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STOCHASTIC INTEGRATION IN UMD BANACH SPACES

BY J. M. A. M. VAN NEERVEN,1,2 M. C. VERAAR1 AND L. WEIS3

Delft University of Technology, Delft University of Technology and
Technische Universität Karlsruhe

In this paper we construct a theory of stochastic integration of processes
with values in L(H,E), where H is a separable Hilbert space and E is a
UMD Banach space (i.e., a space in which martingale differences are un-
conditional). The integrator is an H -cylindrical Brownian motion. Our ap-
proach is based on a two-sided Lp-decoupling inequality for UMD spaces
due to Garling, which is combined with the theory of stochastic integration
of L(H,E)-valued functions introduced recently by two of the authors. We
obtain various characterizations of the stochastic integral and prove versions
of the Itô isometry, the Burkholder–Davis–Gundy inequalities, and the repre-
sentation theorem for Brownian martingales.

1. Introduction. It is well known that the theory of stochastic integration can
be extended to Hilbert space-valued processes in a very satisfactory way. The rea-
son for this is that the Itô isometry is an L2-isometry which easily extends to the
Hilbert space setting. At the same time, this explains why it is considerably more
difficult to formulate a theory of stochastic integration for processes taking val-
ues in a Banach space E. By a well-known result due to Rosiński and Suchanecki
[36], the class of strongly measurable functions φ : [0, T ] → E that are stochasti-
cally integrable (in a sense that is made precise below) with respect to a Brownian
motion W coincides with L2(0, T ;E) if and only if E isomorphic to a Hilbert
space. More precisely, the authors showed that E has type 2 if and only if every
φ ∈ L2(0, T ;E) is stochastically integrable and there is a constant C ≥ 0 such that

E

∥∥∥∥
∫ T

0
φ(t) dW(t)

∥∥∥∥
2

≤ C2‖φ‖2
L2(0,T ;E)

,
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and that E has cotype 2 if and only if every strongly measurable, stochastically
integrable function φ belongs to L2(0, T ;E) and there exists a constant C ≥ 0
such that

‖φ‖2
L2(0,T ;E)

≤ C2
E

∥∥∥∥
∫ T

0
φ(t) dW(t)

∥∥∥∥
2

.

Combined with Kwapień’s theorem which asserts that E is isomorphic to a Hilbert
space if and only if E has both type 2 and cotype 2, this gives the result as stated.

It turns out that the Itô isometry does extend to the Banach space setting pro-
vided one reformulates it properly. To this end let us first observe that, for Hilbert
spaces E,

‖φ‖L2(0,T ;E) = ‖Iφ‖L2(L
2(0,T ),E),

where L2(L
2(0, T ),E) denotes the space of Hilbert–Schmidt operators from

L2(0, T ) to E and Iφ :L2(0, T ) → E is the integral operator defined by

Iφf :=
∫ T

0
f (t)φ(t) dt.

Now one observes that the class L2(L
2(0, T ),E) coincides isometrically with the

class of γ -radonifying operators γ (L2(0, T ),E). With this in mind one has the
natural result that a function φ : [0, T ] → E, where E is now an arbitrary Banach
space, is stochastically integrable if and only if the corresponding integral operator
Iφ defines an element in γ (L2(0, T ),E), and if this is the case the Itô isometry
takes the form

E

∥∥∥∥
∫ T

0
φ(t) dW(t)

∥∥∥∥
2

= ‖Iφ‖2
γ (L2(0,T ),E)

.

This operator-theoretic approach to stochastic integration of E-valued functions
has been developed systematically by two of us [28]. The purpose of the present
paper is to extend this theory to the case of E-valued processes. This is achieved
by the decoupling approach initiated by Garling [15], who proved a two-sided
Lp-estimate for the stochastic integral of an elementary adapted process φ with
values in a UMD space in terms of the stochastic integral of φ with respect to an
independent Brownian motion. A new short proof of these estimates is included.
The decoupled integral is defined path by path, which makes it possible to apply
the theory developed for E-valued functions to the sample paths of φ. As a re-
sult, we obtain a two-sided Lp-estimate for the stochastic integral of φ in terms of
the Lp-norm of the associated γ (L2(0, T ),E)-valued random variable Xφ defined
path by path by Xφ(ω) := Iφ(·,ω). As it turns out, the space Lp(�;γ (L2(0, T ),E))

provides the right setting to establish a fairly complete theory of stochastic inte-
gration of adapted processes with values in a UMD space E. We obtain various
characterizations of the class of stochastically integrable processes and prove a
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version of the Itô isometry, which, together with Doob’s maximal inequality, leads
to the following Burkholder–Davis–Gundy type inequalities: for every p ∈ (1,∞)

there exist constants 0 < c < C < ∞, depending only on p and E, such that

cp
E‖Xφ‖p

γ (L2(0,T ),E)
≤ E sup

t∈[0,T ]

∥∥∥∥
∫ t

0
φ(s) dW(s)

∥∥∥∥
p

(1.1)
≤ Cp

E‖Xφ‖p

γ (L2(0,T ),E)
.

This result clearly indicates that for UMD spaces E, the space Lp(�;γ (L2(0, T ),

E)) is the correct space of integration, at least if one is interested in having two-
sided Lp-estimates for the stochastic integral. In order to keep this paper at a rea-
sonable length, the proof of an Itô formula is postponed to the paper [26].

The fact that the two-sided estimates (1.1) are indeed available shows that our
theory extends the Hilbert space theory in a very natural way. Garling’s estimates
actually characterize the class of UMD spaces, and for this reason the decoupling
approach is naturally limited to this class of spaces if one insists on having two-
sided estimates. From the point of view of applications this is an acceptable limita-
tion, since this class includes many of the classical reflexive spaces such as the Lp

spaces for p ∈ (1,∞) as well as spaces constructed from these, such as Sobolev
spaces and Besov spaces. At the price of obtaining only one-sided estimates, our
theory can be extended to a class of Banach spaces having a one-sided randomized
version of the UMD property. This class of spaces was introduced by Garling [16]
and includes all L1-spaces. The details will be presented elsewhere.

For the important special case of Lq(S)-spaces, where (S,�,µ) is a σ -finite
measure space and q ∈ (1,∞), the operator language can be avoided and the norm
of Lp(�;γ (L2(0, t),Lq(S))) is equivalent to a square function norm. More pre-
cisely, for every p ∈ (1,∞) there exist constants 0 < c < C < ∞ such that

cp
E

∥∥∥∥
(∫ T

0
|φ(t, ·)|2 dt

)1/2∥∥∥∥
p

Lq(S)

≤ E‖Xφ‖p

γ (L2(0,T ),E)

≤ Cp
E

∥∥∥∥
(∫ T

0
|φ(t, ·)|2 dt

)1/2∥∥∥∥
p

Lq(S)

.

As an application of our abstract results we prove in Section 4 that Lp-martin-
gales with values in a UMD space are stochastically integrable and we provide an
estimate for their stochastic integrals.

A decoupling inequality for the moments of tangent martingale difference se-
quences was obtained by Hitczenko [17] and McConnell [24]. McConnell used
it to obtain sufficient pathwise conditions for stochastic integrability of processes
with values in a UMD space. We shall recover McConnell’s result by localization.
This approach has the advantage of replacing the ζ -convexity arguments used by
McConnell by abstract operator-theoretic arguments. In our approach, the UMD
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property is only used through the application of Garling’s estimates which are de-
rived directly from the definition of the UMD property.

With only little extra effort the results described above can be derived in the
more general setting of L(H,E)-valued processes, with H -cylindrical Brownian
motions as integrators. Here, H is a separable real Hilbert space and L(H,E)

denotes the space of bounded linear operators from H to E. We shall formulate all
results in this framework, because this permits the application of our theory to the
study of certain classes of nonlinear stochastic evolution equations in E, driven
by an H -cylindrical Brownian motion. Here the space Lp(�;γ (L2(0, T ;H),E))

[which takes over the role of Lp(�;γ (L2(0, T ),E))] serves as the framework for
a classical fixed point argument. This will be the topic of a forthcoming paper [27].
The reader who is not interested in this level of generality may simply substitute H

by R and identify L(R,E) with E and WH with a Brownian motion W throughout
the paper.

Many authors (cf. [1, 4–6, 11, 12, 30, 31] and references therein) have consid-
ered the problem of stochastic integration in Banach spaces with martingale type 2
or related geometric properties. We compare their approaches with ours at the end
of Section 3. Various classical spaces, such as Lq(S) for q ∈ (1,2), do have the
UMD property but fail to have martingale type 2. On the other hand, an example
due to Bourgain [2] implies the existence of martingale type 2 spaces which do not
have the UMD property.

Preliminary versions of this paper have been presented at the meeting Stochas-
tic Partial Differential Equations and Applications-VII in Levico Terme in January
2004 (M. V.) and meeting Spectral Theory in Banach Spaces and Harmonic Analy-
sis in Oberwolfach in July 2004 (J. v. N.).

2. Operator-valued processes. Throughout this paper, (�,F ,P) is a prob-
ability space endowed with a filtration F = (Ft )t∈[0,T ] satisfying the usual con-
ditions, H is a separable real Hilbert space, and E is a real Banach space with
dual E∗. The inner product of two elements h1, h2 ∈ H is written as [h1, h2]H ,
and the duality pairing of elements x ∈ E and x∗ ∈ E∗ is denoted by 〈x, x∗〉. We
use the notation L(H,E) for the space of all bounded linear operators from H to
E. We shall always identify H with its dual in the natural way. In particular, the
adjoint of an operator in L(H,E) is an operator in L(E∗,H).

We write Q1 �A Q2 to express that there exists a constant c, only depending
on A, such that Q1 ≤ cQ2. We write Q1 �A Q2 to express that Q1 �A Q2 and
Q2 �A Q1.

2.1. Measurability. Let (S,�) be a measurable space and let E be a real Ba-
nach space with dual space E∗. A function f :S → E is called measurable if
f −1(B) ∈ � for every Borel set B ⊆ E, and simple if it is measurable and takes
finitely many values. The function f is called strongly measurable if it is the point-
wise limit of a sequence of simple functions, and separably valued if there exists a
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separable closed subspace E0 of E such that f (s) ∈ E0 for all s ∈ S. Given a func-
tional x∗ ∈ E∗, we define the function 〈f, x∗〉 :S → R by 〈f, x∗〉(s) := 〈f (s), x∗〉.
The function f is said to be scalarly measurable if 〈f, x∗〉 is measurable for all
x∗ ∈ E∗. More generally, if F is a linear subspace of E∗ and 〈f, x∗〉 is measurable
for all x∗ ∈ F , we say that f is F -scalarly measurable. The following result is
known as the Pettis measurability theorem ([37], Proposition I.1.10).

PROPOSITION 2.1 (Pettis measurability theorem). For a function f :S → E

the following assertions are equivalent:

(1) f is strongly measurable;
(2) f is separably valued and scalarly measurable;
(3) f is separably valued and F -scalarly measurable for some weak∗-dense

linear subspace F of E∗.

A function � :S → L(H,E) is called scalarly measurable if the function
�∗x∗ :S → H defined by �∗x∗(s) := �∗(s)x∗ is strongly measurable for all
x∗ ∈ E∗, and H -strongly measurable if for all h ∈ H the function �h :S → E

defined by �h(s) := �(s)h is strongly measurable.
Let µ be a finite measure on (S,�). Two scalarly measurable functions

�,	 :S → L(H,E) are called scalarly µ-equivalent if for all x∗ ∈ E∗ we have
�∗x∗ = 	∗x∗ µ-almost everywhere on S.

PROPOSITION 2.2. If E is weakly compactly generated, then every scalarly
measurable function � :S → L(H,E) is scalarly µ-equivalent to an H -strongly
measurable function 	 :S → L(H,E).

For H = R this is a deep result of [14], and the result for general H is easily
deduced from it. Recall that a Banach space E is weakly compactly generated
if it is the closed linear span of one of its weakly compact subsets. All separable
Banach spaces and all reflexive Banach spaces are weakly compactly generated.

In the main results of this paper we are concerned with L(H,E)-valued sto-
chastic processes (�t)t∈[0,T ] on a probability space (�,F ,P), which will be
viewed as functions � : [0, T ] × � → L(H,E). Since E will always be a Ba-
nach space belonging to a certain class of reflexive Banach spaces, Proposition 2.2
justifies us to restrict our considerations to H -strongly measurable processes, that
is, to processes � : [0, T ] × � → L(H,E) with the property that for all h ∈ H

the E-valued process �h : [0, T ] × � → E defined by �h(t,ω) := �(t,ω)h is
strongly measurable. We point out, however, that most of our proofs work equally
well for scalarly measurable processes.
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2.2. γ -Radonifying operators. In this subsection we discuss some properties
of the operator ideal of γ -radonifying operators from a separable real Hilbert space
H to E. The special case H = L2(0, T ;H) will play an important role in this
paper.

