
The Annals of Probability
2007, Vol. 35, No. 6, 2038–2043
DOI: 10.1214/009117907000000042
© Institute of Mathematical Statistics, 2007

POSITIVE ASSOCIATION IN THE FRACTIONAL
FUZZY POTTS MODEL1

BY JEFF KAHN AND NICHOLAS WEININGER

Rutgers University

A fractional fuzzy Potts measure is a probability distribution on spin con-
figurations of a finite graph G obtained in two steps: first a subgraph of
G is chosen according to a random cluster measure φp,q , and then a spin
(±1) is chosen independently for each component of the subgraph and as-
signed to all vertices of that component. We show that whenever q ≥ 1, such
a measure is positively associated, meaning that any two increasing events
are positively correlated. This generalizes earlier results of Häggström [Ann.
Appl. Probab. 9 (1999) 1149–1159] and Häggström and Schramm [Stochastic
Process. Appl. 96 (2001) 213–242].

1. Introduction. We work with a finite graph G = (V ,E). A random cluster
measure φ with parameter q > 0 is a probability measure on {0,1}E given by, for
some weights pe ∈ (0,1) (e ∈ E),

φ(η) ∝ ∏

e∈E

pηe
e (1 − pe)

1−ηeqk(η)

where we interpret ηe = 1 as “e is open,” k(η) is the number of connected compo-
nents (“clusters”) of the set of open edges specified by η, and, as usual, “∝” means
“proportional to.” [One usually writes φ = φp,q where p = (pe : e ∈ E).] For back-
ground on random cluster measures see, for example, Grimmett’s survey [4].

A fractional fuzzy Potts measure is a probability measure ν = νφ,α = νG
φ,α on

{±1}V obtained by the following two-step process:

(i) Choose a random subgraph η of G with distribution φ = φp,q (for some
p,q).

(ii) Independently choose “spins” (1 or −1) for the clusters of η, where each
spin is 1 with probability α ∈ (0,1), and assign the spin of a cluster to each of its
vertices.

Häggström [5] gives some motivation for considering such measures.
Recall that two events A,B in some probability space are positively corre-

lated—hereafter denoted by A ↑ B—if Pr(AB) ≥ Pr(A)Pr(B). The joint distri-
bution of random variables X1, . . . ,Xn is said to be positively associated if any
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two events both increasing in the Xi’s are positively correlated. (This is easily
seen to be equivalent to the property that for any two increasing functions f,g of
the Xi’s one has Efg ≥ Ef Eg.)

In this paper we show:

THEOREM 1. Any fractional fuzzy Potts measure with q ≥ 1 is positively as-
sociated.

Some special cases were known earlier. In [5] Häggström proved Theorem 1 in
case each of αq, (1−α)q is at least 1; he actually proved that in this case ν satisfies
the stronger “positive lattice condition” [(1) below], and it is not hard to see that
for this conclusion his conditions on q,α are also necessary. Later, Häggström
and Schramm [6] proved Theorem 1 in the case q = 1, where the underlying φ

is an ordinary bond percolation measure. We are now (weakly) conjecturing that
Theorem 1 holds even when q < 1; see Section 3 for a little more on this.

(That (1)—also called the “FKG lattice condition”—implies positive associa-
tion is the content of the celebrated “FKG inequality” of Fortuin, Kasteleyn and
Ginibre [2]. This has been by far the most useful tool for proving positive asso-
ciation, in part because when (1) does hold, it is usually relatively easily seen to
do so (though not always; see, e.g., [5]). Of course this means that, at least from a
methodological standpoint, the most interesting positive association questions are
those to which the FKG inequality does not apply.)

The proof of Theorem 1 is given in Section 2, and some additional remarks are
included in Section 3.

2. Proof of Theorem 1. The proof of Theorem 1 is based on two (different)
applications of the following, presumably standard observation, whose proof we
omit.

LEMMA 1. Suppose the events A,B,C in some probability space satisfy:

(i) each of A,B is positively correlated with C, and
(ii) A and B are conditionally positively correlated given either C or C.

Then A and B are positively correlated.

