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LOCAL TAIL BOUNDS FOR FUNCTIONS OF INDEPENDENT
RANDOM VARIABLES

BY LUC DEVROYE1 AND GÁBOR LUGOSI2

McGill University and ICREA and Pompeu Fabra University

It is shown that functions defined on {0,1, . . . , r − 1}n satisfying certain
conditions of bounded differences that guarantee sub-Gaussian tail behavior
also satisfy a much stronger “local” sub-Gaussian property. For self-bounding
and configuration functions we derive analogous locally subexponential be-
havior. The key tool is Talagrand’s [Ann. Probab. 22 (1994) 1576–1587]
variance inequality for functions defined on the binary hypercube which we
extend to functions of uniformly distributed random variables defined on
{0,1, . . . , r − 1}n for r ≥ 2.

1. Introduction. Concentration inequalities for functions of independent ran-
dom variables establish upper bounds for the tail probabilities of such functions un-
der general “smoothness” conditions; see, for example, Talagrand [30–32], Ledoux
[19, 20], Boucheron, Lugosi, Massart [7, 8], McDiarmid [23], and so on. In this
paper we take a closer look at the distribution of certain functions of independent
random variables and show that the tail distribution exhibits a sub-Gaussian (or
subexponential) behavior in a stronger “local” sense in many cases when concen-
tration inequalities predict a sub-Gaussian (subexponential) tail.

First we consider real-valued functions defined on the binary hypercube
f : {0,1}n → R. If X = (X1, . . . ,Xn) is uniformly distributed on the hypercube,
we are interested in the distribution of the random variable f (X).

Our starting point is the following inequality, due to Talagrand [29]:

Var(f ) ≤ 9

10

n∑
i=1

E(f (X) − f (X(i)))2

1 + log(

√
E(f (X) − f (X(i)))2)/(E|f (X) − f (X(i))|)

,(1.1)

where X(i) = (X1, . . . ,1−Xi, . . . ,Xn) is obtained by flipping the ith bit of X and
Var(f ) denotes the variance of the random variable f (X). The constants shown
here follow from a simple proof by Benjamini, Kalai and Schramm [5].

Received May 2006; revised November 2006.
1Supported by NSERC Grant A3456 and FQRNT Grant 90-ER-0291.
2Supported by the Spanish Ministry of Science and Technology and FEDER, Grant BMF2003-

03324 and by the PASCAL Network of Excellence under EC Grant 506778.
AMS 2000 subject classification. 60F10.
Key words and phrases. Concentration inequalities, convex distance, configuration functions, hy-

percontractivity, Talagrand’s inequality.

143

http://www.imstat.org/aop/
http://dx.doi.org/10.1214/00911797000000088
http://www.imstat.org


144 L. DEVROYE AND G. LUGOSI

Note that (apart from numerical constants) Talagrand’s inequality improves
upon the well-known Efron–Stein inequality (see Efron and Stein [11], Rhee and
Talagrand [27], Steele [28]):

Var(f ) ≤ 1
2

n∑
i=1

E
(
f (X) − f

(
X(i)))2

.

In Section 2 we show how to use Talagrand’s inequality to prove “local” sub-
Gaussian concentration inequalities. As a simple example, we show that if
f : {0,1}n → R is such that there exists a constant v such that

∑n
i=1(f (x) −

f (x(i)))2+ ≤ v, then for all k = 1,2,3, . . . ,

ak+1 − ak ≤ c
√

v/k,

where ak denotes a 1 − 2−k quantile of f (X) and c is a universal constant. The
main argument is based on an observation of Benjamini, Kalai and Schramm [5]
who show how Talagrand’s inequality may be used to obtain exponential con-
centration inequalities. Even though Benjamini, Kalai and Schramm do not men-
tion the possibility of deriving local concentration inequalities, it is their argument
which is at the basis of our proofs. The purpose of this paper is to elaborate on
this argument and to derive local concentration inequalities under different con-
ditions. In Sections 3, 4 and 5 various variants and extensions are introduced. In
Section 3 local concentration inequalities are shown under different conditions that
are satisfied for numerous natural examples such as configuration functions intro-
duced by Talagrand [30]—for self-bounding functions, see Boucheron, Lugosi and
Massart [7], Maurer [22] and McDiarmid and Reed [24].