Let (γn)n≥1 be a sequence of independent standard Gaussian random variables
on a probability space (�′,F ′,P

′) [we reserve the notation (�,F ,P) for the prob-
ability space on which our processes live] and let H be a separable real Hilbert
space. A bounded operator R ∈ L(H ,E) is said to be γ -radonifying if there ex-
ists an orthonormal basis (hn)n≥1 of H such that the Gaussian series

∑
n≥1 γnRhn

converges in L2(�′;E). We then define

‖R‖γ (H ,E) :=
(

E
′
∥∥∥∥∥
∑
n≥1

γnRhn

∥∥∥∥∥
2)1/2

.

This number does not depend on the sequence (γn)n≥1 and the basis (hn)n≥1, and
it defines a norm on the space γ (H ,E) of all γ -radonifying operators from H
into E. Endowed with this norm, γ (H ,E) is a Banach space, which is separable
if E is separable. If R ∈ γ (H ,E), then ‖R‖ ≤ ‖R‖γ (H ,E). If E is a Hilbert space,
then γ (H ,E) = L2(H ,E) isometrically, where L2(H ,E) denotes the space of
all Hilbert–Schmidt operators from H to E.

The following property of γ -radonifying operators will be important:

PROPOSITION 2.3 (Ideal property). Let Ẽ be a real Banach space and
let H̃ be a separable real Hilbert space. If B1 ∈ L(H̃ ,H), R ∈ γ (H ,E)

and B2 ∈ L(E, Ẽ), then B2 ◦ R ◦ B1 ∈ γ (H̃ , Ẽ) and ‖B2 ◦ R ◦ B1‖γ (H̃ ,Ẽ)
≤

‖B2‖‖R‖γ (H ,E)‖B1‖.

For these and related results we refer to [13, 30, 37].
We shall frequently use the following convergence result.

PROPOSITION 2.4. If the T1, T2, . . . ∈ L(H) and T ∈ L(H) satisfy:

(1) supn≥1 ‖Tn‖ < ∞,
(2) T ∗h = limn→∞ T ∗

n h for all h ∈ H ,

then for all R ∈ γ (H ,E) we have R ◦ T = limn→∞ R ◦ Tn in γ (H ,E).

PROOF. By the estimate ‖R ◦ S‖γ (H ,E) ≤ ‖R‖γ (H ,E)‖S‖ for S ∈ L(H)

and (1), it suffices to consider finite rank operators R ∈ γ (H ,E). For such an
operator, say R = ∑k

j=1 hj ⊗ xj , we may estimate

‖R ◦ (T − Tn)‖γ (H ,E) ≤
k∑

j=1

‖xj‖‖T ∗hj − T ∗
n hj‖.
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By (2), the right-hand side tends to zero as n → ∞. �

Identifying H ⊗ E∗ canonically with a weak∗-dense linear subspace of
(γ (H ,E))∗, as an easy consequence of the Pettis measurability theorem we obtain
the following measurability result for γ (H ,E)-valued functions. A closely related
result is given in [30].

LEMMA 2.5. Let (S,�,µ) be a σ -finite measure space. For a function
X :S → γ (H ,E) the following assertions are equivalent:

(1) The function s �→ X(s) is strongly measurable;
(2) For all h ∈ H , the function s �→ X(s)h is strongly measurable.

If these equivalent conditions hold, there exists a separable closed subspace E0 of
E such that X(s) ∈ γ (H ,E0) for all s ∈ S.

The following result will be useful:

PROPOSITION 2.6 (γ -Fubini isomorphism). Let (S,�,µ) be a σ -finite mea-
sure space and let p ∈ [1,∞) be fixed. The mapping Fγ :Lp(S;γ (H ,E)) →
L(H ,Lp(S;E)) defined by

(Fγ (X)h)(s) := X(s)h, s ∈ S,h ∈ H ,

defines an isomorphism from Lp(S;γ (H ,E)) onto γ (H ,Lp(S;E)).

PROOF. Let (hn)n≥1 be an orthonormal basis for H and let (γn)n≥1 be a se-
quence of independent standard Gaussian random variables on a probability space
(�′,F ′,P

′). By the Kahane–Khinchine inequalities and Fubini’s theorem we have,
for any X ∈ Lp(S;γ (H ,E)),

‖Fγ (X)‖γ (H ,Lp(S;E))

=
(

E
′
∥∥∥∥∥
∑
n≥1

γnFγ (X)hn

∥∥∥∥∥
2

Lp(S;E)

)1/2

�p

(
E

′
∥∥∥∥∥
∑
n≥1

γnFγ (X)hn

∥∥∥∥∥
p

Lp(S;E)

)1/p

(2.1)

=
(∫

S
E

′
∥∥∥∥∥
∑
n≥1

γnXhn

∥∥∥∥∥
p

dµ

)1/p

�p

(∫
S

(
E

′
∥∥∥∥∥
∑
n≥1

γnXhn

∥∥∥∥∥
2)p/2

dµ

)1/p

=
(∫

S
‖X‖p

γ (H ,E) dµ

)1/p

= ‖X‖Lp(S;γ (H ,E)).

By these estimates the range of the operator X �→ Fγ (X) is closed in γ (H ,Lp(S;
E)). Hence to show that this operator is surjective it is enough to show that its
range is dense. But this follows from

Fγ

(
N∑

n=1

1Sn ⊗
(

K∑
k=1

hk ⊗ xkn

))
=

K∑
k=1

hk ⊗
(

N∑
n=1

1Sn ⊗ xkn

)
,
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for all Sn ∈ � with µ(Sn) < ∞ and xkn ∈ E, noting that the elements on the right-
hand side are dense in γ (H ,E). �

For p = 2 we have equality in all steps of (2.1).
For later use we note that if (S,�,µ) = (�,F ,P) is a probability space and

H = L2(0, T ;H), then the γ -Fubini isomorphism takes the form

Fγ :Lp(�;γ (L2(0, T ;H),E)) � γ (L2(0, T ;H),Lp(�;E)).

The space on the left-hand side will play an important role in the stochastic inte-
gration theory developed in Section 3.

2.3. Representation. As before we let H is a separable real Hilbert space.
An H -strongly measurable function � : [0, T ] → L(H,E) is said to belong to

L2(0, T ;H) scalarly if for all x∗ ∈ E∗ the function �∗x∗ : (0, T ) → H belongs
to L2(0, T ;H). Such a function represents an operator R ∈ L(L2(0, T ;H),E) if
for all f ∈ L2(0, T ;H) and x∗ ∈ E∗ we have

〈Rf,x∗〉 =
∫ T

0
〈�(t)f (t), x∗〉dt.

Similarly, an H -strongly measurable process � : [0, T ] × � → L(H,E) is said to
belong to L2(0, T ;H) scalarly almost surely if for all x∗ ∈ E∗ it is true that the
function �∗

ωx∗ : (0, T ) → E belongs to L2(0, T ;H) for almost all ω ∈ �. Here we
use the notation

�ω(t) := �(t,ω).

Note that the exceptional set may depend on x∗. Such a process � is said to rep-
resent an H -strongly measurable random variable X :� → L(L2(0, T ;H),E) if
for all f ∈ L2(0, T ;H) and x∗ ∈ E∗ we have

〈X(ω)f, x∗〉 =
∫ T

0
[f (t),�∗(t,ω)x∗]H dt for almost all ω ∈ �.

If �1 and �2 are H -strongly measurable, then �1 and �2 represent the same
random variable X if and only if �1(t,ω) = �2(t,ω) for almost all (t,ω) ∈
[0, T ] × �. In the converse direction, the strongly measurable random variables
X1 and X2 are represented by the same process � if and only if X1(ω) = X2(ω)

for almost all ω ∈ �.
For a random variable X :� → γ (L2(0, T ;H),E) we denote by 〈X,x∗〉 :� →

L2(0, T ;H) the random variable defined by

〈X,x∗〉(ω) := X∗(ω)x∗.
Notice that X is represented by � if and only if for all x∗ ∈ E∗, 〈X,x∗〉 = �∗x∗
in L2(0, T ;H) almost surely.

The next lemma relates the above representability concepts and shows that the
exceptional sets may be chosen independently of x∗.
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LEMMA 2.7. Let � : [0, T ] × � → L(H,E) be an H -strongly measurable
process and let X :� → γ (L2(0, T ;H),E) be strongly measurable. The following
assertions are equivalent:

(1) � represents X.
(2) �ω represents X(ω) for almost all ω ∈ �.

PROOF. The implication (1) ⇒ (2) is clear from the definitions. To prove the
implication (2) ⇒ (1) we start by noting that the Pettis measurability theorem al-
lows us to assume, without loss of generality, that E is separable. Let (fm)m≥1
be a dense sequence in L2(0, T ;H) and let (x∗

n)n≥1 be a sequence in E∗ with
weak∗-dense linear span. Choose a null set N ⊆ � such that:

(i) �∗(·,ω)x∗
n ∈ L2(0, T ;H) for all x∗

n and all ω ∈ �N ;
(ii) for all fm, all x∗

n , and all ω ∈ �N ,

〈X(ω)f, x∗〉 =
∫ T

0
〈�(t,ω)f (t), x∗〉dt.(2.2)

Let F denote the linear subspace of all x∗ ∈ E∗ for which:

(i)′ �∗(·,ω)x∗ ∈ L2(0, T ;H) for all ω ∈ �N ;
(ii)′ (2.2) holds for all f ∈ L2(0, T ;H) and all ω ∈ �N .

By a limiting argument we see that x∗
n ∈ F for all n ≥ 1. Hence F is weak∗-dense.

We claim that F is also weak∗-sequentially closed. Once we have checked this, we
obtain F = E∗ by the Krein–Smulyan theorem, see [7], Proposition 1.2.

To prove the claim, fix ω ∈ �N and x∗ ∈ F arbitrary. Then, by (2.2),

‖�∗(·,ω)x∗‖L2(0,T ;H) ≤ ‖X(ω)‖γ (L2(0,T ;H),E)‖x∗‖.(2.3)

Suppose now that limn→∞ y∗
n = y∗ weak∗ in E∗ with each y∗

n ∈ F . Then (2.3)
shows that the sequence �∗(·,ω)y∗

n is bounded in L2(0, T ;H). By a convex com-
bination argument as in [7], Proposition 2.2, we find that y∗ ∈ F , and the claim is
proved. �

REMARK 2.8. The assumptions of (2) already imply that the induced map-
ping ω �→ X(ω) from � to γ (L2(0, T ;H),E) has a strongly measurable ver-
sion. To see this, first note that by Lemma 2.5 it suffices to show that for all
f ∈ L2(0, T ;H) the mapping ω �→ X(ω)f is strongly measurable from � to E.
By assumption, almost surely we have that (2.2) holds for all f ∈ L2(0, T ;H) and
x∗ ∈ E∗. By the H -strong measurability of � and Fubini’s theorem, the right-hand
side of (2.2) is a measurable function of ω. Thus ω �→ X(ω)f is scalarly measur-
able. By the Pettis measurability theorem it remains to show that ω �→ X(ω)f is
almost surely separably-valued.
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Since t �→ �(t,ω) is H -strongly measurable for almost all ω ∈ � and belongs
to L2(0, T ;H) scalarly, it follows that t �→ �(t,ω)f (t) is Pettis integrable with

X(ω)f =
∫ T

0
�(t,ω)f (t) dt

for almost all ω ∈ �. Then by the Hahn–Banach theorem, ω �→ X(ω)f almost
surely takes its values in the closed subspace spanned by the range of (t,ω) �→
�(t,ω)f (t), which is separable by the H -strong measurability of �.

The following example shows what might go wrong if the assumption of repre-
sentation in Lemma 2.7 were to be replaced by the weaker assumption of belonging
to L2(0, T ;H) scalarly almost surely, even in the simple case where H = R and
E is a separable real Hilbert space.

EXAMPLE 2.9. Let E be an infinite-dimensional separable Hilbert space with
inner product [·, ·]E . We shall construct a process φ : [0,1] × � → E with the
following properties:

(1) φ is strongly measurable;
(2) φ belongs to L2(0,1) scalarly almost surely;
(3) φω fails to be scalarly in L2(0,1) for almost all ω ∈ �.

Let (ξn)n≥1 denote a sequence of independent {0,1}-valued random variables
on a probability space (�,F ,P) satisfying P{ξn = 1} = 1

n
for n ≥ 1. Fix an ortho-

normal basis (xn)n≥1 in E. Define φ : [0,1] × � → E by φ(0,ω) = 0 and

φ(t,ω) := n1/22n/2ξn(ω)xn for n ≥ 1 and t ∈ [2−n,2−n+1).

It is clear that φ is strongly measurable, and (2) is checked by direct computation.
To check (3) we first note that

P{ξn = 1 for infinitely many n ≥ 1} = 1.

Indeed, this follows from the fact that for each n ≥ 1 we have

P{ξk = 0 for all k ≥ n} = ∏
k≥n

(
1 − 1

k

)
= 0.

