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We introduce a new method of proving pathwise uniqueness, and we
apply it to the degenerate stochastic differential equation

dXt = |Xt |α dWt ,

where Wt is a one-dimensional Brownian motion and α ∈ (0,1/2). Weak
uniqueness does not hold for the solution to this equation. If one restricts
attention, however, to those solutions that spend zero time at 0, then pathwise
uniqueness does hold and a strong solution exists. We also consider a class of
stochastic differential equations with reflection.

1. Introduction. In this paper we introduce a new method of proving path-
wise uniqueness for certain stochastic differential equations. The technique uses
ideas from excursion theory. We apply this method to the degenerate stochastic
differential equation

dXt = |Xt |α dWt ,(1.1)

where Wt is a one-dimensional Brownian motion. When α ∈ [1/2,1], the classical
theorem of Yamada–Watanabe [12] says that pathwise uniqueness holds for (1.1).
Moreover, this is sharp: it is well known that pathwise uniqueness does not hold
for (1.1) when α ∈ (0,1/2). In fact, even weak uniqueness (i.e., uniqueness in law)
does not hold when α ∈ (0,1/2). When x0 = 0, one solution is the identically zero
one, while a nonzero solution can be constructed by time changing a Brownian
motion.

This, however, is not all that can be said about uniqueness for (1.1). One of the
main points of this paper is that the only reason pathwise uniqueness fails in (1.1) is
that weak uniqueness fails. It was shown by Engelbert and Hess [6] and Engelbert
and Schmidt [7] that for every x0 ∈ R, there is a weak solution to (1.1) that spends
zero time at 0 and the law of such a solution is unique. In this paper we show that
there is pathwise uniqueness among those solutions to (1.2) that spend zero time
at 0 and a strong solution exists.
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Before we give rigorous statements of our main results, we recall some defini-
tions.

DEFINITION 1.1. (i) Given a Brownian motion W on a probability space,
a strong solution to the stochastic differential equation

Xt = x +
∫ t

0
|Xs |α dWs(1.2)

that spends zero time at 0 is a continuous process X = {Xt, t ≥ 0} that is adapted
to the filtration generated by W , solves (1.2), and satisfies∫ ∞

0
1{0}(Xs) ds = 0 a.s.(1.3)

(ii) A weak solution of (1.2) is a couple (X,W) on a filtered probability space
(�,F , {Ft }t≥0,P) such that Xt is adapted to Ft , Wt is an {Ft }t≥0-Brownian mo-
tion (i.e., Wt is Ft -measurable and for t > s, Wt − Ws is independent of Fs and
has a normal distribution with zero mean and variance t − s), and (X,W) satis-
fies (1.2).

(iii) We say weak uniqueness holds for (1.2) among solutions that spend zero
time at 0 if whenever (X,W), (X̃, W̃ ) are two weak solutions of (1.2) satisfying the
condition (1.3), then the process X = {Xt, t ≥ 0} has the same law as the process
X̃ = {X̃t , t ≥ 0}.

(iv) Pathwise uniqueness is said to hold for (1.2) among solutions that spend
zero time at 0 if whenever (X,W), (X̃,W) are two weak solutions of (1.2) sat-
isfying (1.3) with a common Brownian motion W (relative to possibly different
filtrations) on a common probability space and with common initial value, then
P(Xt = X̃t for all t ≥ 0) = 1.

(v) Strong uniqueness is said to hold for (1.2) among solutions that spend zero
time at 0 if whenever (X,W), (X̃,W) are two weak solutions of (1.2) satisfy-
ing (1.3) with a common Brownian motion W on a common probability filtered
space and with common initial value, then P(Xt = X̃t for all t ≥ 0) = 1.

It is clear that pathwise uniqueness implies strong uniqueness. We warn the
reader that what we call “strong uniqueness” is sometimes called “pathwise
uniqueness,” for example, in [11], Definition IX.1.3. We follow [1] in distinguish-
ing between strong uniqueness and pathwise uniqueness. We note that strong
uniqueness implies weak uniqueness, by the same argument as in [11], Theo-
rem X1.7(i).

Our main theorem is the following.

THEOREM 1.2. Suppose α ∈ (0, 1
2) and x ∈ R. Then pathwise uniqueness

holds for solutions of (1.2) that spend zero time at 0. Moreover, a strong solution
to (1.2) which spends zero time at 0 exists.
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In the above theorem we have both X and X′ satisfying (1.2) with respect to the
same Brownian motion, but we allow the possibility that there are two different
filtrations {Ft } and {F ′

t }; the process W must be a Brownian motion with respect
to both filtrations. The fact that we allow the filtrations to be different does not
increase the generality of the theorem in a substantial way—see the last paragraph
of the proof of Theorem 1.2.

The lack of weak uniqueness is not the only reason pathwise uniqueness can fail.
Barlow [1] showed that for any β < 1/2 one can construct a bounded Hölder con-
tinuous function σβ of order β that is bounded below such that pathwise unique-
ness fails for dXt = σβ(Xt) dWt . Weak uniqueness does hold in this case. For
other positive results on pathwise uniqueness, see Nakao [10] and Le Gall [8].

Our method of proof of Theorem 1.2 is new and substantially different from any
of the existing methods of proving pathwise uniqueness. Some of these previous
methods include an appropriate use of Itô’s formula, a study of local times, looking
at the maximum or minimum of two solutions and constructing a strong solution.
We were unable to successfully adapt any of these methods to the study of (1.1).

At the basis of our new method are ideas from excursion theory. We first show
that if X and Y are two solutions, −X0 ≤ Y0 ≤ X0, and X is conditioned to hit the
level 1 before hitting the level 0, then when X hits the level 1, the process Y will
also be close to the level 1 with high probability, provided X0 is small enough.
We refer to this as the “chasing phenomenon.” We then use this to show that for
every δ > 0, with probability one, the processes X and Y have to agree on every
excursion of M := |X|∨ |Y | away from zero that reaches level δ, which establishes
the pathwise uniqueness.

Interestingly, the one-sided problem, that is, pathwise uniqueness for stochastic
differential equations with reflection, is much easier. Consider the equation

Xt = x +
∫ t

0
a(Xs) dWs +

∫ t

0
b(Xs) ds + Lt,(1.4)

where Lt is a nondecreasing continuous process that increases only when X is at 0,
Xt is never negative, and ∫ ∞

0
1{0}(Xs) ds = 0 a.s.(1.5)

We define pathwise uniqueness, strong solution, and weak solution for (1.4) anal-
ogously to Definition 1.1. When a(x) = |x|α with α ∈ (0,1/2) and b(x) ≡ 0, path-
wise uniqueness was proved in [5]. We give a theorem for solutions of (1.4) that
greatly generalizes the result of [5], with a much simpler proof.

THEOREM 1.3. Suppose that b is a bounded measurable function on R. Sup-
pose that the function a : [0,∞) → [0,∞) is bounded, a−2 is locally integrable
on R and satisfies either:
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(a) for every closed subinterval I of (0,∞) there exists a continuous increasing
function ρI : [0,∞) → [0,∞) with ρI (0) = 0 such that

|a(x) − a(y)| ≤ ρI (|x − y|), x, y ∈ I,(1.6)

and ∫
0+

1

ρI (h)2 dh = ∞,(1.7)

or
(b) on each closed subinterval I of (0,∞) the coefficient a is bounded below

by a positive constant and is of finite quadratic variation.
Then pathwise uniqueness holds for solutions of (1.4) that spend zero time at 0.

Moreover there is a strong solution to (1.4) that spends zero time at 0.

As an immediate application of Theorem 1.3, we have the following.

COROLLARY 1.4. Suppose that b is an odd bounded measurable function
on R. Suppose that a is an odd bounded measurable function on R with a−2 locally
integrable on R and satisfies either condition (a) or (b) in Theorem 1.3. Then for
any two weak solutions (X,W) and (X̃, W̃ ) to

Xt = x +
∫ t

0
a(Xs) dWs +

∫ t

0
b(Xs) ds(1.8)

with ∫ ∞
0

1{0}(Xs) ds = 0 a.s.,(1.9)

with a common Brownian motion W (relative to possibly different filtrations) on a
common probability space and with common initial value, we have

P(|Xt | = |X̃t | for all t ≥ 0) = 1.

The above corollary extends the main result (Theorem 1) of [9].

REMARK 1.5. We do not fully understand why the proof of Theorem 1.3 is
so much easier than that of Theorem 1.2. The proof of the one-sided version of
Theorem 1.2 given in [5] proceeds by constructing a strong solution to (1.2). If one
tries that in the two-sided context, one gets the difference of two terms each tending
to infinity, and one is not able to prove convergence. The proof of Theorem 1.3
given here also does not extend to the two-sided context. In addition, it is easy to
see that one cannot derive Theorem 1.2 just by applying Theorem 1.3 to |Xt |, |Yt |.
See Remark 5.1 in Section 5 for more comments.

Let us mention two open problems which we think are quite interesting.
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PROBLEM 1. Consider the equation

dXt = a(Xt) dWt

and let Za := {x :a(x) = 0}. Suppose a is smooth on every closed interval con-
tained in Zc

a , a−2 is locally integrable, and a is bounded. Is there pathwise unique-
ness among those solutions that spend zero time in the set Za? The smoothness is
needed to rule out counter examples such as those of Barlow [1]. The local inte-
grability is necessary for a weak solution that spends zero time at Za to be unique;
see [7].

PROBLEM 2. For each λ ∈ [0,∞) there is a strong Markov process X satisfy-
ing (1.2) and associated to the speed measure

m(dx) = |x|−2α dx + λδ0(dx),

where δ0 is point mass at 0. The value λ measures how “sticky” the diffusion
is at 0. Theorem 1.2 covers the case λ = 0. What can one say for other values
of λ? Uniqueness in law holds for each value of λ. When λ 	= 0, what additional
condition or conditions must one impose on solutions to dXt = |Xt |α dWt so that
the solutions have the speed measure given above? Does pathwise uniqueness hold
in this situation?

In the next section we discuss some preliminaries. Section 3 discusses the chas-
ing phenomenon, while the proof of Theorem 1.2 is given in Section 4. Theo-
rem 1.3 is proved in Section 5.