In Section 4, Talagrand’s inequality is extended from the binary hypercube to
functions defined on {0,1, . . . , r − 1}n under the uniform distribution. The main
technical tool here is a suitable hypercontractive inequality proved by Alon, Dinur,
Friedgut and Sudakov [2]. This extension allows us to generalize the results of
Sections 2 and 3 to functions defined on {0,1, . . . , r − 1}n.

In Section 5 we illustrate the use of the results of Section 4 by considering two
classical, structurally similar, problems. We derive local concentration inequalities
for the cost of the minimum weight spanning tree of a complete graph with random
uniform weights on the edges and also for the assignment problem.

2. Functions with locally sub-Gaussian behavior. First we consider func-
tions f : {0,1}n → R which satisfy the following properties: for all x = (x1, . . . ,

xn) ∈ {0,1}n,
n∑

i=1

(
f (x) − f

(
x(i)))2

+ ≤ v,(2.1)

where v is a positive constant. [Here and throughout the paper, a+ = max(a,0)

and a− = max(−a,0) denote the positive and negative parts of the real number a.]
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Clearly, if f is 1-Lipschitz under the Hamming distance, then v ≤ n, but there are
many interesting examples in which v is significantly smaller than n. It is well
known (see Ledoux [19], or Boucheron, Lugosi and Massart [7]) that for such
functions

P{f (X) ≥ Ef (X) + t} ≤ e−t2/4v.(2.2)

Our basic result (Theorem 2.1) shows that tail quantiles of the random variable
f (X) are not far apart. In this sense, it is a local tail bound. For any α ∈ (0,1),
define the α-quantile of f by

Qα = inf
{
z : P{f (X) ≤ z} ≥ α

}
.

In particular, we denote the median of f (X) by Mf = Q1/2.

THEOREM 2.1. Assume f satisfies (2.1) and let B = maxx,i |f (x)−f (x(i))|.
Then for all b > a ≥ Mf ,

b − a ≤
√

(72/5)vP{f (X) ∈ (a, b + B)}
P{f (X) ≥ b} log(e2/(2P{f (X) ∈ (a, b + B)}))

≤
√

(72/5)vP{f (X) > a}
P{f (X) ≥ b} log(e2/(2P{f (X) > a})) .

PROOF. Define the function ga,b : {0,1}n → R by

ga,b(x) =


b, if f (x) ≥ b,
f (x), if a < f (x) < b,
a, if f (x) ≤ a.

First observe that

Var(ga,b(X)) ≥ P{f (X) ≥ b}
4

(b − a)2.

On the other hand, we may use Talagrand’s inequality to obtain an upper bound
for the variance of ga,b(X). To this end, observe that

E
∣∣ga,b(X) − ga,b

(
X(i))∣∣

= 2E
(
ga,b(X) − ga,b

(
X(i)))

+
= 2E

[(
ga,b(X) − ga,b

(
X(i)))

+1f (X)∈(a,b+B)

]
(by the definition of ga,b and B)

≤ 2

√
E

(
ga,b(X) − ga,b

(
X(i)

))2
+

√
P{f (X) ∈ (a, b + B)}

(by Cauchy–Schwarz)

=
√

2E
(
ga,b(X) − ga,b

(
X(i)

))2
√

P{f (X) ∈ (a, b + B)}.
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On the other hand,

n∑
i=1

E
(
ga,b(X) − ga,b

(
X(i)))2

= 2
n∑

i=1

E
(
ga,b(X) − ga,b

(
X(i)))2

+

= 2E

[
1f (X)∈(a,b+B)

n∑
i=1

(
ga,b(X) − ga,b

(
X(i)))2

+

]
≤ 2vP{f (X) ∈ (a, b + B)},

where in the last step we used the fact that (2.1) implies that

n∑
i=1

(
ga,b(X) − ga,b

(
X(i)))2

+ ≤
n∑

i=1

(
f (X) − f

(
X(i)))2

+ ≤ v.

Combining the lower bound for the variance with the upper bound obtained by
Talagrand’s inequality yields the claim. �

To make Theorem 2.1 more transparent, we state a simple corollary for quantiles
of f (X). Using P{f (X) > Q1−γ } ≤ γ and P{f (X) ≥ Q1−δ} ≥ δ, Theorem 2.1
implies the following bound for the distance between any two quantiles in the
upper tail:

THEOREM 2.2. Assume f satisfies (2.1). Then for all δ < γ ≤ 1/2,

Q1−δ − Q1−γ ≤
√

(72/5)vγ

δ log(e2/(2γ ))
.