Fix an arbitrary ω ∈ � for which ξn = 1 for infinitely many n ≥ 1, say ξn(ω) = 1
for n = n1, n2, . . . and ξn(ω) = 0 otherwise. Let (an)n≥1 be any sequence of real
numbers with

∑
n≥1 a2

n < ∞ and
∑

n≥1 na2
n = ∞, and put x := ∑

k≥1 akxnk
. Then,∫ 1

0
[φ(t,ω), x]2

E dt = ∑
k≥1

nka
2
k ≥ ∑

k≥1

ka2
k = ∞.

This concludes the construction.
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2.4. Adaptedness. A process � : [0, T ]×� → L(H,E) is said to be elemen-
tary adapted to the filtration F = (Ft )t∈[0,T ] if it is of the form

�(t,ω) =
N∑

n=0

M∑
m=1

1(tn−1,tn]×Amn(t,ω)

K∑
k=1

hk ⊗ xkmn,(2.4)

where 0 ≤ t0 < · · · < tN ≤ T and the sets A1n, . . . ,AMn ∈ Ftn−1 are disjoint for
each n (with the understanding that (t−1, t0] := {0} and Ft−1 := F0) and the vectors
h1, . . . , hK ∈ H are orthonormal. An H -strongly measurable process � : [0, T ] ×
� → L(H,E) is called adapted to F if for all h ∈ H the E-valued process �h is
strongly adapted, that is, for all t ∈ [0, T ] the random variable �(t)h is strongly
Ft -measurable.

A random variable X :� → γ (L2(0, T ;H),E) is elementary adapted to F if
it is represented by an elementary adapted process. We call X strongly adapted
to F if there exists a sequence of elementary adapted random variables Xn :� →
γ (L2(0, T ;H),E) such that limn→∞ Xn = X in measure in γ (L2(0, T ;H),E).

Recall that for a finite measure space (S,�,µ) and strongly measurable func-
tions f,f1, f2, . . . from S into a Banach space F , f = limn→∞ fn in measure if
and only if limn→∞ E(‖f − fn‖B ∧ 1) = 0.

PROPOSITION 2.10. For a strongly measurable random variable X :� →
γ (L2(0, T ;H),E), the following assertions are equivalent:

(1) X is strongly adapted to F;
(2) X(1[0,t]f ) is strongly Ft -measurable for all f ∈ L2(0, T ;H) and t ∈

[0, T ].
PROOF. The implication (1) ⇒ (2) follows readily from the definitions.
(2) ⇒ (1): For δ ≥ 0 we define the right translate Rδ of an operator R ∈

γ (L2(0, T ;H),E) by

Rδf := Rfδ, f ∈ L2(0, T ;H),

where fδ denotes the left translate of f . It follows by the right ideal property and
Proposition 2.4 that Rδ ∈ γ (L2(0, T ;H),E) with ‖Rδ‖γ (H,E) ≤ ‖R‖γ (H,E) and
that δ �→ Rδ is continuous with respect to the γ -radonifying norm.

Define the right translate Xδ :� → γ (L2(0, T ;H),E) by pointwise action, that
is, Xδ(ω) := (X(ω))δ . Note that Xδ is strongly measurable by Lemma 2.5. By
dominated convergence, limδ↓0 Xδ = X in measure in γ (L2(0, T ;H),E). Thus,
for ε > 0 fixed, we may choose δ > 0 such that

E
(‖X − Xδ‖γ (L2(0,T ;H),E) ∧ 1

)
< ε.(2.5)

Let 0 = t0 < · · · < tN = T be an arbitrary partition of [0, T ] of mesh ≤ δ and let
In = (tn−1, tn] for n = 1, . . . ,N . Let Xδ

n denote the restriction of Xδ to In, that is,

Xδ
n(ω)g := Xδ(ω)ing, g ∈ L2(In;H),
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where in :L2(In;H) → L2(0, T ;H) is the inclusion mapping. From the assump-
tion (1) we obtain that Xδ

n is strongly Ftn−1 -measurable as a random variable
with values in γ (L2(In;H),E)). Pick a simple Ftn−1 -measurable random variable
Yn :� → γ (L2(In;H),E) such that

E
(‖Xδ

n − Yn‖γ (L2(In;H),E) ∧ 1
)
<

ε

N
,

say Yn = ∑Mn

m=1 1Amn ⊗ Smn with Amn ∈ Ftn−1 and Smn ∈ γ (L2(In;H),E). By a
further approximation we may assume that the Smn are represented by elementary
functions 	mn : [0, T ] → L(H,E) of the form

	mn(t) =
Jmn∑
j=1

1(s(j−1)mn,sjmn](t)
Kmn∑
k=1

(hk ⊗ xkmn),

where tn−1 ≤ s0mn < · · · < sJmnmn ≤ tn and (hk)k≥1 is a fixed orthonormal basis
for H . Define the process 	 : [0, T ] × � → L(H,E) by

	(t,ω) :=
Mn∑
m=1

1Amn(ω)	mn(t), t ∈ In.

It is easily checked that 	 is elementary adapted. Let Y :� → γ (L2(0, T ;H),E)

be represented by 	 . Then Y is elementary adapted and satisfies

E
(‖Xδ − Y‖γ (L2(0,T ;H),E) ∧ 1

)
< ε.(2.6)

Finally, by (2.5) and (2.6),

E
(‖X − Y‖γ (L2(0,T ;H),E) ∧ 1

) ≤ 2ε.

This proves that X can be approximated in measure by a sequence of elementary
adapted elements Xn. �

PROPOSITION 2.11. If � : [0, T ] × � → L(H,E) is an H -strongly measur-
able and adapted process representing a random variable X :� → γ (L2(0, T ;
H),E), then X is strongly adapted to F.

PROOF. By using the identity 〈X(1[0,t]f ), x∗〉 = [1[0,t]f,�∗x∗]L2(0,T ;H) and
noting that the right-hand side is Ft -measurable, this follows trivially from Propo-
sition 2.10 and the Pettis measurability theorem. �

For p ∈ [1,∞), the closure in Lp(�;γ (L2(0, T ;H),E)) of the elementary
adapted elements will be denoted by

L
p
F
(�;γ (L2(0, T ;H),E)).
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PROPOSITION 2.12. If the random variable X ∈ Lp(�;γ (L2(0, T ;H),E))

is strongly adapted to F, then X ∈ L
p
F
(�;γ (L2(0, T ;H),E)).

PROOF. By assumption, condition (1) in Proposition 2.10 is satisfied. Now we
can repeat the proof of the implication (1) ⇒ (2), but instead of approximating in
measure we approximate in the Lp-norm. �

3. Lp-stochastic integration. Recall that a family WH = (WH(t))t∈[0,T ] of
bounded linear operators from H to L2(�) is called an H -cylindrical Brownian
motion if:

(1) WHh = (WH(t)h)t∈[0,T ] is real-valued Brownian motion for each h ∈ H ,
(2) E(WH(s)g · WH(t)h) = (s ∧ t)[g,h]H for all s, t ∈ [0, T ], g, h ∈ H .

We always assume that the H -cylindrical Brownian motion WH is adapted to a
given filtration F satisfying the usual conditions, that is, the Brownian motions
WHh are adapted to F for all h ∈ H .

EXAMPLE 3.1. Let W = (W(t))t≥0 be an E-valued Brownian motion and let
C ∈ L(E∗,E) be its covariance operator, that is, C is the unique positive symmet-
ric operator such that E〈W(t), x∗〉2 = t〈Cx∗, x∗〉 for all t ≥ 0 and x∗ ∈ E∗. Let HC

be the reproducing kernel Hilbert space associated with C and let iC :HC ↪→ E be
the inclusion operator. Then the mappings

WHC
(t) : i∗Cx∗ �→ 〈W(t), x∗〉

uniquely extend to an HC -cylindrical Brownian motion WHC
.

If � : [0, T ] × � → E is an elementary adapted process of the form (2.4), we
define the stochastic integral

∫ T
0 �(t) dWH(t) by

∫ T

0
�(t) dWH(t) :=

N∑
n=1

M∑
m=1

1Amn

K∑
k=1

(
WH(tn)hk − WH(tn−1)hk

)
xkmn.

Note that the stochastic integral belongs to Lp(�;E) for all p ∈ [1,∞). It
turns out that for a suitable class of Banach spaces E this definition can
be extended to the class of adapted processes representing an element of
Lp(�;γ (L2(0, T ;H),E)). In order to motivate our approach, we recall the fol-
lowing result on stochastic integration of L(H,E)-valued functions from [28]; see
[7, 23, 35, 36] for related results.

PROPOSITION 3.2. For a function � : [0, T ] → L(H,E) belonging to L2(0,

T ;H) scalarly, the following assertions are equivalent:

(1) There exists a sequence (�n)n≥1 of elementary functions such that:
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(i) for all x∗ ∈ E∗ we have limn→∞ �∗
nx

∗ = �∗x∗ in L2(0, T ;H),
(ii) there exists a strongly measurable random variable η : � → E such that

η = lim
n→∞

∫ T

0
�n(t) dWH(t) in probability;

(2) There exists a strongly measurable random variable η :� → E such that
for all x∗ ∈ E∗ we have

〈η, x∗〉 =
∫ T

0
�∗(t)x∗ dWH(t) almost surely;

(3) � represents an operator R ∈ γ (L2(0, T ;H),E).

In this situation the random variables η in (1) and (2) are uniquely determined and
equal almost surely. Moreover, η is Gaussian and for all p ∈ [1,∞) we have

(E‖η‖p)1/p
�p (E‖η‖2)1/2 = ‖R‖γ (L2(0,T ;H),E).(3.1)

For all p ∈ [1,∞) the convergence in (1), part (ii), is in Lp(�;E).

A function � satisfying the equivalent conditions of Proposition 3.2 will be
called stochastically integrable with respect to WH . The random variable η is
called the stochastic integral of � with respect to WH , notation

η =:
∫ T

0
�(t) dWH(t).

The second identity in (3.1) may be interpreted as an analogue of the Itô isometry.

REMARK 3.3. If � is H -strongly measurable and belongs to L2(0, T ;H)

scalarly, the arguments in [36] can be adapted to show that condition (1) is equiv-
alent to

(1)′ There exists a sequence (�n)n≥1 of elementary functions such that:

(i) for all h ∈ H we have limn→∞ �nh = �h in measure on [0, T ],
(ii) there exists a strongly measurable random variable η :� → E such that

η = lim
n→∞

∫ T

0
�n(t) dWH(t) in probability.

The extension of Proposition 3.2 to processes is based on a decoupling inequal-
ity for processes with values in a UMD space E. Recall that a Banach space E is
a UMD space if for some (equivalently, for all) p ∈ (1,∞) there exists a constant
βp,E ≥ 1 such that for every n ≥ 1, every martingale difference sequence (dj )

n
j=1

in Lp(�;E), and every {−1,1}-valued sequence (εj )
n
j=1 we have

(
E

∥∥∥∥∥
n∑

j=1

εjdj

∥∥∥∥∥
p)1/p

≤ βp,E

(
E

∥∥∥∥∥
n∑

j=1

dj

∥∥∥∥∥
p)1/p

.
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Examples of UMD spaces are all Hilbert spaces and the spaces Lp(S) for
1 < p < ∞ and σ -finite measure spaces (S,�,µ). If E is a UMD space, then
Lp(S;E) is a UMD space for 1 < p < ∞. For an overview of the theory of UMD
spaces we refer the reader to [8, 34] and references given therein.

Let W̃H be an H -cylindrical Brownian motion on a second probability space
(�̃, F̃ , P̃), adapted to a filtration F̃. If � : [0, T ] × � → E is an elementary
adapted process of the form (2.4), we define the decoupled stochastic integral∫ T

0 �(t) dW̃H (t) by

∫ T

0
�(t) dW̃H (t) :=

N∑
n=1

M∑
m=1

1Amn

K∑
k=1

(
W̃H (tn)hk − W̃H (tn−1)hk

)
xkmn.

This stochastic integral belongs Lp(�;Lp(�̃;E)).
The following result was proved by Garling [15], Theorems 2 and 2′, for finite-

dimensional Hilbert spaces H . For reasons of completeness we include a short
proof which is a variation of a more general argument in [25].

LEMMA 3.4 (Decoupling). Let H be a nonzero separable real Hilbert space
and fix p ∈ (1,∞). The following assertions are equivalent:

(1) E is a UMD space;
(2) For every elementary adapted process � : [0, T ] × � → L(H,E) we have

β
−p
p,EEẼ

∥∥∥∥
∫ T

0
�(t) dW̃H (t)

∥∥∥∥
p

≤ E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

≤ β
p
p,EEẼ

∥∥∥∥
∫ T

0
�(t) dW̃H (t)

∥∥∥∥
p

.

PROOF. (1) ⇒ (2): Let � be an elementary adapted process of the form (2.4).
We extend �, as well as WH , W̃H and the σ -algebras Ft , F̃t in the obvious way
to � × �̃. Write

N∑
n=1

dn =
∫ T

0
�(t) dWH(t) and

N∑
n=1

en =
∫ T

0
�(t) dW̃H (t),

where the random variables dn and en on � × �̃ are defined by dn = WH(tn)ξn −
WH(tn−1)ξn and en = W̃H (tn)ξn − W̃H (tn−1)ξn, where ξn := ∑M

m=1 1Amn ×∑K
k=1 hk ⊗ xkmn and

WH(t)ξn :=
M∑

m=1

1Amn

K∑
k=1

WH(t)hk ⊗ xkmn.

