS(m)(m)1{TS(m)≤ζ } + sup(Zζ ,m)1{TS(m)=∞+}
= ZTS(m)1{TS(m)≤ζ } + sup(Zζ ,m)1{TS(m)=∞+}.

But on {TS(m) ≤ ζ }, ZTS(m)(m) = ZTS(m) ≥ m and so

ZTS(m)∧ζ (m) = sup
(
ZTS(m)∧ζ ,m

)
.

It remains to observe that

ZT̂S(m)(m) = ZθS(m)∧(TS(m)∧ζ )(m)

= sup
(
ZTS(m)∧ζ ,m

)
1{TS(m)∧ζ≤θS(m)} + m1{θS(m)<TS(m)∧ζ }.

Then since m is absorbing on the set {θS(m) < TS(m) ∧ ζ }, ZTS(m)∧ζ (m) =
m = sup(ZTS(m)∧ζ ,m). So we finally obtain that ZT̂S(m)(m) = ZTS(m)∧ζ (m) =
sup(ZTS(m)∧ζ ,m).

3. Let ε > 0. Since m �→ ZU(m) is Lipschitz continuous at any time U ≥ S,
ZU(m − ε) → ZU(m) a.s. and in L1, as ε ↓ 0.
Let us set T ε

S := TS(m− ε), TS := TS(m) and TS− := lim ↑ TS(m− ε). We specify

the predictable part T
(p)

S− of TS− as the stopping time defined by

T
(p)

S− = TS− on H−
TS

= {ω,T ε
S ↑↑ TS−}, = ∞+ if not,

T
(s)

S− = TS− on (H−
TS

)c = {ω,∃ε T ε
S = TS−}, = ∞+ if not.

So TS− = inf(T (p)

S− , T
(s)

S− ). We can give a precise description of the limit of the
different terms:

(a) on (H−
TS

)c, limZT ε
S ∧ζ (m − ε) = ZTS−∧ζ (m), and if TS− ≤ ζ , then T ε

S ≤
ζ and ZT ε

S ∧ζ = ZT ε
S

tends to ZTS− . If TS− = ∞+, then there exists ε such that
T ε

S = ∞+ and ZT ε
S ∧ζ (m − ε) = sup(Zζ ,m − ε). So in both cases, ZTS−∧ζ (m) =

sup(ZTS−∧ζ ,m). We easily deduce that TS−(m) = TS(m) on (H−
TS

)c.

(b) on H−
TS

, thanks to the strict monotonicity of the sequence T ε
S , T (p)

S− ≤ ζ , and

limε→0 ZT ε
S ∧ζ (m − ε) = Z−

T
(p)

S−
(m). On the other hand, ZT ε

S
(m − ε) = ZT ε

S
since

T ε
S ≤ ζ a.s., whence limε→0 ZT ε

S ∧ζ (m − ε) = limε→0 ZT ε
S

= Z−
T

(p)

S−
.

Since T
(p)

S− is predictable on H−
TS

, and thanks to the quasi-left-continuity of Z and
Z·(m), this yields

Z−
T

(p)

S−
(m) = Z

(p)

T
(p)

S−
(m) = Z−

T
(p)

S−
= Z

(p)

T
(p)

S−
= E

[
Z

T
(p)

S−
|F −

T
(p)

S−

]
.

Then on H−
TS

, Z
T

(p)

S−
(m) = Z

T
(p)

S−
a.s. and T

(p)

S− = TS− = TS(m), since TS(m) is the

smallest stopping time U after S satisfying ZU(m) = ZU . �
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REMARK 4.5. If the supermartingale Z is not quasi-left-continuous, it has
been shown in [14] that we can find an optimality loss in the optimal stopping
problem of the process Z ∨ m; more precisely, the candidate to be an optimal
stopping time is the time τ̂S(m) such that

τ̂S(m) := inf{t ≥ S; Zt(m) = Zt ∨ m or Z−
t (m) = Z−

t ∨ m} ∧ ζ.

It is possible to adapt the previous proof by introducing the two families of stop-
ping times θ̃S(m) = inf{t ≥ S;Zt(m) = m or Z−

t (m) = m} and T̃S(m) = inf{t ≥
S;Zt(m) = Zt or Z−

t (m) = Z−
t }.

4.3. Convex analysis and characterization of the Z-Max-Plus decomposition.
In what follows, we assume Z to be a (D)-regular supermartingale. We are still
working with the 1-Lipschitzian version of the random field m �→ Z·(m). Thanks
to the convexity and monotonicity of m �→ Z· ∨ m, the random field Z·(m) in-
herits the same properties. In particular, it is possible to characterize the left-hand
derivative of ZS(m) w.r.t. m.

Similar ideas can be found in the paper by El Karoui and Karatzas [19]. By
considering some properties (w.r.t. K) of a convex family of American Put op-
tions, they have provided a representation of the early exercise premium of an
American put-option with given strike-price K > 0, on a finite time-horizon. The
main difference in our context is that the asset process is a supermartingale which
is not required to be continuous, but only continuous in expectation with respect to
stopping times. Also very closed to this point of view is the representation theorem
of any process X of class (D) established by Bank and El Karoui [7]. We assume
in the following proposition that the filtration (Ft ) is quasi-left-continuous.

PROPOSITION 4.6 [Static representation of Zt(m)]. Fix S in T0,ζ and let
�S(α) be the left-inverse at time α of the mapping m �→ TS(m), where m ∈ R:
�S(α) := sup{m;TS(m) ≤ α}, with the conventional notation sup{∅} = −∞.

(a) The convex mapping m �→ ZS(m) has a left-hand derivative satisfying

∂−

∂m
ZS(m) = P[Zζ < m;TS(m) = ∞+|FS]

(4.3)

= P[Zζ < m;�S(ζ ) < m|FS] = 1 + ∂−

∂m
CAm

S (Z,m) a.s.

(b) For all reals m,

ZS(m) = E[�S(ζ ) ∨ Zζ ∨ m|FS] and ZS = ZS(−∞) = E[�S(ζ ) ∨ Zζ |FS].

This result is strongly related to “traditional envelope theorems” which describe
sufficient conditions for the value of a parameterized optimization problem to be
differentiable in the parameter and provide a formula for the derivative. See [37]
for a review of envelope theorems.



MAX-PLUS DECOMPOSITION OF SUPERMARTINGALES 671

PROOF OF PROPOSITION 4.6. (a) The proof is based on the optimality of
TS(m) ∧ ζ and on the classic convex inequalities

ε1{x<m−ε} ≤ x ∨ m − x ∨ (m − ε) ≤ ε1{x<m}.

The set {ZTS(m)∧ζ < m} plays a key role. Since on {TS(m) ≤ ζ }, ZTS(m) =
ZTS(m)(m) ≥ m, {

ZTS(m)∧ζ < m
} = {Zζ < m;TS(m) = ∞+}.

These observations yield to the following series of inequalities:

ZS(m) − ZS(m − ε) ≤ E
[
sup

(
ZTS(m)∧ζ ,m

) − sup
(
ZTS(m)∧ζ ,m − ε

)|FS

]
≤ εP[Zζ < m;TS(m) = ∞+|FS].

Now to obtain a lower bound, we apply the optimality to TS(m − ε) ∧ ζ :

ZS(m) − ZS(m − ε) ≥ E
[
sup

(
ZTS(m−ε)∧ζ ,m

) − sup
(
ZTS(m−ε)∧ζ ,m − ε

)|FS

]
≥ εP[Zζ < m − ε;TS(m − ε) = ∞+|FS].

Since the sequence TS(m) is nondecreasing and left-continuous,

lim
ε↓0

P[Zζ < m − ε;TS(m − ε) = ∞+|FS]
(4.4)

≤ P[Zζ < m;TS(m) = ∞+|FS].
However, {TS(m) = ∞+} = ⋂

ε{TS(m − ε) = ∞+} since, on H−
TS

, TS(m) =
limTS(m − ε) ≤ ζ . The inequality in (4.4) is therefore an equality and we finally
obtain

∂−

∂m
ZS(m) = lim

ε↓0
P[Zζ < m − ε;TS(m − ε) = ∞+|FS]

= P[Zζ < m;TS(m) = ∞+|FS].
(b) Now, we would like to reintegrate in order to derive an explicit representa-

tion of ZS(m). To do so, we need to express the event {TS(m) = ∞+} according
to m in a simpler way. Note that {m;TS(m) ≤ ζ } is an interval closed on the right
by �S(ζ ), also defined by

�S(ζ ) = sup{m;TS(m) ≤ ζ }, (= −∞ if {·} = ∅).

It follows that ∂−
∂m

ZS(m) = P[Zζ < m;m > �S(ζ )|FS]. Then we need some
boundary conditions. Since ZS(m) − m = ess supτ∈TS,ζ

E[(Zτ − m)+|FS], we can
use (4.2) to show that if Z is dominated by the uniformly integrable martingale V ,

0 ≤ lim
m↑+∞

(
ZS(m) − m

) ≤ lim
m↑+∞ E[(Vζ − m)+|FS] = 0
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and we can hence write

ZS(m) − m =
∫ +∞
m

−∂−

∂α

(
ZS(α) − α

)
dα.