2. Preliminaries. Suppose that X and Y are two weak solutions to (1.1)
and (1.3) driven by the same Brownian motion W , starting from W0 = w,
X0 = x and Y0 = y, and defined on some probability space (�,P). Let (�C,F C,

{F 0,C
t }t≥0) be the canonical probability space, that is, �C is the collection of con-

tinuous functions from [0,∞) to R3. For ω ∈ �C , we write ω = (ω1,ω2,ω3),
WC

t (ω) = ω1(t), XC
t (ω) = ω2(t) and YC

t (ω) = ω3(t). The σ -field F C is gen-
erated by the cylindrical sets, and {F 0,C

t }t≥0 is the natural filtration generated by
(WC,XC,YC). We now define Pw,x,y to be the probability on the space (�C,F C)

such that for every n ≥ 1, every Borel measurable subset A of R3n, and every
choice t1 ≤ t2 ≤ · · · ≤ tn we have

Pw,x,y(((WC
t1

,XC
t1
, YC

t1
), . . . , (WC

tn
,XC

tn
, YC

tn
)) ∈ A

)
(2.1)

= P
(
((Wt1,Xt1, Yt1), . . . , (Wtn,Xtn, Ytn)) ∈ A

)
.

At this point, we cannot assume that for each fixed (w,x, y), the joint law of
(W,X,Y ) for two weak solutions X and Y to (1.1) and (1.3) driven by the same
Brownian motion W with (W0,X0, Y0) = (w,x, y) is unique—this is what we will



2390 R. F. BASS, K. BURDZY AND Z.-Q. CHEN

prove in this paper. Hence, we let P (w,x, y) denote the collection of all measures
Pw,x,y on (�C,F C) obtained by the above recipe. Each triple (W,X,Y ) of weak
solutions X and Y to (1.1) and (1.3), driven by the same Brownian motion W ,
and starting from W0 = w, X0 = x and Y0 = y will give rise to an element of
P (w,x, y). For every measure Pw,x,y ∈ P (w,x, y), it is easy to construct dis-
tinct triples (W,X,Y ) and (W ′,X′, Y ′) corresponding to Pw,x,y , for example, by
defining the processes (W,X,Y ) and (W ′,X′, Y ′) on different probability spaces.
Whenever we make an assertion about Pw,x,y , it should be understood that it holds
for all Pw,x,y ∈ P (w,x, y).

Most of the time, the value of the index w in Pw,x,y will be irrelevant. Hence
we will write Px,y instead of Pw,x,y . Any assertion made about Px,y should be
understood as an assertion that applies to all Pw,x,y ∈ P (w,x, y), for all values
of w. Thus we will abbreviate our notation by referring to Px,y ∈ P (x, y) rather
than Pw,x,y ∈ P (w,x, y).

Note that under Px,y ∈ P (x, y), XC and WC satisfy (1.2)–(1.3) because the
stochastic integral can be defined as an almost sure limit along a sequence of dis-
crete approximations, and the finite-dimensional distributions for (WC,XC) are
the same as those for (W,X), by (2.1). As we mentioned above, [6, 7] prove that
for every x there exists a weak solution to (1.2) and (1.3), and that weak uniqueness
holds for these solutions. Hence, if A ∈ σ(XC

t , t ≥ 0), then for any x, y1 and y2,
we have Px,y1(A) = Px,y2(A). Therefore, for events A ∈ σ(XC

t , t ≥ 0), we will
write Px(A) to indicate that Px(A) is the common value of Px,y(A) for all y.

Our goal in this paper is to show that if X and Y are weak solutions to (1.2)
and (1.3) with the same initial value x and driven by the same Brownian mo-
tion W , then almost surely Xt = Yt for all t ≥ 0. In view of (2.1) it suffices to
prove that Px,x(XC

t = YC
t for all t) = 1. We can thus restrict our attention to the

canonical probability space and (WC,XC,YC). We do so henceforth, and we drop
the superscript “C” from now on.

We define the “minimal augmented filtration” {Ft }t≥0 on � as follows. For each
Px,y ∈ P (x, y) we add all Px,y-null sets to each F 0

t+. If we denote the σ -field so
formed by Ft (P

x,y), we then form the filtration where

Ft = ⋂
Px,y∈P (x,y)

Ft (P
x,y).

The minimal augmented filtration {Ft }t≥0 that we just defined is right continuous.
We define F = F∞ := σ(Ft , t ≥ 0).

For a ∈ R we will write T X
a = inf{t > 0 :Xt = a}. Similar notation will be used

for hitting times of other processes. When there is no confusion possible, we will
write Ta for T X

a . We will often use the following stopping time: T = T X
0 ∧ T X

1 .
We will sometimes look at Px(A|T X

1 < T X
0 ), where A ∈ FT X

1 ∧T X
0

. We will
explain now how this probability can be represented using Doob’s h-transform.
Let 	 denote a cemetery state added to the state space of X. For an open in-
terval D ⊂ [0,∞), let XD denote the process X killed upon leaving D, that is,
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XD
t = Xt for t < TDc , and XD

t = 	 for t ≥ TDc . Since X is on natural scale,
Px(T X

1 < T X
0 ) = x for x ∈ (0,1), and h(x) = x is a harmonic function for X(0,1).

We define the conditional law Qx
1 of X(0,1) starting from x ∈ (0,1) given the event

{T X
1 < T X

0 } by

Qx
1(A) = 1

h(x)
Ex[1Ah(XT X

0 ∧T X
1

)],
for A ∈ σ(Xt , t ≥ 0) such that A ∈ FT X

1 ∧T X
0

. In fact, Qx
1(A) is well defined for

any A ∈ σ(Xt , t ≥ 0) by the above formula and later in this paper we sometimes
do take such an extension. We use Qx

0 to denote the law of h-transformed process
X(0,1) starting from x with h(y) = 1 − y; this corresponds to X starting from x

conditioned to hit 0 before 1. We use Qx∞ for the law of X(0,∞) h-path transformed
by the function h(y) = y.

According to our conventions, Qx
1(A) is a special case of Q

x,y
1 (A) when A ∈

σ(Xt , t ≥ 0), where Q
x,y
1 (A) is defined for all A ∈ F by

Q
x,y
1 (A) = 1

h(x)
Ex,y[1Ah(XT X

0 ∧T X
1

)].(2.2)

We let Q1(x, y) be the collection of all such Q
x,y
1 when Px,y ∈ P (x, y). We

similarly define Q
x,y
0 ,Q

x,y∞ ,Q0(x, y) and Q∞(x, y).
Recall the usual shift operator notation θt . For example, we write u + T X

a ◦ θu

for the stopping time inf{t > u :Xt = a}.

REMARK 2.1. As indicated previously, we cannot assume that the pair (X,Y )

is strong Markov. However, there is a substitute for the strong Markov property
that is almost as useful. For a probability P ∈ P (x, y), let S be a finite stopping
time with respect to the filtration {Ft , t ≥ 0} and define PS(A) = P(A ◦ θS) for
A ∈ F∞. Let OS(·, ·) be a regular conditional probability for PS given FS . Then if
X and Y are two solutions to (1.1) and (1.3), starting from X0 and Y0, respectively,
and driven by the same Brownian motion, under OS the processes (XS+t , YS+t )

are again solutions to (1.1) and (1.3) driven by the same Brownian motion that
spend zero time at 0, started at (XS,YS). In other words, OS ∈ P (XS,YS) a.s., if
P ∈ P (x, y). The proof of this is the same as the proof of Proposition VI.2.1 in [3],
except for showing that zero time is spent at 0. This last fact follows easily because

E

[
EOS

[∫ ∞
0

1{0}(Xs) ds

]]
= E

[∫ ∞
S

1{0}(Xs) ds

]
= 0,

hence OS(
∫ ∞

0 1{0}(Xs) ds 	= 0) is zero for almost every ω; the same argument
applies to Y . We refer to this as the pseudo-strong Markov property. See also [4]
for examples as to how the pseudo-strong Markov property is used. We will give
the full argument in our first nontrivial use of this property below (see the proof of
Lemma 3.4), but in other usages leave the details to the reader.
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REMARK 2.2. Recall that T = T X
0 ∧ T X

1 . If x ∈ (0,1), the measure Px is the
law of a diffusion and a continuous martingale. The process {Xt∧T , t ≥ 0} un-
der Px is a bounded continuous martingale and, therefore, it is a time change of
Brownian motion. On the interval (0,1) the diffusion coefficient for X is nonde-
generate and the infinitesimal generator for X killed upon exiting (0,1) is

Lf (x) = 1
2x2αf ′′(x)

with zero Dirichlet boundary conditions at endpoints 0 and 1. Therefore, Qx
1 is the

law of a diffusion with infinitesimal generator

L(hf )(x)

h(x)
= 1

2
|x|2αf ′′(x) + |x|2α−1f ′(x).(2.3)

Thus Qx
1 is the law of a time change of a three-dimensional Bessel process killed

upon hitting 1. More precisely, if we let τt := inf{s ≥ 0 :
∫ s

0 |Xr |2α dr ≥ t} for t ≥ 0,
then under Qx

1 , the time-changed process {Xτt∧T , t ≥ 0} is a three-dimensional
Bessel process starting from x and killed upon hitting 1.

REMARK 2.3. We will need to use the fact that if X and Y are two weak
solutions to (1.1) and (1.3) with X0 	= Y0 that are driven by a common Brownian
motion W , then Xt 	= Yt for t < inf{s > 0 : |Xs | + |Ys | = 0}. This is well known,
but we indicate the proof for the convenience of the reader. Let Xx

t denote the
solution to (1.2) started at x and stopped at the hitting time of 0. Since x → |x|α is
smooth except at 0, the process Xx

t is unique in the pathwise sense. Moreover we
can choose versions of Xx

t such that the map is smooth on {x > 0,0 ≤ t < T Xx

0 }.
Informally speaking, we have a flow; see [3]. Write b(x) = |x|α . If Dx

t = ∂Xx
t

∂x
, then

Dx
t solves the equation

Dx
t = 1 +

∫ t

0
b′(Xx

s )Dx
s dWs, t < T Xx

0 .

This is a linear equation with the unique solution

Dx
t = exp

(∫ t

0
b′(Xx

s ) dWs − 1
2

∫ t

0
(b′(Xx

s ))2 ds

)
, t < T Xx

0 .

Therefore, except for a null set, Dx
t is strictly positive on {x > 0,0 ≤ t < T Xx

0 }.
So when X0 > 0 and Y0 < X0, this implies Yt < Xt for t < T X

0 , and similarly for
other orderings of the three points {0,X0, Y0}.

Throughout we let the letter c with or without subscripts denote constants whose
exact value is unimportant and may change from line to line.
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3. The chasing phenomenon. Recall that X and Y denote solutions to (1.1)
and (1.3) driven by the same Brownian motion. We begin by showing that if X is
conditioned to hit 1 before 0, then Y will “chase” after X and will be close to 1
when X hits 1, provided |Y0| ≤ X0 and X0 is small.