For n = 1, . . . ,N let

r2n−1 := 1
2(dn + en) and r2n := 1

2(dn − en).
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Then, (rj )
2N
j=1 is a martingale difference sequence with respect to the filtration

(Gj )
2N
j=1, where

G2n = σ(Ftn ⊗ F̃tn),

G2n−1 = σ(Ftn−1 ⊗ F̃tn−1,wn1,wn2, . . .),

where

wnk = (
WH(tn)hk − WH(tn−1)hk

) + (
W̃H (tn)hk − W̃H (tn−1)hk

)
.

Notice that
N∑

n=1

dn =
2N∑
j=1

rj and
N∑

n=1

en =
2N∑
j=1

(−1)j+1rj .

Hence (2) follows from the UMD property applied to the sequences (rj )
2N
j=1 and

((−1)j+1rj )
2N
j=1.

(2) ⇒ (1): See [15], Theorem 2. �

If X ∈ Lp(�;γ (L2(0, T ;H),E)) is elementary adapted, we define the random
variable IWH (X) ∈ Lp(�;E) by

IWH (X) :=
∫ T

0
�(t) dWH(t),

where � is an elementary adapted process representing X. Note that IWH (X)

does not depend on the choice of the representing process �. Clearly IWH (X) ∈
L

p
0 (�,FT ;E), the closed subspace of Lp(�;E) consisting of all FT -measurable

random variables with mean zero. In the first main result of this section we extend
the mapping X �→ IWH (X) to a bounded operator from L

p
F
(�;γ (L2(0, T ;H),E))

to L
p
0 (�,FT ;E). If F = F

WH is the augmented filtration generated by the Brown-
ian motions WHh, h ∈ H , this mapping turns out to be an isomorphism.

THEOREM 3.5 (Itô isomorphism). Let E be a UMD space and fix p ∈ (1,∞).
The mapping X �→ IWH (X) has a unique extension to a bounded operator

IWH :Lp
F
(�;γ (L2(0, T ;H),E)) → L

p
0 (�,FT ;E).

This operator is an isomorphism onto its range and we have the two-sided estimate

β
−p
p,E‖X‖Lp(�;γ (L2(0,T ;H),E)) �p E‖IWH (X)‖p �p βp,E‖X‖p

Lp(�;γ (L2(0,T ;H),E))
.

For the augmented Brownian filtration F
WH we have an isomorphism of Banach

spaces

IWH :Lp

F
WH

(�;γ (L2(0, T ;H),E)) � L
p
0 (�,F WH

T ;E).
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PROOF. Let X ∈ Lp(�;γ (L2(0, T ;H),E)) be elementary and adapted, and
let � be an elementary adapted process representing X. It follows from Proposi-
tion 3.2, the Kahane–Khinchine inequalities and Lemma 3.4 that

E‖X‖p

γ (L2(0,T ;H),E)
= E

∥∥∥∥
∫ T

0
�(t) dW̃H (t)

∥∥∥∥
p

L2(�̃;E)

�p E

∥∥∥∥
∫ T

0
�(t) dW̃H (t)

∥∥∥∥
p

Lp(�̃;E)

�p,E E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

= E‖IWH (X)‖p.

Thus the map X �→ IWH (X) extends uniquely to an isomorphism from L
p
F
(�;

γ (L2(0, T ;H),E)) onto its range, which is a closed subspace of L
p
0 (�,F0;E).

Next assume that F = F
WH . Since IWH is an isomorphism onto its range, which

is a closed subspace of L
p
0 (�,F WH

T ;E), it suffices to show that this operator has

dense range in L
p
0 (�,F WH

T ;E).

Let (hk)k≥1 be a fixed orthonormal basis for H . For m = 1,2, . . . let F (m)
T be de-

note by the augmented σ -algebra generated by {WH(t)hk : t ∈ [0, T ],1 ≤ k ≤ m}.
Since F WH

T is generated by the σ -algebras F (m)
T , by the martingale convergence

theorem and approximation we may assume η is in L
p
0 (�,F (m)

T ;E) and of the
form

∑N
n=1(1An −P(An))⊗ xn with An ∈ F m

T and xn ∈ E. From linearity and the
identity

IWH (φ ⊗ x) = (IWH (φ)) ⊗ x, φ ∈ L
p
F
(�;L2(0, T ;H)),

it even suffices to show that 1An −P(An) = IWH (φ) for some φ ∈ L
p
F
(�;L2(0, T ;

H)). By the Itô representation theorem for Brownian martingales (cf. [18],
Lemma 18.11 and [20], Theorem 3.4.15), there exists φ ∈ L2

F
(�;L2(0, T ;H))

such that 1An − P(An) = ∫ T
0 φ(t) dW(t), and the Burkholder–Davis–Gundy in-

equalities and Doob’s maximal inequality imply that φ ∈ L
p
F
(�;L2(0, T ;H)). �

We return to the general setting where WH is adapted to an arbitrary filtration
F satisfying the usual conditions. The second main result of this section describes
the precise relationship between the Lp-stochastic integral and the operator IWH .
It extends Proposition 3.2 to L(H,E)-valued processes. In view of Proposition 2.2
we restrict ourselves to H -strongly measurable processes.

THEOREM 3.6. Let E be a UMD space and fix p ∈ (1,∞). For an H -strongly
measurable and adapted process � : [0, T ] × � → L(H,E) belonging to Lp(�;
L2(0, T ;H)) scalarly, the following assertions are equivalent:

(1) There exists a sequence (�n)n≥1 of elementary adapted processes such
that:
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(i) for all h ∈ H and x∗ ∈ E∗ we have limn→∞〈�nh,x∗〉 = 〈�h,x∗〉 in mea-
sure on [0, T ] × �,

(ii) there exists a strongly measurable random variable η ∈ Lp(�;E) such
that

η = lim
n→∞

∫ T

0
�n(t) dWH(t) in Lp(�;E);

(2) There exists a strongly measurable random variable η ∈ Lp(�;E) such
that for all x∗ ∈ E∗ we have

〈η, x∗〉 =
∫ T

0
�∗(t)x∗ dWH(t) in Lp(�);

(3) � represents an element X ∈ Lp(�;γ (L2(0, T ;H),E));
(4) For almost all ω ∈ �, the function �ω is stochastically integrable

with respect to an independent H -cylindrical Brownian motion W̃H , and ω �→∫ T
0 �(t,ω)dW̃H (t) defines an element of Lp(�;Lp(�̃;E)).

In this situation the random variables η in (1) and (2) are uniquely determined and
equal as elements of Lp(�;E), the element X in (3) is in L

p
F
(�;γ (L2(0, T ;H),

E)), and we have η = IWH (X) in Lp(�;E). Moreover,

E‖X‖p

γ (L2(0,T ;H),E)
�p E

∥∥∥∥
∫ T

0
�(t) dW̃H (t)

∥∥∥∥
p

Lp(�̃;E)

(3.2)

and

β
−p
p,EE‖X‖p

γ (L2(0,T ;H),E)
�p E‖η‖p �p β

p
p,EE‖X‖p

γ (L2(0,T ;H),E)
.(3.3)

A process � : [0, T ] × � → L(H,E) satisfying the equivalent conditions of
the theorem will be called Lp-stochastically integrable with respect to WH . The
random variable η = IWH (X) is called the stochastic integral of � with respect
to WH , notation

η = IWH (X) =:
∫ T

0
�(t) dWH(t).

REMARK 3.7. Under the assumptions as stated, condition (1) is equivalent
to:

(1)′ There exists a sequence (�n)n≥1 of elementary adapted processes such
that:

(i) for all h ∈ H we have limn→∞ �nh = �h in measure on [0, T ] × �;
(ii) there exists an η ∈ Lp(�;E) such that

η = lim
n→∞

∫ T

0
�n(t) dWH(t) in Lp(�;E).
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The proof, as well as further approximation results, will be presented elsewhere.

PROOF OF THEOREM 3.6. (4) ⇔ (3): This equivalence follows from Lem-
ma 2.7; together with (3.1) this also gives (3.2).

(3) ⇒ (1): By Propositions 2.11 and 2.12, X ∈ Lp(�;γ (L2(0, T ;H),E)) rep-
resented by � belongs to L

p
F
(�;γ (L2(0, T ;H),E)). Thus we may choose a

sequence (Xn)n≥1 of elementary adapted elements with limn→∞ Xn = X in
Lp(�;γ (L2(0, T ;H),E)). Let (�n)n≥1 be a representing sequence of elemen-
tary adapted processes. The sequence (�n)n≥1 has properties (i) and (ii). Indeed,
property (i) follows by noting that limn→∞ �∗

nx
∗ = limn→∞〈Xn,x

∗〉 = 〈X,x∗〉 =
�∗x∗ in Lp(�;L2(0, T ;H)), and hence in measure on [0, T ]×�, for all x∗ ∈ E∗.
Property (ii), with η = IWH (X), follows from Theorem 3.5, since

lim
n→∞

∫ T

0
�n(t) dWH(t) = lim

n→∞ IWH (Xn) = IWH (X) in Lp(�;E).

The two-sided estimate (3.3) now follows from Theorem 3.5.
(1) ⇒ (2): This follows from the Burkholder–Davis–Gundy inequalities, which

imply that for all x∗ ∈ E∗ we have limn→∞ �∗
nx

∗ = �∗x∗ in Lp(�;L2(0, T ;H)).
(2) ⇒ (3): This is the technical part of the proof. It simplifies considerably for

spaces E having a Schauder basis. To get around such an assumption, we give an
approximation argument via quotient maps. We proceed in several steps.

We denote by BF the closed unit ball of a Banach space F .
Since � is H -strongly measurable and adapted, without loss of generality we

may assume that E is separable. Since E is reflexive, E∗ is separable as well and
we may fix a dense sequence (x∗

n)n≥1 in BE∗ . Define the closed linear subspaces
Fn of E by

Fn :=
n⋂

i=1

ker(x∗
i ).

Let En be the quotient space E/Fn, and let Qn :E → En be the quotient map.
Then dim(En) < ∞ and there is a canonical isomorphism E∗

n � F⊥
n , where F⊥

n =
{x∗ ∈ E∗ :x∗ = 0 on Fn}.

Step 1. For every finite-dimensional subspace G of E and every ε > 0 there
exists an index N ≥ 1 such that

‖x‖ ≤ (1 + ε)‖QNx‖ ∀x ∈ G.(3.4)

To show this it suffices to consider x ∈ BG. Since BG is compact we can find
elements y∗

1 , . . . , y∗
n ∈ E∗ with ‖y∗

i ‖ ≤ 1 such that

‖x‖ ≤
(

1 + ε

2

)
sup

1≤i≤n

|〈x, y∗
i 〉| ∀x ∈ BG.
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Since (x∗
i )i≥1 is norm dense in B∗

E , we may approximate the y∗
i to obtain an index

N such that

‖x‖ ≤ (1 + ε) sup
1≤j≤N

|〈x, x∗
j 〉| ∀x ∈ BG.

It follows that for all x ∈ BG,

‖x‖ ≤ (1 + ε) inf
y∈FN

sup
1≤j≤N

|〈x − y, x∗
j 〉| ≤ (1 + ε) inf

y∈FN

‖x − y‖ = (1 + ε)‖QNx‖.

This proves (3.4).
Step 2. Let the processes �n : [0, T ]×� → L(H ;En) be given by �n(t,ω)h :=

Qn�(t,ω)h. Clearly �n belongs to Lp(�;L2(0, T ;H)) scalarly. Moreover, �n

represents an element Xn ∈ Lp(�;γ (L2(0, T ;H),En)), since for the finite-
dimensional spaces En we have γ (L2(0, T ;H),En) � L(L2(0, T ;H),En). Note
that almost surely, in L2(0, T ;H) we have

〈Xn,x
∗〉 = �∗

nx
∗ for all x∗ ∈ E∗.(3.5)

This can be proved directly or deduced from Lemma 2.7.
It is easily checked that IWH Xn = Qnη. Hence,

E‖Xn‖p

γ (L2(0,T ;H),En)
�p β

p
p,En

E‖IWH Xn‖p
En

= β
p
p,En

E‖Qnη‖p
En

(∗)≤ β
p
p,EE‖Qnη‖p

En
≤ β

p
p,EE‖η‖p.

In (∗) we used the well known fact that the UMD(p) constant of a quotient space
of E can be estimated by the UMD(p) constant of E.

For 1 ≤ m ≤ n let Qnm :En → Em be given by QnmQnx := Qmx. Then
‖Qnm‖ ≤ 1 and Xm = QnmXn. It follows that E‖Xm‖γ (L2(0,T ;H),Em) ≤
E‖Xn‖γ (L2(0,T ;H),En). By Fatou’s lemma,

E sup
n≥1

‖Xn‖p

γ (L2(0,T ;H),En)
= E lim

n→∞‖Xn‖p

γ (L2(0,T ;H),En)
�p,E E‖η‖p.(3.6)

Step 3. Let N0 be a null set such that for all ω ∈ �N0 we have

C(ω) := sup
n≥1

‖Xn(ω)‖γ (L2(0,T ;H),En) < ∞.

