The Annals of Probability
1974, Vol. 2, No. 3, 387-407

BERRY-ESSEEN ESTIMATES IN HILBERT SPACE
AND AN APPLICATION TO THE LAW .
OF THE ITERATED LOGARITHM

By J. KueLss* AND T. KURTZ?
University of Wisconsin

We establish Berry-Esséen type estimates for random variables with
values in a real separable Hilbert space H. These estimates are then used
to prove the law of the iterated logarithm for sequences of H-valued random
variables and also to prove a functional form of the law of the iterated
logarithm for H-valued partial sums as given by Strassen. We also prove
a log log result for H-valued symmetric stable random variables.

1. Introduction. Throughout the paper H will denote a real separable Hilbert
space with norm and all measures on H are assumed to be Borel measures.

The measure 2 on H is said to be a mean zero Gaussian measure if every
continuous linear functional f on H has a mean zero Gaussian distribution with
variance §, [f(x)]’u#(dx). The operator T defined on H by identifying H with its
dual and given by

(Tf 9) = §u (/> X)(9, x)s(dx) (f> 9 € H)

is called the covariance operator of p. It is well known (see [12] for details) that
a mean zero Gaussian measure on H is uniquely determined by its covariance
operator and that the covariance operator of any Gaussian measure has a finite
trace as well as the obvious properties of symmetry and nonnegativity. Con-
versely, any such operator is the covariance operator of a mean zero Gaussian
measure on H and is commonly called an S-operator [12].

However, a mean zero Gaussian measure ¢ on H (or any real separable Banach
space for that matter) can also be uniquely determined by a subspace H, of H
which has a Hilbert space structure. The norm on H, will be denoted by
and it is well known that the H norm is weaker than LonH, In fact,
is a measurable norm on H, in the sense of [5] and the measure y is the
extension of the canonical normal distribution on H, to H. We describe this
relationship by saying 4 is generated by H,. Since is weaker than ||.||, it
follows that the topological dual of H can be embedded by the restriction map
linearly into the dual of H,, and identifying H . and its dual we have the dual
of H, call it H*, linearly embedded in H .- As might be expected H, is intimately
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388 J. KUELBS AND T. KURTZ

related to the covariance operator of y, but for details on these matters as well
as further references see [5], [6], [7].

Let X, X,, - - - be independent identically distributed H-valued random vari-
ables with mean zero, covariance operator ‘
(Tx, y) = E((X,; x)(X,, ) (x, ye H)

and such that E||X||? < co. Then T is an S-operator and if x is the mean zero
Gaussian measure on H with covariance operator T it is well known that

(1.1) ) Py

nt

in the sense of weak convergence. A natural question to ask is one regarding
the Berry-Esséen estimates related to the convergence in (1.1) when H is infinite
dimensional. The work of Sazonov in [13] and [14] is in this direction and was
motivated by an attempt to obtain a rate of convergence result for the w’-test in
statistics. In [13] he shows that for a particular sequence of mean zero bounded
independent identically distributed H-valued random variables {Y,} one has

J(REREES 2

nt
where ¢ > 0 is arbitrary. Using the same Y, ’s and after considerable effort the
estimate in (1.2) is improved to O(n=/%*¢) in [14] where again ¢ > 0 is arbitrary.

The results we obtain in section two are analogues of the Berry-Esséen estimates
known when H is finite dimensional. Our results do not depend on previous
results but are proved directly. Unfortunately, they fall short of what is known
for finite dimensions, but when H is infinite dimensional we easily extend the
results [13] and [14] as can be seen from Corollary 2.1 and Corollary 2.2.

In Section 3 we apply the estimates of Section 2 to obtain the law of the iterated
logarithm for sequences of independent H-valued random variables which are not
Gaussian as well as obtain a functional form of the law of the iterated logarithm
for H-valued partial sums as in Strassen [15]. The idea of using Berry-Esséen
type estimates in this connection appears in a number of places but perhaps most
closely related to our results in [3]. Finally, insection four we discuss the analogue
of [2] for sequences of independent H-valued symmetric stable laws.

We thank the referee for pointing out a number of minor errors and misprints
in the original manuscript.

= t> — u(x: ||x]] £ 1] = O(n=vo+e)

(1.2) SUP, =0

2. Rates of convergence for the central limit theorem in H. A nontrivial
measure is any measure which is not concentrated at a single point.

LemMMA 2.1. Let pt be a nontrivial mean zero Gaussian measure on a real separable
Hilbert space H. Then there exists a constant C such that

(2.1) preH:a< ||| Sa+e<Coe
forall aand all ¢ > 0.
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Proor. Since u is a mean zero Gaussian measure on H it is well known from,
for example, [12] that there is a complete orthonormal sequence {e,} for H such
that the functions {(x, e,): n = 1} are independent mean zero Gaussian random
variables with variances 2, > 0 satisfying 37, 2, < co. Further, ¢ nontrivial
implies at least one 2, > 0 and we have the Fourier transform of ||x|[* given by

22) $(1) = €19 u(dx) = §, exp[it T, (x, €,)(dx)
= . (1 — 2it2,)"%.

If at least three 2,’s are positive then (by relabeling if necessary) we can assume
A;, 45, 45 are positive and hence that

p(n)] < 1 it =<1;
< (A A4 if [ff>1.

Hence {=_ |4(#)| dt < co and by the Fourier inversion theorem we have that ||x||*
has a bounded continuous density, call it 4(s), when at least three 2,’s are posi-
tive. We now assume 4,, 4,, 4, positive until further notice.