In particular, by choosing γ = 2−k and δ = 2−(k+1) for some integer k ≥ 1 and
introducing

ak = Q1−2−k ,

we get

ak+1 − ak ≤ 12√
5

√
v

(k − 1) log 2 + 2
≤ 4

√
v

k
.(2.3)

Summing over k = 1,2, . . . ,m − 1 and using
∑m−1

k=1 (k − 1)−1/2 ≤∫ m−1
0 x−1/2 dx = 2

√
m − 1, we obtain

am ≤ a1 + 8
√

v(m − 1),
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recovering (up to a constant factor) the sub-Gaussian concentration inequality (2.2)
for f . However, Theorem 2.2 shows a sub-Gaussian behavior in a significantly
stronger sense. If f (X) was a normal random variable with variance v, then one
would have ak ∼ √

2vk log 2 and ak+1 − ak ∼ √
v log 2/k. This (up to a constant

factor) is precisely of the form of the upper bound (2.3) for a general function f

satisfying (2.1). Thus, the whole quantile sequence {ak} is a contraction of that of
a normal random variable of variance a constant times v. (We say that a sequence
{xn} is a contraction of another sequence {yn} if for every n = 1,2, . . . , |xn+1 −
xn| ≤ |yn+1 − yn|.)

REMARK (C). Even though we offer explicit numerical constants in the in-
equalities derived throughout the paper, no optimality of these values is claimed.
In fact, quite often we sacrifice better constants for convenience in the notation or
for simpler arguments.

EXAMPLE (C). One of the main examples of a function satisfying (2.1) is
Talagrand’s convex distance (Talagrand [30]) defined as follows. Let A ⊂ {0,1}n
and define f as

f (x) = sup
α∈[0,∞)n:‖α‖=1

inf
y∈A

∑
i : xi 
=yi

|αi |

where x = (x1, . . . , xn) and y = (y1, . . . , yn). Talagrand shows that for any set A

with P{X ∈ A} ≥ 1/2,

P{f (X) ≥ t} ≤ 2e−t2/4.

(Note that Talagrand’s result is true in any product space with product measure.) It
is shown by Boucheron, Lugosi and Massart [8] that f satisfies (2.1) with v = 1.
This implies that for all k = 1,2,3, . . . ,

ak+1 − ak ≤ 4√
k
.

EXAMPLE (L). Let f (X) denote the largest eigenvalue of the adjacency ma-
trix of a random graph G(m,1/2) on m vertices such that each edge appears with
probability 1/2. Thus, n = (m

2

)
and Xi = 1 if and only if edge i is present in the

graph. Füredi and Komlós [14] show that f (X) is asymptotically normally dis-
tributed with expectation m/2 and variance 1/2. Alon, Krivelevich and Vu [3]
show that f (x) satisfies (2.1) with v = 4 (see also Maurer [22]) and conclude that
ak ≤ Mf (X) + √

32(k + 2) log 2. Theorem 2.2 implies the nonasymptotic local
sub-Gaussian estimate

ak+1 − ak ≤ 8√
k
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for k = 1,2, . . . . Note that Alon, Krivelevich and Vu [3] also prove a concentra-
tion result for the r th largest inequality of the form ak ≤ Mf (X) + Cr

√
k. Their

argument may be combined with ours to obtain an analogous local concentration
inequality.

EXAMPLE (R). Another example is a Rademacher average of the form

f (x) = sup
α∈A

n∑
i=1

αi(xi − 1/2),

where A ⊂ R
n is a set of vectors α with ‖α‖ ≤ 1. It is easy to see that condi-

tion (2.1) is satisfied with v = 1.

REMARK (A). We note here that Talagrand proved his inequality (1.1) in a
more general setup in which the components Xi of X are i.i.d. Bernoulli(p) ran-
dom variables for some p ∈ (0,1). In this more general case Theorem 2.2 becomes

Q1−δ − Q1−γ ≤
√

Cvγ

δ log(1/(2γ )) log 1/(p(1 − p))

for some constant C.
One obtains a corollary of a slightly different flavor by choosing, in Theo-

rem 2.1, a = k and b = k + 1 for some integer k ≥ Mf ; Theorem 2.1 implies
the following local lower bound for the distribution of f :

COROLLARY 2.1. Assume f satisfies (2.1). Then for all k ≥ Ef +√
4v log 2,

qk∑
i≥k+1 qi

+ 1 ≥ 5

288

(k − Ef )2

v2 + 5

72v
log

e2

2

where qk = P{f (X) ∈ [k, k + 1)}.