Note that we cannot directly reintegrate ∂−
∂m

ZS(m), since the limit of ZS(m) when
m goes to −∞ is equal to ZS and thus unknown. Then, the following equality can
be deduced from (4.3):

ZS(m) − m =
∫ +∞
m

P[�S(ζ ) ∨ Zζ ≥ α|FS]dα.

Applying the conditional Fubini theorem, we hence obtain

ZS(m) − m = E
[(

�S(ζ ) ∨ Zζ − m
)+|FS

]
and

ZS(m) = E[�S(ζ ) ∨ Zζ ∨ m|FS].
(c) Now letting m ↓ −∞ and applying the monotonous convergence theorem,

we get limm↓−∞ ZS(m) = ZS(−∞) = E[�S(ζ ) ∨ Zζ |FS]. On the other hand,
the sequence TS(m) is decreasing to T +

S (−∞) and by the right-continuity of Z,
ZTS(m)∧ζ ∨ m goes to ZT +

S (−∞)∧ζ . By the Lebesgue theorem,

ZS ≤ lim
m↓−∞ZS(m) = lim

m↓−∞ E
[
sup

(
ZTS(m)∧ζ ,m

)|FS

]
= E

[
ZTS(−∞)+∧ζ |FS

] ≤ ZS, a.s.,

since TS(−∞)+ ∧ ζ is a stopping time posterior to S and Z a supermartingale. It
finally follows that ZS = ZS(−∞) = E[�S(ζ ) ∨ Zζ |FS]. �

The preceding proposition provides a static representation of Zt(m) (t fixed).
We shall hereafter exploit the dynamic structure of the Snell envelope
{Zt(m); t ≥ 0} in order to deduce a representation which exhibits the dependence
of �t(ζ ) w.r.t. t . To do that, we use techniques related to change of variable in R,
that we recall in the following lemma:

LEMMA 4.7. Set

�t(α) := sup{m;Tt (m) ≤ α}; α ∈ [t, ζ ], = −∞ if the set is empty.

Then �t(α) defines the right-continuous inverse of the nondecreasing, left-
continuous mapping m �→ Tt (m). In other terms,

Tt (m) ≤ α ⇐⇒ m ≤ �t(α) ∀α ∈ [t, ζ ].
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Note that since the inequalities are large, �t(α) represents the right-hand
inverse of the left-continuous process m �→ Tt (m). Previous works on time
changes [22] have shown that the process α �→ �t(α) is right-continuous. Let us
stress that we are not in the usual cases, where we rather consider right-hand in-
verses of right-continuous processes, and where the inequalities are consequently
strict. The interested reader can, for example, refer to [22] for full details on time
change theory.

Now, the following theorem represents the increasing process {�t(α); t ≤ α ≤
ζ } in terms of a running supremum process and gives an explicit form of the mar-
tingale M⊕ of the Max-Plus decomposition of Z.

THEOREM 4.8. Assume that the filtration (Ft ) is quasi-left-continuous, and
let Lt be the Ft -measurable r.v. defined by

Lt : = sup{m ∈ Q;Zt(m) = Zt }
= sup{m ∈ Q;Tt (m) = t}, = −∞ if the set is empty.

Let L∗
t,α be the running supremum of L over [t, α] (t ≤ α ≤ ζ ), that is, L∗

t,α =
supt≤s≤α Ls . Then:

(a) L∗
t,α = �t(α) for any α ∈ [t, ζ ] and, hence, Zt(m) = E[L∗

t,ζ ∨Zζ ∨m|Ft ],
and α �→ L∗

t,α is right-continuous for any α ∈ [t, ζ [.
(b) The process (Mt)t≥0 defined by

Mt = E[L∗
0,ζ ∨ Zζ |Ft ] = Zt(L

∗
0,t ) ≥ Zt = Zt(−∞), 0 ≤ t ≤ ζ,

is the martingale M⊕ of the Max-Plus decomposition of Z since the increasing
process (L∗

0,t ) satisfies the flat-off condition∫
[0,ζ ]

(Mt − Zt) dL∗
0,t = 0 a.s.

PROOF. (a) First, note that the increase property and the continuity of the
mapping m �→ Zt(m) imply that Lt is the right-point of the closed interval
{m,Zt(m) = Zt }.

Then note that, for α ≤ ζ , Tt (m) ≤ α, if and only if, there exists s ∈ [t, α] s.t.
Zs(m) = Zs , or equivalently, Ls ≥ m. This consequently leads to the following
series of identities:

{Tt (m) = t} = ⋂
α>0

{Tt (m) ≤ t + α}

= ⋂
α>0

{∃s ∈ [t, t + α];Ls ≥ m} =
{

lim sup
s↓t

Ls ≥ m

}
.
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However, since Tt (m) = t if and only if Lt ≥ m, it immediately follows that Lt =
lim sups↓t Ls and Lt is upper-right semi-continuous. We hence get

Tt (m) ≤ α ⇐⇒ ∃s ∈ [t, α]; m ≤ Ls ⇐⇒ m ≤ L∗
t,α.

This last equivalence in conjunction with the preceding lemma easily implies
that L∗

t,α = �t(α) for any α ∈ [t, ζ ].
(b) (L∗

0,t )t≥0 is obviously an increasing process. Let S be a stopping time cor-
responding to an increasing point of L∗

0,·.
If S < ζ , it necessarily satisfies sup0≤t≤ζ Lt = supS≤t≤ζ Lt , whence MS = ZS .
If S = ζ , we have that L∗

0,S− < LS , otherwise the increasing process does not
jump at ζ . However, Lζ = Zζ and Mζ = L∗

0,ζ− ∨ Lζ . It immediately follows that
Mζ = Zζ and the flat-off condition is well satisfied. Thus, by Theorem 2.8, this im-
mediately yields the uniqueness of the martingale in the Max-Plus decomposition
MS = ZS ⊕ L∗

0,S , where S satisfies LS = L∗
0,S . �

Proposition 4.6 together with Theorem 4.8 allows to study the regularity of the
derivative of the value function CAm

S (Z,m) w.r.t. the strike m. We say that there
is smooth pasting if the two derivatives coincide at the optimal stopping boundary
determined by m = LS = sup{m;CAm

S (Z,m) = ZS − m}. The following corollary
gives a full description of the right-hand derivative jumps at the boundary and
establishes the conditions under which smooth pasting occurs.

COROLLARY 4.9 (Smooth-fit principle). 1. The left-hand and right-hand
derivatives of the American Call price CAm

S (Z,m) w.r.t. m can be expressed as

∂−

∂m
CAm

S (Z,m) = −P[Zζ ∨ L∗
S,ζ ≥ m|FS],

∂+

∂m
CAm

S (Z,m) = −P[Zζ ∨ L∗
S,ζ > m|FS] a.s.

2. The left-hand derivative is almost surely continuous at the boundary m = LS :

∂−

∂m
CAm

S (Z,m)
∣∣∣
m=LS

= ∂−

∂m
(ZS − m)

∣∣∣
m=LS

= −1.

3. The right-hand derivative is not continuous at the boundary if

P[Zζ ∨ L∗
S,ζ = LS |FS] = P[Lt ≤ LS,Zζ ≤ LS ∀t ∈ [S, ζ ]|FS] > 0,(4.5)

and, hence, the smooth-fit principle does not occur if the conditional distribution
function of Zζ ∨ L∗

S,ζ jumps at the point LS .

The first item of Corollary 4.9 follows from the convexity property of the map-
ping m �→ ZS(m), which implies that ∂+

∂m
ZS(m) = limε↓0

∂−
∂m

ZS(m + ε).
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It is interesting to note that, when the underlying Z evolves according to a
positive multiplicative Lévy process, the smooth-fit principle we have defined
here is equivalent to the “classic” one usually met in the context of American
Put options (see [3], Theorem 6). In fact, in light of equation (3.5), the Amer-
ican Call prices are transformed into “classic” American Put prices with a dis-
count factor, by simply exchanging the strike and the spot price of the underlying
(CAm

0 (Z,m) = PutAm
0 (m,Z0)), and so any point m of our boundary corresponds

to a point x of the American Put boundary such that L(x) = bx = m.

REMARK 4.10. Recall that the stopping time TS(m) ∧ ζ is optimal, whereas
TS(m) is not. Moreover, the smallest optimal stopping time is T̂S(m) = TS(m) ∧
θS(m), where θS(m) is defined as the first stopping time after S at which Z·(m)

equals m.
The mapping m �→ θS(m) is nonincreasing, with effective domain DomS :=

{m; θS(m) ≤ ζ } = [KS,ζ ,+∞], where KS,ζ is the smallest value of m for which
ZS(m) − m = 0, that is,

KS,ζ := FS − ess supZ∗
S,ζ = essinf{YS |YS ∈ FS, YS ≥ Z∗

S,ζ a.s.}.
Observe the following:

• If S and T are two stopping times such that S ≤ T , then KS,ζ ≥ KT,ζ . In fact,
since any FS -measurable variable is FT -measurable, we have

KS,ζ = ess inf{Y ∈ FS, Y ≥ Z∗
S,ζ ≥ Z∗

T ,ζ a.s.}
≥ ess inf{Y ∈ FT , Y ≥ Z∗

T ,ζ a.s.} = KT,ζ .