LEMMA 3.1. For x ∈ (0,1), we have

Ex

[∫ T X
1

0
X2α−2

s ds
∣∣∣T X

1 < T X
0

]
= −2 logx.(3.1)

PROOF. The Green function for a three-dimensional Bessel process starting
from x and killed upon hitting 1 is

G(x,y) =


2y2

(
1

y
− 1

)
, y ∈ (x,1),

2y2
(

1

x
− 1

)
, y ∈ (0, x).

The Green function for the process X under Qx
1 is then G(x,y)y−2α . Therefore

Ex

[∫ T1

0
X2α−2

s ds
∣∣∣T1 < T0

]
=

∫ 1

0
y2α−2G(x,y)y−2α dy

=
∫ x

0
2
(

1

x
− 1

)
dy +

∫ 1

x
2
(

1

y
− 1

)
dy

= −2 logx. �

Assume for a moment that X0 > 0 and Y0 > 0. Applying Itô’s formula, we have
for t < T X

0 ,

dX1−α
t = (1 − α)X−α

t dXt − 1
2α(1 − α)X−α−1

t d〈X〉t
(3.2)

= (1 − α)dWt − 1
2α(1 − α)Xα−1

t dt.

Similarly, for t < T Y
0 ,

dY 1−α
t = (1 − α)dWt − 1

2α(1 − α)Yα−1
t dt.(3.3)

Let

Rt = X1−α
t − Y 1−α

t .

Then (3.2) and (3.3) imply that for t < T X
0 ∧ T Y

0 ,

dRt = 1

2
α(1 − α)

(
1

Y 1−α
t

− 1

X1−α
t

)
dt

= 1

2
α(1 − α)RtX

α−1
t Y α−1

t dt.
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This is an ordinary differential equation and we obtain for t < T X
0 ∧ T Y

0

Rt = R0 exp
(

1
2α(1 − α)

∫ t

0
Xα−1

s Y α−1
s ds

)
.(3.4)

LEMMA 3.2. For every δ ∈ (0,1) there exists κ0 ∈ (0, 1) (depending only
on δ) such that if

1/2 > X0 > Y0 > (1 − κ0)X0 > 0,

then

PX0,Y0
(
Yt > (1 − δ)Xt for all t ≤ T X

1 |T X
1 < T X

0
) ≥ 1 − δ.

Recall that Px,y denotes any element of P (x, y), and so the above lemma asserts
the estimate for every element of P (X0, Y0).

PROOF OF LEMMA 3.2. It suffices to consider the case when X0 ∈ (0,1/2) is
deterministic, say X0 = x0. Choose j0 so that 2−j0 ≤ x0 < 2−j0+1. For notational
simplicity, let

σk = T X

2−j0+k = inf{t :Xt = 2−j0+k},
and define

ξk = 1
2α(1 − α)

∫ σk+1

σk

X2α−2
s ds.

Remark 2.2 tells us that {Xt, t < T } under Qx∞ is a time change of a three-
dimensional Bessel process. By the pseudo-strong Markov property of X and scal-
ing, under Q

x0∞ the {ξk, k ≥ 1} are i.i.d. random variables, having the same distrib-

ution as 1
2α(1 − α)

∫ T X
1

0 X2α−2
s ds under Q

1/2∞ . By (3.1) we have

E1/2
[

1
2α(1 − α)

∫ T X
1

0
X2α−2

s ds
∣∣∣T X

1 < T X
0

]
= α(1 − α) log 2.(3.5)

Set γ = 9/8 and define

B1 =
{

N∑
k=0

ξk ≤ c1 + Nα(1 − α)γ log 2 for every N ∈ [1, j0 − 1]
}
.(3.6)

We claim there exists c1 such that

Q
x0
1 (B1) ≥ 1 − δ/2.

Indeed, by the strong law of large numbers there exists n0 such that

Qx0∞

(
N∑

k=0

ξk ≤ Nα(1 − α)γ log 2 for all N ≥ n0

)
≥ 1 − δ/4.
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We then choose c1 sufficiently large to make Q
x0∞(B1) > 1 − δ/2, and note that

Q
x0
1 (B1) = Q

x0∞(B1).
Without loss of generality, assume that 0 < δ < 1 − (7/8)1/(1−α). Choose

β ∈ (0,1/8) such that

(1 − β)1/(1−α) ≥ 1 − δ.(3.7)

Then on the event B1 we have for t ∈ [σN−1, σN)

X1−α
0 exp

(
1

2

α(1 − α)

1 − β

∫ t

0
X2−2α

s ds

)

≤ 2(−j0+1)(1−α) exp
(

1

2

α(1 − α)

1 − β

∫ σN

0
X2−2α

s ds

)
(3.8)

≤ 2(−j0+1)(1−α)ec1/(1−β)eNα(1−α)γ log 2/(1−β)

= c22−j0(1−α)(2N)α(1−α)γ /(1−β).

By Remark 2.2, the process {Xt, t < T } under Qx
1 is a time change of a three-

dimensional Bessel process, whereas a three-dimensional Bessel process has the
same distribution as the modulus of a three-dimensional Brownian motion. By
Proposition I.5.8(b)(iii) of [2] the probability that X under Q2−j0+k

1 will ever hit
c32−j0+k/2k/8 = c32−j0+7k/8 is c32−k/8. Summing over k from 1 to ∞ and tak-
ing c3 small enough, there is Q

x0
1 probability at most δ/2 that Xt gets below

c32−j0+7k/8 between times σk and σk+1 for some k ≥ 1. Let

B2 =
{

inf
σk≤t<σk+1

Xt ≥ c32−j0+7k/8 for k = 1,2, . . . , j0 − 1
}
,(3.9)

and B = B1 ∩ B2. Since 0 < α < 1/2 and 0 < β < 1/8, except for the event Bc of
Q

x0
1 -probability at most δ, we have from (3.8) and (3.9) that for t ∈ [σN−1 σN),

X1−α
0 exp

(
1

2

α(1 − α)

1 − β

∫ t

0
X2−2α

s ds

)
≤ c22−j0(1−α)(2N)α(1−α)γ /(1−β)

≤ c2
(
2−j0+9Nα/(8(1−β)))1−α(3.10)

≤ c2(2
−j0+7N/8)1−α

≤ c4X
1−α
t .

Define

S = inf{t > 0 :Y 1−α
t ≤ (1 − β)X1−α

t }.
Under Q

x0
1 , the process {Xt, t ≤ T } never hits 0. Since Y0 > 0, then the

process Y cannot hit 0 before time S. Choose κ = β/(2c4) ∧ 1
2 and let us define
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κ0 = 1 − (1 − κ)1/(1−α). Then the condition Y0 > (1 − κ0)X0 > 0 implies that
Y 1−α

0 > κX1−α
0 . It follows from (3.4) and (3.10) that on the event B , for every

t ≤ S,

Rt ≤ R0 exp
(

α(1 − α)

2(1 − β)

∫ t

0
X2α−2

s ds

)

≤ κX1−α
0 exp

(
α(1 − α)

2(1 − β)

∫ t

0
X2α−2

s ds

)

≤ κc4X
1−α
t ≤ β

2
X1−α

t .

Since RS = βX1−α
S on {S < ∞}, we conclude from above that S = ∞ on B except

for a Q
x0
1 null set.

We have thus shown that under the condition 1/2 > X0 > Y0 > (1 − κ0)X0 > 0,
on the event B we have

Y 1−α
t > (1 − β)X1−α

t for every t ≥ 0.(3.11)

It follows from the above and (3.7) that

PX0,Y0
(
Yt > (1 − δ)Xt for all t ≤ T X

1 |T X
1 < T X

0
) ≥ 1 − δ.

This proves the lemma. �

REMARK 3.3. Suppose X and Y are weak solutions to (1.1) and (1.3) driven
by the same Brownian motion W . Since the process X under Qz

1 has infinitesimal
generator given by (2.3), there exists a Q·

1-Brownian motion W̃t such that

dXt = Xα
t dW̃t + X2α−1

t dt.(3.12)

We also have dXt = Xα
t dWt , so

dWt = dW̃t + Xα−1
t dt.(3.13)

Therefore,

dYt = Yα
t dW̃t + Xα−1

t Y α
t dt(3.14)

for t < T X
0 .

We thus see that under Q
x,y
1 , X and Y solve the SDEs (3.12) and (3.14). The

discussion in Remark 2.1 then shows us that the pseudo-strong Markov property
holds if P ∈ Q1(x, y). That is, if S is a stopping time, PS is defined by PS(A) =
P(A◦θS) for A ∈ F∞, and OS is a regular conditional probability for PS given FS ,
then OS ∈ Q1(XS,YS) almost surely. A similar argument shows that the pseudo-
strong Markov property holds for P ∈ Qi (x, y) for i = 0 and i = ∞.
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LEMMA 3.4. For every δ ∈ (0,1) there exist ρ > 0 and K ≥ 1 such that for
X0 = x ∈ (0,2−K), Y0 = y ∈ [−x, x) and S = inf{t > 0 :Xt = x2K},

Px,y(YS > (1 − δ)XS |T X
1 < T X

0
) ≥ ρ.

PROOF. Putting (3.13) into (3.2) and (3.3), we have for t < T X
0

dX1−α
t = (1 − α)dW̃t + (1 − α)Xα−1

t dt − 1

2
α(1 − α)Xα−1

t dt

(3.15)

= (1 − α)dW̃t + (1 − α)

(
1 − α

2

)
Xα−1

t dt.

For Y0 	= 0, applying Itô’s formula to Yt and using (3.14), we have for t < T Y
0 ,

d|Yt |1−α = (1 − α) sgn(Yt ) dW̃t + (1 − α) sgn(Yt )X
α−1
t dt

(3.16)
− 1

2α(1 − α)|Yt |α−1 dt.

We first consider the case where Y0 < 0. Let

A1 =
{

sup
0≤s≤x2−2α

W̃s > 3x1−α and inf
0≤s≤x2−2α

W̃s > −x1−α/2
}
.

By Brownian scaling, Qz
1(A1) > c2 with c2 independent of x and z. It follows

from (3.16) that for t < T Y
0 ,

|Yt |1−α ≤ |Y0|1−α − (1 − α)W̃t

≤ x1−α − (1 − α)W̃t .

If A1 holds, then

inf
0≤t≤x2−2α

(
x1−α − (1 − α)W̃t

) ≤ x1−α − 3(1 − α)x1−α ≤ −1
2x1−α < 0.

This implies that T Y
0 < x2−2α on A1. On the other hand, on the event A1,

inf
0≤t≤x2−2α

(
x1−α + (1 − α)W̃t

) ≥ x1−α − 1 − α

2
x1−α ≥ 1

2
x1−α > 0.

So by (3.15) on A1,

T X
0 > x2−2α > T Y

0 and inf
0≤t≤x2−2α

X1−α
t ≥ 1

2x1−α.