Since 3}, 4, < oo and the (x, e,)’s are independent we have {,, ||x||*#(dx) < oo
and

¢'(t) — SH ”x”2ei”"“2pt(dx) —_ Zn SH (x, en)ze””’”zpt(dx)
. . _ A,
(2.3) =0 2 (TLewn (1 — 2it2,)7) (szthn)_%
zn

=0 Lo 2ind,)

Now 37,2, < oo s0 |¢'(f)] < C|g(r)| for all real ¢ and hence §=, |¢'(f)| dt < oo.
Thus the inverse Fourier transform

(2.4) o(s) = il?c = e~ (1) dt
is a bounded continuous function of s. On the otherhand, the probability density
of ||x||?, A(s), is bounded and continuous and

&(t) = (=, e*h(s) ds .
Now §, ||x][Pu(dx) < oo implies §=,, sh(syds < co and hence
(2.5) &'(1) = i 2, e**sh(s) ds .
By (2.4) and (2.5) and that {=_ |¢'(f)| df < oo we have

ols) = ish(s) ,

and since p is bounded and continuous sk(s) is bounded and continuous on

(— o0, o). Now the probability density of ||x||, call it g(s), satisfies

0() = P = 9) = £ PP S ) = 25H) (5> 0).
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Since g(s) = 0 for s < 0 and k(s) and sh(s) are bounded and continuous on
(— 00, oo) we have
sup, |9(s)| = sup, [25h(s")] < 2 sup,g, A(s)| + 2 sup, |sh(s*)] < oo .
Thus (2.1) holds if at least three 4,’s are positive.
Since y is nontrivial at least one 4, > 0 and in case only one or only two 2,’s

are positive then (2.1) is obvious since the density of ||x|| is bounded in one or
two dimensions.

LEMMA 2.2. Let f be a r times continuously differentiable function on (— oo, co)
such that f*(0) = 0 for k = 1,2, - - -, rand let g(x 4 Ay) = f(||x + y||) forx,y e H
and (—oo < 2 < oo). Then g isr times continuously differentiable as a function of
A on (— oo, o).

Proor. By the chain rule g is obviously r times continuously differentiable at
all A such that x + 4y # O since ¢(2) = ||x + Ay|| is infinitely differentiable at all
such 4. In fact, induction yields that
d* ey XA D) )

—— ¢(4) |l = W a(j, k
PITRAD) d,zk x4 Wl = ¥ (s k) ix + [
where the a(j, k) are constants and [.] is the greatest integer function.

Now if x 4+ 4,y = 0, then unless y = 0 we have x + 1y = 0 for all other 4
In case y = 0 the lemma is trivially true so assume y # 0. Then for 2 # 4, we
have by [1] that forn =1, 2, -

@7 g+ ) = i D Bl - a)F D) -+ (F™(A)f P (H(2)

(2.6)

dz
where B(a,, - - -, a,) are positive constants and I(k, n) consists of all collections
of nonnegative integers a,, ---, @, such that &, + ... + a, =k and «a, +

20y + -+ + na, = n.
Thus g will have r derivatives at 2 = 1, all of which are zero if we show

(2.8) limMo% g(x + 2) = 0 (n=1,2, 0, 1).
Now note that

[P(PA) _ =1,...
(2.9) lim,_, L 22 (¢(Z))’ - k=1, , 1)

[RA) = §§0 Sr=kr - S o f 0 (s) dsdty - dt
when [#(0) = 0 for j = 1, - .., r. Furthermore, the general term in (2.7) can
be estimated using (2.6) to obtain

- PN |17 i adcicatisnisie A C10))

210) (@Y @@ = o (I )
where a; + -+ + a, =k, a, + 202, + - -+ + na, = n. Thusa, + 2a, + .-+ +
(n — Da, = n — k so (2.10) approaches zero as 2 — 4, by (2.9) asn < r. Hence
(2.8) holds proving the lemma.

since
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LEMMA 2.3. Suppose X and Y are independent H-valued random variables such
that E||X||* < oo and E||Y||* < co. Then

..... et B €) - (X, e, )E((Y, €) -+ (Y e,)

with respect to any complete orthonormal basis {e;} of H.

E(X, Y)* = lim, 57,

Proor. Let P, denote the projection onto the subspace generated by {e,, - - - ,e,}.
Then
(P, X, V) < [P XYY" < (1X]141Y ] |
and E||X||¥||Y||* = E||X||* - E||Y||* by independence. Hence by the dominated
convergence theorem

E(X, Y)* = lim, E(P, X, Y)* : \ ‘
= lim, 35 E(Xs €) - oo (X € ))E((Y, e) - -+ (Y ey))
so the lemma is proved. ' -
If X is an H-valued random variable and {e,} is a complete orthonormal basis

for H, then the jth coordinate moments of X with respect to {e,} are the mo-
ments E{(X, e, ) --- (X, e,;)} for all possible choices of integers i, - - -, i,.

THEOREM 2.1. Let X, X,,. - - be independent H-valued random variables such that
E(X,) =0(n=1,2,...)and each X, has common covariance operator T where

(Tx, y) = E{(Xp, x)(X,, )} (v, yeHin=1,2,...).

Let 1 denote the mean zero Gaussian measure on H having covariance operator T and
assume r is an integer such that r = 3. Then:

(A) If sup, E||X,||” < oo and the jth coordinates moments of each X, with respect
to some complete orthonormal basis {e,} in H agree with the corresponding coordinate
moments for p forall j < r — 1, then

nt
(B) If sup, E||X,|*~* < oo and the jth coordinate moments of each X, with
respect to some complete orthonormal basis {e,} in H agree with the corresponding
coordinate moments for p for all j < r — 1, then for each ¢ > 0

Pt X

nt
REMARK. If r = 3, then each X, having mean zero and common covariance
operator T is equivalent to saying the jth coordinate moments of each X, agree
with the corresponding moments of ¢ for all j < 2. Hence if r = 3. the extra
hypothesis on the coordinate moments is vacuous, and our conditions reduce to
the classical assumptions. The following corollaries are now immediate from
Theorem 2.1 with r = 3.

(2.11) Sup,-,

< t> — pu(x: x| £ t)’ = O(n—H+¥ar+v) |

(2.12) SUP,, < t> — p(x: ||x]] £ 1)’ = O(n~i+ur+e)

CoRrOLLARY 2.1. Let X,, X,, - -- be independent H-valued random variables such
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that E(X,) = 0(n = 1,2, -..), sup, E||X,||* < oo, and each X, has common covari-
ance operator T where (Tx, y) = E{(X,, x)(X,, y)} for x,ye Hand n = 1,2, ....