PROOF. This follows immediately by noting that, on the one hand by Theo-
rem 2.1, for k ≥ Mf ,

∑
i≥k

qi ≤ (72/5)v

(
qk + ∑

k+1≤i≤k+B+1

qi

)(
log

e2

2(qk + ∑
k+1≤i≤k+B+1 qi)

)−1

≤ (72/5)v

(
qk + ∑

i≥k+1

qi

)(
log

e2

2(qk + ∑
i≥k+1 qi)

)−1

so that

qk + ∑
i≥k+1

qi ≥ e2

2
exp

(
−(72/5)v

(
qk∑

i≥k+1 qi

+ 1
))

.
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By the concentration inequality (2.2), for all k ≥ Ef ,

qk + ∑
i≥k+1

qi = P{f (X) ≥ k} ≤ e−(k−Ef )2/4v.

Since Mf ≤ Ef + √
4v log 2, combining the upper and lower bounds implies the

corollary. �

REMARK (Monotonicity of the tail). An obvious corollary is that qk+1 ≤ qk

whenever k ≥ Ef + (25/
√

5)v.
In some applications, even though (2.1) is not satisfied, the similar condition

n∑
i=1

(
f (x) − f

(
x(i)))2

− ≤ v(2.4)

holds. For such cases the next analog of Theorem 2.1 is true. The proof is omitted
as it is a straightforward modification. In Section 5 we present some applications
of this result.

THEOREM 2.3. Assume f satisfies (2.4) and let B = maxx,i |f (x)−f (x(i))|.
Then for all b > a ≥ Mf ,

b − a ≤
√

(72/5)vP{f (X) ∈ (a − B,b)}
P{f (X) ≥ b}

(
log

e2

2P{f (X) ∈ (a − B,b)}
)−1

.

In particular, for all δ < γ ≤ 1/2, by taking a = Q1−γ + B and b = Q1−δ , we
have

Q1−δ − Q1−γ ≤ B +
√

(72/5)vγ

δ log(e2/(2γ ))
.

3. Configuration functions. In this section we consider functions defined on
the binary hypercube. Just as in Section 1, let f : {0,1}n → R and assume that X

is uniformly distributed over {0,1}n.
Often, the sum of the squared changes appearing in condition (2.1) cannot be

bounded by a constant but it can be related to the value of the function itself.
Consider the following conditions:∣∣f (x) − f

(
x(i))∣∣ ≤ B for all x and i and

(3.1)
n∑

i=1

(
f (x) − f

(
x(i)))2

+ ≤ φ(f (x)),

where φ is a fixed nonnegative nondecreasing function defined on the reals. In
many applications, such as for configuration functions, one may take φ to be the
identity and in some others it has the form φ(u) = au + b (see Talagrand [30],
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Boucheron, Lugosi and Massart [7, 8] and Devroye [9]). For example, it is shown
by Boucheron, Lugosi and Massart [8] (for various extensions see also Mau-
rer [22], McDiarmid and Reed [24]) that if (3.1) is satisfied with φ(u) = u and
B ≤ 1, then

P{f (X) ≥ Ef (X) + t} ≤ e−t2/(2Ef (X)+2t/3).

Boucheron, Lugosi and Massart [8] offer concentration inequalities for the case
when φ(u) = cuα for some α ∈ (0,2).

A straightforward modification of the proof of Theorem 2.1 yields the follow-
ing:

THEOREM 3.1. Assume f satisfies (3.1) and let B = maxx,i |f (x)−f (x(i))|.
Then for all b > a ≥ Mf ,

b − a ≤
√

(72/5)φ(b + B)P{f (X) > a}
P{f (X) ≥ b} log(e2/(2P{f (X) > a})) .

Also, for all δ < γ ≤ 1/2,

Q1−δ − Q1−γ ≤
√

(72/5)φ(Q1−δ + B)γ

δ log(e2/(2γ ))
.

In particular, recalling the notation ak = Q1−2−k ,

ak+1 − ak ≤ 4

√
φ(ak+1 + B)

k
.