Note also that on the event A1, by (3.15) again,

sup
0≤s≤x2−2α

X1−α
s ≤ x1−α + (1 − α)3x1−α + (1 − α)

(
1 − α

2

)∫ x2−2α

0
2xα−1 ds

≤ 6x1−α.
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So in particular we have that

2−1/(1−α)x ≤ XT Y
0

≤ 61/(1−α)x on A1.

Using the pseudo-strong Markov property at the time inf{t ≥ 0 :Yt ≥ 0}, it thus
suffices to prove that the conclusion of the lemma holds under the following as-
sumptions: 0 ≤ Y0 < X0 and

2−1/(1−α)x ≤ X0 ≤ 61/(1−α)x.

As this is our first nontrivial use of the pseudo-strong Markov property, we
explain in detail how it is used. Recall that T := T X

0 ∧ T X
1 . We use the pseudo-

strong Markov property at the time V = inf{t ≥ 0 :Yt ≥ 0}∧T . Let OV be a regular
conditional probability for the law of {(XV +t , YV +t );0 ≤ t ≤ T ◦ θV } under Q

x,y
1

conditional on FV . This means that for each A ∈ F∞ the random variable OV (·,A)

is FV -measurable, OV (ω, ·) is a probability on FT for each ω, and for each B ∈
FV and each A of the form

A = {(Xt1∧T , Yt1∧T ) ∈ C1, . . . , (Xtn∧T , Ytn∧T ) ∈ Cn}
for positive reals t1 ≤ · · · ≤ tn and C1, . . . ,Cn Borel subsets of R2,

EQ
x,y
1

[OV (·,A);B]
= Q

x,y
1

({(XV +t1, YV +t1) ∈ C1, . . . , (XV +tn , YV +tn) ∈ Cn} ∩ B
)
.

Here EQ
x,y
1

is the expectation with respect to Q
x,y
1 . As in the discussions in Re-

marks 2.1 and 3.3, for Q
x,y
1 -almost every ω ∈ {V < T }, the law of {(Xt , Yt ); t ≤ T }

under OV (ω, ·) is that of the law of a weak solution (X̃, Ỹ ) to (3.12) and (3.14)
with (X̃0(ω

′), Ỹ0(ω
′)) = (XV (ω),YV (ω)) for OV (ω, ·)-almost every ω′. If we let

S′ = inf{t ≥ V :Xt = x2K}, then

Q
x,y
1

(
YS > (1 − δ)XS

) ≥ Q
x,y
1

({YS′ > (1 − δ)XS′ } ∩ A1
)

= EQ
x,y
1

[
OV

(·, YS > (1 − δ)XS

);A1
]
.

Since we have shown Q
x,y
1 (A1) is bounded below, to prove the lemma it suffices

to find a lower bound on OV (·, YS > (1 − δ)XS). By the remarks above and the
fact that XV ∈ [21/(1−α)x,61/(1−α)x] on the event A1, this means we have to show
that Q

X0,Y0
1 (YS > (1 − δ)XS) is bounded below when we have Y0 = 0 and X0 ∈

[21/(1−α)x,61/(1−α)x].
As Y solves dYt = |Yt |α dWt and spends zero time at 0, the Green function for

the subprocess of Y starting from y ∈ (−η,η) killed upon exiting (−η,η) is

G(y, z) =
{ |z|−2α(y + η)(η − z)/η, −η < y < z < η,

|z|−2α(z + η)(η − y)/η, −η < z < y < η.
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By our notation convention, T
|Y |
η = inf{t : |Yt | = η}. Then for 0 ≤ y < η,

Ey[T |Y |
η

] =
∫ η

−η
G(y, z) dz ≤ c3η

2−2α.

Let c4 = (1/2)1/(1−α) and c5 = 61/(1−α), and so c4x ≤ X0 ≤ c5x. By scaling, we
can choose c6 such that

Px

(
sup

0≤s≤c6x
2−2α

|Xs − x| > c4x/2
)

≤ 1
8 .

Choose η so that c3η
2−2α = c6x

2−2α/8. Then for 0 ≤ y < η,

Py(T |Y |
η ≥ c6x

2−2α) ≤ ET
|Y |
η

c6x2−2α
≤ c3η

2−2α

c6x2−2α
= 1

8

and so Py(T
|Y |
η < c6x

2−2α) ≥ 7/8. By symmetry, if y ∈ [0, η) then Y starting at y

will exit (−η,η) through η with probability at least 1/2. Hence

Py(T Y
η < c6x

2−2α|Y0 ∈ [0, η)
) ≥ 7

8 − 1
2 = 3

8 .

Let

A2 =
{

sup
0≤s≤c6x

2−2α

|Xs − x| ≤ c4x/2 and T Y
η < c6x

2−2α

}
.

Note that on A2,

c4x/2 ≤ Xt ≤ (
c5 + (c4/2)

)
x for t ≤ c6x

2−2α.

Write t0 = c6x
2−2α . If y ∈ [0, η), then

PX0,y(A2 ∩ {T X
1 < T X

0 })
= PX0,y

(
T Y

η < t0, sup
0≤s≤t0

|Xs − x| ≤ c4x/2, t0 < T X
1 < T X

0

)
.

Using the pseudo-strong Markov property of X at time t0, this is bounded below
by

PX0,y(A2)P
c4x/2(T X

1 < T X
0 ) ≥ (3

8 − 1
8

)
(c4x/2) = c4x/8.

Since PX0(T X
1 < T X

0 ) ≤ c5x, we conclude that

Q
X0,y
1 (A2) ≥ c4

8c5
.

Applying the pseudo-strong Markov property at the stopping time inf{t ≥ 0 :
Yt ≥ η}, we may thus assume that

c7x ≤ X0 ≤ c8x and Y0 ≥ c9x,
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where c7 = c4/2 = 2−1−1/(1−α), c8 = c5 + (c4/2) and c9 = 1
2 ∧ (

c6
8c3

)1/(2−2α).
In view of Lemma 3.2 and the pseudo-strong Markov property, it suffices to

show that there is positive Q
X0,Y0
1 -probability that there exists t < S such that

Yt ≥ (1 − κ0)Xt > 0(3.17)

where κ0 is the constant in Lemma 3.2 corresponding to δ. Let

a = c1−α
9

8(1 − α)
, c10 = c1−α

7 − 1

8
c1−α

9 , γ =
(

c2−2α
9

8α(1 − α)

)
∧(c1−α

9 c10 log 2)

and

b = 4c1−α
8

1 − (1 − κ0)1−α
.

Define

A3 =
{

sup
0≤s≤γ x2−2α

W̃s ∈ (bx1−α,2bx1−α) and inf
0≤s≤γ x2−2α

W̃s > −ax1−α

}
.

By Brownian scaling, Qz
1(A3) is bounded below by a positive constant independent

of x and z. Let U = inf{t :Yt ≤ c92−1/(1−α)x}. By (3.16), on the event A3,

Y 1−α

U∧γ x2−2α ≥ Y 1−α
0 + (1 − α)W̃U∧γ x2−2α − 1

2
α(1 − α)

∫ U∧γ x2−2α

0
Yα−1

s ds

≥ (c9x)1−α − (1 − α)ax1−α − α(1 − α)γ

c1−α
9

x1−α

≥ 3c1−α
9 x1−α/4.

We conclude that on the event A3 we have U ≥ γ x2−2α . We have by (3.15) that
on the event A3,

inf
0≤t≤γ x2−2α

X1−α
t ≥ inf

0≤t≤γ x2−2α

(
X1−α

0 − (1 − α)W̃t

)
≥ (c7x)1−α − (1 − α)ax1−α

= c10x
1−α.

Using (3.4) we then have on A3 for t ≤ γ x2−2α ,

Rt ≤ R0 exp
(

1
2α(1 − α)

∫ γ x2−2α

0
2c−1

10 xα−1(c9x)α−1 dt

)
≤ X1−α

0 exp
(
α(1 − α)γ c−1

10 cα−1
9

)
≤ 2c1−α

8 x1−α.
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On the other hand, on A3 there exists some t ≤ γ x2−2α such that

X1−α
t ≥ (1 − α)W̃t ≥ bx1−α/2.(3.18)

Therefore on A3 there exists some t ≤ γ x2−2α such that

Rt ≤ 2c1−α
8 x1−α ≤ (

1 − (1 − κ0)
1−α)X1−α

t .

Thus

inf{t ≥ 0 :Yt ≥ (1 − κ0)Xt } ≤ γ x2−2α on A3.(3.19)

It follows from (3.15) and (3.18) that on A3,

sup
0≤t≤γ x2−2α

X1−α
t

≤ sup
0≤t≤γ x2−2α

(
X1−α

0 + (1 − α)W̃t +
∫ t

0
(1 − α)

(
1 − α

2

)
|Xs |α−1 ds

)

≤ (c8x)1−α + 2(1 − α)bx1−α + (1 − α)

(
1 − α

2

)
γ x2−2α 2

b
x1−α

≤ c1−α
11 x1−α.

That is,

sup
0≤t≤γ x2−2α

Xt ≤ c11x on A3.

Now take K ≥ 1 large enough so that 2K > c11. Then for every x ∈ (0,2−K),

S := inf{t > 0 :Xt = x2K} ∈ (γ x2−2α, T X
1 ) on A3.

This, together with (3.19), proves that (3.17) holds on A3, which completes the
proof of the lemma. �

LEMMA 3.5. Suppose that X0 = x ∈ (0,1/4) and Y0 = y ∈ [−x, x). Let
T Y

0+ = inf{t ≥ 0 :Yt ≥ 0}. Then for every λ ≥ 4x, T Y
0+ < T X

λ , Q
x,y
1 -a.s., and

max{Xt, |Yt |} ≤ 21/(1−α)x < 4x for t ≤ T Y
0+,

−(λ1−α − X1−α
t )1/(1−α) ≤ Yt < Xt for t ∈ (T Y

0+, T X
λ ].

In particular,

|Yt | < λ for every t ≤ T X
λ .

PROOF. As |x|α is Lipschitz on (0,∞), Xt > 0 for every t ≥ 0 under Q
x,y
1 ,

and Y0 < X0, it follows by a standard comparison theorem (see, e.g., Theorem I.6.2
in [3]) that

Yt ≤ Xt for t < T X
0 .(3.20)
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If Y0 < 0, it follows from (3.15) and (3.16) that under Q
x,y
1 ,

d(X1−α
t + |Yt |1−α) = −1

2α(1 − α)(Xα−1 + |Yt |α−1) dt(3.21)

for t < T Y
0 . So for t ≤ T Y

0 ,

X1−α
t + |Yt |1−α < |X0|1−α + |Y0|1−α ≤ 2x1−α,

and, therefore, for t ≤ T Y
0 ,

max{Xt, |Yt |} < 21/(1−α)x < 4x.