Then P<’

(2.13)  sup,g,|P(||Ht o+ X
where p is the mean zero Gaussian measure on H with covariance operator T.

. = 0(n)

< 1) = x5 < )

COROLLARY 2.2. Letpu, X, X,, - - - satisfy the conditions of the previous corollary
and assume sup, E||X,|[*** < co. Then for each ¢ > 0

P(\ XN+ + X

nt
Proor oF THEOREM 2.1. Fix r > 3. First we will prove (A). For each integer
n = 1 and for each real number s define f, ,: (— oo, co) — [0, 1] such that S
is monotonic decreasing, f, () = 1 for u < s, f, (4) = O for u > s + 4, where
d, > 0 will be specified later, f{) is continuous on (— oo, o), and

(2.15) 3( )l = 00 s p40,2(+))
where y, denotes the indicator function of E. Furthermore we take f, ,(4) =
fa,o(# — s) so the bounding constant in (2.15) is uniform in s.

Let g, .(x) = f..(||x||) for each xe H and let W, = (X, + ... 4 X,)/nt for
n=1,2,.... Then, if P(||W,|| < 1) = u(x: ||x|| < ¢) we have

(2.16)  |P(|W,|| < 1) — p(x: [|x]| < 1)
= E(90,dW0) — Yu 9u,lX)(dx) + p(x: t < ||x]| S £ 4 0,)
I P(W.)| < 1) < p(x: ||x]| < ), then
IP(IWall = 1) = p(x: |Ix]] < 9)]
= P(W,|| > 1) — p(x: [|x]| > 1)
(2.17) < E(1 - Int—s, (W) — Su (1 — Gn -3, (X)) 11(dx)
+uxit—9d, < || =9
= {u gn,t—-an(x)/"(dx) - E(gn,z—a,,(Wn))
+pxit—0, x| =0).
Now by Lemma 2.1 p(x: s < ||x|| < £) = O(]s — t]) so (2.11) follows from (2.16)
and (2.17) if we show
(2.18) SUP.z0 |E(9n, (W) — Su Gn,o(X)p2(dX)| = O(n=3rorrsn)

with 6, = n~#32+b_ The supremum need only be taken over ¢ > 0 since for
s < 0 we have
[E(Gn,o(Wa)) = $a Ga,o((x)22(dx)|
= B9, W) + Vi Gno(%)11(dx)
= |E(9n,o(Wa)) = Vu Guo(x)(dx) + 2p(x: ||x]| < 0,,)

sinceg,, < g,,fors <t

(2.14) SUp,.,

< 1) — e |l < 1)) = 0.
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Let X;*, X;*, ... be independent random variables each with Gausstan law p
as given in the theorem, and assume they are independent of X, X,, ... Then
L(X* 4 - + X, nd) = g and if Z, = (X* + -+ + X,*)/n} then (2.18)
holds if

(219) Supt20 IE(gn,t(Wn)) - E(gn,t(Zn))I = O(n—i+3/2(r+l)) .
Now

(2'20) gn,t(Wn) - gn,t(Zn) = ZI:L=1 Vk

where

V., — <X1++Xk+X£"+1++Xn*>
k_gn,t n&

SPMCESUES S L 25
n, n%

= 0n,(Us + Xifn¥) — g, (U, + X,*[n})
and :

U=(X+ -+ X+ X+ - + X, *)/nt.
Let A(2) = 9,,(U, + 2X,/n?) for —oo < 2 < co. Then by Lemma 2.2, (2.6),
(2.7) and Taylor’s formula we have

gn,t(Uk + Xk/n&)

1 H2(0) |, A(2)

(2:21) = I ; 0<2<1)

= 0..(U) + 2;;171! (S (D Kt -+ 5 @y 6y O} FEAH(0))]

+ ri, i Zram @y ey @y, @, A)fE(S(R))

where 2 is a random variable such that 0 < 2 < 1, ¢(2) = ||U, 4+ AX,/n¥|],
Hatyy -y gy § 2) = By -, @)(FR)S -+ ($PD)% for j=1, .-+, 7, and
I(i, j) is defined as in (2.7).

A similar expansion holds for g, (U, + X,*/n?) with X, replaced by X,* and
A by 2* with 0 < 2* < 1. Hence

Vi = 90,{U, + X,/nt) — 9, (U, + X, *[nt)
1 )
(2'22) = ;;i ]—, {sz‘=1 [Zl(i,j) [J(ays « -+ a;, ¢, 0)

— J(@ys - o aj, By, 0)]]£1594(6(0))}
+ 9, l(Up, AX /1Y) — 9, (U,y 2* X, * [n)

where ¢,(4) = [|U, + 2X,*/n}|],

(223) 90U Df) = - B [T M = @ 6, DIUSA)
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and a similar expression holds for 7, (U,, 2*X,*/n?) with 2, ¢ replaced by A*
and ¢*. :

Now ¢(0) = ¢,(0) = ||U,||, U, is independent of X and X,*, and the jth co-
ordinate moments of each X, agree with the corresponding coordinate moment
of X,* for all j < r — 1 so we have

(228)  E{[U(@n - r a6, 0) — Hay -+ @5 b OLLULID} = O

for all nonnegative integers a,, - -, @; such that &, + ... + a; = i, a, +
2+ +++ +ja;=j,and j=1,.--,r — 1. To establish (2.24) estimates as
used in (2.9) and (2.10) along with the boundedness of each f*” assure integra-
bility, and the independence of U,, X, and X,* along with (2.6) yield (2.24)
since the jth coordinate moments of X, and X,* agree forj<r— 1.