Using (3.5), for each n ≥ 1 we can find a null set Nn of that for all ω ∈ �Nn and
x∗ ∈ E∗

n , 〈Xn(ω), x∗〉 = �∗
n(·,ω)x∗ in L2(0, T ;H). Let N := N0 ∪ (

⋃
n≥1 Nn).

We claim that for all ω ∈ �N and all x∗ ∈ E∗, �∗(·,ω)x∗ ∈ L2(0, T ;H).
Fix ω ∈ �N . First let x∗ be a linear combination of the elements x∗

1 , . . . , x∗
n .

Then x∗ ∈ F⊥
n and hence, for all t ∈ [0, T ], �∗(t,ω)x∗ = �∗

n(t,ω)x∗. It follows
that

‖�∗(·,ω)x∗‖L2(0,T ;H) = ‖〈Xn(ω), x∗〉‖L2(0,T ;H)

≤ ‖Xn(ω)‖γ (L2(0,T ;H),En)‖x∗‖ ≤ C(ω)‖x∗‖.
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Next let x∗ ∈ E∗ be arbitrary; we may assume that x∗ ∈ B∗
E . Since (x∗

k )k≥1 is
norm dense in BE∗ we can find a subsequence (kn)n≥1 such that x∗ = limn→∞ x∗

kn

strongly. It follows that for all m,n ≥ 1 we have

‖�∗(·,ω)(x∗
kn

− x∗
km

)‖L2(0,T ;H) ≤ C(ω)‖x∗
kn

− x∗
km

‖.
We deduce that (�∗(·,ω)x∗

kn
)n≥1 is a Cauchy sequence in L2(0, T ;H), and after

passing to an almost everywhere convergent limit we find that the limit equals
�∗(·,ω)x∗. Hence, �∗(·,ω)x∗ = limn→∞ �∗(·,ω)x∗

kn
in L2(0, T ;H). Since ω ∈

�N was arbitrary, this proves the claim.
Step 4. By Step 3, for ω ∈ �N fixed we may define the integral operator

X(ω) :L2(0, T ;H) → E by

X(ω)f :=
∫ T

0
�(t,ω)f (t) dt.

These integrals are well defined as Pettis integrals in E since E is reflexive. We
claim that X(ω) ∈ γ (L2(0, T ;H),E) and

‖X(ω)‖γ (L2(0,T ;H),E) ≤ sup
n≥1

‖Xn(ω)‖γ (L2(0,T ;H),En).(3.7)

To prove this, let the random variables ρn(ω) ∈ Lp(�′;E) be given by

ρn(ω) :=
n∑

i=1

γi

∫ T

0
�(t,ω)fi(t) dt,

where (γi)i≥1 is a standard Gaussian sequence defined on a probability space
(�′,F ′,P

′) and (fi)i≥1 is an orthonormal basis for L2(0, T ;H).
Let ε > 0 be arbitrary and fixed. Since ρn(ω) takes its values in a finite-

dimensional subspace of E, it follows from Step 1 that there is an index Nn such
that

E
′‖ρn(ω)‖2 ≤ (1 + ε)2

E
′‖QNnρn(ω)‖2.

Clearly,

E
′‖QNnρn(ω)‖2 = E

′
∥∥∥∥∥

n∑
i=1

γi

∫ T

0
�Nn(t,ω)fi(t) dt

∥∥∥∥∥
2

≤ ‖XNn(ω)‖2
γ (L2(0,T ;H),ENn)

,

and it follows that

sup
n≥1

E
′‖ρn(ω)‖2 ≤ (1 + ε)2 sup

N≥1
‖XN(ω)‖2

γ (L2(0,T ;H),EN)
.

Since E does not contain a copy of c0, a theorem of Hoffmann-Jorgensen and
Kwapień [22], Theorem 9.29, assures that X(ω) ∈ γ (L2(0, T ;H),E) and

‖X(ω)‖2
γ (L2(0,T ;H),E)

= sup
n≥1

E
′‖ρn(ω)‖2 ≤ (1+ ε)2 sup

N≥1
‖XN(ω)‖2

γ (L2(0,T ;H),EN)
.
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Since ε > 0 was arbitrary, the claim follows.
Step 5. To finish the proof, we note that X :� → γ (L2(0, T ;H),E) is almost

surely equal to a strongly measurable random variable; see Remark 2.8. It follows
from (3.6) and (3.7) that X ∈ Lp(�;γ (L2(0, T ;H),E)). By definition X is rep-
resented by � and hence (3) follows. �

REMARK 3.8. If the filtration F is assumed to be the augmented Brownian
filtration F

WH , the equivalence (1) ⇔ (2) is true for arbitrary real Banach spaces
E. This follows from the martingale representation theorem in finite dimensions.
We briefly sketch a proof of (2) ⇒ (1). For K = 1,2, . . . let F (K)

T be the σ -algebra
generated by the Brownian motions WHhk , 1 ≤ k ≤ K . Choose a sequence of
simple random variables (ηn)n≥1 in Lp(�,F (K)

T ;E) with mean zero and such
that η = limn→∞ ηn. This is possible by the martingale convergence theorem and
the Pettis measurability theorem. By the martingale representation theorem for
finite-dimensional spaces, for all n ≥ 1 there exists an Lp-stochastically integrable
process �n such that ηn = ∫ T

0 �n(t) dWH(t). The sequence (�n)n≥1 satisfies (i)
and (ii) of condition (1) of Theorem 3.6. Indeed, (ii) is obvious and (i) follows
from the Burkholder–Davis–Gundy inequalities. The processes �n need not be el-
ementary adapted, but since each �n takes values in a finite dimensional subspace
of E one can approximate the �n with elementary adapted processes to complete
the proof.

For H = R, the implication (4) ⇒ (1) in Theorem 3.6 can be interpreted as
an Lp-version of McConnell’s result quoted in the Introduction. Below, in the
implication (4) ⇒ (1) of Theorem 5.9, we recover McConnell’s result.

COROLLARY 3.9 (Series expansion). Let E be a UMD space and fix p ∈
(1,∞). Assume that the H -strongly measurable and adapted process � : [0, T ] ×
� → L(H,E) is Lp-stochastically integrable with respect to WH . Then for all
h ∈ H the process �h : [0, T ] × � → E is Lp-stochastically integrable with re-
spect to WHh. Moreover, if (hn)n≥1 is an orthonormal basis for H , then∫ T

0
�(t) dWH(t) = ∑

n≥1

∫ T

0
�(t)hn dWH(t)hn,

with unconditional convergence in Lp(�;E).

PROOF. Let PN be the orthogonal projection in H onto the span of the vectors
h1, . . . , hN . Let X ∈ Lp(�;γ (L2(0, T ;H),E)) be the element represented by �.
By the right ideal property we have

‖X ◦ PN‖γ (L2(0,T ;H),E) ≤ ‖X‖γ (L2(0,T ;H),E)
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almost surely. Here we think of PN as an operator on γ (L2(0, T ;H),E) defined
by (PNS)f := S(PNf ) with (PNf )(t) := PN(f (t)). By an approximation argu-
ment one can show that

lim
N→∞‖X − X ◦ PN‖γ (L2(0,T ;H),E) = 0,

almost surely. Since �PN is represented by X ◦ PN , the result follows from The-
orem 3.6 and the dominated convergence theorem. The convergence of the series
is unconditional since any permutation of (hn)n≥1 is again an orthonormal basis
for H . �

A theory of stochastic integration for processes in martingale type 2 spaces has
been developed by a number of authors, including Belopolskaya and Daletskiı̆ [1],
Brzeźniak [4–6], Dettweiler [11, 12], Neidhardt [30] and Ondreját [31]. Some of
these authors state their results for 2-uniformly smooth Banach spaces; the equiva-
lence of martingale type 2 and 2-uniform smoothness up to renorming was shown
by Pisier [32]. To make the link with our results, first we recall that a UMD space
has martingale (co)type 2 if and only if it has (co)type 2, (cf. [6, 33]), and that every
space with martingale type 2 has type 2. By the results of [29, 36], E has type 2
if and only if we have an inclusion L2(0, T ;γ (H,E)) ↪→ γ (L2(0, T ;H),E), and
that E has cotype 2 if and only if we have an inclusion γ (L2(0, T ;H),E) ↪→
L2(0, T ;γ (H,E)); in both cases the inclusion is given via representation. Thus
from Theorem 3.6 we obtain the following result.

COROLLARY 3.10. Let E be a UMD space and let p ∈ (1,∞).

(1) If E has type 2, then every H -strongly measurable and adapted process �

which belongs to Lp(�;L2(0, T ;γ (H,E)) is Lp-stochastically integrable with
respect to WH and we have

E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

�p,E E‖�‖p

L2(0,T ;γ (H,E))
.

(2) If E has cotype 2, then every H -strongly measurable process � which is
Lp-stochastically integrable with respect to WH belong to Lp(�;L2(0, T ;γ (H,

E)) and we have

E‖�‖p

L2(0,T ;γ (H,E))
�p,E E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

.

We conclude this section with a result giving a necessary and sufficient square
function criterion for Lp-stochastic integrability of L(H,E)-valued processes,
where E is assumed to be a UMD Banach function space. In view of Theorem 3.6
it suffices to give such a criterion for L(H,E)-valued functions, and therefore a
straightforward extension of [28], Corollary 2.10 (where only the case H = R was
considered) gives the following result.



STOCHASTIC INTEGRATION IN UMD SPACES 1461

COROLLARY 3.11. Let E be UMD Banach function space over a σ -finite
measure space (S,�,µ) and let p ∈ (1,∞). Let � : [0, T ] × � → L(H,E) be
H -strongly measurable and adapted and assume that there exists a strongly mea-
surable function φ : [0, T ] × � × S → H such that for all h ∈ H and t ∈ [0, T ],

(�(t)h)(·) = [φ(t, ·), h]H in E.

Then � is Lp-stochastically integrable with respect to WH if and only if

E

∥∥∥∥
(∫ T

0
‖φ(t, ·)‖2

H dt

)1/2∥∥∥∥
p

E

< ∞.

In this case we have

E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

�p,E E

∥∥∥∥
(∫ T

0
‖φ(t, ·)‖2

H dt

)1/2∥∥∥∥
p

E

.

4. The integral process. It is immediate from Theorem 3.6 that if � : [0, T ]×
� → L(H,E) is Lp-stochastically integrable with respect to WH , then for all
t ∈ [0, T ] the restricted process � : [0, t] × � → L(H,E) is Lp-stochastically
integrable with respect to WH . Thus it is meaningful to ask for the properties of
the integral process

t �→
∫ t

0
�(s)dWH(s), t ∈ [0, T ].

This will be the topic of the present section.
It will be convenient to introduce a continuous process

ξX : [0, T ] × � → γ (L2(0, T ;H),E)

associated with a strongly measurable random variable X :� → γ (L2(0, T ;
H),E). For t ∈ [0, T ] we define the γ (L2(0, T ;H),E)-valued random variable
ξX(t) :� → γ (L2(0, T ;H),E) by

ξX(t,ω)f := (X(ω))
(
1[0,t]f

)
, f ∈ L2(0, T ;H).

Note that ξX(T ) = X. The strong measurability of ξX(t) as a γ (L2(0, T ;
H),E)-valued random variable follows from Lemma 2.5.

PROPOSITION 4.1. The process ξX defined above is strongly measurable and
has continuous trajectories. Moreover:

(1) If X is strongly adapted to F, then ξX is adapted to F and for all t ∈ [0, T ],
ξX(t) is strongly adapted to F;

(2) If X ∈ L
p
F
(�;γ (L2(0, T ;H),E)), then ξX(t) ∈ L

p
F
(�;γ (L2(0, T ;H),E))

for all t ∈ [0, T ], and the mapping t �→ ξX(t) is continuous from [0, T ] to
L

p
F
(�;γ (L2(0, T ;H),E)).
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PROOF. By Proposition 2.4, t �→ ξX(t,ω) is continuous for all ω ∈ �. Since
for all t ∈ [0, T ], ξX(t) is strongly measurable we obtain that ξX is strongly mea-
surable.

(1) This follows from Lemma 2.5 and Proposition 2.10.
(2) For ω ∈ � fixed, the right ideal property implies that

‖ξX(t)(ω)‖γ (L2(0,T ;H),E) ≤ ‖X(ω)‖γ (L2(0,T ;H),E).

Hence if X ∈ L
p
F
(�;γ (L2(0, T ;H),E)), then for all t ∈ [0, T ], ξX(t) ∈ L

p
F
(�;

γ (L2(0, T ;H),E)) by Proposition 2.12. The continuity of t �→ ξX(t) follows
from Proposition 4.1 and dominated convergence. �

REMARK 4.2. Since (t,ω) �→ ‖ξX(t,ω)‖2
γ (L2(0,T ;H),E)

is nonnegative and
nondecreasing, we may think of this process as an analogue of the quadratic vari-
ation process.

