OPTIMAL STOPPING VARIABLES FOR BROWNIAN MOTION

BY LEROY H. WALKER

Brigham Young University

For a constant $\beta > \frac{1}{2}$ and W normalized Brownian motion with parameter space the nonnegative real line, the stopping variable λ defined by

$$\lambda = \sup\{t \colon W(s) < y_0(1+s)^{\frac{1}{2}}, 0 \le s < t\}$$

where y_0 is the unique positive root of

$$\int_0^\infty x^{2(\beta-1)} e^{(yx-x^2/2)} dx = y \int_0^\infty x^{(2\beta-1)} e^{(yx-x^2/2)} dx$$

is shown to be optimal in the sense that $E\{(1 + \lambda)^{-\beta}W(\lambda)\}$ is equal to the supremum of $E\{(1 + \tau)^{-\beta}W(\tau)\}$ over all stopping variables τ with respect to W. The values of y_0 for $\beta = 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, and 4.0 are given.$

1. Introduction and summary of results. Let $\{W(t): t \in R_+\}$, where R_+ denotes the set of nonnegative real numbers, be a normalized Brownian motion, i.e. W(0) = 0, $E\{W(t)\} = 0$, and $E\{(W(t))^2\} = t$, defined on the probability space (Ω, \mathcal{F}, P) where the sample points in Ω are the continuous functions on R_+ . Let $\mathcal{F}(t)$ denote the minimum σ -algebra of sets of \mathcal{F} such that W(s), $0 \le s \le t$, are \mathcal{F} -measurable and let T denote the set of stopping variables τ such that $\{\tau \le t\} \in \mathcal{F}(t)$ for all $t \in R_+$ and $P\{\tau < \infty\} = 1$. The purpose of this paper is to extend the result obtained by L. A. Shepp (1969) concerning an optimal stopping variable $\lambda \in T$ such that

$$E\{(1 + \lambda)^{-1}W(\lambda)\} = \sup_{\tau \in T} E\{(1 + \tau)^{-1}W(\tau)\}$$

to the case where the expected reward is $E\{(1+\tau)^{-\beta}W(\tau)\}$ for some $\tau \in T$ and constant $\beta > \frac{1}{2}$. [Shepp's case was $\beta = 1$.] The approach is different since it uses a result of A. G. Fakeev ((1970) Theorem 4, page 329) and an idea used by the author ((1974) Lemma 4 and associated material). The main result is

THEOREM. For $\beta > \frac{1}{2}$, $\lambda = \sup\{t: W(s) < y_0(1+s)^{\frac{1}{2}}, 0 \le s < t\}$, where y_0 is the unique positive root of

$$\int_0^\infty x^{2(\beta-1)} e^{(yx-x^2/2)} dx = y \int_0^\infty x^{(2\beta-1)} e^{(yx-x^2/2)} dx,$$

belongs to T and is optimal, i.e.

$$E\{(1 + \lambda)^{-\beta}W(\lambda)\} = \sup_{\tau \in T} E\{(1 + \tau)^{-\beta}W(\tau)\}.$$

The proof of consists of two parts. The first part establishes that an optimal stopping variable can be expressed in the form $\sup\{t: W(s) < y(1+s)^{\frac{1}{2}}, 0 \le s < t\}$ for some appropriate constant y. The second part determines the appropriate

Received February 5, 1973; revised July 3, 1973.

AMS 1970 subject classifications. Primary 62L15; Secondary 60G40, 60J65.

Key words and phrases. Optimal stopping variables (rules), normalized Brownian motion.

www.jstor.org

value of y using standard calculus techniques for minimizing a function and a result of D. A. Darling and A. J. F. Siegert (1953).

The following tabulation of values of y_0 for given values of β were calculated using the Computer Research Center facilities at the Brigham Young University:

$$\beta$$
 1.0 1.5 2.0 2.5 3.0 3.5 4.0 y_0 0.8399... 0.6388... 0.5372... 0.4728... 0.4272... 0.3928... 0.3655...