That is, using (2.6) and expanding the derivatives in (2.24) to their various
powers and collecting similar terms a typical difference in (2.24) is of the form

@25) e p{ LB (0, I — U KA
k
where ¢ is a constant and u, v, w are integers such that
u=a + 22,2 —2u, + 2% (B —2u,) + -+ + 254 (j — 2u;,)
v=232U,+ 238Uy + -+ 235, u;,
w=a + Z:ZI (4 - 2”2,; - 1) + -0+ Zf:’l (2] - 2uj,s - 1)

with 0 < u;, < [i)2]fori=2,...,jand s =1, - -+, @,
Now expand U,, X,, and X,* about the orthonormal basis {e,} with respect to
which X, and X,* have equal coordinate moments to obtain from Lemma 2.3 that

E(fE(NU DU X[ X1/ Ul*)
— lim, X7 E <M”_U_kﬂl (Up &) -+ (Vs eiu)>

WUll®
(2.26) X E(|| Xil[*(X» €:) - -+ (Xis €3,))
= lim 57 ... E< mlllUD (g, ) (Une, >
WUll®

X E(||XH[ (X5 &) - -+ (Xi*s e)

Ul
Here we used the fact that u - v =a, + 2a, + -+ +ja,=j<r—1 and
W—u=a,+2a+ -+ (j — l)a; =j— i along with (2.9) to assure the
integrability of the terms involved, and that X, and X,* have equal jth coordinate
moments j < r — 1 yielding

E(| X" (X €) - -+ (Xin €5,)) = E(|XF[]"(X*5 €)= -+ (X¥s €4,))

foralli, .--,i

u*
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From (2.26) we get (2.25) equal to zero and since (2.24) is the sum of terms
of the type in (2.25) we have (2.24) holding. Thus by (2.22) we get
(2.27) IEVOl = E(175,(Uss AXi[1*)]) + E(175,(Ups 2* X, [n¥)])

where 7, , is defined in (2.23).
Since f7)(0) = 0 forall s >0, j=1, - .., rand (2.15) holds we have (since
f,s 18 constant for u ¢ [s, s + 4,]) that

(2.28) Ifa(uDl = 0@~ U™ xihska 1)
i=1,...,r —c0 <5< 00).

Thus by (2.23)

(2.29) E(|7,,(U, 4X,[n?)])

= O(sUpigus, |E{[¢' (D]t - - - [ (D] LS}
where ¢(2) = ||U, + 2X,/nt||, &, + - -+ + @, =i,and @, + 22, + -+ - +ra, =r.
From (2.6), (2.9) and (2.28) we have uniformly in ¢ > 0 that
|E{[¢' (D] - - - [$7 (D] f2AS(ANY

(2.30) -0 <E<IIXk/nil|a1+2a3+...+ra,5n—rHUk + XXk/n%”f—i)>
[0+ R, [+

= O(n""%3,7)
since a, + 2a, + -+ 4+ ra, = rand a;, + -+ + a, = i. Thus(2.30) and (2.29)

imply
E(|7,Us» 2X,/n})]) = O(n™"5,7")

uniformly in ¢ > 0. Similar estimates hold when 2 and X, are replaced by 2*
and X,* so we have from (2.27) and (2.20) that

(2‘31) Suptzo IE(gn,t(Wn) - gn,t(Zn))I = O(n—r/2+15”—r)
— O(n—§+3/z(r+1))

since 9, = n~#+32+1_ Thus (2.19) holds and (A) follows.
Now we establish (B). Fix ¢ > 0 and define functions f,, , as above with d,to
be specified later. Then (2.12) will hold (if we argue as above) provided

(2.32) SUPiz0 |E(Gn (W) — E(9n,(Z,))| = O(n=tt1/7+e)

and ¢, is sufficiently small. To verify (2.32) we proceed as before finding that
it suffices to show

(2.33) E(|74,.(U, 2X,[n})]) = O(n~t+1r+e)

uniformly in t > 0 since similar estimates will hold when 2* and X,* replace 2
and X,. Now (2.23) implies

(2.34)  E(|9a,i(Uss AX,[n)))
= O(SUpyg;<, SUPsu,m El(ay, - -+, @,y @, fF(H(A)))) -
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From (2.6) (if a; + -+ + @, =i, + 20,4 - +re, =r,i=1,...,1) we
have by (2.28) that
ElJ(ay, - -, a,, ¢, DfEAH)))|

& o (B[ I g0, + 2
”Uk + ZXk/nQI|a2+2a8+...+(,_1)ar

= O(E||| X, /m¥|| "2t 7200, = 114,045, 1(||Us 4+ AXKi[n]])])
= 000, " n"2E{|| Xi||"[xces,, 430, (1Uil]) + Ata,o0 ([AXi/mEDID) -

Thus by (A), Lemma 2.1, and U, being independent of X, we have (if J, =

n—&+1/(r+1)+3/2(1-+1)2)

SUPigisr SUPr(s,m SUPwzo EM(ays - -+, @,y §, A)fL5(B(4))]
(2.36) = 003, n"ME(||X,||")[C.0, + C,n-t+3/2r+D]

+ E( X" Xints (|| Xl D))
= O(n—§+1/r) + O(n—§+1/(r+1)+3/2(r+1)2)
since

E(II X" Xewrr, oo (|| Xil]) < E(IXG][7]1 K] | 7272 n=D0r) = O(n=47)
when sup, E||X,||*”*~! < co. Thus

(2.37) SUPyigig, SUPr(,r SUPezo E(ays « -+ 5 @,y 6, A)fE(H(A))]

— O(n—§+1/(r+1)+3/2(r+1)2) .
Now (2.37) implies
(2.38) SUP,2 E|,1(Uys AX[n?)| = O(n=3+1/ 404820412

and hence we have by the reasoning used in (A)

Pt

nt
Using (2.39)in (2.36) we see that at the next step with §, = p=#+Vr+D+Vr+1243/20r+12
that we have

(2.39) Sup,z,

< 1) = e 14l < 9

- O(n—§+1/(r+1)+8/2(r+1>2) .

SUPi<isr SUPsa,r SUPszo E|(ays -+« @,y 65 AfD(H(R))]

— O(n—§+ 1/(1'+1)+1/(1'+1)2+3/2(‘r+1)3) .