Now let E be a UMD space and fix p ∈ (1,∞). For X ∈ L
p
F
(�;γ (L2(0, T ;H),

E)), with some abuse of notation the E-valued process

IWH (ξX) : t �→ IWH (ξX(t)), t ∈ [0, T ],
will be called the integral process associated with X. In the special case where X

is represented by an Lp-stochastically integrable process �, for all t ∈ [0, T ] we
have

IWH (ξX(t)) =
∫ t

0
�(s)dWH(s) in Lp(�;E).

PROPOSITION 4.3. Let E be a UMD space and fix p ∈ (1,∞). For all
X ∈ L

p
F
(�;γ (L2(0, T ;H),E)) the integral process IWH (ξX) is an E-valued

Lp-martingale which is continuous in pth moment. It has a continuous adapted
version which satisfies the maximal inequality

E sup
t∈[0,T ]

‖IWH (ξX(t))‖p ≤ qp
E‖IWH (X)‖p

(
1

p
+ 1

q
= 1

)
.(4.1)

PROOF. For all x∗ ∈ E∗, the real-valued process IWH (ξ∗
Xx∗) is a martingale;

see [18], Corollary 17.8. The martingale property easily follows from this; see [28],
Corollary 2.8. The continuity in pth moment follows directly from the continuity
of the Itô map and the continuity in pth moment of ξX , which was proved in
Proposition 4.1.

Next we prove the existence of a continuous adapted version. Choose a se-
quence (Xn)n≥1 of elementary adapted elements such that limn→∞ Xn = X in
Lp(�;γ (L2(0, T ;H),E)). It follows from Theorem 3.5 that limn→∞ IWH (Xn) =
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IWH (X) in Lp(�;E). Clearly, for each n ≥ 1 there exists a continuous ver-
sion ηn of IWH (ξXn), and by the Pettis measurability theorem we have ηn ∈
Lp(�;C([0, T ];E)). By Doob’s maximal inequality, the sequence (ηn)n≥1 is a
Cauchy sequence in Lp(�;C([0, T ];E)). Its limit defines a continuous version of
IWH (ξX), which is clearly adapted.

The final inequality (4.1) follows from Doob’s maximal inequality. �

Combining these results we have proved:

THEOREM 4.4 (Burkholder–Davis–Gundy inequalities). Let E be a UMD
space and fix p ∈ (1,∞). If the H -strongly measurable and adapted process
� : [0, T ] × � → L(H,E) is Lp-stochastically integrable, then

E sup
t∈[0,T ]

∥∥∥∥
∫ t

0
�(s)dWH(s)

∥∥∥∥
p

�p,E E‖X‖p

γ (L2(0,T ;H),E)
,

where X ∈ Lp(�;γ (L2(0, T ;H),E)) is the element represented by �.

The estimates in Corollary 3.10, when combined with Doob’s maximal inequal-
ity, may be considered as one-sided Burkholder–Davis–Gundy inequalities for the
Lp(�;L2(0, T ;γ (H,E)))-norm. In particular we recover, for UMD martingale
type 2 spaces, the one-sided Burkholder–Davis–Gundy inequalities for martingale
type 2 spaces of Brzeźniak [6] and Dettweiler [12].

We address next the question whether the integral process associated with an
Lp-stochastically integrable process � is Lp-stochastically integrable with re-
spect to a real-valued Brownian motion W . When E is a real Hilbert space and
p ∈ (1,∞), the answer is clearly affirmative and by the Burkholder–Davis–Gundy
inequalities we have(

E

∥∥∥∥
∫ T

0

∫ t

0
�(s)dWH(s) dW(t)

∥∥∥∥
p)1/p

�p

∥∥∥∥
∫ ·

0
�(s)dWH(s)

∥∥∥∥
Lp(�;L2(0,T ;E))

≤ √
T

(
E sup

t∈[0,T ]

∥∥∥∥
∫ t

0
�(s)dWH(s)

∥∥∥∥
p)1/p

�p

√
T ‖�‖Lp(�;L2(0,T ;E)).

More generally, every L2(H,E)-valued Lp-martingale, where E is a Hilbert
space, is Lp-stochastically integrable, and an estimate can be given using
Doob’s inequality. In the following we shall generalize these observations
to γ (H,E)-valued Lp-martingales, where E is a UMD space. We will say
that a process M : [0, T ] × � → γ (H,E) is an Lp-martingale if M(t) ∈
Lp(�;γ (H,E)) for all t ∈ [0, T ] and E(M(t)|Fs) = M(s) in Lp(�;γ (H,E))

for all 0 ≤ s ≤ t ≤ T . In the proof of the following result we will need the well
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known fact that every Lp-martingale M : [0, T ] × � → H admits a modification
with cadlag trajectories. This may be proved as [21], Proposition 2.

Our next result uses the vector-valued Stein inequality, which asserts that
in a UMD space E certain families of conditional expectation operators are
R-bounded. Recall that a collection T ⊆ L(B1,B2), where B1 and B2 are Banach
spaces, is said to be R-bounded if there exists a constant M ≥ 0 such that(

E

∥∥∥∥∥
N∑

n=1

rnTnxn

∥∥∥∥∥
2

B2

)1/2

≤ M

(
E

∥∥∥∥∥
N∑

n=1

rnxn

∥∥∥∥∥
2

B1

)1/2

,

for all N ≥ 1 and all sequences (Tn)
N
n=1 in T and (xn)

N
n=1 in B1. The least constant

M for which this estimate holds is called the R-bound of T , notation R(T ). By
the Kahane–Khinchine inequalities, the role of the exponent 2 may be replaced
by any exponent 1 ≤ p < ∞. Replacing the role of the Rademacher sequence
by a Gaussian sequence we obtain the related notion of γ -boundedness. By an
easy randomization argument, every R-bounded family is γ -bounded and we have
γ (T ) ≤ R(T ), where γ (T ) is the γ -bound of T .

THEOREM 4.5. Let E be a UMD space and fix p ∈ (1,∞). Let M : [0, T ] ×
� → γ (H,E) be an Lp-martingale with respect to the filtration F and assume
that M(0) = 0. If WH is an H -cylindrical Brownian motion adapted to F, then M

is Lp-stochastically integrable with respect to WH and we have(
E

∥∥∥∥
∫ T

0
M(t) dWH(t)

∥∥∥∥
p)1/p

�p,E

√
T

(
E‖M(T )‖p

γ (H,E)

)1/p
.

PROOF. The proof is based upon a multiplier result for spaces of γ -radonify-
ing operators, due to Kalton and the third named author [19]. Translated into the
present setting, this result can be formulated as follows. Let B1 and B2 be UMD
spaces, let p ∈ (1,∞), and let N : [0, T ] × � → L(B1,B2) be a strongly adapted
process such that the set {N(t) : t ∈ [0, T ]} is γ -bounded. Then, if � : [0, T ] ×
� → L(H,B1) is an H -strongly measurable process which is Lp-stochastically
integrable with respect to WH , the process N� : [0, T ] × � → L(H,B2) defined
by (N�)(t)h := N(t)(�(t)h) is Lp-stochastically integrable with respect to WH

as well and satisfies

E

∥∥∥∥
∫ T

0
N(t)�(t) dWH(t)

∥∥∥∥
p

�p,B1,B2 Kp
E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

.

To start the proof of the theorem, we first show that M is H -strongly measur-
able and adapted. Let h ∈ H be fixed. Clearly, Mh is an E-valued Lp-martingale.
By martingale convergence, Mh is left continuous in mean. Therefore by a gen-
eral result from the theory of stochastic processes, Mh is strongly measurable and
adapted.
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Next we check that M belongs to Lp(�;L2(0, T ;H)) scalarly. Let x∗ ∈ E∗ be
fixed. By the above discussion M∗x∗ has a modification with cadlag trajectories.
Hence we may apply Doob’s maximal inequality to obtain

E‖M∗x∗‖p

L2(0,T ;H)
≤ T p/2

E sup
t∈[0,T ]

‖M∗(t)x∗‖p
H �p T p/2

E‖M∗(T )x∗‖p
H .

Let B = L
p
0 (�,FT ;E) be the closed subspace in Lp(�;E) of all FT -measur-

able random variables with zero mean, and define the bounded and strongly left
continuous function N : [0, T ] → L(B) by

N(t)ξ := E(ξ |Ft ), ξ ∈ B, t ∈ [0, T ].
Since E is a UMD space, by a result of Bourgain [3] the set {N(t) : t ∈ [0, T ]} is
R-bounded, and therefore γ -bounded, with γ -bound depending only on p and E.
A detailed proof of this fact may be found in [10], Proposition 3.8.

By the Fubini isomorphism we may identify the random variables M(t) ∈
Lp(�;γ (H,E)) with operators M̃(t) ∈ γ (H,Lp(�;E)). Recall that for all t ∈
[0, T ], for all h ∈ H , for almost all ω ∈ �, (M̃(t)h)(ω) = M(t,ω)h. Define a con-
stant function G : [0, T ] → L(H,B) by

G(t) := M̃(T ), t ∈ [0, T ].
Clearly G represents the element RG ∈ γ (L2(0, T ;H),B) given by

RGf =
∫ T

0
M̃(T )f (t) dt, f ∈ L2(0, T ;H),

and ‖RG‖γ (L2(0,T ;H),B = √
T E‖M(T )‖γ (H,E). Since for all t ∈ [0, T ], M̃(t) =

N(t)M̃(T ) in B , we may apply the above multiplier result to conclude that M̃

represents an element R ∈ γ (L2(0, T ;H),B) with

‖R‖γ (L2(0,T ;H),B) �p,E ‖RG‖γ (L2(0,T ;H),B).

Using the γ -Fubini isomorphism we define X = F−1
γ (R). Recall that for all f ∈

L2(0, T ;H), for almost all ω ∈ �, (Rf )(ω) = X(ω)f .
We claim that X is represented by M . Once we know this, it follows with The-

orem 3.6 that(
E

∥∥∥∥
∫ T

0
M(t) dWH(t)

∥∥∥∥
p)1/p

�p,E

(
E‖X‖p

γ (L2(0,T ;H),E)

)1/p

�p ‖R‖γ (L2(0,T ;H),B)

�p,E

√
T

(
E‖M(T )‖p

γ (H,E)

)1/p
.

Let f ∈ L2(0, T ;H), x∗ ∈ E∗ be arbitrary. We have to show that [M∗x∗,
f ]L2(0,T ;H) = 〈Xf,x∗〉 almost surely. It suffices to check that E(1A[M∗x∗,
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f ]L2(0,T ;H)) = E(1A〈Xf,x∗〉) for all A ∈ FT . By the Fubini theorem we have

E
(
1A[M∗x∗, f ]L2(0,T ;H)

) =
∫
�

∫ T

0
〈M(t,ω)f (t), x∗〉1A(ω)dt dP (ω)

=
∫ T

0

∫
�
〈M(t,ω)f (t), x∗〉1A(ω)dP (ω)dt

=
∫ T

0
〈M̃(t)f (t),1A ⊗ x∗〉dt = 〈Rf,1A ⊗ x∗〉

= E(〈Xf,x∗〉1A).

This proves the claim. �

In view of Proposition 4.3, this theorem can be applied to the integral process
IWH (ξX) associated with elements X ∈ L

p
F
(�;γ (L2(0, T ;H),E)). In the special

case where X is represented by a process we obtain:

COROLLARY 4.6. Let E be a UMD space and fix p ∈ (1,∞). Let WH and
W be an H -cylindrical Brownian motion and a Brownian motion, respectively,
both adapted to the filtration F. If the H -strongly measurable and adapted process
� : [0, T ] × � → L(H,E) is Lp-stochastically integrable with respect WH , then
the integral process (

∫ t
0 �(s)dWH(s))t∈[0,T ] is Lp-stochastically integrable with

respect to W and we have(
E

∥∥∥∥
∫ T

0

∫ t

0
�(s)dWH(s) dW(t)

∥∥∥∥
p)1/p

�p,E

√
T

(
E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p)1/p

.

We conclude this section with a representation theorem for E-valued Brown-
ian Lp-martingales, that is, E-valued Lp-martingales adapted to the augmented
filtration F

WH generated by an H -cylindrical Brownian motion WH . It is a direct
consequence of the second part of Theorem 3.5 and Proposition 4.3:

THEOREM 4.7 (Representation of Brownian Lp-martingales in UMD spaces).
Let E be a UMD space and fix p ∈ (1,∞). Then every Lp-martingale M : [0, T ]×
� → E adapted to the augmented filtration F

WH has a continuous version, and
there exists a unique X ∈ L

p
F
(�;γ (L2(0, T ;H),E)) such that for all t ∈ [0, T ]

we have

M(t) = M(0) + IWH (ξX(t)) in Lp(�;E).