2. Proof of the theorem. The fact that $E\{\sup_{t \in R_+} (1+t)^{-\beta} |W(t)|\}$ is finite follows from Lemma 2 of L. H. Walker (1974) since

$$\int_0^\infty (1+t)^{-2\beta} dt = \frac{1}{2\beta-1} < \infty.$$

Hence, A. G. Fakeev's Theorem 4 ((1970) page 329) can be used to define a function λ as $\lambda = \sup\{t : (1+s)^{-\beta}W(s) < \nu_s, 0 \le s < t\}$ where

$$\nu_t = \operatorname{ess\,sup}_{\tau \in T_t} E\{(1+\tau)^{-\beta} W(\tau) \,|\, \mathscr{F}(t)\}$$

[A. G. Fakeev (1970) Theorem 1 page 326] and $T_t = \{\max(t, \tau) : \tau \in T\}$ with the property that

$$\int_{\{\lambda < \infty\}} (1 + \lambda)^{-\beta} W(\lambda) dP + \int_{\{\lambda = \infty\}} \limsup_{t \to \infty} (1 + t)^{-\beta} W(t) dP$$

$$= \sup_{\tau \in T} E\{(1 + \tau)^{-\beta} W(\tau)\}.$$

Observe that the above results do not insure that $\lambda \in T$; that is, $P\{\lambda = \infty\}$ may be positive. Note that

$$\lim \sup_{t \to \infty} (1 + t)^{-\beta} W(t) = \lim \sup_{t \to \infty} \left(\frac{(2t \log \log t)^{\frac{1}{2}}}{(1 + t)^{\beta}} \frac{W(t)}{(2t \log \log t)^{\frac{1}{2}}} \right) = 0$$

by the law of the iterated logarithm for Brownian motion; hence, the second integral on the left-hand side of the above equation equals zero.

By following exactly the same procedure as described in L. H. Walker ((1974) Lemma 4 and associated material) with only a small change in notation, one can establish that $\lambda = \sup\{t \colon W(s) < f(s), 0 \le s < t\}$ where f is a function on R_+ to the real line which is characterized by the property

$$\sup_{\tau \in T} E\{(1 + t + \tau)^{-\beta}(y + W(\tau))\} > (1 + t)^{-\beta}y \quad \text{when} \quad y < f(t),$$

$$\leq (1 + t)^{-\beta}y \quad \text{when} \quad y \geq f(t),$$

with the interpretation that when f(t) is $+\infty$ or $-\infty$ the appropriate inequality is deleted from the above expression. Consideration of the stopping variable $\tau = 1$ shows that $f(t) \ge 0$ for all $t \in R_+$, i.e.

$$E\{(2+t)^{-\beta}(y+W(1))\} = (2+t)^{-\beta}y > (1+t)^{-\beta}y$$
 for all $y < 0$.

Because of the scaling property of W, namely that W(s) and $t^{\frac{1}{2}}W(s/t)$ have the

same distribution function,

$$\sup_{\tau \in T} E\{(1 + t + \tau)^{-\beta}(y + W(\tau))\}
= (1 + t)^{\frac{1}{2} - \beta} \sup_{\tau \in T} E\{\left(1 + \frac{\tau}{1 + t}\right)^{-\beta} \left(\frac{y}{(1 + t)^{\frac{1}{2}}} + W\left(\frac{\tau}{1 + t}\right)\right)\}
= (1 + t)^{\frac{1}{2} - \beta} \sup_{\tau \in T} E\{(1 + \tau)^{-\beta}((1 + t)^{-\frac{1}{2}}y + W(\tau))\}.$$

Comparison of both sides of the above expression with $(1 + t)^{-\beta}$ quickly establishes that $f(t) = f(0)(1 + t)^{\frac{1}{2}}$. If f(0) is finite, then λ , which can now be expressed as

$$\lambda = \sup\{t : W(s) < f(0)(1+s)^{\frac{1}{2}}, 0 \le s < t\},$$

is finite with probability one by the law of the iterated logarithm for Brownian motion. Hence, $\lambda \in T$. The other possibility for f(0) is that it is infinite; however, then $P\{\lambda = \infty\} = 1$ and

$$\sup_{\tau \in T} E\{(1+\tau)^{-\beta}W(\tau)\} = \int_{\{\lambda < \infty\}} (1+\lambda)^{-\beta}W(\lambda) dP = 0.$$

Consideration of the stopping variable $\tau = \sup\{t \colon W(s) < 1, 0 \le s < t\}$, i.e. stop the first time that W reaches 1, establishes that $\sup_{\tau \in T} E\{(1 + \tau)^{-\beta}W(\tau)\} > 0$, which contradicts the above statement. Hence, f(0) is finite. The first part of the proof is completed. It remains to characterize f(0) as the unique positive root of

$$\int_0^\infty x^{2(\beta-1)} e^{(yx-x^2/2)} dx = y \int_0^\infty x^{(2\beta-1)} e^{(yx-x^2/2)} dx.$$