EXAMPLE (Self-bounding functions). In many interesting applications, φ may
be taken to be the identity function and B = 1. These functions have been called
self-bounding; see Boucheron, Lugosi and Massart [7], Maurer [22], McDiarmid
and Reed [24]. In general, if φ(u) is linear, then by the above-mentioned concen-
tration inequality, for all k ≥ Ef (X), ak ≤ ck, and therefore

ak+1 − ak ≤ C

where c,C are constants. Thus, in this case the quantile sequence {ak} is a con-
traction of that corresponding to an exponentially distributed random variable with
parameter O(1), in a similar sense that functions satisfying (2.1) had a quantile
sequence contracting a Gaussian quantile sequence.

EXAMPLE (Longest increasing subsequences). Let now x = (x1, . . . , xn) ∈
{0,1, . . . , r − 1}n and define f (x) to be the length of the longest increasing subse-
quence of x1, . . . , xn, that is, the largest positive integer m for which there exist
1 ≤ i1 < · · · < im ≤ n such that xi1 ≤ xi2 ≤ · · · ≤ xim . Tracy and Widom [33]
and Johansson [18] showed that if X is uniformly distributed over {0,1, . . . ,
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r − 1}n, then (f (X) − n/r)/
√

2n/r converges, in distribution, to a random vari-
able whose distribution depends on r (see also Its, Tracy and Widom [16]). In
the binary case (i.e., when r = 2), f (x) is the longest subsequence of the form
000 · · ·00111 · · ·11, and Theorem 3.1 may readily be used. It is immediate to
see that f satisfies (3.1) with B = 1 and φ(u) = u and therefore Theorem 3.1
implies a nonasymptotic local subexponential concentration inequality. [To see
why (3.1) is satisfied, fix a maximal increasing subsequence in x and observe that
(f (x)−f (x(i)))+ = 0 whenever xi is not in this maximal sequence.] The same in-
equality holds when f (x) = log2 N(x) where N(x) is the number of all increasing
subsequences of x. The fact that log2 N(x) satisfies (3.1) with B = 1 and φ(u) = u

was observed by Boucheron, Lugosi and Massart [7]. If r > 2, one may use the re-
sults of Section 4 below to obtain analogous bounds.

REMARK (Concentration inequalities). The recursion for the sequence {ak}
given by Theorem 3.1 allows one to derive concentration inequalities for general
functions φ. We illustrate this for the example when φ(u) ≤ cuα for some c > 0
and α ∈ [0,2]. Then Theorem 3.1 implies, after some work, that there exist con-
stants C, t0 such that for t ≥ t0,

P{f (X) ≥ t} ≤
{

Ce−t2−α/C, if 0 ≤ α < 2,
Ce−(log t)2/C, if α = 2.

The case α < 2 has already been dealt with by Boucheron, Lugosi and Massart [8],
but the α = 2 case seems to be new.

4. Functions defined on the r-ary hypercube. The purpose of this section
is to extend the results of Theorems 2.1, 2.2 and 2.3 to functions f defined on
the r-ary cube {0,1, . . . , r − 1}n, equipped with the uniform distribution. In order
to do this, we need to generalize Talagrand’s variance inequality to this case. In
particular, we prove the following:

THEOREM 4.1. Let r ≥ 2 be a positive integer and let f : {0,1, . . . ,

r − 1}n → R be a real-valued function. Suppose X = (X1, . . . ,Xn) is uniformly
distributed on {0,1, . . . , r − 1}n. For 1 ≤ i ≤ n, 0 ≤ j ≤ r − 1 and for each
x = (x1, . . . , xn), denote xi,j = (x1, . . . , xi−1, xi ⊕j, xi+1, . . . , xn) where ⊕ stands
for addition modulo r . Writing

�if (x) = f (x) − 1

r

r−1∑
j=0

f (xi,j ),

we have

Var(f ) ≤ 10(logCr)

n∑
i=1

E(�if (X))2

1 + log(
√

E(�if (X))2/E|�if (X)|)
,

where Cr = (9/2)r3 is the constant of Lemma 4.1 below.
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As a consequence, Theorems 2.1, 2.2, 2.3 and 3.1 may now be extended to func-
tions defined on {0,1, . . . , r − 1}n with the only difference that in the conditions
on f , f (x) − f (x(i)) is replaced by �if (x) and the upper bounds in all four the-
orems are multiplied by (10/3)

√
logCr . For example, we will use the following

result in Section 5:

COROLLARY 4.1. Assume f : {0,1, . . . , r − 1}n → R is such that there exists
v > 0 such that

n∑
i=1

(�i)
2− ≤ v

and let B = maxx,i |�if (x)|. Then for all k = 1,2,3, . . . ,

ak+1 − ak ≤ B + 14
√

logCr

√
v

k
.