• For all stopping times U ≥ S, ZS(KS,ζ ) = ZU(KS,ζ ) = KS,ζ , a.s.

4.4. Max-Plus decomposition and American options. We focused in Section 3
on the problem to find an optimal stopping time to an American Call option written
on a supermartingale underlying of class (D).

In the present section we are concerned with more general American Call op-
tions without discount factor, written on a (D)-regular underlying Y not necessar-
ily defining a supermartingale. We denote by ZY the Snell envelope of Y , which
also defines a (D)-regular process by [14, 31]. The filtration (Ft ) is assumed to be
quasi-left-continuous in the following theorem.

THEOREM 4.11. Let Y be a (D)-regular process, ZY the Snell envelope of Y

and CAm· (Y,m) the price of an American Call option, given at any stopping time
S ≤ ζ by,

CAm
S (Y,m) = ess sup

τ≥S

E[(Yτ − m)+|FS].
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1. The American Calls written on Y and ZY , respectively, have the same price:

CAm
S (Y,m) = CAm

S (ZY ,m).

2. Let LZ· be an index process in the Max-Plus decomposition of ZY . The stopping
time T Z

S (m) ∧ ζ := inf{t ≥ S;LZ
t ≥ m} ∧ ζ is an optimal stopping time.

Intrinsic characterization in terms of Y .
3. Define the stopping times DS and T Y

S (m) by

DS := inf{t ≥ S;ZY
t = Yt },

T Y
S (m) := inf{t ≥ S;CAm

t (Y,m) = Yt − m}.
Then DT Z

S (m)∧ζ = T Y
S (m) ∧ ζ and m �→ T Y

S (m) ∧ ζ is nondecreasing and left-
continuous.

4. Set LY
S := sup{m;CAm

S (Y,m) = YS − m} and LY,∗
s,u = sups≤t≤u LY

t . Then

L
Z,∗
S,ζ = L

Y,∗
S,ζ for any stopping time S ≤ ζ and CAm

S (Y,m) has a closed for-
mula given by

CAm
S (Y,m) = E[(LZ,∗

S,ζ ∨ Zζ − m)+|FS] = E[(LY,∗
S,ζ ∨ Yζ − m)+|FS].

PROOF. 1. First note that CAm
t (ZY ,m) = ess supt≤S≤ζ E[ZY

S ∨ m|Ft ] − m :=
ZY

t (m) − m.
Let Z′ be a supermartingale dominating Y ∨ m. Since Z′ dominates Y , it also

dominates its Snell envelope ZY . We immediately deduce that Z′ dominates ZY ∨
m, and its Snell envelope ZY· (m) as well. Hence, the Snell envelope of Y ∨ m

dominates ZY· (m), and as the reverse inequality trivially holds, the desired result
follows at once.

2. At the beginning of this section, this point has been already proven for any
index process L satisfying the Max-Plus decomposition of Z. We here give another
specific proof for the index process L constructed in Section 4.

Thanks to Theorem 4.3, the stopping time T Z
S (m) ∧ ζ defined by

T Z
S (m) ∧ ζ = inf{u ≥ S;CAm

u (Y,m) = ZY
u − m} ∧ ζ

is optimal. Let LZ· be the index process in the Max-Plus decomposition of ZY :

LZ
S = sup{m;ZY

S (m) = ZY
S } = sup{m;CAm

S (ZY ,m) = ZY
S − m}.

T Z
S (m) defines the left-hand inverse of α �→ L

Z,∗
S,α and thus satisfies the above re-

lation in Theorem 4.11.
3. To simplify the notation in the proof, we will omit the parameter m from the

expressions of both stopping times T Z
S (m) and T Y

S (m).
Set DS(m) := DT Z

S ∧ζ = inf{t ≥ T Z
S ∧ ζ ;ZY

t = Yt }. Since DS(m) is the first

stopping time after T Z
S ∧ ζ , at which Y reaches its Snell envelope ZY , we imme-

diately get by the optimal stopping theory

ZY
T Z

S ∧ζ
= E

[
YDS(m)|FT Z

S ∧ζ

]
.(4.6)
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Thanks to the optimality of the stopping time T Z
S ∧ ζ for ZY· (m), ZY

T Z
S ∧ζ

(m) =
sup(ZY

T Z
S ∧ζ

,m) and, hence,

ZY
T Z

S ∧ζ
(m) = E

[
YDS(m)|FT Z

S ∧ζ

] ∨ m

≤ E
[
sup

(
YDS(m),m

)|FT Z
S ∧ζ

]
(4.7)

≤ ZY
T Z

S ∧ζ
(m).

Thus, the chain of inequalities is indeed a series of equalities which proves that
DS(m) is an optimal stopping time starting from T Z

S ∧ ζ .
Now note that ZT Z

S
(m) = ZT Z

S
≥ m on the set {T Z

S ≤ ζ }. This observation to-

gether with (4.6) implies that YDS(m) ≥ m on {T Z
S ≤ ζ }. This allows to reinterpret

DS(m) as T Y
S . In fact, on the set {T Z

S ≤ ζ },
DS(m) = inf{t ≥ T Z

S ;ZY
t (m) = ZY

t = Yt } = inf{t ≥ S;ZY
t (m) = ZY

t = Yt },
where the second equality follows from the fact that T Z

S is the first stopping time
after S at which ZY· (m) = ZY .

We finally get T Y
S = DS(m) on the set {T Z

S ≤ ζ }. Moreover, since DS(m) ≤ ζ ,
this implies that T Y

S ≤ ζ on {T Z
S ≤ ζ } and, hence, {T Z

S ≤ ζ } = {T Y
S ≤ ζ }. Then it

is immediate to see that DS(m) = DT Z
S (m)∧ζ = T Y

S (m) ∧ ζ .

Now we would like to extend the properties of T Z
S (m) w.r.t. m (left-continuity

and nondecreasing property) to the stopping time T Y
S (m), via the mapping t �→

Dt . It is straightforward that m �→ T Y
S (m) ∧ ζ is nondecreasing since t �→ Dt is

nondecreasing. In the same way, we would immediately get the left-continuity if
t �→ Dt were left-continuous. The problem is that this last property is not true in
general, but t �→ Dt will be left-continuous along the stopping times T Z

S (m) ∧ ζ .
Let us set D−

S (m) := lim ↑ DS(m − ε). Thanks to the quasi-left-continuity of
ZY and Y and the increasing property of m �→ DS(m), the preliminary remarks in
Section 4.1 imply that

E
[
ZY

DS(m−ε)

] → E
[
ZY

D−
S (m)

]
and E

[
YDS(m−ε)

] → E
[
YD−

S (m)

]
as ε → 0.

Since ZY
DS(m−ε) = YDS(m−ε) and ZY ≥ Y , it immediately comes that ZY

D−
S (m)

=
YD−

S (m) and, hence, D−
S (m) = DS(m) since DS(m) is the first stopping time U

after T Z
S ∧ ζ satisfying ZY

U = YU .
4. The running supremum L

Y,∗
S,u can be expressed as L

Y,∗
S,u = sup{m;T Y

S (m) ≤
u}. Then m �→ T Z

S (m) and m �→ T Y
S (m) define two different nondecreasing left-

continuous mappings. Their right-continuous inverses u �→ L
Z,∗
S,u and u �→ L

Y,∗
S,u are

therefore different but with same value at ζ , thanks to the following equivalences:

T Y
S (m) ≤ ζ ⇐⇒ m ≤ L

Y,∗
S,ζ and T Y

S (m) ≤ ζ ⇐⇒ T Z
S (m) ≤ ζ.
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Then applying Theorem 4.8, it comes that

CAm
S (Y,m) = E[LZ,∗

S,ζ ∨ m|FS] − m

= E[(LZ,∗
S,ζ − m)+|FS] = E[(LY,∗

S,ζ − m)+|FS]. �

REMARK 4.12. It should be noted that the increasing processes (L
Y,∗
0,· ) and

(L
Z,∗
0,· ) are in general different. This can be easily checked in the deterministic

setting where ZY
t = supt≤u≤T Yu. The price of the American Call option can be

then expressed as

CAm
t (ZY ,m) = sup

t≤u≤T

(ZY
u − m)+ = sup

t≤u≤T

(
sup

u≤v≤T

(Yv − m)+
)

= sup
t≤v≤T

(Yv − m)+ = CAm
t (Y,m) = (ZY

t − m)+.

As for the index processes LY and LZ , they are different. In fact,

LZ
t = sup{m;ZY

t (m) = ZY
t } = sup{m;ZY

t ∨ m = ZY
t } = ZY

t ,

LY
t = sup{m;ZY

t ∨ m = Yt } = sup{m;ZY
t ∨ m = ZY

t = Yt }.
So if ZY

t = Yt , then LZ
t = LY

t = ZY
t , otherwise LY

t = −∞.
Let α define a real such that supt≤u≤T Yu = Yα = ZY

α = ZY
0 . If α ≤ t , then

L
Y,∗
0,t = ZY

0 = L
Z,∗
0,t , otherwise L

Y,∗
0,t = −∞ 	= L

Z,∗
0,t .