5. Localization. We begin with a lemma which is a slight generalization of a
stopping time argument in [24], Lemma 3.3. For the convenience of the reader we
include the details.
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LEMMA 5.1. Let p ∈ [1,∞). Let E and F be Banach spaces and let
(φt )t∈[0,T ] and (ψt )t∈[0,T ] be continuous adapted processes with values in E

and F , respectively. Assume furthermore that ψ0 = 0. If there exists a constant
C ≥ 0 such that for all stopping times τ with values in [0, T ] we have

E‖φτ‖p
E ≤ CE‖ψτ‖p

F(5.1)

whenever these norms are finite, then for all δ > 0 and ε > 0 we have

P

(
sup

t∈[0,T ]
‖φt‖E > ε

)
≤ Cδp

εp
+ P

(
sup

t∈[0,T ]
‖ψt‖F ≥ δ

)
.(5.2)

PROOF. Let δ, ε > 0 be arbitrary. Define stopping times µ and ν by

µ(ω) := inf{t ∈ [0, T ] :‖φt(ω)‖E ≥ ε},
ν(ω) := inf{t ∈ [0, T ] :‖ψt(ω)‖F ≥ δ},

where we take µ(ω) := T and ν(ω) := T if the infimum is taken over the
empty set, and put τ := µ ∧ ν. Then τ is a stopping time and E‖φτ‖p

E ≤ εp ,
E‖ψτ‖p

F ≤ δp . By Chebyshev’s inequality, (5.1), and pathwise continuity we have

P

(
sup

t∈[0,T ]
‖φt‖E > ε, sup

t∈[0,T ]
‖ψt‖F < δ

)
≤ P(‖φτ‖E ≥ ε) ≤ 1

εp
E‖φτ‖p

E

≤ C

εp
E‖ψτ‖p

F ≤ Cδp

εp
,

where the last inequality uses the fact that ψ0 = 0. This implies

P

(
sup

t∈[0,T ]
‖φt‖E > ε

)
≤ Cδp

εp
+ P

(
sup

t∈[0,T ]
‖φt‖E > ε, sup

t∈[0,T ]
‖ψt‖F ≥ δ

)
.

Clearly (5.2) follows from this. �

For a Banach space B , let L0(�;B) be the vector space of all equivalence
classes of strongly measurable functions on � with values in the Banach space
B which are identical almost surely. Endowed with the translation invariant metric

‖ξ‖L0(�;B) = E(‖ξ‖ ∧ 1),

L0(�;B) is a complete metric space, and convergence with respect to this metric
coincides with convergence in probability.

We return to the standing assumptions that H is a separable real Hilbert
space, WH is an H -cylindrical Brownian motion adapted to a filtration F sat-
isfying the usual conditions, and E is a real Banach space. We denote by
L0

F
(�;γ (L2(0, T ;H),E)) the subspace of all adapted elements of L0(�;γ (L2(0,

T ;H),E)), that is, the closure of subspace of all elementary adapted elements
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in L0(�;γ (L2(0, T ;H),E)). Notice that X ∈ L0
F
(�;γ (L2(0, T ;H),E)) if and

only if X is strongly adapted to F.
For a stopping time τ with values in [0, T ] and an element X ∈ L0

F
(�;γ (L2(0,

T ;H),E)) we define the γ (L2(0, T ;H),E)-valued random variable ξX(τ) :� →
γ (L2(0, T ;H),E) by

(ξX(τ ))(ω)f := ξX(τ(ω),ω)f = X(ω)
(
1[0,τ (ω)]f

)
, f ∈ L2(0, T ;H).

The random variable ξX(τ) is well-defined since ξX has continuous paths and is
adapted by Proposition 4.1.

LEMMA 5.2. The random variable ξX(τ) is strongly adapted to F. If
p ∈ [1,∞) and X ∈ L

p
F
(�;γ (L2(0, T ;H),E)), then ξX(τ) ∈ L

p
F
(�;γ (L2(0,

T ;H),E)).

PROOF. It is clear that for all t ∈ [0, T ], f ∈ L2(0, T ;H), and x∗ ∈ E∗, the
random variable 〈X(1[0,t]f ), x∗〉 is Ft -measurable. Hence the first assertion fol-
lows by combining by the Pettis measurability theorem and Proposition 2.10.

By the right ideal property,

‖ξX(τ)(ω)‖γ (L2(0,T ;H),E) ≤ ‖X(ω)‖γ (L2(0,T ;H),E).

Hence if X ∈ L
p
F
(�;γ (L2(0, T ;H),E)) for some p ∈ [1,∞), then ξX(τ) ∈

Lp(�;γ (L2(0, T ;H),E)). The second assertion now follows from Proposi-
tion 2.12. �

PROPOSITION 5.3. Let E be a UMD space and let p ∈ (1,∞). If X ∈
L

p
F
(�;γ (L2(0, T ;H),E)) and τ is a stopping time with values in [0, T ], then

IWH (ξX(τ)) = (IWH (ξX))τ almost surely.(5.3)

PROOF. For elementary adapted X, (5.3) is obvious. For general X ∈
L

p
F
(�;γ (L2(0, T ;H),E)) the result is obtain from the following approxima-

tion argument. Choose a sequence of elementary adapted elements such that
limn→∞ Xn = X in L

p
F
(�;γ (L2(0, T ;H),E)). Hence, ξX(τ) = limn→∞ ξXn(τ )

in L
p
F
(�;γ (L2(0, T ;H),E)) and it follows from Theorem 3.5 that IWH (ξX(τ)) =

limn→∞ IWH (ξXn(τ )) in Lp(�;E). On the other hand, Proposition 4.3 shows that
IWH (ξX) = limn→∞ IWH (ξXn) in Lp(�;C([0, T ];E)). In particular,
(IWH (ξX))τ = limn→∞(IWH (ξXn))τ in Lp(�;E). The general case of (5.3) now
follows from the fact that (5.3) holds for all Xn. �

By combining the previous two results we obtain the following result, which
should be compared with [24], Lemma 3.3. Our approach is somewhat simpler, as
it allows the use of F-stopping times rather than the F ⊗ F̃-stopping times used
in [24].
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LEMMA 5.4. Let E be a UMD space and let p ∈ (1,∞). If X ∈ L
p
F
(�;

γ (L2(0, T ;H),E)), then for all δ > 0 and ε > 0 we have

P

(
sup

t∈[0,T ]
‖(IWH (ξX))t‖ > ε

)
≤ Cp,Eδp

εp
+ P

(‖X‖γ (L2(0,T ;H),E) ≥ δ
)

(5.4)

and

P
(‖X‖γ (L2(0,T ;H),E) > ε

) ≤ Cp,Eδp

εp
+ P

(
sup

t∈[0,T ]
‖(IWH (ξX))t‖ ≥ δ

)
,(5.5)

where Cp,E is a constant which depends only on p and E.

PROOF. For all ω ∈ � and t ∈ [0, T ],
‖(ξX(t))(ω)‖γ (L2(0,T ;H),E) ≤ ‖X(ω)‖γ (L2(0,T ;H),E)

with equality for t = T , and therefore,

‖X(ω)‖γ (L2(0,T ;H),E) = sup
t∈[0,T ]

‖(ξX(t))(ω)‖γ (L2(0,T ;H),E).

Hence by Lemma 5.1 it suffices to prove that for every stopping time τ with values
in [0, T ] we have

E‖(IWH (ξX))τ‖p
�p,E E‖ξX(τ)‖p

γ (L2(0,T ;H),E)

provided both norms are finite. But this follows from Proposition 5.3 and Theo-
rem 3.5. �

We call an E-valued process M := (Mt)t∈[0,T ] a local martingale if it is
adapted and there exists a sequence of stopping times (τn)n≥1 with values in [0, T ]
with the property that for all ω ∈ � there exists an index N(ω) such that τn(ω) = T

for all n ≥ N(ω) and such that the process Mτn = (M
τn
t )t∈[0,T ] defined by

M
τn
t := Mt∧τn − M0

is a martingale. In this case, (τn)n≥1 is called a localizing sequence for M .
If, for some p ∈ [1,∞], each Mτn is an Lp-martingale, we call M a local

Lp-martingale. In the case of p = ∞ we say that M is a local bounded mar-
tingale. It is easy to see that every continuous local martingale is a continuous
local bounded martingale (cf. [9], Proposition 1.9); a localizing sequence (τn)n≥1
is given by

τn = inf{t ∈ [0, T ] :‖Mt‖ ≥ n}.
Here we take τn = T if the infimum is taken over the empty set. We will use this
convention for all stopping times in the rest of paper.

We denote by Mc,loc
0 (�;E) the space of continuous local martingales starting

at 0, identifying martingales that are indistinguishable. Each M ∈ Mc,loc
0 (�;E)
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defines a random variable with values in C([0, T ];E). Thus we may identify
Mc,loc

0 (�;E) with a linear subspace of L0(�;C([0, T ];E)). If we want to stress

the role of the underlying filtration F we write Mc,loc
0 (�;E) = Mc,loc

0 (�,F;E).
Now let E be a UMD space and p ∈ (1,∞). For X ∈ L

p
F
(�;γ (L2(0, T ;H),

E)) we recall that from Proposition 4.3 that IWH (ξX) is a continuous martingale
starting at 0. With this in mind we have the following localized version of Theo-
rem 3.5.

THEOREM 5.5 (Itô homeomorphism). Let E be a real UMD space. The
mapping X �→ IWH (ξX) has a unique extension to a homeomorphism from
L0

F
(�;γ (L2(0, T ;H),E)) onto a closed subspace of Mc,loc

0 (�,F;E). Moreover,
the estimates (5.4) and (5.5) extend to arbitrary elements X ∈ L0

F
(�;γ (L2(0, T ;

H),E)). For the augmented Brownian filtration F
WH we have an homeomorphism

IWH :L0
F

WH
(�;γ (L2(0, T ;H),E)) � Mc,loc

0 (�,F
WH ;E).

PROOF. Fix X ∈ L0
F
(�;γ (L2(0, T ;H),E)) and define a sequence of stop-

ping times (τn)n≥1 by

τn := inf
{
t ∈ [0, T ] :‖ξX(t)‖γ (L2(0,T ;H),E) ≥ n

}
.

Then ξX(τn) ∈ L
p
F
(�;γ (L2(0, T ;H),E)) for every p ∈ (1,∞).

By Proposition 4.3 we can define a sequence of Lp-martingales (Mn)n≥1 in
Mc,loc

0 (�;E) by

Mn := IWH (ξXn).

Since limn→∞ Xn = X it follows from Lemma 5.4, applied to the differences
Xm − Xn, that (Mn)n≥1 is a Cauchy sequence in L0(�;C([0, T ];E)). It fol-
lows that (Mn)n≥1 converges to M ∈ L0(�;C([0, T ];E)). As a process, M =
(Mt)t∈[0,T ] is adapted and M0 = 0 almost surely. To show that M ∈ Mc,loc

0 (�;E)

it is now enough to show that (Mt)t∈[0,T ] is a local martingale. We claim that

Mτm∧t = Mm
t almost surely.

This will complete the proof, since it shows that M is a local martingale with
localizing sequence (τm)m≥1. To prove the claim we fix m ≥ 1. It follows from
Proposition 5.3 that for all n ≥ m ≥ 1,

Mn
τm∧t = (IWH (ξXn))τm∧t = IWH ((ξXn)τm∧t )

(5.6)
= IWH

(
ξXn(τm ∧ t)

) = (IWH (ξXm))t = Mm
t almost surely.

By passing to a subsequence we may assume that limn→∞ Mn = M in C([0, T ];
E) almost surely. Then also limn→∞ Mn

τm∧t = Mτm∧t in C([0, T ];E) almost
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surely, and the claim now follows by letting n tend to infinity in (5.6). It follows
that IWH (X) := M is well defined. At the same time, this argument shows that
(5.4) extends to all X ∈ L0

F
(�;γ (L2(0, T ;H),E)). This in turn shows that IWH

is continuous.
Next, we extend (5.5) to arbitrary X ∈ L0

F
(�;γ (L2(0, T ;H),E)). Let M =

IWH (ξX) and define a sequence of stopping times (τn)n≥1 as

τn = inf{t ∈ [0, T ] :‖ξX(t)‖ ≥ n}.
By the above results we have, IWH (ξXn) = Mτn . Applying (5.5) to each Xn and
letting n tend to infinity one obtains (5.5) for X. From this, we deduce that IWH

has a continuous inverse. This also shows that the mapping IWH has a closed range
in Mc,loc

0 (�;E) and L0(�;C([0, T ];E)).
Next assume that F = F

WH . It suffices to show that the mapping IWH is
surjective. Let M ∈ Mc,loc

0 (�,F
WH ;E) be arbitrary. We can find a localiz-

ing sequence (τn)n≥1 such that each Mτn is a bounded martingale. It follows
from the second part of Theorem 3.5 that there is a sequence (Xn)n≥1 in
L2

F
WH

(�;γ (L2(0, T ;H),E)) such that

IWH (ξXn) = Mτn.