For τ defined by

$$\tau = \sup \{t : W(s) < y(1+s)^{\frac{1}{2}}, 0 \le s < t\},\,$$

pùt

$$V(y) \equiv E\{(1+\tau)^{-\beta}W(\tau)\} = \int_0^\infty y(1+x)^{\frac{1}{2}-\beta} d_x P\{\tau \le x\}$$

= $y \int_0^\infty z^{\frac{1}{2}-\beta} d_z P\{\tau \le z - 1\}$.

By the definition of τ ,

$$P\{\tau \le z - 1\} = 1 - P\{s^{-\frac{1}{2}}W(s) < y, 1 \le s < z\}$$

= 1 - P\{U(u) < y, 0 \le u < 2^{-1} \log z\}

where $s = e^{2u}$ and $U(u) = e^{-u}W(e^{2u})$. In terms of the *U* process (which is the Uhlenbeck process), *V* can be expressed in the form

$$V(y) = -y \int_0^\infty e^{v(1-2\beta)} d_v P\{U(u) < y, 0 \le u < v\}.$$

The above integral is the Laplace transform, with parameter $2\beta - 1$, of the first passage time of the Uhlenbeck process across the boundary y. Hence, the results of D. A. Darling and A. J. F. Siegert ((1953) Theorem 3.1, page 627; Theorem 4.1, page 629; Example b, page 630) give

$$V(y) = D_{(1-2\beta)}(0)/e^{y^2/4}D_{(1-2\beta)}(-y)$$

where D_{α} is the parabolic cylinder function for parameter α . $D_{\alpha}(z)$ can be expressed as a contour integral in the complex plane [E. T. Whittaker and G. N.

Watson (1948) page 349; see page 244 for the definition of the contour] which is equal to

$$-\frac{\sin{(\pi\alpha)}\Gamma(\alpha+1)}{\pi}\,e^{-z^2/4}\,\int_0^\infty x^{-(\alpha+1)}e^{-(zx+x^2/2)}\,dx\,.$$

Therefore,

$$V(y) = \frac{y \int_0^\infty x^{2(\beta-1)} e^{-x^2/2} dx}{\int_0^\infty x^{2(\beta-1)} e^{(yx-x^2/2)} dx}.$$

V is nonnegative for $y \ge 0$, zero when y = 0, and approaches zero as y tends to infinity. Also, V is differentiable as a function of y; hence, there must be at least one value of y where the derivative of V is zero and V is maximum. For the derivative to be zero,

$$\int_0^\infty x^{2(\beta-1)} e^{(yx-x^2/2)} dx = y \int_0^\infty x^{(2\beta-1)} e^{(yx-x^2/2)} dx.$$

The left-hand side of this equation is positive when y = 0 and increases with slope

$$\int_0^\infty x^{(2\beta-1)} e^{(yx-x^2/2)} \, dx \, ,$$

while the right-hand side is zero when y = 0 and increases with the greater slope

$$\int_0^\infty x^{(2\beta-1)} e^{(yx-x^2/2)} dx + y \int_0^\infty x^{2\beta} e^{(yx-x^2/2)} dx.$$

Hence, there can be at most one positive root and at this root V is maximum. The theorem is proved.

REFERENCES

- [1] DARLING, D. A. and SIEGERT, A. J. F. (1953). The first passage problem for a continuous Markov process. *Ann. Math. Statist.* 24 624-639.
- [2] FAKEEV, A. G. (1970). Optimal stopping rules for stochastic processes with continuous parameter. Theor. Probability Appl. 15 324-331.
- [3] Shepp, L. A. (1969). Explicit solutions to some problems of optimal stopping. *Ann. Math. Statist.* 40 993-1010.
- [4] Walker, L. H. (1974). Optimal stopping variables for stochastic processes with independent increments. *Ann. Probability* 2 321-328.
- [5] WHITTAKER, E. T. and WATSON, G. N. (1948). A Course of Modern Analysis. The University Press, Cambridge, Mass.

MATHEMATICS DEPARTMENT 292 MSCB BRIGHAM YOUNG UNIVERSITY PROVO, UTAH 84601