We also need two well-known properties of random cluster measures (see,
e.g., [4]). First, for any e ∈ E, the conditional measures φp,q(·|ηe = 1) and
φp,q(·|ηe = 0) are random cluster measures with the same q (and same pf ’s for
f �= e) on the graphs G/e, G − e, respectively. Second, for q ≥ 1, φp,q satisfies
the “positive lattice condition,”

∀η, τ ∈ {0,1}E φ(η)φ(τ) ≤ φ(η ∧ τ)φ(η ∨ τ),(1)
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where ∧,∨ denote meet and join in the product order on {0,1}E . We will use an
equivalent version: for any F ⊆ E, e ∈ E \ F , and ψ,ξ ∈ {0,1}F with ξ ≤ ψ ,

φ(ηe = 1|η ≡ ξ on F) ≤ φ(ηe = 1|η ≡ ψ on F).(2)

We now assume that α, the random cluster measure φ = φp,q (q ≥ 1) with asso-
ciated edge configuration η, and the corresponding fractional fuzzy Potts measure
ν are as described at the beginning of the paper, and write σ = (σv :v ∈ V ) for the
random spin configuration produced by ν. We must show A ↑ B for any increasing
events A,B determined by the σv’s.

This will follow easily from:

LEMMA 2. For any increasing event C determined by the σv’s, x ∈ V , and
e ∈ E containing x, C is conditionally positively correlated with the event {ηe = 1}
given {σx = 1}.

(Note this is not true if e does not contain x.)

PROOF. It suffices to construct a coupled pair of random configurations (ψ, ξ)

of E(G) such that:

(i) ψ has marginal distribution φ(·|ηe = 1),
(ii) ξ has marginal distribution φ(·|ηe = 0),

(iii) Pr(C |ψ) ≥ Pr(C |ξ), these probabilities taken w.r.t. ν(·|σx = 1).

We construct the coupling one edge at a time. Let Xf , f ∈ E, be independent
(real-valued) random variables, each distributed uniformly on [0,1]. Set e0 = e,
ψe = 1 and ξe = 0, and repeat for i = 1, . . . , |E| − 2:

Given e0, . . . , ei and the (random) restrictions, say ψi, ξi , of ψ,ξ to {e0, . . . , ei},
let ei+1 be an edge of G \ {e0, . . . , ei} incident with the component of x in ψi .
If there is no such edge, let ei+1 be any remaining edge. In either case, set
ψi+1(ei+1) = 1 iff Xei+1 ≤ φ(η(ei+1) = 1 |ψi) and ξi+1(ei+1) = 1 iff Xei+1 ≤
φ(η(ei+1) = 1 |ξi), where the conditioning events are {η ≡ ψi on {e0, . . . , ei}}
(and similarly for ξi) and we use η(f ) in place of ηf , and so on.

Then ψ,ξ clearly have the right marginals. Furthermore, if ψi ≥ ξi , then ψi+1 ≥
ξi+1, since (2) implies that then

φ
(
η(ei+1) = 1 |ψi

) ≥ φ
(
η(ei+1) = 1 |ξi

)
.

So indeed ψ ≥ ξ . Finally, observe that, writing S for the vertex set of the compo-
nent of x in ψ , ψ and ξ agree on all edges not contained in S; for, conditioned on
the absence of (open) edges between S and S, the restriction of our random cluster
measure to (edges contained in) S is independent of its restriction to S.

Thus every component of ξ is either (a) identical to a component of ψ or
(b) contained in the x-component of ψ . But then we can couple ν(·|σx = 1,ψ)

and ν(·|σx = 1, ξ) by choosing the same random spins for all components of ψ

other than the x-component; and this shows Pr(C |ψ) ≥ Pr(C |ξ) as desired. �
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PROOF OF THEOREM 1. We proceed by induction on |V | + |E|, the case
|V | = 1 being trivial. Fix some x ∈ V .

Observe first that {σx = 1} is positively correlated with each of A,B since for
any η, Pr(A |η,σx = 1) ≥ Pr(A |η) and Pr(η|σx = 1) = Pr(η) = φp,q(η). So by
Lemma 1 it suffices to show A ↑ B with respect to each of the conditional measures
ν(·|σx = 1) and ν(·|σx = −1). Actually we only need to show this for {σx = 1};
symmetry then implies A ↑ B (which is equivalent to A ↑ B) given {σx = −1}.