The proof of Theorem 4.1 is analogous to Talagrand’s [29] original argu-
ment which was based on the Beckner–Bonami hypercontractive inequality (see
Bonami [6] and Beckner [4]) of Fourier analysis on the binary hypercube. Here
we use an extension of this inequality to functions defined on {0,1, . . . , r − 1}n
due to Alon, Dinur, Friedgut and Sudakov [2] which we recall below.

For any S = (S1, . . . , Sn) ∈ {0,1, . . . , r − 1}n, define the function

uS(x) = ω〈S,x〉,
where ω = e2πi/r and 〈S, x〉 = ∑n

i=1 Sixi mod r . It is easy to see (see [2]) that the
uS form an orthonormal basis of the space of complex-valued functions defined
over {0,1, . . . , r − 1}n. To simplify notation, we will write∫

f = 1

rn

∑
x∈{0,1,...,r−1}n

f (x) and ‖f ‖q =
(∫

f q

)1/q

.

Denote by

f̂ (S) =
∫

f uS

the Fourier coefficients of f where uS stands for the complex conjugate of uS .
A key ingredient of the proof is the following hypercontractive inequality:

LEMMA 4.1 (Alon, Dinur, Friedgut and Sudakov [2]). For any f : {0,1, . . . ,

r − 1}n → R and k = 1, . . . , n,∥∥∥∥∥ ∑
S : |S|≤k

f̂ (S)uS

∥∥∥∥∥
4

≤ Ck
r

( ∑
S : |S|≤k

f̂ (S)2

)1/2

,

where Cr = (9/2)r3.
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PROOF OF THEOREM 4.1. Writing fi,j (x) = f (xi,j ), it is easy to see that
f̂i,j (S) = f̂ (S)ωjSi . Thus,

1

r

r−1∑
j=0

f̂i,j (S) =
{

f̂ (S), if Si = 0,
0, if Si 
= 0,

and therefore the Fourier coefficients of �if satisfy

�̂if (S) =
{

0, if Si = 0,
f̂ (S), if Si 
= 0.

This and Parseval’s identity imply that

Var(f ) = ‖f ‖2
2 −

(∫
f

)2

= ∑
S 
=0

f̂ (S)2 =
n∑

i=1

∑
S 
=0

�̂if (S)2

|S| ,

where |S| denotes the number of nonzero components of S and 0 is the all-zero
vector.

Thus, in order to prove the theorem, it suffices to show that for any f : {0,1, . . . ,

r − 1}n → R,

∑
S 
=0

f̂ (S)2

|S| ≤ 10 logCr

‖f ‖2
2

1 + log(‖f ‖2/‖f ‖1)
,

which is what we do in the remaining part of the proof. Fix k ≤ n and observe that

∑
S : |S|=k

f̂ (S)2 =
∫ ( ∑

S : |S|=k

f̂ (S)uS

)
f

≤
∥∥∥∥∥ ∑

S : |S|=k

f̂ (S)uS

∥∥∥∥∥
4

· ‖f ‖4/3 (by Hölder)

≤ Ck
r

( ∑
S : |S|=k

f̂ (S)2

)1/2

· ‖f ‖4/3 (by Lemma 4.1).

This implies ∑
S : |S|=k

f̂ (S)2 ≤ C2k
r ‖f ‖2

4/3

and we have, for all positive integers m,

∑
S : 1≤|S|≤m

f̂ (S)2

|S| ≤ ‖f ‖2
4/3

m∑
k=1

C2k
r

k
≤ K

C2m
r

m
‖f ‖2

4/3



154 L. DEVROYE AND G. LUGOSI

where K = 362/2
362/2−1

. At the last step we used the fact that Cr ≥ 36 and therefore

C
2(k+1)
r /(k + 1) ≥ (362/2)C2k

r /k. Now we may write∑
S 
=0

f̂ (S)2

|S| = ∑
S : 1≤|S|≤m

f̂ (S)2

|S| + ∑
S : |S|>m

f̂ (S)2

|S|

≤ K
C2m

r

m
‖f ‖2

4/3 + 1

m + 1

∑
S : |S|>m

f̂ (S)2

≤ 1

m + 1
(2KC2m

r ‖f ‖2
4/3 + ‖f ‖2

2).

