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RESULTS ON PROBABILITIES OF MODERATE DEVIATIONS!

By R. MICHEL ,
University of Cologne

The convergence rate problem for probabilities of moderate deviations
is completely solved by giving a necessary and sufficient condition for the
existence of the absolute moment of order ¢ + 2, ¢ > 0, in terms of prob-
abilities of moderate deviations. Furthermore, a result on the rate of con-
vergence of probabilities of moderate deviations is given under a weaker
moment condition than in Rubin and Sethuraman (1965).

1. Introduction. The purpose of this paper is to improve a theorem of Rubin
and Sethuraman [5], where the asymptotic behavior of probabilities of moderate
deviations, i.e. of probabilities of the form

Pr{xe X"t | 5i. f(x)| > c(nlog n)t}
is considered under appropriate moment conditions on f
Furthermore, we shall prove a theorem on the convergence of
Lo =Y (log m) o/ P {x € X1 | i, f(x;)] > ¢(n log m))

for ¢ > ¢, > 0, which improves Theorem 3 of Davis [3]. Our Theorem 2
completely solves the convergence rate problem for probabilities of moderate
deviations.

2. Results on moderate deviations. Let (X, .o, P) be a probability space and
[+ X — R an %“measurable function.
P | 57" denotes the independent product of n identical components P|.o7.
Let
D(f) = (2n)~t §  exp[—4r*) dr
Ni,on(—00, 1) = D(ta7?) .
For any measurable g, P(g) = § g dP.
In the following we shall use the inequality

(2.1) c(27 log n)in**®(—c(log n)t) — 1| < c~*log n)~*,
which is standard and follows from Feller (Lemma 2, page 175).

THEOREM 1. If P(f) = 0, P(f*) = 1, and P(|f|*"*?) < oo for some c, > O, then
Ty net =i (log m) 4| Prx € X*: | D1, f(x)] > e(nlog m)?} — 20(—c(log n)h)|

converges for all ¢ = ¢
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By (2‘ 1 )9
Sy net =i (log m) ¥ HD( —c(log n)?)

converges for all ¢ > ¢, and diverges for ¢ = ¢,. This combined with Theorem 1
implies that the series in Theorem 2 below converges for all ¢ > ¢, and diverges
for ¢ = ¢,, if P(f) = 0, P(f?) = 1, and P(|f|*™*?) < oo.

Hence, our Theorem 1 and Theorem 2 of Davis ([3] page 2020) lead to a com-
plete solution of the convergence rate problem for the probability of moderate
deviations:

THEOREM 2. Assume that P(f*) = 1. Let ¢, > 0 be given. Then
(i) P(f) = 0 and P(|f|*"***) < oo if and only if
e nedA-Ylog n) Py x e X*: | 31, f(x;)| > c(n log nt}

converges for all ¢ > c,.
(i) P(f) = 0 and P(|f|""**) < oo imply the divergence of the series in (i) for
¢ = (.

Using the result of Theorem 2 (i) together with Proposition 1 of Davis ([3]
page 2022) we obtain the following generalization of Theorem 3 of Davis, page
2023 (where ¢, > 1 is assumed to be an integer, and where the exponent of

(log n) is (c,* — 1)/2):
THEOREM 3. If P(f) = 0, P(f*) = 1, and P(|f|*"**) < oo for some ¢, > 0, then
Yiroy nd/P7Y(log m) o/ HPYx € X"t sup,z, |(k log k)™ i, f(x)] > c}
converges for all ¢ > c,.

When the moment generating function exists Cramér has shown that

P{xeX": | N, f(x)] > na,} ~

W exp[—jna,’]

if na,® > 0, na,* — co. For moderate deviations, i.e. for the case

)

n

Rubin and Sethuraman ([5] page 332, Theorem 4) have established the above
result under the much less restrictive moment condition

P(f]) < oo forsome ¢ >c*+ 2.
We obtain a result on the rate of convergence under the condition
P(|f|?***) < oo,
namely,

THEOREM 4. If P(f) = 0, P(f*) = 1, and P(|f|"**) < oo for some ¢ > O, then
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there exists a constant d > 0 such that for all ne N,

Prx e X": |30, f(x)| > e(nlogn)}} | d(log n)~#7-
(2/c(27)t)n=**(log n)~* = :

where 8 = min (1, ¢%).