Clearly, (Mτn)n≥1 converges to M in Mc,loc
0 (�,F

WH ;E). It follows from The-
orem 5.5 that (Xn)n≥1 is a Cauchy sequence in L0

F
(�;γ (L2(0, T ;H),E)) and

therefore it converges to some X ∈ L0
F
(�;γ (L2(0, T ;H),E)). It follows from

Theorem 5.5 that IWH (X) = M . �

REMARK 5.6. Proposition 5.3 extends to arbitrary X ∈ L0
F
(�;γ (L2(0, T ;

H),E)). This may be proved similarly as in Proposition 5.3, but now using Theo-
rem 5.5 for the approximation argument.

The next results on stochastic integration for H -valued processes will be used
below.

FACTS 5.7. Let φ : [0, T ]×� → H be a strongly measurable adapted process
such that φ ∈ L2(0, T ;H) almost surely. The following results hold:

• The integral process
∫ ·

0 φ(t) dWH(t) is well defined and belongs to Mc,loc
0 (�;

R).
• The quadratic variation process of

∫ ·
0 φ(t) dWH(t) is given by

∫ ·
0 ‖φ(t)‖2 dt .

• If τ is a stopping time, then almost surely for all t ∈ [0, T ] we have∫ τ∧t

0
φ(s) dWH(s) =

∫ t

0
1[0,τ ](s)φ(s) dWH(s).
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PROPOSITION 5.8. Let � : [0, T ]×� → E be an H -strongly measurable and
adapted process which belongs scalarly to L0(�;L2(0, T ;H)). If there exists a
process ζ ∈ L0(�;C([0, T ];E)) such that for all x∗ ∈ E∗ we have

〈ζ, x∗〉 =
∫ ·

0
�∗(t)x∗ dWH(t) in L0(�;C([0, T ];R)),

then ζ belongs to Mc,loc
0 (�;E).

PROOF. Clearly, ζ0 = 0 almost surely and ζ is adapted, so it suffices to show ζ

is a local martingale. It is obvious that for all x∗ ∈ E∗, 〈ζ, x∗〉 is a local martingale.
Define a sequence of stopping times (τn)n≥1 by

τn := inf{t ∈ [0, T ] :‖ζt‖ ≥ n}.
By Facts 5.7, for all x∗ ∈ E∗ we have

〈ζ τn, x∗〉 =
∫ ·

0
〈�(s), x∗〉1[0,τn](s) dWH(s) in C([0, T ];R) almost surely.

Since the local martingale on left-hand side is bounded, the Burkholder–Davis–
Gundy inequalities and [18], Corollary 17.8, imply that it is a martingale and for
all x∗ ∈ E∗ and 0 ≤ s ≤ t it follows that

〈E(ζτn∧t |Fs), x
∗〉 = E(〈ζτn∧t , x

∗〉|Fs) = 〈ζτn∧s, x
∗〉

almost surely. It follows that for all 0 ≤ s ≤ t we have E(ζτn∧t |Fs) = ζτn∧s , so
(ζτn∧t )t∈[0,T ] is a martingale and (ζt )t∈[0,T ] is a local martingale. �

For elementary adapted processes � : [0, T ]×� → L(H,E) we define the sto-
chastic integral as an element of L0(�;C([0, T ];E)) in the obvious way. The
following result extends the integral to a larger class of processes.

THEOREM 5.9. Let E be a UMD space. For an H -strongly measurable and
adapted process � : [0, T ] × � → L(H,E) which is scalarly in L0(�;L2(0, T ;
H)) the following assertions are equivalent:

(1) there exists a sequence (�n)n≥1 of elementary adapted processes such that:

(i) for all h ∈ H and x∗ ∈ E∗ we have limn→∞〈�nh,x∗〉 = 〈�h,x∗〉 in mea-
sure on [0, T ] × �,

(ii) there exists a process ζ ∈ L0(�;C([0, T ];E)) such that

ζ = lim
n→∞

∫ ·

0
�n(t) dWH(t) in L0(�;C([0, T ];E));

(2) There exists a process ζ ∈ L0(�;C([0, T ];E)) such that for all x∗ ∈ E∗
we have

〈ζ, x∗〉 =
∫ ·

0
�∗(t)x∗ dWH(t) in L0(�;C[0, T ]);
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(3) � represents an element X ∈ L0(�;γ (L2(0, T ;H),E));
(4) For almost all ω ∈ �, �ω is stochastically integrable with respect to W̃H .

In this situation X ∈ L0
F
(�;γ (L2(0, T ;H),E)) and

ζ = IWH (ξX) in L0(�;C([0, T ];E)).

A process � : [0, T ]×� → L(H,E) satisfying the equivalent conditions of the
theorem will be called stochastically integrable with respect to WH . The process
ζ = IWH (ξX) is called the stochastic integral process of � with respect to WH ,
notation

ζ =
∫ ·

0
�(t) dWH(t).

It follows from Proposition 5.8 that ζ ∈ Mc,loc
0 (�;E).

It is immediate from Proposition 4.3 that if � : [0, T ] × � → L(H,E) is
Lp-stochastically integrable for some p ∈ (1,∞), then � is stochastically inte-
grable and we have

IWH (ξX) =
∫ ·

0
�(t) dWH(t),

where X ∈ Lp(�;γ (L2(0, T ;H),E)) is represented by �.

REMARK 5.10. Under the assumptions as stated, condition (1) is equivalent
to:

(1)′ There exists a sequence (�n)n≥1 of elementary adapted processes such
that:

(i) for all h ∈ H we have limn→∞ �nh = �h in measure on [0, T ] × �;
(ii) there exists an η ∈ L0(�;C([0, T ];E)) such that

η = lim
n→∞

∫ ·

0
�n(t) dWH(t) in L0(�;C([0, T ];E)).

PROOF OF THEOREM 5.9. First note that (i) and (ii) of part (1), com-
bined with [18], Proposition 17.6, imply that in (i) we have convergence in
L0(�;L2(0, T ;H)).

(1) ⇒ (3): Let �n represent Xn ∈ L0(�;γ (L2(0, T ;H),E)). By (ii) and
Lemma 5.4, these elements define a Cauchy sequence in L0(�;γ (L2(0, T ;H),

E)). Let X ∈ L0(�;γ (L2(0, T ;H),E)) be the limit. Since each Xn is elementary
adapted we have X ∈ L0

F
(�;γ (L2(0, T ;H),E)), and with property (i) it follows

that

〈X,x∗〉 = lim
n→∞〈Xn,x

∗〉 = lim
n→∞�∗

nx
∗ = �∗x∗ in L0(�;L2(0, T ;H)).

Hence, � represents X.
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(3) ⇒ (4): It follows from Lemma 2.7 that for almost all ω ∈ �, �ω is repre-
sented by X(ω). The result now follows from Proposition 3.2.

(4) ⇒ (3): Let N be a null set such that �ω is stochastically integrable with
respect to W̃H for all ω ∈ �N . Proposition 3.2 assures that for such ω we may
define X(ω) ∈ γ (L2(0, T ;H),E) defined by

X(ω)f =
∫ T

0
�(t,ω)f (t) dt.

An application of Remark 2.8 shows that the resulting random variable X :� →
γ (L2(0, T ;H),E) is strongly measurable. This proves (2).

(3) ⇒ (1): This may be proved in the same way as Theorem 3.6, this time using
Theorem 5.5.

(1) ⇒ (2): This is clear.
(2) ⇒ (1): It follows from Proposition 5.8 that ζ ∈ Mc,loc

0 (�;E). Let (τn)n≥1 be
a localizing sequence such that each ζ τn is bounded. It follows from the assump-
tions and Facts 5.7 that for all n and all x∗ ∈ E∗ we have

〈ζ τn, x∗〉 =
∫ ·

0
1[0,τn](t)�∗(t)x∗ dWH(t) almost surely.

By the Burkholder–Davis–Gundy inequalities, each 1[0,τn]� is scalarly in L2(�;
L2(0, T ;H)). In particular,

〈ζτn, x
∗〉 =

∫ T

0
1[0,τn](t)�∗(t)x∗ dWH(t) in L2(�).

By Theorem 3.6, each 1[0,τn]� is L2-stochastically integrable with integral ζτn .
With Theorem 3.6 we find elementary adapted processes (�n)n≥1 such that∥∥∥∥ζτn −

∫ T

0
�n(t) dWH(t)

∥∥∥∥
L2(�;E)

<
1

n
.

Doob’s maximal inequality implies that∥∥∥∥ζ τn −
∫ ·

0
�n(t) dWH(t)

∥∥∥∥
L2(�;C([0,T ];E))

≤ 2

n
.

It follows that∥∥∥∥ζ −
∫ ·

0
�n(t) dWH(t)

∥∥∥∥
L0(�;C([0,T ];E))

≤ ‖ζ − ζ τn‖L0(�;C([0,T ];E)) +
∥∥∥∥ζ τn −

∫ ·

0
�n(t) dWH(t)

∥∥∥∥
L0(�;C([0,T ];E))

≤ ‖ζ − ζ τn‖L0(�;C([0,T ];E)) + 2

n
.
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The latter clearly converges to 0 as n tends to infinity. This gives (ii). Now choose
x∗ ∈ E∗ arbitrary. In view of∫ ·

0
�∗(t)x∗ dWH(t) = lim

n→∞

∫ ·

0
�∗

n(t)x
∗ dWH(t) in L0(�;C([0, T ]))

from [18], Proposition 17.6, we obtain (i). �

REMARK 5.11. As was the case in Remark 3.8, if the filtration F is assumed to
be the augmented Brownian filtration F WH

T , then the equivalence (1) ⇔ (2) is true
for every real Banach space E. This may be proved by a stopping time argument
as in the proof of (2) ⇒ (1).

Our next objective is a generalization Theorem 4.4.

THEOREM 5.12 (Burkholder–Davis–Gundy inequalities). Let E be a UMD
space and fix p ∈ (1,∞). If � : [0, T ] × � → L(H,E) is H -strongly measurable
and adapted and stochastically integrable, then

E sup
t∈[0,T ]

∥∥∥∥
∫ t

0
�(s)dWH(s)

∥∥∥∥
p

�p,E E‖X‖p

γ (L2(0,T ;H),E)
,

where X ∈ L0
F
(�;γ (L2(0, T ;H),E)) is the element represented by �.

This is understood in the sense that the left-hand side is finite if and only if
the right-hand side is finite, in which case the estimates hold with constants only
depending on p and E.

PROOF OF THEOREM 5.12. First assume that the left-hand side is finite. De-
fine a sequence of stopping times (τn)n≥1 by

τn = inf
{
t ∈ [0, T ] :‖ξX(t)‖γ (L2(0,T ;H),E) ≥ n

}
.

Observe that ξX(τn) ∈ L
p
F
(�;γ (L2(0, T ;H),E)) and that it is represented by

�1[0,τn]. From Theorem 3.6 we deduce that �1[0,τn] is Lp-stochastically inte-
grable. Combining the identity∫ τn

0
�(t) dWH(t) =

∫ T

0
1[0,τn](t)�(t) dWH(t)

which follows for instance from Theorem 5.9(1), with the dominated convergence
theorem (here we use the assumption) and Fatou’s lemma, we obtain

E

∥∥∥∥
∫ T

0
�(t) dWH(t)

∥∥∥∥
p

= lim
n→∞E

∥∥∥∥
∫ T

0
1[0,τn](t)�(t) dWH(t)

∥∥∥∥
p

�p,E lim inf‖ξX(τn)‖p

Lp(�;γ (L2(0,T ;H),E))

≥ ‖X‖p

Lp(�;γ (L2(0,T ;H),E))
.
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This shows that X ∈ Lp(�;γ (L2(0, T ;H),E)), and by Theorem 3.6 that � is
Lp-stochastically integrable. The result now follows from Theorem 4.4.

If the right-hand side is finite, then � is Lp-stochastically integrable by Theo-
rem 3.6 and therefore the left-hand side is finite by Theorem 4.4. �

In the real-valued case, a similar estimates holds for all 0 < p < ∞. We do not
know whether Theorem 5.12 extends to all 0 < p < ∞ (or even just to p = 1).

We have the following extension of Itô’s representation theorem for Brownian
martingales to UMD Banach spaces.

THEOREM 5.13 (Representation of UMD-valued Brownian local martingales).
Let E be a UMD space. Then every E-valued local martingale M := (Mt)t∈[0,T ]
adapted to the augmented filtration F

WH has a continuous version and there exists
a unique X ∈ L0

F
(�;γ (L2(0, T ;H),E)) such that

M = M0 + IWH (ξX).

PROOF. We may assume M0 = 0. By Theorem 5.5 it suffices to show that M

has a continuous version. This can be seen in the same way as in the real case (cf.
[18], Theorem 18.10). �

For UMD spaces E with cotype 2 recall that γ (L2(0, T ;H),E) ↪→ L2(0, T ;
γ (H,E)). Hence every X ∈ L0(�;γ (L2(0, T ),E)) can be represented by a
process � ∈ L0(�;L2(0, T ;γ (H,E))). In this case, the above representation
takes the form

M = M0 +
∫ (·)

0
�(t) dWH(t).

For M-type 2 Banach spaces E, a representation theorem for martingales as sto-
chastic integrals with respect to H -cylindrical Brownian motions can be found in
[31], Chapter 2.
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