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OPTIMAL STOPPING VARIABLES FOR
BROWNIAN MOTION

By LERoy H. WALKER
Brigham Young University

For a constant 8 > } and W normalized Brownian motion with param-
eter space the nonnegative real line, the stopping variable 1 defined by
A=supf{t: W(s) <yl + 9H3,0=s <1}
where y, is the unique positive root of
SSQ x2B-Delyz—z¥2) dx = y SS" x(28-Dle(yz—22/2) dx
is shown to be optimal in the sense that E{(1 + 2)-#W(2)} is equal to the

supremum of E{(1 + r)~#W/(z)} over all stopping variables r with respect to
W. The values of y, for 8 = 1.0, 1.5,2.0,2.5, 3.0, 3.5, and 4.0 are given.

1. Introduction and summary of results. Let {W(¢): t € R,}, where R, denotes
the set of nonnegative real numbers, be a normalized Brownian motion, i.e.
W(0) =0, E{W(r)} = 0, and E{(W(t))’} = ¢, defined on the probability space
(Q, &7, P) where the sample points in Q are the continuous functions on R,.
Let .57 (r) denote the minimum ¢-algebra of sets of .57 such that W(s), 0 < s < ¢,
are . -measurable and let T denote the set of stopping variables ¢ such that
{r =1t}e.F(¢) for all te R, and P{r < oo} = 1. The purpose of this paper is
to extend the result obtained by L. A. Shepp (1969) concerning an optimal
stopping variable A e T such that

E{(1 + )7W(2)} = sup, ., E{(1 + )" 'W(z)}

to the case where the expected reward is E{(1 + 7)~*W(r)} for some e T and
constant 8 > 1. [Shepp’s case was 8 = 1.] The approach is different since it
uses a result of A. G. Fakeev ((1970) Theorem 4, page 329) and an idea used by
the author ((1974) Lemma 4 and associated material). The main result is

THEOREM. For 8> 4, A =sup{t: W(s) < y(1 + 5)}, 0 < s < t}, where y, is
the unique positive root of
Sgo xz(ﬁ—ne(yx—z?/z) dx = y Sgo x<2p-1)e(yz—x2/2> dx ,
belongs to T and is optimal, i.e. :
E{(1 + H7PW(2)} = sup.c, E{(1 4 o)W (2)} .
The proof of consists of two parts. The first part establishes that an optimal

stopping variable can be expressed in the form sup {z: W(s) < y(1 + 5)}, 0 < s < 1}
for some appropriate constant y. The second part determines the appropriate
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value of y using standard calculus techniques for minimizing a function and a
result of D. A. Darling and A. J. F. Siegert (1953).

The following tabulation of values of y, for given values of § were calculated us-
ing the Computer Research Center facilities at the Brigham Young University:

B 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Yo 0.8399... 0.6388... 0.5372... 0.4728... 0.4272... 0.3928... 0.3655--.

2. Proof of the theorem. The fact that Ef{sup,.., (1 + #)~#|W(7)[} is finite
follows from Lemma 2 of L. H. Walker (1974) since

1
26 — 1

Hence, A. G. Fakeev’s Theorem 4 ((1970) page 329) can be used to define a
function 2as 2 = sup {r: (1 + 5)"FW(s) < v,, 0 = 5 < 1} where

v, = esssup..,, E{(1 + =)~ W(r)|. ¥ (0}

§o (1l + 0)*dt = < o

[A. G. Fakeev (1970) Theorem 1 page 326] and T, = {max (¢, 7): v € T} with the
property that
§iicoy (1 + A)TFW(2) dP + § ;) limsup,_, (1 + 0)=*W(r)dP
= sup.., E{(1 + 7)*W(7)}.
Observe that the above results do not insure that 4 e T; that is, P{4 = oo} may
be positive. Note that

. B L (2t log log 1)} W(t -

lim sup,_,, (1 + )W (r) = lim sup,_,w< 0 i t)gf’ ) s log(lc))g t)*) =0
by the law of the iterated logarithm for Brownian motion; hence, the second
integral on the left-hand side of the above equation equals zero.