4.5. Markovian case. In a Markovian framework, we can reduce the study of
all processes to that of functions.

Let X be a strong Markov process (“a right process”), quasi-left- continuous,
with lifetime ζ and topological state space E whose Borel σ -field B(E) is sepa-
rable.

The aim of the section is to reconsider the different steps of the Max-Plus de-
composition in the Markovian case, in order to highlight the Markovian aspect of
the different involved processes. For this, we are particularly interested in exces-
sive functions f such that f (Xt)1{t<ζ } define càdlàg supermartingales. The prob-
lem is to show that the Max-Plus decomposition of f (Xt)1{t<ζ } can be expressed
through an index process Lt = L(Xt). Then the problem is simply formulated as
following:

Given an excessive function f on E, does there exist any function L such that

f (x) = Ex

[
sup

0≤t<ζ

L(Xt)

]
= Ex

[∮ ζ

0
L(Xt)

]
.(4.8)

In the one-dimensional case and if L is nondecreasing, equation (4.8) is equiva-
lent to f (x) = Ex[L(sup0≤t<ζ Xt)]. This kind of representation is somewhat un-
usual, since the classic potential theory involves a classic integral instead of a
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Max-Plus one. It appears, for instance, in the paper of El Karoui and Föllmer [15]
who have particularly shown that any function u satisfying some very mild regu-
larity conditions admits a nonlinear Riesz decomposition in terms of a nonlinear
potential subadditive operator G and a corresponding superadditive operator D,
which is a derivator in the sense of the nonlinear potential theory developed by
Dellacherie [12]:

u(x) = Ex

[∫ ζ

0
sup

0≤s≤t

Du(Xs) dt

]
= GDu(x).

Let Ptf be the semigroup of the Markov process X (with Pt1 ≤ 1), defined by
Ptf (x) = Ex[f (Xt)1{t<ζ }]. A function f is said to be excessive if

f ∈ B(E), Ptf (x) ≤ f (x) and Ptf (x) → f (x) as t → 0.

Let Be(E) be the σ -field generated by the excessive functions.
With such a semigroup, the process X is only sub-Markov. In order to make it

a Markov process, we need to add a “cemetery” point ∂ to the state space E. We
also extend all the functions defined on E to null functions at the cemetery point ∂ .

Then we introduce a realization of this Markov process on a space (�, (F e
t ), θt ,

Xt , ζ,Px), with a translation operator θt (on {t < ζ }, Xt ◦ θs = Xt+s), and a life-
time ζ (ζ ◦ θt = ζ − t on {t < ζ }, and Xt ∈ {∂} on {t ≥ ζ }). F e denotes the natural
filtration generated by Be(E) and X. It is the completion of σ(f (Xs); s ≤ t, f ∈
Be(E)) with respect to the family {Pμ;μ a finite measure on P (E)}.

Then for any excessive function f , f (Xt)1{t<ζ } is a càdlàg supermartingale for
all probability measures (Pμ;μ ∈ P (E)). This allows us to avoid any continuity
assumption upon f . Moreover, for any g ∈ Be(E), the process g(Xt)1{t<ζ } is
optional.

Let Yt = g(Xt)1{t<ζ } be a (D)-regular process for any probability measure
(Pμ), where g is assumed to be nonnegative. This assumption is not really re-
quired, but from the point of view of the Snell envelope and since Yζ = 0, it is
equivalent to consider Sn(Y ) or Sn(Y ∨ 0).

Then let us focus on the Snell envelope of Y . According to [14] and [18],
it is associated with the function Rg, defined as the smallest fixed point of the
operator Kg :Be(E) → Be(E), such that Kg(x) = supr∈Q Prg(x). Note that
g ≥ 0 ⇒ Rg ≥ 0. We hence get

Rg(x) = sup
τ∈T

Ex

[
g(Xτ )1{τ<ζ }

]
.(4.9)

Rg can be in fact identified to the smallest excessive function that dominates g. If
we are at time t , equation (4.9) becomes

Rg(Xt)1{t<ζ } = ess sup
τ∈Tt

Eμ

[
g(Xτ )1{τ<ζ }|Ft

]
, Pμ-a.s.,

and then the addressed problem (4.8) comes down to find an optimal stopping time
to the American Call option CAm(Y,m) written on Y and with maturity ζ .
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Note here that any constant m cannot be taken as a function on E. In particular,
to avoid any ambiguity, the corresponding constant function will be denoted by
m1E .

THEOREM 4.13. Let X be a strong Markov process quasi-left-continuous and
v(x,m) = R(g − m)+(x) + m1E(x), for m ≥ 0. Then:

(i) The Max-Plus decomposition of Rg(Xt)1{t<ζ } at time 0 is given by

Rg(x) = Ex

[
sup

0≤u<ζ

L(Xu)

]
,(4.10)

where L is the function defined on E by

L(x) := sup{m;R(g − m)+(x) = g(x) − m1E(x)} (and 0 elsewhere).

(ii) More generally, the price at time 0 of the American Call CAm(Y,m) is given
by

R(g − m)+(x) = Ex

[
sup

0≤u<ζ

(L − m)+(Xu)

]
,

and an optimal stopping time is characterized by

T Y
0 (m) ∧ ζ = inf{t ≥ 0;L(Xt) ≥ m} ∧ ζ.

The proof of Theorem 4.13 is simply based on the observation that the Snell
envelope of g(Xt)1{t<ζ } ∨ m is given by

v(Xt ,m)1{t<ζ } + m1{t≥ζ }.

Moreover, equation (4.10) shows that the initial problem (4.8) admits a solution,
which was not clear a priori. However this solution is not necessarily unique, since
there is no uniqueness for the nondecreasing processes involved in the Max-Plus
decomposition of Rg(Xt)1{t<ζ }.

A direct discussion of the Markovian case and further results concerning the
uniqueness of L can be found in Föllmer and Knispel [26].

REMARK 4.14. At time t , the Max-Plus decomposition of Rg(Xt)1{t<ζ } be-
comes

Rg(Xt)1{t<ζ } = Ex

[
sup

t≤u<ζ

L(Xu)|Ft

]
,

where x denotes the initial value of the underlying process (Xt), and the American
Call price at time t is given by

R(g − m)+(Xt) = Ex

[
sup

t≤u<ζ

(L − m)+(Xu)|Ft

]
.
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EXAMPLE. Let us come back to the example of Section 3 and reinterpret it
in terms of a Markov process. The supermartingale Z defines a one-dimensional
Markov process evolving according to a geometric Brownian motion

dZt

Zt

= −r dt + σ dWt, Z0 = 1.

Let us introduce a lifetime ζ assumed to be an independent exponential variable
with parameter β > 0 and a cemetery point ∂ (we set Zt = ∂ , if t ≥ ζ ). Z is hence
extended to a Markov process with values in the enlarged space R ∪ {∂}.

Then we formally define the identity function by Id(x) = x on R and Id(∂) =
0. Note that, with this convention, the supermartingale Z̃t = Zt1{t<ζ } introduced
in Section 3 can be written as Z̃t = Id(Zt ).

Thanks to Theorem 4.13, the Snell envelope Z̃·(m) of Z̃ ∨ m is a function of
(Z,m) and can be decomposed as following in the Max-Plus algebra:

Z̃t (m) = E
[

sup
t≤u<ζ

L(Zu)1{u<ζ } ∨ m|Ft

]
for t < ζ, and m for t ≥ ζ,

where L(x) = δ−1
δ

x, as we have seen in Section 3 (cf. Lemma 3.5 and Exam-
ple 3.6). We finally obtain

Z̃t = E
[

sup
t≤u≤ζ

δ − 1

δ
Zu1{u<ζ }|Gt

]
= δ − 1

δ
E[Z̃∗

t,ζ |Gt ].

5. Optimality of Max-Plus decomposition w.r.t. convex order. For the sake
of completeness, we first give some useful definitions and properties of stochas-
tic order, which expresses the notion of one entire probability distribution being
less than or equal to another. This order which was introduced in Economics by
Rothschild and Stiglitz [43] as a measure of risk gives a systematic framework for
analyzing economic behavior under uncertainty.

More generally, stochastic order relations provide a valuable insight into the be-
havior of complex stochastic systems. Application areas include queuing systems,
actuarial and financial risk, decision making and stochastic simulation.

5.1. Basic properties of convex order.

DEFINITION 5.1. Let X1 and X2 be two real-valued random variables. We say
that X1 is less variable than X2 in the convex stochastic order, and we write X1 ≤cx

X2 if for any convex real-valued function g for which the following expectations
are well defined:

E[g(X1)] ≤ E[g(X2)].(5.1)

When E[X1] = E[X2], the test functions can be reduced to �m(x) = x ∨ m for all
reals m.
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Let us point out some basic facts concerning stochastic order:
• The convex order compares the “dispersion” of random variables with equal

mean. In particular, by considering specific convex functions, it can be easily seen
that

X1 ≤cx X2 ⇒ Var(X1) ≤ Var(X2) whenever Var(X2) < ∞.