Since λ ≥ 4x, this implies that T Y
0+ < T X

λ and |Yt | < 4x ≤ λ for t < T Y
0+.

Define

α1 = inf
{
t > T Y

0+ :Yt = −(1
2(λ1−α − X1−α

t )
)1/(1−α)} ∧ T X

λ ,

β1 = inf{t > α1 :Yt = 0} ∧ T X
λ ,

and for n ≥ 2,

αn = inf
{
t > βn−1 :Yt = −(1

2(λ1−α − X1−α
t )

)1/(1−α)} ∧ T X
λ ,

βn = inf{t > αn :Yt = 0} ∧ T X
λ .

On [T Y
0+, α1),

−(1
2(λ1−α − X1−α

t )
)1/(1−α) ≤ Yt < Xt < 1.

On {αn < T X
λ }, we have by (3.21) that t → X1−α

t + |Yt |1−α is decreasing on
[αn,βn] and so for t ∈ [αn,βn],

X1−α
t + |Yt |1−α < X1−α

αn
+ |Yαn |1−α = 1

2(X1−α
αn

+ λ1−α) < λ1−α.(3.22)

This in particular implies that

if αn < T X
λ , then βn < T X

λ and |Yt | < λ for t ∈ [αn,βn].(3.23)

If αn < T X
λ , then on [βn,αn+1),

−(1
2(λ1−α − X1−α

t )
)1/(1−α) ≤ Yt < Xt ≤ λ,(3.24)

and so |Yt | < λ for t ∈ [βn,αn+1). Since on {αn < T X
λ },

Yαn = −(1
2(λ1−α − X1−α

αn
)
)1/(1−α) and Yβn = 0,

and Y has a finite number of oscillations greater than any fixed ε > 0 on any finite
time interval, it follows that either αn = T X

λ for some finite n, or βn = T X
λ for some

finite n, or αn ≤ βn < T X
λ for all n < ∞ and limn→∞ αn = limn→∞ βn = T X

λ . If
αn = T X

λ or βn = T X
λ for some finite n then (3.24) holds for all t ∈ (T Y

0+, T X
λ ]

by (3.22)–(3.24). If αn ≤ βn < T X
λ for all n < ∞ and limn→∞ αn = limn→∞ βn =

T X
λ then (3.24) holds for all t ∈ (T Y

0+, T X
λ ) by (3.22)–(3.24). In this case, YT X

λ
= 0

by continuity, so (3.24) holds also for t = T X
λ . This completes the proof of the

lemma. �
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LEMMA 3.6. For every δ ∈ (0,1) there exists ε > 0 such that if X0 = x0 ∈
(0, ε) and Y0 = y0 ∈ [−x0, x0], then

Px0,y0(YT > 1 − δ|XT = 1) ≥ 1 − δ,

where T = T X
0 ∧ T X

1 .

PROOF. When y0 = x0, then by Remark 2.3, Yt = Xt for t ≤ T and so the
conclusion of the lemma holds. Thus without loss of generality, we assume now
that y0 ∈ [−x0, x0). Let κ0 be the constant from Lemma 3.2 that corresponds to
δ/3. Let SK = inf{t :Xt = 2Kx}. By Lemma 3.4 there exist ρ > 0 and integer
K ≥ 1 such that for any x ∈ (0,2−K),

Q
x,y0
1

(
YSK

> (1 − κ0)XSK

) ≥ ρ.(3.25)

Let integer j0 ≥ 1 be sufficiently large so that

1 − (1 − ρ)j0 >
1 − δ

1 − δ/3

and define ε = 2−j0K−2. Let

A = {YSjK
> (1 − κ0)XSjK

for some j = 1,2, . . . , j0}.
For every 0 < x < ε, by Lemma 3.5,

−2j0Kx ≤ YSjK
< XSjK

= 2j0Kx for every j ∈ {1,2, . . . , j0}.(3.26)

Using the pseudo-strong Markov property at the stopping times SjK ’s recursively,
we have from (3.25) that Q

x0,y0
1 (Ac) ≤ (1 − ρ)j0 and so

Q
x0,y0
1 (A) ≥ 1 − (1 − ρ)j0 .

On the other hand, A can be written as the disjoint union of Aj , j = 1, . . . , j0,
where

Aj = {YSkK
≤ (1 − κ0)XSkK

for k ≤ j − 1 and YSjK
> (1 − κ0)XSjK

}.
Because of (3.26), we can use the pseudo-strong Markov property at the stopping
time SjK and apply Lemma 3.2 to conclude

Q
x0,y0
1

({
YT > 1 − δ

3

}
∩ Aj

)
≥

(
1 − δ

3

)
Q

x0,y0
1 (Aj ).

Therefore

Q
x0,y0
1

(
YT > 1 − δ

3

)
≥ Q

x0,y0
1

({
YT > 1 − δ

3

}
∩ A

)

=
j0∑

j=1

Q
x0,y0
1

({
YT > 1 − δ

3

}
∩ Aj

)
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≥
j0∑

j=1

(
1 − δ

3

)
Q

x0,y0
1 (Aj )

=
(

1 − δ

3

)
Q

x0,y0
1 (A) ≥ 1 − δ. �

COROLLARY 3.7. For every δ ∈ (0,1) there exists r0 > 0 such that if X0 ∈
(0, r0) and Y0 ∈ [−X0,X0], then

EX0,Y0[YT |XT = 1] ≥ 1 − δ.

PROOF. When Y0 = X0, we know from Remark 2.3 that Yt = Xt for t ≤ T

and the conclusion of the corollary holds trivially. Thus we now assume that Y0 ∈
[−X0,X0). Let ε be the constant in Lemma 3.6 that corresponds to δ/3. Let r0 =
ε ∧ 1

4 . Then by Lemma 3.5, |YT | ≤ 1, PX0,Y0 -a.s. It now follows from Lemma 3.6
that

EX0,Y0[YT |T X
1 < T X

0 ] ≥
(

1 − δ

3

)2

− δ

3
> 1 − δ. �

LEMMA 3.8. Let X and Y be weak solutions to (1.1) and (1.3) driven by the
same Brownian motion W with X0 = x ∈ (0,1/4) and Y0 = y ∈ [−x, x). Then for
λ ≥ 4x we have

Px,y(|Yt | ≤ λ for t ≤ T X
λ ∧ T X

0 |T X
0 < T X

1 ) = 1.

It follows that

Px,y(|Yt | < 1 for t ≤ T X
0 |T X

0 < T X
1 ) = 1.

PROOF. Consider any a ∈ (0, x) and b ∈ (x,1). By Girsanov’s theorem, the
distributions Q

x,y
0 and Q

x,y
1 are mutually absolutely continuous on [0, T X

a ∧ T X
b ].

Hence, by Lemma 3.5,

Px,y(|Yt | < λ for t ≤ T X
λ ∧ T X

0 ∧ T X
a ∧ T X

b |T X
0 < T X

1 ) = 1.

Letting a ↓ 0 and b ↑ 1, we obtain the first result. The second result holds as on
{T X

0 < T X
1 }, there is some (random) λ ∈ (0,1) such that T X

0 = T X
0 ∧ T X

λ . �

COROLLARY 3.9. Let X and Y be weak solutions to (1.1) and (1.3) driven by
the same Brownian motion W with X0 = x ∈ (0,1/4) and Y0 = y ∈ [−x, x). Then
for λ ≥ 4x we have

Px,y(|Yt | ≤ λ for t ≤ T X
0 ∧ T X

λ ) = 1.

In particular,

Px,y(|Yt | < 1 for t ≤ T X
0 ∧ T X

1 ) = 1.
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PROOF. The corollary follows immediately from Lemmas 3.5 and 3.8. �

LEMMA 3.10. For every δ ∈ (0,1), there is r0 > 0 such that if X0 = x ∈
(0, r0) and Y0 = y ∈ [−x,0], we have −1 ≤ YT ≤ 0, Px,y -a.s, on {XT = 0}, and

Ex,y[−YT |XT = 0] ≥ (1 − δ/2)x.(3.27)

Moreover, for every δ ∈ (0,1), there exists a function ψ : (0,1) → R such that
limx↓0 ψ(x) = 0, and for x ∈ (0, r0) and y ∈ [−x,0],

Ex,y[−YT 1{|YT |≤ψ(x)}|XT = 0
] ≥ (1 − δ)x,(3.28)

or equivalently,

Ex,y[−YT 1{|YT |≤ψ(x)}1{XT =0}
] ≥ (1 − δ)x(1 − x).(3.29)

PROOF. Let δ ∈ (0,1). By Corollary 3.7, there is r0 ∈ (0,1/4) so that

Ex,y[YT |XT = 1] ≥ 1 − δ

2

whenever X0 = x ∈ (0, r0] and Y0 = y ∈ [−x, x]. Since by Corollary 3.9,
sups≤T |Ys | ≤ 1 under Px,y we have Ex,yYT = Ex,yY0 by optional stopping. The
process X is a continuous local martingale so Px(XT = 1) = x and Px(XT = 0) =
1 − x. Hence if X0 = x ∈ (0, r0) and Y0 = y ∈ [−x,0],

0 ≥ Ex,yY0 = Ex,y[YT ]
= Ex,y[YT |XT = 1]P(XT = 1) + Ex,y[YT |XT = 0]P(XT = 0)

≥
(

1 − δ

2

)
x + Ex,y[YT |XT = 0](1 − x).

It follows that

Ex,y[−YT |XT = 0] ≥ (1 − δ/2)x

1 − x
≥

(
1 − δ

2

)
x.(3.30)

That −1 ≤ YT ≤ 0, Px,y -a.s. on {T X
0 < T X

1 }, is a consequence of Lemma 3.8 and
Remark 2.3.

Consider y0 ∈ (0,1/2). Suppose that x ∈ (0, y0/4) and note that, by Lemma 3.8
and scaling, for y ∈ [−x,0],

Px,y(Yt ∈ [−y0, y0] for every t ≤ T X
0 ∧ T X

y0
|T X

0 < T X
y0

) = 1.(3.31)

Recall that Qx
0 satisfies Qx

0(A) = Px(A|XT = 0) and Qx
0 is derived from P by

Doob’s h-transform with h(x) = 1 − x. As in the proof of (2.3) we can show that
the process X under Q·

0 has generator

L̂f = L(hf )

h
= |x|2α

2
f ′′ − |x|2α

1 − x
f ′.(3.32)
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Since Px(T X
y0

< T X
0 ) = x/y0 for x ∈ (0, y0), we have for 0 < x < y0 < 1,

Qx(T X
y0

< T X
0 ) = h(y0)

h(x)
Px(T X

y0
< T X

0 ) = 1 − y0

1 − x

x

y0
≤ x

y0
.(3.33)

Suppose that X has distribution Px . Then XT converges to 0 in distribution as
x ↓ 0. This and the fact that Y is continuous imply that for some y1 ∈ (0, δy0/16),

Px,0(Yt ∈ [−y0, y0] for t ≤ T X
0 ) ≥ 1 − δy0

16
for every x ∈ (0, y1].