Hence we obtain

(2.40)  sups, <) = ptx: K < 9

— O(n‘Hl/"'* 1)+1/(r+1)2+3/2(r+1)3) ..

(e

Continuing in this way we see at the k iteration that

(2.41) SUP; <<, SUPy,p SUPzo E(@ys - - -5 @,y @5 A)fE(H(2))|

— O(n—§+1/(r+1)+1/(r+1)2+---+1/<r+1)’°+3/2(r+1)"+1) .
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Now ¢ > 0 and Y%, 1/(r + 1)? = 1/r imply that for k sufficiently large we have
(2.33) with 8, = n~#*@n+: Thus (2.32) holds with 4, = n~#+*®¥/"*¢ and (2.12)
holds so (B) follows.

REMARK. The key idea of our proof of Theorem 2.1 is not new and appears,
for example, in a proof of the central limit theorem on page 167 of L. Breiman’s
book entitled Probability.

3. The law of the iterated logarithm. We use the notation LL n for log log n
throughout the remainder of the paper. The results of this section establish the
law of the iterated logarithm for sequences of H-valued random variables obtain-
ing an extension of Corollary 4 of [9] or the main theorem of [11] which handled
only Gaussian random variables. In[9]and [11], however, the Gaussian random
variables take values in an arbitrary real separable Banach space and in that
sense are more general. We also obtain the analogue of Strassen’s functional
version of the log log law ([15], Theorem 3) for H-valued random variables.

If F is any subset of H we define for each x in H

3.1 ||x — F|| = inf, .5 [|x — )| -
If ¢ > 0 we also define
(3.2) Fe={y:|ly — Fll <¢}.
THEOREM 3.1. Let X,, X,, - - - be independent H-valued random variables such

that E(X,) =0 (n=1,2, -..), sup, E||X,|]* < co, and each X, has common co-
variance operator T where

(Tx, y) = E{(Xn’ X) (X y)} (x,ye Hn=1,2,.. ).

Let p be the mean zero Gaussian measure on H with covariance operator T and let
K denote the unit ball of the Hilbert space H, which generates p on H. Then

M_Kll=0)=1:

(3.3) P <lim ‘ Gail

and, in fact, with probability one the sequence {(X, + --- + X,)[(2n LL n)}} accu-
mulates at every point of K.

REMARK 3.1. Itisknown from, for example, ([9] Lemma 3) that K is a compact
subset of H. Thus the conclusions of Theorem 3.1 are equivalent to saying that
with probability one the sequence of points {(X, + .- + X,)/(2n LL n)*: n = 3}
is conditionally compact in H and that with probability one the set of limit points
of each sequence is precisely K.

Proor. LetS, = X, + --- + X, forn > 1. To verify (3.3) it suffices to prove
for each rational ¢ > 0 that with probability one S, /(2n LL n) ¢ K* only finitely
often. Fix ¢ > 0 and let 4, = {S,/2nLLn)} ¢ K¢} for n = 3. Let n, =[]
where [+] denotes the greatest integer function and 8 > 1. Then for all integers
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r such that n, = 3 we define

B, = {(Zni4ir1)5 ¢ K¢ forsome n:n, <n< n,H}.

Then lim sup,, Av,, C lim sup, B
Now if Y, ..., Y, are successive sums of independent H-valued random
variables such that

supigien P(IYy — Yill > ¢/2) =c < 1,

then by the same proof as used when H = (— oo, oo) we have

P(UY. (Y, 2K < __1__ P(Y, ¢ K.
Hence
1 N
3_4 P(B P Ny +1 —1 3 2LL ’.'Ke/z
G4 PB) s 1 P e (s — DR LLAK)
where
d= Supn,.sn<n,.+1 P(”S'n,..ﬂ-l - S'n” > e(znr LL nr)é/z) < %

for all r sufficiently large by applying Chebyshev’s inequality and that g > 1.
Now for any fixed ¢ > 0 there exists 8 > 1 sufficiently close tooneandad > 0
such that for all r sufficiently large :

(3.5) (1 (s — DK 2 KO -

To see (3.5) holds choose 0 < d < ¢/4 and assume x € ((n,,, — 1)/n,)}K?. Then
there is an 4 € K such that ||(n,/(n,,, — 1))ix — h|| < § which implies

llx = Al < [Ix = ((1er = D/n) A|| + |10 — Dfn,)t — 1]]|A]]
< 0((npsa — D)t 4 [((r40 — 1)/n,)} — 1] sUP,e [|A]]
< e¢f2

if 8 > 1 is sufficiently close to one since sup, . . ||#| is finite (recall K is compact
in H) and 0 < d < ¢/4. Thus x € K** and (3.5) holds.

Choosing 6 and 8 > 1 so that (3.5) holds we obtain from (3.4) that for all r
sufficiently large

’ 1 S -1
3.6 P(B) < P< ny1 2LL ,5K">.
(¢.6) (B) s mm_hﬁ( ")

Let @, = A,te, where {e,} is the sequence of orthonormal eigenvectors of the
S-operator which is the covariance operator of , and {4,} the corresponding non-
zero eigenvalues. Let

Oy(x) = 20, (%, e)e, N=1,2,...).

Then {a,} is a complete orthonormal sequence in H, which lies in H* under the
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embedding of H* in H, discussed in the introduction, and we have

0y = 0 S e = Shoa@s V=12,
k

where a,(x) is the evaluation of the linear functional corresponding to «, at x.
ThenforN=1,2, ...

P <i+1;1_ ¢(2LL n,)*K")

(n,4 — 1)}
<P <HN <(7§+-1-+_1;‘17*) ¢ (2LL n,)%nN(sz)>
(3.7) + P<H(1 —II,) <(ni"lr—_1‘11)! “ =2 2LLn )5)

g P(HNZ ¢ (2 LL nr)iHN(K,ur))
+ P(Il - I)Z|| = @LLn) 2) + 0((n))

where Ix = x, &(Z) = p, y > 0 is such that if K7 = {xe H,: ||[x — K]||, < 7}
then I, K, < II, K*2. The existence of such a y > 0 is obvious since II, H is
finite dimensional so the norms ||«|| and ||+ ||, are equivalent on II, H, and finally
we note that

MK, = {(xe H,: x|, < 1 + 7}

hence the estimates of Corollary 2.1 apply to obtain (3.7).