However, the converse implication does not hold. So, indeed, the convex ordering
is stronger than ordering of the variances since it takes into account irregular or
asymmetric risky prospects.

• Recall that a real-valued function g is convex if g(E[X]) ≤ E[g(X)] for all r.v.
X. We particularly get that E[X] ≤cx X for all r.v. X. More generally, note that if
g is a convex function, then, by Jensen’s inequality,

E{g(E[X2|X1])} ≤ E{E[g(X2)|X1]} = E[g(X2)].
This means that E[X2|X1] ≤cx X2. This property is in fact characteristic in the
sense of the next beautiful Strassen’s theorem, which characterizes the convex
order by construction on the same probability space:

If X1 and X2 are two r.v. such that X1 ≤cx X2, then there exist two r.v. X̃1 and
X̃2 defined on a common probability space such that

X̃i
d= Xi for i = 1,2 and X̃1 = E[X̃2|X̃1] a.s.

This theorem on stochastic dominance is a crucial tool in the theory of interacting
particle systems, and has also found many interesting applications in other areas.
See [27] (Corollary 2.100) or [40] for a proof of the theorem.

• Note that X1 ≤cx X2 is equivalent to −X1 ≤cx −X2. This means that, contrary
to the monotone convex orders, the convex order is independent of the interpreta-
tion of the random variables as loss or gain variables.

• It is said that X1 is smaller than X2 in the decreasing convex order, written
X1 ≤dcx X2, if inequality (5.1) holds for all decreasing convex functions g, for
which the expectations exist.

This particularly implies that E[X1] ≥ E[X2] and if the two means are equal,
then the decreasing convex order reduce to the convex order.

• Note that the decreasing convex order is strictly equivalent to the classic sec-
ond order stochastic dominance relation in finance, which is the increasing concave
order. It is a fundamental model of risk-averse preferences and has an equivalent
characterization by utility functions. The term “decreasing convex” is natural when
we are dealing with minimization rather than maximization problems. In fact, von
Neumann and Morgenstern have developed the expected utility theory [39]: for
every rational decision maker, there exists a utility function u(·) such that the deci-
sion maker prefers outcome X over outcome Y if and only if E[u(X)] > E[u(Y )].
In practice, however, it is almost impossible to explicitly elicit the utility function
of a decision maker. Additional difficulties arise when there is a group of decision
makers with different utility functions who have to come to a consensus.
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In terms of utility theory, X ≤dcx Y means that E[u(X)] ≥ E[u(Y )] for every
nondecreasing and concave utility function u(·), that is, the gain X is preferred to
the gain Y by all risk averse decision makers.

We refer the reader to the book by Shaked and Shanthikumar [44] for an
overview of the convex order and other stochastic orders.

5.2. Martingale optimization problems. It is natural to address the problem to
“find the smallest martingale” dominating a floor process in finance, where mar-
tingales may be seen as self-financing portfolio strategies, and also in fair games
language, where martingales may be thought of as the fortune earned by a betting
strategy.

However, the set of martingales is not stable with respect to the infimum opera-
tion, since the inf of two martingales defines a supermartingale and not a martin-
gale. Hence, the problem has no solution in general and we have to weaken the
assumption of the “strong order” to a convex stochastic order. While this kind of
problem, set in terms of convex order, is somewhat unusual in finance since we
consider in general only one convex function, it seems to be more classic in other
areas of probability theory. For instance, Kertz and Rösler have addressed in [33]
a martingale problem similar to ours, in which the optimization is also related to
the convex stochastic order on terminal values. However, our domination path con-
straint is replaced by a constraint imposing that the distribution of the maximum of
the martingale is a given probability measure ν. The solution is thoroughly char-
acterized, using the notions of Hardy–Littlewood maximal functions and convex
envelopes.

Let us formulate our “new” constrained optimization problem in terms of con-
vex order. We use the same notation as in Section 4.4: ZY is the Snell envelope of
a real-valued optional process Y of class (D).

Introduce the following set of admissible martingales:

MY = {(Mt)t≥0 u.i. martingale | M0 = ZY
0 and Mt ≥ Yt ∀t ∈ [0, ζ ]}.

Note that any martingale dominating a floor process Y necessarily dominates its
Snell envelope ZY and, thus, in order to satisfy the floor constraint Mt ≥ Yt for all
t ≤ ζ , the initial value of any admissible martingale M must be at least equal to
the initial value of the Snell envelope of Y , that is, M0 ≥ ZY

0 = supτ∈T0,ζ
E[Yτ ].

Our aim is to find the smallest martingale M∗ in MY with respect to the convex
stochastic order on the terminal value, that is, M∗

ζ ≤cx Mζ for all martingales

(Mt)0≤t≤ζ in MY .
First, it is easy to check that the set of admissible martingales MY is not empty

since it already contains the martingale MA(Y ) of the Doob–Meyer decomposition
of ZY .
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Moreover, it is shown in [42] that this martingale MA(Y ) achieves the minimum
over all martingales M with initial value ZY

0 , in the following representation:

ZY
0 = inf

M
E

[
sup

t∈[0,ζ ]
(Yt − Mt)

]
+ M0.(5.2)

However, it is also trivially the case for all admissible martingales in MY since

E
[

sup
t∈[0,ζ ]

(Yt − Mt)

]
+ M0 ≤ E

[
sup

t∈[0,ζ ]
(ZY

t − Mt)

]
+ M0 ≤ M0 = ZY

0

∀M ∈ MY .

The addressed problem is in general difficult to solve and usually we just consider
the Doob–Meyer martingale MA(Y ).

The following theorem states that the martingale MY,⊕, introduced in Sec-
tion 4.4, solves our constrained optimization problem, and then, in particular,
M

Y,⊕
ζ is less variable than MA

ζ (Y ). We still assume in the theorem that the fil-
tration (Ft ) is quasi-left- continuous.

THEOREM 5.2. The martingale MY,⊕ of the Max-Plus decomposition of ZY

is the smallest martingale in MY , with respect to the convex stochastic order on
the terminal value.

PROOF. Let (Mt)0≤t≤ζ be an arbitrary element of MY and (L∗
0,t ) the non-

decreasing process in the Max-Plus decomposition of ZY . We shall prove that
M

Y,⊕
ζ ≤cx Mζ .

Since M dominates ZY , the Snell envelope ZM(m) of (M ∨ m) also dominates
(Z·(m)).

However, since we have previously observed that ZM
S (m) = E[Mζ ∨ m|FS] for

all S in T , it immediately follows that

E[Mζ ∨ m|FS] ≥ E[L∗
S,ζ ∨ ZY

ζ ∨ m|FS] ∀S ∈ T .

More generally, this inequality holds true for any convex function g that is

E[g(Mζ )|FS] ≥ E[g(L∗
S,ζ ∨ ZY

ζ )|FS] ∀S ∈ T .(5.3)

The terminal condition is M⊕
ζ = L∗

0,ζ ∨ ZY
ζ , and so equation (5.3) implies

E[g(Mζ )] ≥ E[g(L∗
0,ζ ∨ ZY

ζ )] ≥ E[g(M
Y,⊕
ζ )] and the martingale (M

Y,⊕
t )0≤t≤ζ is

optimal indeed.
It should be noted that the same argument can only be used for stopping times

S such that L∗
0,S = LS , that is at the increasing points of L∗

0,·. �

Observe that:
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• If we impose an other initial value m for all admissible martingales in MY , m

must be necessarily greater than ZY
0 , otherwise the problem has no solution.

Then the same results hold if we replace the increasing process (L
Y,∗
0,t )t≥0 by

(L
Y,∗
0,t ∨ m)t≥0.

• Since the initial value of any martingale is equal to its mean, the formulation
of the initial condition strongly depends on the selected stochastic order. If we
consider the convex order, all admissible martingales must have the same initial
value m, whereas if we consider the decreasing convex order, the initial value of
any admissible martingale M must not exceed the initial value of any optimal
solution to the problem. It must also be equal or greater than ZY

0 . Note that while
the original optimization problem was difficult to solve, the dual one (passing
through the Snell envelope of a convex family of processes and its decompo-
sition in the Max-Plus algebra) is much simpler than the first one and requires
only tools from convex analysis.

REMARK 5.3. If we consider a new financial environment in which portfolio
strategies are martingales, the problem treated here can be applied to portfolio in-
surance. In fact, it can be seen as a particular portfolio selection problem where an
American constraint is imposed on the liquidative value of the open fund. Tradi-
tionally, investors are assumed to possess an increasing concave utility function u

and the portfolio choice consists in maximizing the expected utility of final wealth,
over the set of admissible portfolios. In practice, however, it is almost impossible
to explicitly elicit the utility function of a decision maker.