For x ∈ (0, y1],
Q

x,0
0 (Yt ∈ [−y0, y0] for t ≤ T X

0 )

= Px,0(Yt ∈ [−y0, y0] for t ≤ T X
0 |XT = 0)

≥ Px,0({Yt ∈ [−y0, y0] for t ≤ T X
0 } ∩ {XT = 0})

(3.34)
≥ Px,0(Yt ∈ [−y0, y0] for t ≤ T X

0 ) − Px,0(XT = 1)

≥ 1 − δy0

16
− δy0

16

= 1 − δy0

8
.

Let Q̃x
0 denote the distribution of {Xt∧T X

0
, t ≥ 0} when {Xt, t ≥ 0} has distribu-

tion Qx
0 . Since the coefficients of the generator (3.32) are smooth except at 0, there

exists a stochastic flow {Xy
t , t ≥ 0} driven by the same Brownian motion, such that

X
y
0 = y for y ∈ (0,1), and the distribution of {Xy

t , t ≥ 0} is Q̃
y
0 . So with proba-

bility 1, for every t ≥ 0, v < z implies that Xv
t ≤ Xz

t and the function y → X
y
t is

continuous.
Let Q̃

x,y
0 denote the distribution of {(Xt∧T X

0
, Yt∧T Y

0
), t ≥ 0} when {(Xt , Yt ), t ≥

0} has distribution Q
x,y
0 . The above remarks about the stochastic flow imply that

if {(Xt , Yt ), t ≥ 0} has distribution Q̃
y0,y
0 then T X

0 − T Y
0 converges in distribution

to 0 as y ↑ y0. This and the continuity of X under Q̃
y0,y
0 imply that we can find

y2 ∈ (0, y0) close to y0 so that for y ∈ [y2, y0],
Q

y0,y
0 (XT Y

0
< y1) ≥ 1 − δy0

8
.(3.35)

By Lemma 3.6 and scaling, there exists y3 ∈ (0,1) small so that for x ∈ (0, y3)

and y ∈ [−x,0],
Px,y(YT X

y0
∈ [y2, y0]|T X

y0
< T X

0 ) ≥ 1 − δy0

8
.

A routine application of the theory of Doob’s h-processes shows that the last esti-
mate is equivalent to

Q
x,y
0 (YT X

y0
∈ [y2, y0]|T X

y0
< T X

0 ) ≥ 1 − δy0

8
.(3.36)
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Let S1 = T Y
0 ◦ T X

y0
+ T X

y0
and S2 = T X

0 ◦ S1 + S1. We use the pseudo-strong
Markov property and (3.31)–(3.36) to see that for x ∈ (0, y3) and y ∈ [−x,0],
Q

x,y
0 (YT /∈ [−y0, y0])

= Q
x,y
0 ({YT /∈ [−y0, y0]} ∩ {T X

y0
< T X

0 })
≤ Q

x,y
0 (T X

y0
< T X

0 )Q
x,y
0 (YT /∈ [−y0, y0]|T X

y0
< T X

0 )

≤ x

y0
Q

x,y
0 (YT /∈ [−y0, y0]|T X

y0
< T X

0 )

≤ x

y0
Q

x,y
0 ({YT X

y0
/∈ [y2, y0]}|T X

y0
< T X

0 )

+ x

y0
Q

x,y
0 ({YT X

y0
∈ [y2, y0]} ∩ {XS1 ≥ y1}|T X

y0
< T X

0 )

+ x

y0
Q

x,y
0 ({YT X

y0
∈ [y2, y0]} ∩ {XS1 < y1} ∩ {YS2 /∈ [−y0, y0]}|T X

y0
< T X

0 )

≤ x

y0
Q

x,y
0 ({YT X

y0
/∈ [y2, y0]}|T X

y0
< T X

0 )

+ x

y0
Q

x,y
0

(
1{Y

T X
y0

∈[y2,y0]}Q
x,y
0 (XS1 ≥ y1|FT X

y0
)|T X

y0
< T X

0
)

+ x

y0
Q

x,y
0

(
1{Y

T X
y0

∈[y2,y0],XS1<y1}Q
x,y
0 (YS2 /∈ [−y0, y0]|FS1)|T X

y0
< T X

0
)

≤ x

y0

(
δy0

8
+ δy0

8
+ δy0

8

)
≤ δx/2.

As |YT | ≤ 1 under Q
x,y
0 by Lemma 3.8, we conclude from this and (3.30) that

for x ∈ (0, y3) and y ∈ [−x,0],

Ex,y[−YT 1{|YT |≤y0}|XT = 0
] ≥

(
1 − δ

2

)
x − δ

2
x = (1 − δ)x.(3.37)

Recall that in the above argument, we start with an arbitrary y0 ∈ (0,1/2), then we
find y1, y2 and y3 accordingly so that (3.34), (3.35) and (3.36) hold, respectively.
Let r0 be the value of y3 corresponding to y0 = 1/3. We now define for x ∈ (0, r0],

ψ(x) = inf
{
a > 0 : inf

y∈[−x,0] E
x,y[−YT 1{|YT |≤a}|XT = 0

] ≥ (1 − δ)x

}
.

Clearly by (3.37), ψ(x) ≤ 1/3. Since for every y0 ∈ (0,1/2), there is y3 > 0 so
that (3.37) holds, it follows that ψ(x) ≤ y0 for x ∈ (0, y3). Hence limx↓0 ψ(x) = 0.
Summarizing, we obtain for x ∈ (0, r0) and y ∈ [−x,0],

Ex,y[−YT 1{|YT |≤ψ(x)}|XT = 0
] ≥ (1 − δ)x.
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This proves (3.28) and so (3.29) follows since, as we observed previously,
Px,y(XT = 0) = 1 − x. �

4. Pathwise uniqueness.

PROOF OF THEOREM 1.2. As we noticed previously, it suffices to prove path-
wise uniqueness for solutions X and Y of (1.1) and (1.3) with X0 = Y0 = 0. The
proof will be divided into three parts. The main argument will be presented in
Part 1 and subdivided into three steps.

Part 1 (Strong uniqueness). We first show that strong uniqueness holds for so-
lutions of (1.2)–(1.3) when there is a single filtration. Let (X,W) and (Y,W) be
two weak solutions of (1.1) satisfying (1.3) with a common Brownian motion W

and such that X0 = Y0 = 0.
Define

Mt = |Xt | ∨ |Yt | and Zt = |Xt − Yt |.
Our strategy is to show that, with probability one, on any excursion of M away
from 0 that reaches level 1, X and Y have to agree. A scaling argument then shows
that for any b > 0, with probability one, on any excursion of M away from 0 that
reaches level b, X and Y have to agree, and this will give the strong uniqueness
for solutions of (1.2)–(1.3). We execute this plan in three steps.

Step 1. In this step, we show that if there exist two solutions, neither of them can
stay on one side of 0 between the bifurcation time and the time when M reaches
level 1. In other words, setting

S = inf{t > 0 :Mt = 1}, L = sup{t < S :Mt = 0},
C0 = {XsXt > 0 for all s, t ∈ (L,S]} ∪ {YsYt > 0 for all s, t ∈ (L,S]},

we show that

P0,0({∃t ∈ [L,S] :Xt 	= Yt } ∩ C0) = 0.(4.1)

For b ∈ [0,1) let

Lb = inf{t ≥ L :Mt = b},
and for b ∈ (0,1),

Cb := ({|XLb
| ≥ |YLb

|} ∩ {XsXt > 0 for s, t ∈ (Lb, S]})
∪ ({|XLb

| ≤ |YLb
|} ∩ {YsYt > 0 for s, t ∈ (Lb, S]}).

Note that Lb is not a stopping time and thus we cannot apply the pseudo-strong
Markov property at Tb to estimate the probability of Cb. To circumvent this dif-
ficulty, we define two sequence of stopping times {Tj , j ≥ 0} and {Sj , j ≥ 1} as
follows. Let T0 = 0, and for j ≥ 1,

Sj = inf{t > Tj−1 :Mt = b} and Tj = inf{t > Sj :Mt = 0}.
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It is possible that some or all of the above stopping times are infinite. For a > 0 set
U

j,|X|
a = inf{t > Sj : |Xt | = a} and define U

j,|Y |
a similarly. Let

Aj,b := {
Tj−1 < S,Sj < ∞, |YSj

| ≤ |XSj
| = b and U

j,|X|
1 < U

j,|X|
0

}
∪ {

Tj−1 < S,Sj < ∞, |XSj
| ≤ |YSj

| = b and U
j,|Y |
1 < U

j,|Y |
0

}
.

On Aj,b, we have L ∈ [Tj−1, Sj ] and Lb = Sj . Thus the {Aj,b, j ≥ 1} are disjoint
and Aj,b ⊂ Cb for every j ≥ 1. In particular we have

⋃∞
j=1 Aj,b ⊂ Cb. On the

other hand, since M is a continuous process, during any finite time interval, it
can only oscillate between 0 and b a finite number of times. This implies that
Cb ⊂ ⋃∞

j=1 Aj,b. Therefore we have for 0 < b < 1,

Cb =
∞⋃

j=1

Aj,b.(4.2)

Applying the pseudo-strong Markov property at time Sj and using Lemma 3.6
and symmetry, we can choose b ∈ (0,1) small enough so that for every j ≥ 1,

P0,0({∣∣Y
U

j,|X|
1

− X
U

j,|X|
1

∣∣ > ε
} ∩ Aj,b ∩ {|YSj

| ≤ |XSj
| = b})

= P0,0(P0,0({∣∣Y
U

j,|X|
1

− X
U

j,|X|
1

∣∣ > ε
} ∩ Aj,b ∩ {|YSj

| ≤ |XSj
| = b}|FSj

))
= E0,0(1{Tj−1<S,Sj<∞,|YSj

|≤|XSj
|=b}P0,0(|Y

U
j,|X|
1

− X
U

j,|X|
1

| > ε,

U
j,|X|
1 < U

j,|X|
0 |FSj

))
≤ E0,0(1{Tj−1<S,Sj<∞,|YSj

|≤|XSj
|=b}εP0,0(U

j,|X|
1 < U

j,|X|
0 |FSj

)
)

= εP0,0(Aj,b ∩ {|YSj
| ≤ |XSj

| = b}).
It follows that

P0,0(∣∣Y
U

j,|X|
1

− X
U

j,|X|
1

∣∣ > ε|Aj,b ∩ {|YSj
| ≤ |XSj

| = b}) ≤ ε,

and, similarly,

P0,0(∣∣X
U

j,|Y |
1

− Y
U

j,|Y |
1

∣∣ > ε|Aj,b ∩ {|XSj
| ≤ |YSj

| = b}) ≤ ε.