If x is isolated, then positive correlation of A and B given {σx = 1} is the
same as positive correlation of A′ := {σ |V \{x} :σ ∈ A,σx = 1} and the analo-
gously defined B ′ under the measure νG−x

φ,α [note φ still makes sense here since
E(G − x) = E(G)], so holds by inductive hypothesis.

Otherwise, let e be an edge containing x. It follows from Lemma 2 that each
of A,B is positively correlated with {ηe = 1} given {σx = 1}. And by inductive
hypothesis we have A ↑ B with respect to either of ν(·|σx = 1, ηe = 1), ν(·|σx =
1, ηe = 0), since φ(·|ηe = 1), φ(·|ηe = 0) are random cluster measures on smaller
graphs with q ≥ 1. So Lemma 1 gives positive correlation of A,B w.r.t. ν(·|σx =
1), as desired. �

3. Questions for further investigation.
A. Note that in the preceding proof, we used only two properties of φp,q :

(i) the positive lattice condition;
(ii) the fact that if S ⊆ V (G), and F denotes the event that there are no (open)

edges joining S and S, then the restrictions of φp,q(·|F) to S and S are indepen-
dent.

So we can replace φp,q by any other measure φ having these properties, and the
resultant measure νφ,α will be positively associated. It is easy to construct toy mea-
sures φ that have these properties but are not random cluster measures, but it would
be interesting to see if any such measures arise naturally in other probabilistic con-
texts. It is also easy to show by small example that neither property alone suffices
to give positive association of ν.

B. As mentioned above, we think Theorem 1 may hold even when q < 1. This
would be quite striking, since the correlation properties of φp,q for q < 1 are usu-
ally completely different from—and much more mysterious than—those for q ≥ 1.
For instance, except in trivial cases (graphs without cycles), random cluster mea-
sures with q < 1 fail to have the positive lattice condition or even positive associa-
tion. In fact, negative association properties are thought to hold; see [4] for details.

More significantly for the present discussion, when q < 1 we lose Lemma 2. To
see this, first observe that (as is well known) if we let pe = p = q for each edge e

and let q → 0, then φp,q approaches uniform measure on spanning forests of G.
So it is enough to show that Lemma 2 can fail when ν = νφ,α corresponds to a
uniform forest measure φ.
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FIG. 1. Lemma 2 may not hold when q < 1.

Now consider νφ,α on the graph shown in Figure 1. Let α approach zero and
let A be the event that all vertices are colored 1. Then Pr(A |σx = 1) approaches
the probability that the underlying subgraph η is connected (since, on {σx = 1},
A always occurs if η is connected and has probability at most α otherwise). But a
simple calculation shows that if m > 6, the events {ηe = 1} and {η is connected}
are strictly negatively correlated. (Related properties of this graph have probably
been rediscovered several times, but as far as we know were first observed by
Dilworth and Greene [1].)

C. There is a natural, more general context for the present discussion. For any
finite set V and any probability measure ψ on the set of unordered partitions of V ,
we may construct a measure νψ,α on {±1}V by choosing a partition π according
to ψ and then choosing a spin for each “cluster” (i.e., block) of π as before. We
might then ask what other conditions on ψ would suffice for ν to be positively
associated.

One may also study analogous processes with more colors. Let V,ψ,π be as
in the preceding paragraph and assign colors from some finite set 
 to the blocks
of π , these colors chosen independently, each according to some fixed distribution
β on 
. We would like to use the term “divide and color” for such procedures,
following [6] where it was used for the case in which the blocks of π are the
clusters of some i.i.d. bond percolation. Another special case is the q-state Potts
model (for which see, e.g., [3]), obtained when the blocks are the clusters of η,
which is the output of some random cluster measure with q ≥ 2 an integer, and β

is uniform on {0, . . . , q − 1}. Also of this type are the processes of [7], Section 3,
though the concerns there are rather different than ours.

Acknowledgments. We thank Mike Neiman for pointing out an error in an
earlier version of the paper, and the referee for drawing our attention to [7].
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