Fix ¢ > 1 and choose 1 so that 24(d/2)* = ¢. Now choose N, sufficiently large
so that N = N, implies E(exp{2||(I — II,)Z||’}) < oo (this follows by straightfor-
ward calculations since with probability one Z = }], 2,}a,(Z)e, provided {1},

{a,}, and {e,} are related as indicated above). For fixed N > N, and 2 we then
obtain

(3.8) P(II0 - I)Z| 2 2 @LLn)) < exp{—cLLn}.

By applying Lemma 5 of [10] at r = 1 or Proposition 1 of [11] we havead > 1
such that for all r sufficiently large

(3.9) P(Il, Z ¢ (2 LL n,)*T,(K,7)) < exp{—dLLn,} .
Combining (3.6), (3.7), (3.8), and (3.9) we see
(3.10) 3, P(B,) < o .

Then P(lim sup, 4,) = 0 and (3.3) holds.

To show that {S,/(2n LL n)t: n > 3} accumulates at every point -of K with
probability one it suffices by the separability of K to prove thatif ke K, ||A||, < 1,
and ¢ > 0, then there is a 8 > 1 so that with probability one

G-11) H(Zn LLn) h“ <
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for infinitely many r where, as above, n, = [ﬁ’]. Now

H(Zn LL~ N H - H(I (2n LLn (2n, LLn,)t
+[m, (a—iL—y) — k|| + Lk =

Fixing 8 > 1 and ¢ > 0 there exists an Nysuch that N > N,implies ||IL (k) —A|| < ¢
and with probability one

(3.13) “(1

(2n LLn )t

for all r sufficiently large where (3.13) holds by the argument used in (3.7) and

(3.8). Hence it suffices to show there existsa 8 > 1such that with probability one
Sa

19 \ v @n,LLn)*

W< =
<

for infinitely many r.
Now set y = ||4||, and note y < 1. Fix 8 = 3 such that y/(1 — 1/8) < 1 and
B is an integer. Now fix N such that ||[II,# — A|| < ¢ and (3.13) holds. Let
=[] and define for r = 2,3, ...

S, — S
4, = {||o <u>_ﬂ h i},
“ Y\@n,LLn,)} <5
Then A4,, A4,, - - - are independent and we will show
(3'15) 2irza P(Ar) = +4o0

obtaining P(limsup, 4,) = 1.
Using the definition of II, and that N is fixed we see that

(3.16) P(4,) = pt <x: %) + O(n, Y

where t, = (2n, LL n,/(n, — n,_,))t. The validity of (3.16) follows immediately
from Corollary 2.1 if Il 2 = 0 or since N is fixed, by applying similar estimates
to spheres centered at Il 2 if I, 2 = 0 where we can assume, for these purposes,
that e < ||II A||. Since N is fixed, however, we could also apply the finite dimen-
sional estimates used in [13] or [14] to obtain (3.16). Hence by (3.16) we have

r

HM>H4@ye%WW“Ww+mwﬂ
where M = sup,;.y ||a,|| and &; = (h, a;). Thus

24 2
P(A,) = constant - H;ﬁ’:lw

T

for r sufficiently large since

1

(Le"ds > s e~ ] — e~¥P-ehr2] 0 =<a< b
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= constant - exp {—T LL n,/<1 — %)}/(LL n)¥

for r sufficiently large since lim, " = 1
n,—n._,. 1—1/B
= constant . 1 forany ¢ >0
[r log ﬂ]r/(l—l/ﬂ)+6
= constant - 1 where a=__ T + 0 <1 provided
re 1 —1/B
8 >0 is sufficiently small since 0 < 1 Tl/ﬂ <1.
Thus (3.15) holds.
Let
B = e < 2 M)
(2n,LL n,)} 6 Bt
D ZH HNSn,._l H<%}
7 Ul@n, LLn )il S T3
where M, is any constant satisfying

M,
S 2 sup,e 3]

Clearly M, can be taken to be finite since as was mentioned previously X is
compact in H.

By the previous arguments we know that for all w in a set E of probability
one we have an integer J,, such that we D, for all r > J(w). Thus for all
we E n limsup, 4, we have w ¢ lim sup, B, and hence

(3.17) P(lim sup, B,) = 1

for all 8 sufficiently large so that (3.15) holds. Choosing j sufficiently large so
that (3.15) holds and M,/B* < ¢/6 we have by (3.17) that (3.14) holds for infinitely
many r. This completes the proof. ;

We now turn to the functional form of the law of the iterated logarithm for
the partial sum processes generated by the sequence {X,}. More precisely, let
X,; X;, -+ - be independent H-valued random bariables satisfying the conditions
of Theorem 3.1 and assume g is the mean zero Gaussian measure on H having
covariance operator 7. Let C, denote the real separable Banach space of con-
tinuous functions on [0, 1] into H which vanish at zero under the norm

I/l = SUPosis: S]] -

Let 5Z” denote the Hilbert space in C,, which generates the Brownian motion
in H induced by g up to time 1 (see [7] or [9] for details). Then by [7] or [9]
we know

# =€ Cut f0 = Byus$i s dsa; 0 <15 1))
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where the convergence of the series is in the H, norm for each ¢ and {a,} is any
complete orthonormal basis for H, which is also a subset of H* under the em-
bedding of H* in H, as discussed in the introduction. The norm on 5 is given
By [1f11* = X sas S5 [(d/ds)ea,(f(s))]" ds.

Let %" denote the unit ball of 5#” and define for each w

— S
falkn, w) = m

Let f,(t, w) be linear over the subintervals k/n < t < (k 4 1)/n for k =0, ---,
n — 1. Here, of course, S, = X; + -+ + X, for k = 1 and S, = 0.

(k=0,1,---,n;n=3).