This implies that

P0,0(|XS − YS | ≤ ε|Aj,b

) ≥ 1 − ε

and so

P0,0({|XS − YS | ≤ ε} ∩ Aj,b) ≥ (1 − ε)P0,0(Aj,b).

Summing over j ≥ 1 yields

P0,0({|XS − YS | ≤ ε} ∩ Cb) ≥ (1 − ε)P0,0(Cb).(4.3)
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For 1 > b1 > 4b2 > 0, in view of (4.2) for Cb2 (with b2 in place of b there),
we have by Corollary 3.9 and the pseudo-strong Markov property applied at stop-
ping times Sj that Cb2 ⊂ Cb1 , P0,0-a.s. Therefore

⋂
n≥1 C5−n = C0, P0,0-a.s., and

limn→∞ P0,0(C5−n) = P0,0(C0).
We can choose b = 5−n sufficiently small so that P0,0(Cb) ≥ (1 − ε)P0,0(C0).

This and (4.3) imply that

P0,0({|XS − YS | ≤ ε} ∩ C0)

≥ P0,0({|XS − YS | ≤ ε} ∩ Cb) − εP0,0(C0)

≥ (1 − ε)P0,0(Cb) − εP0,0(C0)

≥ (
(1 − ε)2 − ε

)
P0,0(C0).

Since ε > 0 is arbitrarily small, it follows that XS = YS , P0,0-a.s., on C0. It fol-
lows from Remark 2.3 that Xt = Yt for every t ∈ [L,S], P0,0-a.s., on C0. This
proves (4.1).

For b > 0, let

Sb = inf{t > 0 :Mt = b}, Lb = sup{t < Sb :Mt = 0},
Cb

0 = {XsXt > 0 for s, t ∈ (Lb, Sb]} ∪ {YsYt > 0 for s, t ∈ (Lb, Sb]}.
Let Rb

0 = 0, Ŝb
1 = Sb, R̂b

1 := inf{t > Sb :Mt = 0}, and for k ≥ 1 define

Ŝb
k = R̂b

k−1 + Sb ◦ θR̂b
k−1

,

R̂b
k = Ŝb

k−1 + Rb
1 ◦ θŜb

k−1
,

L̂b
k = sup{t < Sb

k :Mt = 0},
Ĉb

0,k = {XsXt > 0 for s, t ∈ (Lb
k, S

b
k ]} ∪ {YsYt > 0 for s, t ∈ (Lb

k, S
b
k ]}.

Then by the pseudo-strong Markov property applied at times R̂b
k ,

P0,0

(⋃
k≥1

{∃t ∈ [L1
k, S

1
k ] :Xt 	= Yt } ∩ Ĉ1

0,k

)
= 0.

In an analogous way we can prove that for any b > 0,

P0,0

(⋃
k≥1

{∃t ∈ [Lb
k, S

b
k ] :Xt 	= Yt } ∩ Ĉb

0,k

)
= 0.(4.4)

Step 2. In this intermediate step, we show that for any two arbitrary small con-
stants b, ε0 > 0, there is some a1 = a1(b, ε) > 0 such that for every b0 ∈ (0, a1],

Pb0,0(T Z
b < T M

1 |T M
1 ≤ T Z

0 ) ≤ ε0.(4.5)
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Fix arbitrarily small b, ε0 > 0 and a large enough integer m ≥ 2 such that
1

(m−1)b
≤ ε0. Fix δ ∈ (0,1/4) small such that

m−1∑
j=0

(1 − δ)2j ≥ m − 1.

So for every a > 0,

1 − a

m−1∑
j=0

(1 − δ)j (1 − δ)j ≤ 1 − (m − 1)a.(4.6)

Choose a constant r0 ∈ (0, δ) and a function ψ that satisfies the statement of
Lemma 3.10 together with the given δ. Make r0 > 0 smaller, if necessary, so that
r0 < 1/(2m). Let a1 ∈ (0, b/2) be small enough so that

ψm(a1) := ψ ◦ ψ ◦ · · · ◦ ψ︸ ︷︷ ︸
m times

(a1) < r0.

Assume that X0 = b0 ∈ (0, a1) and Y0 = 0. Let U0 = 0 and for k ≥ 1,

Uk =
{

inf{t ≥ Uk−1 :Xt = 0}, if YUk−1 = 0,
inf{t ≥ Uk−1 :Yt = 0}, if XUk−1 = 0.

It follows from (4.2) that for 0 ≤ n ≤ m, on the event {T M
1 > Un} ∩ {ZUn ≤

ψn(b0)},
Eb0,0

[
ZUn+11{ZUn+1≤ψn+1(b0)}1{T M

1 >Un+1}|FUn

]
(4.7)

≥ (1 − δ)ZUn(1 − ZUn)1{ZUn≤ψn(b0)}
Since X is a continuous local martingale, by the gambler’s ruin estimate, we

have for n ≥ 0 that on the event {T M
1 > Un},

Pb0,0(T M
1 > Un+1|FUn) = 1 − ZUn.(4.8)

Recall that ψm(b0) ≤ r0 < 1/(2m). Then, for γ ∈ (0,m),

1 − γ (1 − δ)ZUn 1{ZUn≤ψn(b0)} ≥ 0.

These remarks, (4.7) and (4.8) imply that for γ ∈ (0,m) and n ≤ m,

Eb0,0
[(

1 − γZUn+1 1{ZUn+1≤ψn+1(b0)}
)
1{T M

1 >Un+1}
]

= Eb0,0
[(

1 − γZUn+1 1{ZUn+1≤ψn+1(b0)}
)
1{T M

1 >Un+1}1{T M
1 >Un}

]
= Eb0,0

[
Eb0,0

[(
1 − γZUn+11{ZUn+1≤ψn+1(b0)}

)
1{T M

1 >Un+1}|FUn

]
1{T M

1 >Un}
]

≤ Eb0,0
[
(1 − ZUn)1{T M

1 >Un}
]
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− γ Eb0,0
[
Eb0,0

[
ZUn+1 1{ZUn+1≤ψn+1(b0)}1{T M

1 >Un+1}|FUn

]
× 1{T M

1 >Un}1{ZUn≤ψn(b0)}
]

≤ Eb0,0
[(

1 − ZUn1{ZUn≤ψn(b0)}
)
1{T M

1 >Un}
]

− γ Eb0,0
[
(1 − δ)ZUn(1 − ZUn)1{T M

1 >Un}1{ZUn≤ψn(b0)}
]

≤ Eb0,0
[((

1 − ZUn1{ZUn≤ψn(b0)}
) − γ (1 − δ)(1 − r0)ZUn1{ZUn≤ψn(b0)}

)
× 1{T M

1 >Un}
]

= Eb0,0
[(

1 − (
γ (1 − δ)(1 − r0) + 1

)
ZUn 1{ZUn≤ψn(b0)}

)
1{T M

1 >Un}
]
.

An induction argument based on the above inequality shows that for n ≤ m,

Eb0,0
[(

1 − ZUn−11{ZUn−1≤ψn−1(b0)}
)
1{T M

1 >Un−1}
]

≤ qEb0,0

[(
1 −

(
n−1∑
j=0

(1 − δ)j (1 − r0)
j

)
ZU0 1{ZU0≤b0}

)
1{T M

1 >U0}

]

= 1 − b0

n−1∑
j=0

(1 − δ)j (1 − r0)
j

≤ 1 − (m − 1)b0.

We obtain from the above, (4.6) and (4.8),

Pb0,0(T M
1 > Um) = Eb0,0

[
Pb0,0(T M

1 > Um|FUm−1)1{T M
1 >Um−1}

]
= Eb0,0

[
(1 − ZUm−1)1{T M

1 >Um−1}
]

≤ Eb0,0
[(

1 − ZUm−11{ZUm−1≤ψn−1(b0)}
)
1{T M

1 >Um−1}
]

≤ 1 − (m − 1)b0.

Thus

Pb0,0(T M
1 ≤ T Z

0 ) ≥ Pb0,0(T M
1 ≤ Um) ≥ (m − 1)b0.

Since Zt∧T Z
0

is a continuous local martingale, the gambler’s ruin estimate tells us
that

Pb0,0(T Z
b ≤ T Z

0 ) ≤ b0/b,

and, therefore,

Pb0,0(T Z
b < T M

1 |T M
1 ≤ T Z

0 ) = Pb0,0(T Z
b < T M

1 ≤ T Z
0 )

Pb0,0(T M
1 ≤ T Z

0 )
≤ Pb0,0(T Z

b < T Z
0 )

Pb0,0(T M
1 ≤ T Z

0 )

≤ 1

(m − 1)b
≤ ε0.
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This proves (4.5). By symmetry, inequalities analogous to (4.5) hold when (b0,0)

is replaced by (−b0,0), (0, b0) or (0,−b0).
Step 3. We complete the proof of the claim that with probability one, on any

excursion of Mt = |Xt | ∨ |Yt | away from 0 that reaches level 1, Zt = |Xt − Yt |
must be zero. That is, using the definitions of S and L from Step 1, we will show
in this step that

P0,0(Xt = Yt for every t ∈ [L,S]) = 1.(4.9)

Note that S < ∞ with probability one.
We chose b, ε0 > 0 and a1 = a1(b, ε0) > 0 in Step 2. Define for 0 < b1 < a1,

Fa1,b1 = {∃t ∈ (L,S) :Zt = Mt ∈ (b1, a1]},
F0+ = {∀u ∈ (L,S) ∃t ∈ (L,u) :Zt = Mt }.

It follows from (4.4) applied to all rational b > 0 that P0,0-a.s., for any (ran-
dom) 0 ≤ t0 < t1 such that Mt0 = Zt0 = 0 and Zt > 0 for t ∈ (t0, t1), there is a
(random) decreasing sequence {tn, n ≥ 1} ⊂ (t0, t1) such that tn ↓ t0 as n → ∞
and Mtn = Ztn for every n ≥ 1. Thus to prove (4.9), it will suffice to show that

P0,0({∃t ∈ [L,S] :Xt 	= Yt } ∩ F0+) = 0.(4.10)

Let τ0 = 0 and for k ≥ 1, define

σk = inf{t > τk−1 :Zt = Mt ∈ (b1, a1]} and τk = inf{t > σk :Mt = 0}.
We further define

τ
M,k
1 = inf{t > σk :Mt ≥ 1} and τ

Z,k
b = inf{t > σk :Zt ≥ b}.