The proof of Theorem 4 follows easily from (2.2) together with Chebychev’s
inequality, (2.11), and (2.1).

The bound given in Theorem 4 cannot be improved in general concerning the
rate of convergence. To see this, assume that f is distributed as N ,,. Then,

P{x e X": |Xr, f(x,)] > c(nlogn)t} = 2®(—c(log n)?) .
Furthermore, by Feller (Problem 1, page 193),
|e(27 log n)in®/*®(—c(log n)t) — 1| = c*(log n)~(1 — 3c~*(log n)7") .

Proor oF THEOREM 1. In the proof we shall use ideas related to those of
Rubin and Sethuraman.

To simplify our notations we shall use in the following d > 0 and « > 0 as
generic constants not depending on n e N.

(i) Let f, denote f truncated at r(n log n)t, where r = (1/4c) min (1, ¢,?).

We remark that, with this truncation,

exp l:c (__log ,,); f,,] < no'/t ' <1
n
<n =1,
(This will be used in the proof of (2.4)).
We have
[Pr{x e X"t | DI, f(x)] > c(nlog n)}
(2:2) — Pr{xe X" |0 fa(x)| > e(nlog n)t}]
< nP{xe X: |f(x)| > r(nlogn)t}.
As

e, no(log n) @+ P{x e X : |f(x)| > r(nlog n)t}
converges by Lemma 1 of Davis ([3] page 2017), it suffices to prove the assertion

for the truncated variables f,.
To this aim, let

g, = exp l:c (log ")é fn:\ and B, = P(g,) -

n

Define §,|.% by 0,(4) = 8,7'P(1,9,), A€ 57, and let Q, | o™ be the inde-
pendent product of n identical components Q, | %7
With g, = 0,(f,) and ¢, = c(log n)} — ny, we have
2.3) PYx e X": 31, fu(x;) > c(nlog n)t}
= B," exp[—c(nlog n)p,] {7 exp[—c(log n)}]F,(dr)
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where F, | <% is the measure induced by Q, | %™ and
X — 7t F (fa(X) — ) -

The reduction in (2.3) is standard and has been used by Cramér [2] and
Bahadur and Rao [1].
(i) Obviously,
[P(fa)| < dn~t-=
(2.4) 01— P(f,) < dn
P(|ful'g,) < dni==.

Hence, by a Taylor expansion of s — exp[s] about s = 0,

B, —1— clogn < dn '
2n | —
n, — c(“)_gi’)’
" n

0,2 — 1] < dne,

(2.5) < dnt-e

where o‘n2 = Qn(fnz) - /’lnz'
From (2.5) we obtain by standard arguments

(2.6) |n*2B,* exp[ —c(n log n)p,] — 1| < dn~=
and
2.7) el = le(log n)} — nigs,| < dn~=.

Furthermore, by (2.4) and (2.5),
Olfa — tal)9,7 < 8P(Ifo['9,)B8a 70,7 < dn=et,

Hence, by the Berry-Esséen theorem,

(2.8) SUp, g [Fa(—o0, f) — Ng,0,5(— 00, N < dn=.
This implies together with (2.7)

(2.9) 155, exp[ —c(log n)*)(F, — Ny, 2)(d0)] < dn=e.
As

o exp[—c(log n)}]Ny , 2,(dr) = exp[}0,’c*log n]®(—c,0,”" — co,(logn)}),
it is straightforward to show that (2.1), (2.5), and (2.7) imply,
(2.10) |22 exp[—c(log n)}]N,, 3,(dt) — n***®(—c(log n)})| < dn~=.
From (2.3), (2.6), and (2.8)—(2.10) we finally obtain
(2.11)  n®*2Px e X": N1, fu(x) > c(nlogn)t} — O(—c(log n)})| < dn—=.

As
e, n“oz/”‘l(log n)(c02/2)+1n—a—(c2/2>

converges for ¢ > ¢, (recall that @ > 0), the proof of Theorem 1 is completed.
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