THEOREM 3.2. Let X,, X, be independent H-valued random variables satisfying
the conditions of Theorem 3.1. Let 97 and {f,: n = 3} be defined as indicated
above. Then

(3.18) P(lim, ||f,(t, W) — || = 0) = 1

and, in fact, with probability one the sequence {f,: n = 3} accumulates at every point
of % with respect to the norm ||+||.

REMARK 3.2. Since %" is a compact subset of Cy ([9] Lemma 3) Theorem
3.2 is equivalent to saying that with probability one the sequence of functions
{fn: n = 3} is conditionally compact in Cj and that with probability one the set
of limit points of each sequence is precisely %" Further, it is easy to see that
Theorem 3.1 follows immediately from Theorem 3.2 since f,(1, w) = S,/(2n LL n)}
and K = {he H: h = f(1) where f € 2¢"}. We proved it directly as it provides
insight into the more detailed proof required for Theorem 3.2, and because some
of the arguments used in Theorem 3.1 can be alluded to, thus shortening the
proof of Theorem 3.2. As mentioned in the introduction, the ideas of [3] are
used extensively.

LemMA 3.1. With probability one the sequence {f,: n = 3} is equicontinuous
uniformly on [0, 1].

The proof of Lemma 3.1 can be carried out exactly as Theorem 2 of [3] except
that the estimates of Corollary 2.1 must be used and Lemma 1 of [3] must be
replaced by estimates of the type used in (3.4). We omit further details.

For any integer mand f € C, let T',, f denote the piecewise linear approximation
to f such that

L, f(k[m) = f(k[m) (k=0,1,.--,m)
and T, f is linear on each of the subintervals [k/m, (k+1)/m] for k=0,.--,m—1.

In view of the equicontinuity in Lemma 3.1 we have:

LemMA 3.2. With probability one and for any ¢ > O there is an integer m, =
my(w, ¢) such that

”men _fn” <e
forallm,n = m,.
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LeEMMA 3.3. With probability one and for any e > O there is an integer n, =

ny(w, €) such that
”f'n _f'n'Hoo <e

for all n, n' = n, provided |1 — n'[n| < 1/n,.
The proof of Lemma 3.3 is exactly as that of Corollary 2 in [3] so we omit it.
LeMMA 3.4. Under the hypothesis of Theorem 3.2 we have (3.18) holding.

PrOOF. In view of Lemma 3.2 and Lemma 3.3 we have (3.18) if for ¢ > 0,
8 > 1andallintegers m > 1 we have I, f,r € %™ for all r sufficiently large on
a set of probability one. We let n, = [B7].

Now for N =1,2, --.

(3.19)  P(T,f. ¢ %) < PO T, f,, ¢ % + P(I(I — T)Twfo lle 2 €/2)
where II,, is defined as in the proof of Theorem 3.1. Now
P(I(I — Ty)T s fo, [l > €/2)
(3.20) = P(SUPigpzn [|( — TLy)f,, (K[m, W)l > ¢/2)
< P(SUPigesn (7 — TS, (w)/(2n, LL n )M > ¢/4)
+ P(SUPszpsn [I(7 — TS, (w)/(2n, LL n )| > €/4)

where p, = [n,k/m] (k =0, 1, ---,m) and 2, = p,,, for k = o1, .-..,m—1
and 1, = p, = n,. Now each of the terms on the right-hand side of (3.20) can
be estimated using an inequality as developed for (3.4). Using the approximation
of Corollary 2.1 on these estimates we obtain ‘

321) P =TT, f, I > ¢/2)
<27 (i — W)Z]| > 5 @LLm)!) + 0(n,7)
where £(Z) = p.

Thus for fixed 8 > 1 and ¢ > 1 we can argue as in (3.8) to obtain N, such
that N = N, implies

(3:22)  P(|(I — W)L, fo lle > ¢/2) < 2exp{—cLLn} 4 O(n, 7).

Combining (3.19) and (3.22) we get ', f, e %™ for all sufficiently large on
a set of probability one if for any N =N,

(3.23) 2. PAL T, f, ¢ ) < oo

Since the H-norm is weaker than the norm ||+||, on H,, there existsa 6 > Osuch
that if & = {ge : |9 — I ||w,, < 9} (Where [|g — fllo,, = SUPoses [19(0) —
f@ll. forf,ge &¥’) then Z < .9"**. Thus (3.23) holds if we show

ZTP(HNann,¢9) < 0 .
Let E = II(H) = II(H,) and define
Km = {(kl’ ..-,km): kiEE (l = 1, -..’m) and Z;';l“ki”pz é 1}.
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Let p, and 4, be as in (3.20). Then

P, T, f. ¢ Z2)
(3.24) < P(ILyS,, IL(S,, — S,), -+ - IL(S, — S, _))
& (2n, LLn m)K, ")
o0(2n, LL n,)}
+ St P (I X + (ML X, > 22T

where K,*% = {(k,,- - -, k,):k,eE(i=1,...,m), (kg - -+ 5 k) — Kull] < 6/2}
and |||(ky, - - -, kp)II* = X7 ||&dl|,2 Thatis, if (ILy(S,,(w)), LS, (W) — Sz, (W), - - -
IL(S,, (W) =S, _,(w)))isin (2n,LLn,/m)iK, 2 and || IL, X, (w)|],+ Ly X;,_ ()]], <
6(2n,LL n,)}/2m for k = 1, ..., m, then

Iy (Sp (W) — S3,_, (W)
(2n,LL n,)

2
Py

<1
® m

and hence

§6

d II,T t 2dt
dr Y an’(’W)H#

<myp [IIHN(SP,,(W) — Sa Il + MLy Xz, W) + IIHNsz_l(W)IIp]’
- e (2n, LL n,)}

< (1 + oy

which implies I, T',, fa, (8, W) e Z.

Now the first term on the right-hand side of (3.24) can be dominated by a
Gaussian probability plus an error term of size O(n,~t) by applying Corollary 2.1
to the Hilbert space H,, = {(k;, - -+, k,,): k,e E(i = 1, - - -, m)} with norm ||| ||,
and the second term can be estimated using Chebyshev’s inequality yielding

0(2n, LL n,)t
(325 P (I X, )|, + 1L, X, |, > 2@ LEm)t)

2m
= O(07*n,LLn,)™).