Note that

Fa1,b1 =
∞⋃

k=1

{σk < S and τ
M,k
1 < τk}

=
∞⋃

k=1

(
k−1⋂
j=1

{σj < S and τ
M,j
1 ≥ τj } ∩ {σk < S and τ

M,k
1 < τk}

)
,

with the convention that
⋂0

j=1{σj < S and τ
M,j
1 ≥ τj } = �.

For every k ≥ 1, applying the pseudo-strong Markov property at σk and using
Step 2, we have

P0,0

(
τ

Z,k
b < τ

M,k
1

∣∣∣ k−1⋂
j=1

{σj < S and τ
M,j
1 ≥ τj } ∩ {σk < S and τ

M,k
1 < τk}

)
≤ ε0.
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This implies that

P0,0

(
{|YS − XS | < b} ∩

k−1⋂
j=1

{σj < S and τ
M,j
1 ≥ τj } ∩ {σk < S and τ

M,k
1 < τk}

)

≥ (1 − ε0)P
0,0

(
k−1⋂
j=1

{σj < S and τ
M,j
1 ≥ τj } ∩ {σk < S and τ

M,k
1 < τk}

)
.

Summing over k ≥ 1, we have

P0,0({|YS − XS | < b} ∩ Fa1,b1) ≥ (1 − ε0)P
0,0(Fa1,b1).(4.11)

Note that Fa1,b1 ⊂ Fa1,b2 if b1 > b2. Hence for sufficiently small b1 > 0,
P0,0(Fa1,b1) ≥ (1 − ε0)P

0,0(Fa1,0). This and (4.11) imply that

P0,0({|XS − YS | ≤ b} ∩ Fa1,0)

≥ P0,0({|XS − YS | ≤ b} ∩ Fa1,b1) − ε0P0,0(Fa1,0)
(4.12)

≥ (1 − ε)P0,0(Fa1,b1) − ε0P0,0(Fa1,0)

≥ (
(1 − ε0)

2 − ε0
)
P0,0(Fa1,0).

Note that Fa1,0 ⊂ Fa2,0 if a1 < a2. If the event
⋂

a>0 Fa,0 holds, then there exist
tn ∈ (L,S) such that Ztn = Mtn ∈ (0,1/n] for all n ≥ 1. By compactness, tn must
have a subsequence tnk

converging to a point t∞ ∈ [L,S]. By the continuity of
X and Y , Zt∞ = Mt∞ = 0, so it follows from the definition of L that t∞ = L.
We conclude that

⋂
a>0 Fa,0 = F0+, P0,0-a.s. Thus, for sufficiently small a1 > 0,

P0,0(F0+) ≥ (1 − ε0)P
0,0(Fa1,0). This and (4.12) imply that for every ε0 > 0,

P0,0({|XS − YS | ≤ b} ∩ F0+)

≥ P0,0({|XS − YS | ≤ b} ∩ Fa1,0) − ε0P0,0(Fa1,0)

≥ P0,0({|XS − YS | ≤ b} ∩ Fa1,0) − (
ε0/(1 − ε0)

)
P0,0(F0+)

≥ (
(1 − ε0)

2 − ε0
)
P0,0(Fa1,0) − (

ε0/(1 − ε0)
)
P0,0(F0+)

≥ (
(1 − ε0)

2 − ε0 − (
ε0/(1 − ε0)

))
P0,0(F0+).

Since ε0 > 0 and b > 0 are arbitrarily small, it follows that P0,0({XS 	= YS} ∩
F0+) = 0. In view of Remark 2.3 and Step 1, this proves (4.9). Another application
of Remark 2.3 and (4.9) yields

P0,0(Xt = Yt for every t ∈ [L,R]) = 1,(4.13)

where R = inf{t > S :Mt = 0}.
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Recall the definitions of Sb
k ,Rb

k and Lb
k from Step 1. Just as in the case of (4.4),

we can deduce from (4.13) that for b > 0,

P0,0

(⋃
k≥1

{∃t ∈ [Lb
k, S

b
k ] :Xt 	= Yt }

)
= 0.

Since b can be arbitrarily small, this proves that P0,0-a.s., Xt = Yt for every t ≥ 0.
So far, our entire proof was concerned with processes defined on the canonical

space. Now suppose that X′ and Y ′ are two weak solutions to (1.1) and (1.3) driven
by the same Brownian motion W ′, starting from W ′

0 = 0, X′
0 = 0 and Y ′

0 = 0, and
defined on some probability space (�′,P′). Using the definition of P0,0,0 given
in (2.1) it is clear that X′

t = Y ′
t for every t ≥ 0, P′-a.s.

Part 2 (Strong existence). Existence of a weak solution to the SDE (1.2) that
spends zero time at 0 follows from [7]. The solution can be constructed as a time
change of Brownian motion. Existence of a strong solution for the SDE (1.2) that
spends zero time at 0 follows from the strong uniqueness and weak existence for
solutions of (1.2) that spend zero time at 0; this can be done in the same way as
in [12], or following word-for-word the proof of [11], Theorem IX.1.7(ii).

Part 3 (Pathwise uniqueness). Note that strong uniqueness implies weak unique-
ness by the proof in [11], Theorem IX.1.7(i). Pathwise uniqueness now follows
from strong existence and strong uniqueness by the same argument as in the last
paragraph of the proof of [4], Theorem 5.8, or in the last paragraph of the proof
of [5], Theorem 5.3. �

5. Stochastic differential equations with reflection.

PROOF OF THEOREM 1.3. Note that under the assumptions of Theorem 1.3,
a(x)−2 and hence b(x)a(x)−2 are locally integrable on R, and, therefore,∫ y

0 b(r)a(r)−2 dr is a continuous strictly increasing function. Define

s(x) :=
∫ x

0
exp

(
−

∫ y

0

2b(r)

a(r)2 dr

)
dy, x ∈ R.

We will use s−1 to denote the inverse function of s. If (X,W) is a weak solution
to (1.4)–(1.5), by the Itô–Tanaka formula (see [11], Theorem VI.1.5), we have

ds(Xt) = s′(Xt)a(Xt ) dWt + s′(Xt) dLt .

Then U := s(X) spends zero time at 0 and solves

dUt = (s′a) ◦ s−1(Ut ) dWt + s′ ◦ s−1(Ut ) dLt with U0 = s(X0).(5.1)

By the uniqueness of the deterministic Skorokhod problem on [0,∞), there is a
weak solution U to (5.1) that spends zero time at 0, obtained as a time change
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of reflecting Brownian motion on [0,∞); moreover weak uniqueness holds for
solutions of (5.1) that spend zero time at 0 (cf. [5], Section 4). It follows then that
weak existence and weak uniqueness holds for solutions of (1.4) and (1.5).

Let X and Y be two weak solutions to (1.4)–(1.5) with the same driving Brown-
ian motion W with respect to a common filtration on a common probability space.
Using the Itô–Tanaka formula,

(Xt − Yt )
+ = (X0 − Y0)

+ +
∫ t

0
1{Xs−Ys>0} d(Xs − Ys) + Mt,

where Mt is a continuous nondecreasing process that increases only when Xs −
Ys = 0. Since Xt ∨ Yt = Yt + (Xt − Yt )

+, then

Xt ∨ Yt = X0 ∨ Y0 +
∫ t

0
a(Xs ∨ Ys) dWs +

∫ t

0
b(Xs ∨ Ys) ds + At,

where

At =
∫ t

0
1{Xs−Ys>0} d(LX

s − LY
s ) + LY

t + Mt.

When Xs > Ys , then dAs = dLX
s + dMs . This is 0 because Xs 	= Ys , so that

dMs = 0, and Xs > Ys ≥ 0, so that dLX
s = 0. When Xs < Ys , dAs = dLY

s + dMs ,
which is 0 for the same reasons. When Xs = Ys = 0, then dAs = dLY

s + dMs ≥ 0.
Finally, when Xs = Ys > 0, then dAs = dMs . However, the argument of
Le Gall [8] shows that the local time at 0 of (Xt − Yt )

+ is 0 when Xt and Yt

are both in an interval for which either condition (a) or (b) holds. By our assump-
tions on a, this will be true when Xt and Yt are both in any closed interval not
containing 0. Therefore At is nondecreasing and increases only when Xt = Yt = 0.

If we let Zt = Xt ∨ Yt , we then see that Zt is again a weak solution to (1.4)
driven by the Brownian motion W that spends zero time at 0. By the weak unique-
ness for solutions of (1.4) that spend zero time at 0, the law of Zt is the same as
that of Xt and Yt . But Zt ≥ Xt for all t . We conclude that Zt = Xt for all t , and the
same is true with X replaced by Y . Therefore Xt = Yt for every t ≥ 0. This proves
the strong uniqueness for solutions of (1.4) that spend zero time at 0. The exis-
tence of a strong solution for SDE (1.4) that spends zero time at 0 follows from the
strong uniqueness and weak existence for solutions of (1.4) that spend zero time
at 0 in the same way as in [12], or as in the proof for [11], Theorem IX.1.7(ii).
Pathwise uniqueness then follows in the same way as in the last paragraph of the
proof of Theorem 1.2. �

PROOF OF COROLLARY 1.4. Suppose that functions a and b satisfy the
assumptions of the corollary. Let (X,W) and (X̃, W̃ ) be two weak solutions
to (1.8)–(1.9) with a common Brownian motion W (relative to possibly different
filtrations) on a common probability space and X0 = X̃0. As a is an odd function
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and X satisfies (1.9), by Tanaka’s formula,

d|Xt | = a(|Xt |) dWt + b(|Xt |) dt + Lt,(5.2)

where Lt is the symmetric local time of X which increases only when Xt = 0. Sim-
ilarly, |X̃| satisfies equation (5.2) with |X̃| in place of |X|. Applying Theorem 1.3
to |X| and |X̃|, we have

P(|Xt | = |X̃t | for all t ≥ 0) = 1. �

REMARK 5.1. (1) One reason the proof of Theorem 1.3 is considerably easier
than that of Theorem 1.2 is that any two candidate solutions must be on the same
side of 0. We tried to apply the method of proof of Theorem 1.3 to Theorem 1.2,
but were unsuccessful.

(2) The function a(x) = 2+ sin(1/x4) is an example of a function satisfying the
hypotheses of Theorem 1.3. Because a is bounded below away from 0, it is easy to
show that any solution to the stochastic differential equation will spend zero time
at 0. If we replace |x|α in (1.2) by this a, will there be pathwise uniqueness in the
two-sided case?

Acknowledgments. We are grateful to Tokuzo Shiga for bringing his joint
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an error in a previous version of this paper.
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