Now we choose m as the largest integer such that C2m
r ‖f ‖2

4/3 ≤ e1/3‖f ‖2
2 so that

m + 1 ≥ log(e1/3‖f ‖2/‖f ‖4/3)

logCr

and ∑
S 
=0

f̂ (S)2

|S| ≤ 1

m + 1
· (2K + 1)‖f ‖2

2 ≤ (2K + 1)‖f ‖2
2 logCr

log(e1/3‖f ‖2/‖f ‖4/3)
.

The proof is finished by observing that∫
f 4/3 = ‖f 3/2‖8/9

8/9 ≤ ‖f 3/2‖8/9
1 ≤ (‖f ‖1 · ‖f ‖2

2)
4/9

by the Cauchy–Schwarz inequality, and therefore ‖f ‖3
4/3 ≤ ‖f ‖1 · ‖f ‖2

2, which is
equivalent to

e‖f ‖2

‖f ‖1
≤

(
e1/3‖f ‖2

‖f ‖4/3

)3

. �

REMARK (Logarithmic Sobolev inequalities). An alternative route, yielding
better numerical constants than Lemma 4.1, would be to use a sharp logarithmic
Sobolev inequality of Diaconis and Saloff-Coste ([10], Theorem A.1) which im-
plies hypercontractivity by Gross’ theorem; see [15].

5. Minimum weight spanning tree and the assignment problem. In this
section we derive local concentration bounds for two classical problems: the min-
imum weight spanning tree and the assignment problem. In these examples the
random variables of interest are functions of independent random variables uni-
formly distributed in [0,1]. By simple discretization we may approximate them by
functions defined over {0,1, . . . , r − 1}n and use the result of the previous section.
Since in Corollary 4.1 the dependence on r is only logarithmic, we may take r to
be quite large (proportional to n in these cases) and still obtain meaningful results.
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Concentration inequalities for both cases may be derived, for example, by Tala-
grand’s [30] results. In fact, Talagrand works out the case of the assignment prob-
lem. In order to conveniently use general concentration inequalities, Talagrand
uses a truncation argument, a technique we also adopt below. Interestingly, the
proofs in both examples below are identical and use simple structural properties of
the function at hand.

EXAMPLE (Minimum weight spanning tree). Consider the random variable
Tm defined as the sum of weights on the minimum spanning tree of the com-
plete graph Km with independent uniformly distributed (on [0,1]) weights Yi,j

(1 ≤ i < j ≤ m) on the edges. A classical result of Frieze [13] shows that
limm→∞ ETm = ζ(3). Janson [17] and Wästlund [36] prove that if the edge
weights are exponentially distributed with parameter 1, then

√
m(Tm − ζ(3))

converges, in distribution, to a centered normal random variable with variance
6ζ(4) − 4ζ(3). Here we study the related random variable T m obtained when
the Yi,j are replaced by min(Yi,j , δm) where δm > 0 is a small positive number.
Note that if δm = c logm/m for some c > 1, then Tm = T m with high prob-
ability. In order to see this just observe that Tm 
= T m implies that the largest
edge weight in the minimum spanning tree is greater than δm. But this is just the
probability that the random graph G(m,δm) is not connected which is at most
2(em(1−c)/2 − 1) + 2m+1m−(c−1)m/4 (see Erdős and Rényi [12] and Palmer [26]),
which is at most 4m−c/4, if c ≥ 2.

To be able to use Corollary 4.1, we need to approximate Tm by a function de-
fined on {0,1, . . . , r − 1}n under the uniform distribution where n = (m

2

)
. In order

to do this, we replace the random variables Yi,j by their “discretized” approxima-
tion �rYi,j�/r . If we denote the cost of the minimum spanning tree defined by the
edge costs min(�rYi,j�/r, δm) by T̃m, then clearly |T m − T̃m| ≤ m/r . The random
variable T̃m may now be considered as a function of n = (m

2

)
independent variables

Xi,j , all uniformly distributed on {0,1 . . . , r −1}, by defining �rYi,j� = Xi,j . Now
we may use Corollary 4.1. Clearly, we may take B = δm. On the other hand,∑

1≤i<j≤m

(�i,j )
2− ≤ mδ2

m

and therefore, denoting by ãk the 1 − 2−k-quantile of T̃m, we obtain

ãk+1 − ãk ≤ δm + 14

√
mδ2

m

k

√
log(9r3/2).