Arguing as in (3.9) we find that the Gaussian probabilities sum to something finite
as r goes to infinity and since the error terms plus the bounds in (3.25) also sum
we have 3, P(II, T, f, € 2) < oo. This proves that (3.18) holds.

LeMMA 3.5. With probability one the sequence {f,(t, w): n = 3} accumulates at
every point of £ with respect to the norm ||+||..

PRrOOF. Since % is separable in the norm ||+ ||, (it is compact by [9]) it suffices
to prove for each g € .57 ||9||.. < 1, and ¢ > O there is a B8 > 1 so that with
probability one

fa, — 9l < ¢

for infinitely many r. By Lemma 3.1 and Lemma 3.2 there is an integer m =
m(e, w) such that with probability one ||f, (1, w) — T,, Sa, (8 W]l < /2 for all
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sufficiently large rand also ||g — T',,9||., < ¢/2. Thus it suffices to show that with
probability one [T, f, — T',g||.. < ¢ for infinitely many r.
Set 8 = m. Then n, = m” and

”men,. - Fmg”w = SUPi<ksm

Sn,_y k
@nLLny Y <'n7>”
i = (o)
< mY|[Ta(fa, — 9l

where [||T, flll,* = 3r, ||f(k/m) — f((k — 1)/m)||>. Furthermore, g ¢ .% and
[19]]» < 1 implies

zo(£) - o(:5)

(3.27) < Do Dt om0 [ds- L

(3.26) =)

2

d
. = Dz ke <S%1—"1)/m

ds

a,(0(s)) ds)

1

D b

£ a(o(o) [ ds

IA

1 1
= —[lgll> < —.
m m

Set f, = (m}/(2n, LL 1S, > Sen,_y — Su, s s Swny_y — Sim-1n,_,) and § =
mi(g(1/m), g(2/m) — g(1/m), - -, g(1) — g((m — 1)/m)).

Then (3.27) implies § is in the unit ball of the Hilbert space obtained by taking
a product of H, m times with the norm

(328) NG s fulllle = (i 1l -

Taking the product of H m times with norm [||(f,, - - -, fu)lll = (X1 |Ifil|)t we
see that ||| £, — §||| = m}|||T,(f,, — 9)||l.» and hence (3.26) implies that

II]‘-‘mf'n,,. - Fmg”oo < €
infinitely often with probability one if

(3:29) e, —8lll < e

infinitely often with probability one. Now (3.29) occurs infinitely often with
probability one by applying the argument of the second part of Theorem 3.1 in
the product Hilbert spaces. Thus Lemma 3.5 holds.

The proof of Theorem 3.2 now follows by combining Lemma 3.4 and Lemma
3.5.

4. The log log law for symmetric stable random variables. A random variable
X induces a stable measure or law on H if X, - - ., X, being independent copies
of X implies

X+ -+ X)) = A, X+ b,)

where a, is a positive constant and b, ¢ H. Stable random variables with values
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in H can be characterized by their type (0 < @ < 2) asin the case H = (— o0, o0)
and, for example, being of type 2 means that the random variable has a Gaussian
law. For details see [8]. For our immediate purposes a useful fact about stable
laws in H was obtained in [10] and is given in the next lemma without proof.

LemMaA 4.1. If p = A(X) is a stable law of type a (0 < a < 2) on H, then
4.1) P(|x]| > 1) = p(xe H: ||x|] > t) ~ C[t* as t— oo
where C > 0.

Lemma 4.1 now enables us to generalize the result of [2] to H-valued inde-
pendent identically distributed symmetric stable laws of type @, 0 < a < 2.

THEOREM 4.1. Let {X,: k = 1} be a sequence of independent identically distributed
symmetric stable laws of type a, 0 < a < 2, with valuesin H and let S, = 3%, X,
Then

(4.2) P(lim sup, ||S, /nVe|[ /10" = eVey = 1,

If p = A(X,) is symmetric and of type 2, i.e. pt is mean zero Gaussian, then

(4.3) P <lim sup,

T || = i =1
(2nLLn)*\ p

where o is the maximal eigenvalue of the covariance operator T of p.

Proor. For (4.2) to hold if suffices to show that for any ¢ > 0 we have with
probability one that

4.4) [|S,/n%|| > (log n)*+e/= finitely often
and
(4.5) [|S,/n"*|| > (log n)*=*/= infinitely often.

To verify (4.4) and (4.5) the proof proceeds exactly as in [2] except that one needs
Lemma 4.1 and the inequality P(sup, <, ||Si|| > 2) < 2P(||S,|| > ¢) which follows
as in the case H = (— oo, oo) using the symmetry of the random variables. Fur-
ther details are omitted but can be found in [2].

To establish (4.3) which is the analogue of (4.2) for symmetric Gaussian laws
we apply Theorem 3.1 to obtain

(4.6) P <lim sup,,

S, \
(2n LL n)t |

= sup,cr 14 ) =

where K is the unit ball of the Hilbert space H, which generates 1 on H. Fur-
thermore, if T is the covariance operator of p on H, then Tx = )}, A,(x, e,)e,
where 2, > 0, 3 2, < oo, and {e,} is an orthonormal set in H. If M equals the
closed subspace generated by {e,} then from [6] we know that

={xeM: 3, (x, e)4, < }.
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Further, the inner product for H u is given by

(% 9), = 3, (x5 €) () €x)
I zk
and hence

K:{xeM: Z,,(x’]—f")ggl}.

Now if x ¢ K then x e M so
2 2
x|} = 2% (X, €)' = 2 Zkgc*’]—ek)— < sup, 4, Zk&';—k)‘ < sup, 4

k k
and hence

SupwEK HXH é (Squ Zk)% — pi .

By choosing x = pte; where p = 4; we find ||x|| = p? and x € K so (4.3) holds
and the theorem is proved.
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