In our approach, the optimization is performed with respect to the convex or-
dering on the terminal value and the optimal strategy is thus robust to different
preferences. This model is hence very useful, especially when there is a group of
decision makers with different utility functions who have to come to a consensus.
The interested reader is referred to [20] for more details on the application of the
martingale problem to portfolio insurance.

5.3. Max-Plus martingales and Lévy processes. As we have seen in Section 3,
processes with independent stationary increments give us nice examples where the
Max-Plus decomposition can be described in quasi-closed form. While the focus
of Section 3 was the link to American options and characterization of optimal
stopping times, we rather emphasize here the different martingales involved in the
Max-Plus decomposition of Lévy processes. The interesting distinction to make
here is between infinite horizon time and an independent exponential random vari-
able one. We consider both cases and determine in each one the closed form and
the dynamics of the Max-Plus martingale M⊕.

5.3.1. Analytical result. Let Z be a geometric Brownian motion with para-
meters (−r, σ ) and initial value Z0 = x. We just recall some classic results on
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the probability distribution of the running supremum of Z, that is, Z∗
t := Z∗

0,t =
sup0≤u≤t Zu.

LEMMA 5.4. Set γ = 1 + 2r
σ 2 and δ the root greater than γ of y2 −γy − 2β

σ 2 =
0. Let ζ be an independent exponential variable with parameter β > 0. The case
where ζ is infinite a.s. corresponds to β = 0 and will be considered together.

1. P[Z∗
ζ ≥ m] =

(
x

m
∧ 1

)δ

and E[Z∗
ζ ] = δ

δ − 1
x.

2. E[(Z∗
ζ − m)+] =

⎧⎪⎪⎨
⎪⎪⎩

m

δ − 1

(
x

m

)δ

, if m ≥ x

δ

δ − 1
x − m, if m ≤ x

= C∗
δ (x,m).

PROOF. 1. The proof is based on the equivalence {Z∗
t ≥ m ⇔ Tm ≤ t},

where Tm := inf{t;Z∗
t ≥ m}. So, P[Z∗

ζ ≥ m] = E[exp−βTm] and even if β = 0,
P[Z∗

0,∞ ≥ m] = P[Tm < +∞] = limβ→0 E(exp−βTm).
To calculate these quantities, we apply Doob’s theorem to the well-selected mar-

tingale, e−βtZδ
t , where δ is the positive root of the equation δ2 − γ δ − 2β

σ 2 = 0,

(δ = γ if β = 0). So, E[e−β(Tm∧t)Zδ
Tm∧t ] = xδ . Since e−β(Tm∧t)Zδ

Tm∧t is nonneg-
ative and bounded by m ∨ x for all t , when t → +∞, the left-hand side goes to
(m ∨ x)δ × E[e−βTm] = (m ∨ x)δ × P[Z∗

ζ ≥ m]. This proves item 1.
2. More generally, for m ≥ x, the price of a Call option on the supremum is

given by

E[(Z∗
ζ − m)+] =

∫ +∞
0

P[Z∗
ζ − m ≥ α]dα =

∫ +∞
0

(
x

α + m

)δ

dα = m

δ − 1

(
x

m

)δ

.

But if m ≤ x, Z∗
ζ ≥ m and E[(Z∗

ζ − m)+] = E[Z∗
ζ − m] = δ

δ−1x − m. �

This lemma proves Proposition 3.4. We first assume the maturity ζ to be infinite.

5.3.2. Infinite horizon. Multiplicative Lévy processes. Let Z be a multiplica-
tive Lévy process such that E[Z∗

0,∞] < +∞. The Max-Plus decomposition of Z

has a closed form thanks to the independence property of its relative increments.
Geometric Brownian motion.

PROPOSITION 5.5. Let Z be a geometric Brownian motion with parameters
(−r, σ ), and set γ = 1 + 2r

σ 2 . The martingale of the Max-Plus decomposition of Z

can be explicitly characterized as a function φγ of (Zt ,Z
∗
t ):

M⊕
t = γ − 1

γ
Z∗

t

[
1

γ − 1

(
Zt

Z∗
t

)γ

+ 1
]

:= φγ (Zt ,Z
∗
t ).

In particular, M⊕
t = Zt ⊕ L∗

0,t if and only if Zt = Z∗
t .
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Moreover, as a martingale, M⊕
t can be represented as a stochastic integral

dM⊕
t =

(
Zt

Z∗
t

)γ−1

σZt dWt .

PROOF. By the uniqueness Theorem 2.8, M⊕
t = bγ E[Z∗

0,∞|Ft ] is the martin-
gale of the Max-Plus decomposition of Z. Since the distribution of Z∗

0,∞ is well
known, there exists a closed formula for M⊕

t as a function of (Zt ,Z
∗
t ):

M⊕
t = bγ E[(Z∗

t,∞ − Z∗
t )+|Ft ] + bγ Z∗

t
(5.4)

= bγ ZtE
[(

Z∗
t,∞
Zt

− Z∗
t

Zt

)+∣∣∣Ft

]
+ bγ Z∗

t .

Since Z∗
t,∞/Zt is independent from Z∗

t /Zt and has the same distribution as
Z∗

0,∞/x, equation (5.4) can be rewritten as follows:

M⊕
t = bγ ZtC

∗
γ (1,mt ) + bγ Z∗

t , with mt := Z∗
t

Zt

≥ 1.(5.5)

Then substituting mt in the last expression of Lemma 5.4, we explicitly determine
M⊕:

M⊕
t = γ − 1

γ
Z∗

t

[
1

γ − 1

(
Zt

Z∗
t

)γ

+ 1
]

:= φγ (Zt ,Z
∗
t ).

Since the associated nondecreasing process is in the form of L∗
0,t = bγ Z∗

t =
γ−1
γ

Z∗
t , it can be immediately seen that the martingale M⊕ is different from

Z ∨ L∗
0,·:

M⊕
t − (Zt ∨ L∗

0,t ) = γ − 1

γ
Z∗

t

[
1

γ − 1

(
Zt

Z∗
t

)γ

−
(

γ

γ − 1

Zt

Z∗
t

− 1
)+]

.

The function x �→ 1
γ−1xγ − (

γ
γ−1x − 1)+ is nonnegative on [0,1], null at 0 and 1

and reaches its maximum at the point bγ = γ−1
γ

.

Then M⊕
t = Zt ∨ L∗

0,t if and only if Zt = Z∗
t , that is, if and only if t is a point

of increase of the process L∗
0,·.

In addition, since M⊕ = φγ (Z,Z∗) is a martingale, by Itô’s formula, its de-
composition as a stochastic integral needs only to know the derivative of φγ w.r.t.

Z :dM⊕
t = ∂φγ

∂x
(Zt ,Z

∗
t )Ztσ dWt . We hence obtain

dM⊕
t =

(
Zt

Z∗
t

)γ−1

σZt dWt =
(

Zt

Z∗
t

)γ−1

dMA
t ,(5.6)

where MA denotes the martingale of the Doob–Meyer decomposition of Z.
From (5.6), we can particularly observe that M⊕ is less variable than MA. �
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Geometric Lévy process. Let CAm(Z,m) be a perpetual American Call written
on a geometric Lévy process Z defining a supermartingale, and with strike m.
The main difficulty to compute its price comes from the complexity of Lookback
options closed formulae. Based on the paper [38], we have explicitly determined
in Section 3.2 the price of such a Call, in the particular case where Zt = xeXt , with
X defining an upper semi-continuous Lévy process (i.e., a process with no positive
jumps). Then using the relation M⊕

t = CAm
t (Z, bZ∗

t ) + bZ∗
t which follows from

equation (5.4) and Proposition 3.2, we easily deduce a closed formula for the Max-
Plus martingale M⊕ as a function φγLévy of (Zt ,Z

∗
t ). φγLévy has the same form as

in Proposition 5.5 and γLévy > 1 is such that κ(γLévy) = 0.
Brownian motion with negative drift. Let Z define a drifted Brownian motion

with parameters (−μ,σ), where μ = r + σ 2

2 and initial value 0, and assume the
maturity ζ to be infinite. The martingale of the Max-Plus decomposition of Z has
a closed formula based on the independence property of the increments of Z. We
have seen in Section 3.3 that Zt takes the simple following form: Zt = E[Z∗

t,∞ −
b|Ft ], where b is set to be equal to E[Z∗

0,∞]. Then by the uniqueness theorem 2.8,
M⊕

t = E[Z∗
0,∞−b|Ft ] is the martingale of the Max-Plus decomposition associated

with the running supremum of the process Zt −b. The law of Z∗
0,∞ can be deduced

from Lemma 5.4, and so we obtain a closed formula for M⊕
t as a function of

(Zt ,Z
∗
0,t ).

The following proposition provides an explicit characterization of M⊕. The
proof is omitted here since it is strictly analogous to that of Proposition 5.5.

PROPOSITION 5.6. The martingale M⊕ associated with the Max-Plus decom-
position of Z is of the form

M⊕
t = 1

γ

[
exp

(−γ (Z∗
t − Zt)

) − 1
] + Z∗

t := φ(Zt ,Z
∗
t ).(5.7)

In particular, M⊕
t = Zt ⊕ L∗

0,t if and only if Zt = Z∗
t .