This, in turn, implies that if ak denotes the 1 − 2−k-quantile of T m, then, for all
k = 1,2,3, . . . ,

ak+1 − ak ≤ 2m/r + δm + 14

√
mδ2

m

k

√
log(9r3/2).
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By choosing, say, r = m2 and δm = c logm/m for some constant c > 1, we obtain

ak+1 − ak ≤ C

(√
log3 m

mk
+ logm

m

)
for a constant C depending on c only. This inequality shows a local sub-Gaussian
behavior whenever k ≤ m logm. It may be regarded as a local nonasymptotic
version of the limit theorem of Janson and Wästlund, up to the logarithmic fac-
tors we needed to give up for technical reasons. For larger values of k the sec-
ond term dominates the first one, which corresponds to a subexponential behav-
ior in the far tail. We do not know if this term is necessary. In order to convert
this into a useful bound for the original problem Tm, one needs to choose c so
large that the bound P{Tm 
= Tm} ≤ 4m−c/4 does not dominate 2−k . Choosing
c = max(2,4(k + 2) log 2/ logm), one obtains

ak+1 − ak−1

≤



2

m
+ 4(k + 2) log 2

m
+ 56 log 2

√
3(k + 2)

m
log

9m6

2
,

if k + 2 >
logm

2 log 2
,

2

m
+ 2 logm

m
+ 28

√
log2 m

km
log

9m6

2
, if k + 2 ≤ logm

2 log 2
.

In order to compare this local bound to concentration inequalities, note that
Theorem 7 of Boucheron, Lugosi and Massart [8] implies that P{T m ≥ ET m+ t} ≤
e−t2m/(4(e−1)c2 log2 m), or in other words, that

ak ≤ ET m +
√

kc2 log2 m log 2

4(e − 1)m
.

Again, choosing c = max(2,4(k + 2) log 2/ logm), one obtains

ak−1 ≤ ET m +
√

log 2

e − 1
max

(√
k log2 m

m
,

√
4(k + 2)3

m

)
.

By summing the “local” inequality in k, one obtains a concentration inequality
that is only slightly weaker than the one derived here, as we get an extra factor
of

√
logm. This is due to the approximation by discretization, necessary to apply

Corollary 4.1.

EXAMPLE (The assignment problem). In the assignment problem, given an
m × m array {Yi,j }m×m of independent random variables distributed uniformly
on [0,1], one considers the random quantity

Zm = min
π

m∑
i=1

Yi,π(i)
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where the minimum is taken over all permutations π of {1, . . . ,m}. Culminat-
ing a long series of partial results, Aldous [1] shows that limm→∞ EZm = ζ(2).
In the case when the Yi,j are exponentially distributed with parameter 1, Linus-
son and Wästlund [21] and Nair, Prabhakar and Sharma [25] independently prove
that for all m, EZm = ∑m

i=1 i−2. See also Wästlund [34]. Wästlund [35] also
derives an explicit formula for the variance of Zm. In particular, he proves that
Var(Zm) = 4(ζ(2) − ζ(3))/m + O(m−1/2). Talagrand [30] proves (in the uniform
model) an exponential concentration inequality very similar to the one described
for the minimum weight spanning tree above.

In fact, in order to get local concentration inequalities, we may proceed ex-
actly as we did in the previous example: first we replace the Yi,j by the truncated
variables min(Yi,j , δm). If Zm denotes the cost of the optimal assignment based
on the truncated variables, then Proposition 10.3 of Talagrand [30] implies that
there exists a constant K such that P{Zm 
= Zm} ≤ e−mδm/K , an inequality that
is completely analogous to the one we used in the study of the minimum weight
spanning tree. Second, we use the discretized approximation of the truncated vari-
ables. Then just as for the minimum weight spanning tree, we may take B = δm in
Corollary 4.1 and observe that ∑

1≤i<j≤m

(�i,j )
2− ≤ mδ2

m,

which leads to inequalities completely analogous to those obtained for the mini-
mum weight spanning tree example above. In particular, if ak denotes the 1 − 2−k

quantile of Zm, then there exists a constant C such that

ak+1 − ak−1 ≤ C max
(

k

m
+

√
k logm

m
,

logm

m
+

√
log3 m

km

)
.
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