By following exactly the same procedure as described in L. H. Walker ((1974)
Lemma 4 and associated material) with only a small change in notation, one can
establish that 2 = sup {r: W(s) < f(s), 0 < 5 < t} where f is a function on R, to
the real line which is characterized by the property

sup.er E{(1 + 1+ 1)~y + W(0)j} > (1 + 7%y when y <f(1),
=1+  when y=/(),

with the interpretation that when f(z) is + co or — co the appropriate inequality
is deleted from the above expression. Consideration of the stopping variable
t = 1 shows that f(r) = O for allte R, i.e.

EQ4+ 7Py +W)=2+ 0y >+ 0% forall y<O.
Because of the scaling property of W, namely that W(s) and #*W(s/t) have the
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same distribution function,

sup..r E{(1 + 7 + 7)7(y + W(2))}

-8 ‘
= (1 4 1)i~* E(1 < J wi(—=
(I + 07 supees K +1-{—t> <(1+;)%+ <1+z>>}
= (L+ 0¥ sup.ep E{(L+ )1 + 07y + W)}
Comparison of both sides of the above expression with (1 4 #)~# quickly estab-

lishes that f(r) = f(0)(1 + 5)t. If f(0) is finite, then 2, which can now be
expressed as

A=supfr: W(s) < f(O)(1 + 5}, 0 < s < ¢},
is finite with probability one by the law of the iterated logarithm for Brownian
motion. Hence, 2¢ T. The other possibility for f(0) is that it is infinite; how-
ever, then P[4 = oo} =1 and
sup.er E{(1 + )W (1)} = §1cey (1 + HPW(2)dP = 0.

Consideration of the stopping variable 7 = sup {r: W(s) < 1,0 < s < t}, i.e. stop
the first time that W reaches 1, establishes that sup .., E{(1 + 7)=*W(zr)} > 0,
which contradicts the above statement. Hence, f(0) is finite. The first part of
the proof is completed. It remains to characterize f(0) as the unique positive
root of

Sgo x2B-Dovz—22/d dyx — ATS x(2B-Vpyz—22/2) gy

For r defined by

r=sup{t: W) <yl + 5L 0 s < ¢},
put
V() = E((1 + ) W(2)) = §5 (1 + x)iF 4, Pz < x)
=y\rzitd,Plr <z - 1}.
By the definition of r,
Plr<z—1}=1—Ps W) <y, 1 <5<z}
=1— PU@u) <y, 0=<u< 2 logz}
where 5 = e and U(u) = e=*W(e™). In terms of the U process (which is the
Uhlenbeck process), V can be expressed in the form
V() = =y §5 07 d, U) < , 0 < u < o}

The above integral is the Laplace transform, with parameter 28 — 1, of the first
passage time of the Uhlenbeck process across the boundary y. Hence, the results
of D. A. Darling and A. J. F. Siegert ((1953) Theorem 3.1, page 627; Theorem
4.1, page 629; Example b, page 630) give

V(y) = D(1—2p>(0)/e”2/4D<1—2p)( —7)

where D, is the parabolic cylinder function for parameter a. D,(z) can be ex-
pressed as a contour integral in the complex plane [E. T. Whittaker and G. N.



320 LEROY H. WALKER

Watson (1948) page 349; see page 244 for the definition of the contour] which
is equal to

_ sin (na)r‘(a + 1) 6_22/4 Sgo x_(a+1)e—(zx+x2/2) dx .
- T

Therefore,

y (o xME-De=a2 dx

i X2B-Dglyz—22/2) fy

V(y) =

V' is nonnegative for y > 0, zero when y = 0, and approaches zero as y tends to
infinity. Also, V is differentiable as a function of y; hence, there must be at
least one value of y where the derivative of V' is zero and V is maximum. For
the derivative to be zero,

Sgo x2(ﬁ—l)e(yz—x2/2) dx — y Sga x(2ﬁ—1)e(ya:—a:2/2) dx .
The left-hand side of this equation is positive when y = 0 and increases with slope
q p y p
Sgo x(2-Dlyz—22/2) s
while the right-hand side is zero when y = 0 and increases with the greater slope
g Y g P
sgo x(2B-Dpyz—22/2) gy +y Sgo x2Pewz—342) dy .

Hence, there can be at most one positive root and at this root ¥ is maximum.
The theorem is proved.
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