Moreover, as a martingale, M⊕
t can be represented as a stochastic integral

dM⊕
t = exp

(−γ (Z∗
t − Zt)

)
σ dWt = exp

(−γ (Z∗
t − Zt)

)
dMA

t .

5.3.3. Independent exponential r.v. horizon. Now, we assume that the maturity
ζ defines an independent exponential r.v. with parameter β > 0, and Z a geomet-
ric Brownian motion with parameters (−r, σ ). We use the same notation as in
Section 3.2.2.

The martingale M̃⊕ associated with the Max-Plus decomposition of Z̃ is of the
form

M̃⊕
t = bβE

[
sup

0≤u≤ζ

Z̃u|Gt

]
= bβE[Z̃∗

0,ζ |Gt ] = bβE[Z∗
0,ζ |Gt ].
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Since the distribution of Z∗
0,ζ is also explicit in this case, we can again deduce a

closed formula of M̃⊕ as a function of (Zt ,Z
∗
0,t ), for t < ζ .

Note that the law of Z∗
0,ζ has the same form as within the infinite time horizon,

but γ is replaced by δ. Then, the calculations are strictly identical and lead to the
same closed form for the martingale M̃⊕.

PROPOSITION 5.7. 1. The Max-Plus martingale associated with Z̃t = Zt1{t<ζ }
is of the form

M̃⊕
t = δ − 1

δ
Z̃∗

t

[
1

δ − 1

(
Z̃t

Z̃∗
t

)δ

+ 1
]

= φδ(Z̃t , Z̃
∗
t ) for all t ∈ [0, ζ ].

In particular, M̃⊕
t = Z̃t ⊕ L̃∗

0,t if and only if Z̃t = Z̃∗
t .

2. As a martingale, M̃⊕
t can be represented as the sum of a stochastic integral

and a purely discontinuous martingale, for all t ≤ ζ ,

dM̃⊕
t =

(
Zt

Z∗
t

)δ−1

1{t<ζ } dMA
t + �M̃⊕

t− dÑd
t ,

where Ñd
t := 1{ζ≤t} − β(t ∧ ζ ) and �M̃⊕

ζ− = M̃⊕
ζ − M̃⊕

ζ− = −Z∗
ζ

δ
(
Zζ

Z∗
ζ
)δ .

PROOF. 1. For any t < ζ , M̃⊕
t = δ−1

δ
ZtE[mt ∨ Z∗

t,ζ

Zt
|Gt ], where mt = Z∗

0,t

Zt
.

Since
Z∗

t,ζ

Zt
is conditionally independent given Gt and distributed like

Z∗
0,ζ

x
, then,

applying Lemma 5.4, we obtain M̃⊕
ζ = δ−1

δ
Z∗

ζ , and for t < ζ ,

M̃⊕
t = δ − 1

δ
ZtE

[
mt ∨ Z∗

0,ζ

x

]
= δ − 1

δ

Zt

x

(
E[(Z∗

ζ − mtx)+] + mtx
)

= δ − 1

δ

Zt

x

(
mtx

δ − 1

(
1

mt

)δ

+ mtx

)
= δ − 1

δ
Z∗

t

[
1

δ − 1

(
Zt

Z∗
t

)δ

+ 1
]
.

2. At time ζ , the process Z̃ jumps from Z̃ζ− = Zζ to 0. So, the martingale M̃⊕
ζ

has also a jump of size

�M̃⊕
ζ = M̃⊕

ζ − M̃⊕
ζ− = φδ(Z̃ζ , Z̃

∗
ζ ) − φδ(Zζ ,Z

∗
ζ )

= −Z∗
ζ

δ

(
Zζ

Z∗
ζ

)δ

= 1

δ

(
Zζ

Z∗
ζ

)δ−1

�Z̃ζ .

Since the process Ñd
t := 1{ζ≤t} − ∫ t∧ζ

0 β du defines a martingale and �M̃⊕
ζ is the

value at ζ of a (Gt )-predictable process, then

M̃
⊕,d
t := �M̃⊕

ζ 1{ζ≤t} +
∫ t∧ζ

0
β

Z∗
u

δ

(
Zu

Z∗
u

)δ

du
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is the purely discontinuous part of the G-martingale M̃⊕
t .

Observe that if Ñ
Z̃,d
t := −Zζ 1{ζ≤t} + ∫ t∧ζ

0 βZu du is the martingale corre-
sponding to the jump of Z̃, then

dM̃
⊕,d
t = 1

δ

(
Zt

Z∗
t

)δ−1

dÑ
Z̃,d
t .

The continuous part of the martingale M̃⊕
t is given by M̃

⊕,c
t = φδ(Zt∧ζ ,Z

∗
t∧ζ ) −∫ t∧ζ

0 β
Z∗

u

δ
(Zu

Z∗
u
)δ du with infinitesimal decomposition

dM̃
⊕,c
t = ∂φδ

∂x
(Zt∧ζ ,Z

∗
t∧ζ ) dMA

t∧ζ ,

where MA denotes the martingale of the Doob–Meyer decomposition of Z. �

Note that in the infinite time horizon case, M⊕ was continuous even in ζ = ∞,
since Zt vanishes as t → ∞. But here Zζ does not a priori equal Z̃ζ = 0, and thus,
the martingale M̃⊕ jumps at time ζ .

5.4. Azéma–Yor martingale and Max-Plus decomposition. We leave in this
section the framework of Lévy processes and focus on a new example of Max-
Plus decomposition where we can make explicit calculations with no assumption
of stationary independent increments.

So let Z be an increasing concave function u of a continuous local martingale
N that goes to 0 as t → +∞. Let us also assume the time horizon ζ to be infinite.
Thanks to the concavity property of u, Zt = u(Nt) defines a local supermartingale.
We further assume that E[|u(supt≥0 Nt)|] < +∞ so that Z is of class (D). Then
setting N∗

t = sup0≤s≤t Ns and applying Itô’s formula in the case where u is in the
class C1, we observe that the process

Mt := u(N∗
t ) + (Nt − N∗

t )u′(N∗
t ) = u(N0) +

∫ t

0
u′(N∗

s ) dNs(5.8)

defines a local martingale. This key property has been greatly used by Azéma–Yor
without any concavity assumption, and particularly served to solve the Skorohod
problem in [5]. More generally, the same property still holds if Nt jumps but not
N∗

t , which is the case, for example, for any positive martingale with only negative
jumps.

5.4.1. Max-Plus martingale and Azéma–Yor martingale. Since u is concave,
it comes that u(y)−u(x) ≤ u′(x)(y − x) for all reals (x, y), and so the martingale
Mt dominates Zt = u(Nt).

We aim to apply the uniqueness Theorem 2.8 in order to prove that M is the
martingale associated with the Max-Plus decomposition of Z. For this, M∞ must



MAX-PLUS DECOMPOSITION OF SUPERMARTINGALES 691

equal the terminal value of a nondecreasing process L∗
0,· which only increases at

points in time t such that L∗
0,t = Lt .

As we have assumed that N∞ = 0, it immediately follows that N∗∞ ≥ 0 and

M∞ = lim
t→+∞Mt = u(N∗∞) − u′(N∗∞)N∗∞ := v(N∗∞).

Since v′(x) = −xu′′(x) if u is regular and thanks to the concavity of u, v′(x) ≥ 0 if
x ≥ 0 and the function v is nondecreasing on [0,+∞). Moreover, N∗∞ = (N+)∗∞
since N∗∞ ≥ 0, but we have not necessarily N∗

t = (N+)∗t for any time t . Hence,
M∞ is the terminal value of a nondecreasing process v((N+)∗t ) = sup0≤s≤t Ls ,
where Ls := u(N+

s ) − u′(N+
s )N+

s . In addition, while Nt ≤ 0, (N+)∗t remains
sticked to 0 and does not increase. So the nondecreasing process v((N+)∗t ) only
increases when (N+)∗t = N+

t = Nt = N∗
t , that is, Mt = Zt [in light of equa-

tion (5.8)].
Consequently, M satisfies all the conditions of Theorem 2.8, which ensures the

uniqueness of the martingale M = M⊕ associated with the Max-Plus decomposi-
tion of Z.

Moreover, thanks to the domination constraint M⊕
t ≥ Zt and identity (5.8), it

comes that

u(Nt) ≤ M⊕
t ≤ u(N∗

t ),

and thus, the running supremum processes of M⊕ and Z are here indistinguish-
able: M

⊕,∗
t = Z∗

t = u(N∗
t ), for all t ≥ 0.

These results can be summarized in the following proposition, where the filtra-
tion (Ft ) is assumed to be quasi-left-continuous.

PROPOSITION 5.8. Let Z be a local supermartingale of the form Zt = u(Nt),
where u is an increasing concave function and N a continuous local martingale
such that N∞ = 0. The Max-Plus decomposition of Z is driven by the following
processes:

1. Zt = E[L∗
t,∞|Ft ] and L∗

0,t = v(N∗
t ), where v is an increasing function of the

form v(x) = u(x) − u′(x)x and Ls = v(N+
s ).

2. M⊕
t = u(N∗

t ) + (Nt − N∗
t )u′(N∗

t ). In particular, M⊕ and Z have the same
running supremum process: M

⊕,∗
t = Z∗

t = u(N∗
t ).

3. The optimal martingale M⊕ dominating the floor process Z, also satisfies the
“stronger drawdown” constraint: M⊕

t ≥ v ◦ u−1(M
⊕,∗
t ).

Previous revisited examples.
• Note that the first case where Z is a geometric Brownian motion with para-

meters (−r, σ ) can be included in the scope of the following example. In fact, Zγ

(with γ = 1 + 2r
σ 2 ) defines a martingale and so Zt = u(Nt), where u(x) = x1/γ is

an increasing concave function and Nt = Z
γ
t . In particular, we can easily prove the

result of Proposition 5.5 by simply using equation (5.8).
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Moreover, we do not need Lemma 5.4 to prove that the exercise boundary
Ec(m) = mE[Z∗

0,∞] of the perpetual American Call CAm(Z,m) is nothing else

m
γ−1
γ

. In fact, using the Azéma–Yor martingale (5.8), we get, for any time t ,

E[M⊕
t ] = E

[
(N∗

t )1/γ + 1

γ
(N∗

t )1/γ−1(Nt − N∗
t )

]
= M⊕

0 = x.

Then taking the limit of the preceding expression as t → +∞ and since N∞ = 0,
we finally obtain the desired result.

More generally, let Nt be a continuous exponential martingale of a stochastic
integral such that

∫ ∞
0 σ 2(Nt ) dt = ∞. Then the martingale associated with the

Max-Plus decomposition of Zt = N
1/γ
t has the same form as the one in the geo-

metric Brownian case.
• In the case of the considered Lévy processes, Zt = xeXt , where X has no

positive jumps. So Z∗
t is continuous and Nt = Z

γLévy
t defines a martingale. Then

the rest follows exactly as before.
• Let us now reconsider the case where Z is a drifted Brownian motion with

parameters (−μ,σ), where μ = r + σ 2

2 . It can be easily seen that exp(γZt) =
Nt defines a martingale and so Zt = u(Nt), where u(x) = 1

γ
log(x) defines an

increasing concave function. Then in light of equation (5.8), the martingale M⊕
associated with the Max-Plus decomposition of Z is of the form

M⊕
t = 1

γ
log(N∗

t ) + (Nt − N∗
t )

1

γN∗
t

= Z∗
t + 1

γ

(
expγ (Zt − Z∗

t ) − 1
)
,

and we hence find the same formula as in Proposition 5.6. This property is not
typical for the Brownian motion and remains valid for more general stochastic
integrals.

REMARK 5.9. These results do not only hold under the assumptions ζ = ∞
and N∞ = 0. M is still the martingale of the Max-Plus decomposition of Z, for
any time horizon ζ such that Mζ = v(N∗

ζ ), with v a nondecreasing function.

5.4.2. Max-Plus decomposition and American options. Let us focus on the
Snell envelope Zt(m) of Zt ∨ m, where Z is of the form Zt = u(Nt). For this, we
come back to the Azéma–Yor martingale and make it start from time t instead of
0. Then, equation (5.8) becomes

Mt
s = u(N∗

t,s) + (Nt
s − N∗

t,s)u
′(N∗

t,s) ∀s ≥ t.

Since Mt
t = E[Mt∞|Ft ] and Nt∞ = 0, we immediately obtain the Max-Plus decom-

position of Z:

u(Nt) = E[u(N∗
t,∞) − N∗

t,∞u′(N∗
t,∞)|Ft ] = E[v(N∗

t,∞)|Ft ].
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Now let us consider the Snell envelope Zt(m) of Zt ∨ m. In light of Section 4.3,
Zt(m) is of the form

Zt(m) = E[sup(v,m)(N∗
t,∞)|Ft ].

Since φ(Nt) = E[φ(N∗
t,∞) − N∗

t,∞φ′(N∗
t,∞)|Ft ] for any increasing concave func-

tion φ, if we find such a function φ satisfying sup(v,m) = φ − xφ′, we immedi-
ately deduce that Zt(m) = φ(Nt).

It can be easily seen that the function φ exists indeed and it is of the form
φ(x) = m if v(x) < m for any real x. In the contrary case, there exists some real
x∗
m satisfying v(x∗

m) = m [by continuity of sup(v,m)] and

φ(x) =
⎧⎨
⎩

u(x), if x ≥ x∗
m,

u(x∗
m) − m

x∗
m

x + m, if x < x∗
m.

Note that x∗
m is well defined thanks to the nondecreasing property of v, and the

function φ is nothing else but the concave envelope of u ∨ m.
The following proposition precises the equivalence relation between the two

functions u and v.

PROPOSITION 5.10. Let Z be a local supermartingale of the form Zt =
u(Nt), where u and N satisfy the same properties as in Proposition 5.8. Then
Z can be decomposed as follows:

Zt = E[v(N∗
t,∞)|Ft ],(5.9)

where v is a nondecreasing function defined by v(x) = u(x) − xu′(x).
Conversely, if we know that the supermartingale Z admits the representa-

tion (5.9), we can deduce that Zt is of the form Zt = u(Nt), where the function
u solves the equation

u(x) − xu′(x) = v(x).

6. Conclusion. The paper suggests a new approach in martingale theory,
which consists in looking for martingales under the form of a conditional expec-
tation of some running supremum process. Such martingales are nothing else but
an extension of the Doob–Meyer martingales in the Max-Plus algebra. The analy-
sis of these martingales and their optimality property suggests a lot of potential
applications to the theory of martingales and their maximum processes, via the
Azéma–Yor martingale, in particular.

Moreover, our different point of view provides a unified framework for the so-
lutions of many optimization problems related to the optimal stopping theory or
the Bandit problem, and connects the notions of boundary and index process by
means of the Max-Plus decomposition.



694 N. EL KAROUI AND A. MEZIOU

Hence, the Max-Plus decomposition of supermartingales and the uniqueness of
the associated martingale turn out to be very useful in many optimization problems
and have a lot of application fields, like American options and portfolio insurance
in finance. We also think that our approach could be related to other works around
the Max-Plus algebra (large deviations, . . . ).

APPENDIX: PROOF OF PROPOSITION 4.2

We first observe that if (ai)i∈I and (bi)i∈I are two bounded families of real
numbers,

sup
i∈I

ai − sup
j∈I

bj ≤ sup
i∈I

(
ai − sup

j∈I

bj

)
≤ sup

i∈I

(ai − bi),

and | supi∈I ai − supj∈I bj | ≤ supi∈I |ai −bi |. Then since the function m �→ x ∨m

is 1-Lipschitzian,

|ZS(m) − ZS(m′)| ≤ |m − m′|.
So we can define the regular random field (Zt (m);m ∈ Q) and make a continuous
extension in m from Q into R.

The next step is to replace m by an FS random variable, bounded by below, and
then to show that we still have

ZT (�S) = ess sup
τ≥T

E[Zτ ∨ �S |FT ], T ∈ TS,ζ a.s.

First observe that the main properties of (ZS(m))S∈T0,ζ
come from the fact that,

for any stopping time T ≥ S, the family {E[Zτ ∨ m|FS]; τ ≥ T } is filtering non-
decreasing. In particular,

E[ZT (m)|FS] = ess sup
τ∈TT ,ζ

E[Zτ ∨ m|FS] a.s.(A.1)

Now for any step random variable �S = �1Ai
mi , with (Ai) an FS-measurable

partition of �, let us define

Z̃T (�S) = ess sup
τ≥T

E[Zτ ∨ �S |FT ], T ∈ TS,ζ a.s.

In order to use property (A.1), we define a new stopping time SAi
that equals S on

Ai and ζ on Ac
i . It comes that

1Ai
Z̃S(�S) = 1Ai

E[Z̃SAi
(�S)|FS]

= 1Ai
ess sup
τ≥SAi

{1Ai
E[Zτ ∨ mi |FS] + 1Ac

i
E[Zζ ∨ �S |FS]}

= 1Ai
ess sup

τ≥S

{E[Zζ ∨ �S |FS]

+ 1Ai
E[(Zτ ∨ mi − Zζ ∨ mi)|FS]}
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= 1Ai
E[Zζ ∨ mi |FS]

+ 1Ai
ess sup
τ≥SAi

{
E

[
(Zτ ∨ mi − E[Zζ ∨ mi |Fτ ])|FS

]}
= 1Ai

ess sup
τ≥SAi

E[Zτ ∨ mi |FS] = 1Ai
ZS(mi) a.s.

This means that Z̃S(�S) = ZS(mi) on Ai , and, therefore, Z̃S(�S) = �1Ai
×

ZS(mi) = ZS(�S). The same argument may be applied at any stopping time T ≥ S

to obtain that ZT (�S) = Z̃T (�S) = ess supτ≥T E[Zτ ∨�S |FT ], for any T ∈ TS,ζ .
Thanks to the Lipschitz property, this formula can be extended by continuity to
any FS-measurable random variable bounded by below.
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