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ON THE ACCURACY OF THE NORMAL APPROXIMATION
FOR QUANTILES

By R.-D. REIss
Mathematisches Institut der Universitdt Koln

It is well known that the sample p-quantile is asymptotically normally
distributed. This paper presents an estimate for the accuracy of the normal
approximation. The special intention of this paper is to obtain favorable
bounds for moderate samples.

1. Introduction and summary. It is well known that the sample p-quantile is
asymptotically normally distributed. This paper presents an estimate for the ac-
curacy of the normal approximation. In view of applications our special inten-
tion is to obtain favorable bounds for moderate samples.

The sample p-quantile x, , based on the ordered sample x;, < x, < - -+ < x,,
is defined by x,, = x,,,, if np is an integer and by x, , = x4, Otherwise. We
shall write ¢, = (p(1 — p))!. ® denotes the standard normal distribution func-
tion. For each integer n denote by P* the independent product of n identical
probability measures P.

We shall prove Theorem 1.1. with the help of the Berry-Esséen theorem ap-
plied to independent binomial random variables. Note that the best upper bound
for the universal constant C occuring in this theorem is given as 0.7975 by van
Beeck (1972). Furthermore, Esséen (1956) proved that C > (3 + 10%)/6(2x)t.

THEOREM 1.1. Let P be a probability measure with distribution function F such that
(1.2) F has a bounded second derivative on R (the real line).
Let f = F' and ||f’|| = sup{|f'(x)|: xe R}. Let &, € R be such that
(1.3) F¢)=p and  [(§,)>0.
Then

(1.4) SUP,c

P {ﬁff;(f_ﬁ Ky — &) < t} — q)(f)‘

TSI, U
= 1065 * T o]

where

R

p,n

If

cl=209" , 3(1—2p| + ((log n)[n)t)
0,90 100,49,*

(whenever g, = [1 — o,7%(|1 — 2p|((log n)/n)* + (log n)[n)]} is defined).
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Hence we always assume that n > 9. In the case of p = } g, is defined for all
n = 9. Note that (1.2) and (1.3) imply that p € (0, 1) and that &, is the unique
p-quantile of P. Theorem 1.1 will be derived from

PROPOSITION 1.5. Denote by Q the uniform distribution on [0, 1]. Then, for each
pe(0, 1)

(1-6) supica|0 {50 = p) < 1} = 00| S w0E, .

The methods of proof may be used to obtain an estimate of the accuracy of the
normal approximation for the common distribution of several distinct quantiles.

2. Proofs.
2.1) Proor or ProrosiTion 1.5. If p, , = p + to,/nt ¢ (0, 1) the assertion
holds trivially. For ¢t = ni(1 — p)/s, we may prove:

o {? (*pn —P) < t} =QYx,, <1} =1.

Simple calculations yield
Q) = 1 — 1/t2n)t = 1 — o,[n}(1 — p)(27)t .
AsC = (2r)tand (1 — 20,%,%) /0,9, = (1 — 20,%)[0, = 0,/(1 — p) (1.6) follows

for t =z n¥(1 — p)/o,. In a similar way we may also prove that (1.6) holds for
t < —nipls,. Hence we may assume that p, , € (0, 1).

Let 0,, = (Po,(1 — pu )t Gue = 0,400, = (1 — (1 — 2p)[o,nt — t*[n)t and
t, = (log n)t/a,.

We have
Q" {(nt[o,)(Xpn — p) < 1} = Q"{X, 0 < pai}
(2’2) - Qn{Z:;l 1(—w,pn,t)(xi) = nP}
= Qn{Sn,t é t/qn,t}
where S, , = —nlo} 311, (1(_°°’pn,t)(xi) — D)
By (2.2)

2.3)  |Q{(wo,)(x,n — p) < 1} — O(1)]
= QS = 190} — P(42,] + |D(1/q,,) — ()] -
Suppose first that |¢| < ¢,. Applying the Berry-Esséen theorem we obtain an

= “n°*

upper bound for the first term on the right side of (2.3).

|Q™{Sn,e < 1/4n,e} — P(t/4,,0)|
(2'4) = C(l - zai,t)/n%"n,t = C(l - 20p2qi,t)/n&apqn,t
= C(1 — 20,%¢,})nta,q, .

Next we derive an upper bound for the second term on the right side of (2.3).
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Applying Taylor’s theorem we obtain
Gup =1 — (11 = 2p)[o,n* + £[m)[2(1 — I(t(1 — 2p)[o,nt + £[n))}
for some 9 € (0, 1).
Since g, , = g,,and for all |f| < 1,: 1 — 9(t(1 — 2p)[o,nt 4 £*[n) = ¢, we have
(2.5) [#/9n,e — 1] = |61 — 40,1)/qn.q|
< (|1 — 2plfo, + t[nt)[2niq,} .

W.l.g. we may assume that g, > 0. Then 1 — ¢,|1 — 2p|/o,n* — t,*/n > 0 and
1 — (1 — 2p)fo,nt + £2[n > 0 for all |¢] < ¢,. Therefore,

(2.6) ¢,=1—t1 —2p)o,nt —n< 2.
(2.5) and (2.6) together imply
(2.7) |O(¢/4,,)) — O] = P'(1/2)7(|1 — 2plfo, + t,[nt)[2nq,?

< 311 — 2pl/a, + t,/n)[10miq,’

since sup, . , (Q'(¢/2})#*/2) < 3/10.
Hence by (2.3), (2.4) and (2.7) we have proved the inequality in (1.6) for all
ltl é tn’
For |¢| > t, we apply a results on “exponential bounds” (see Loéve (1963) page
255).
Let r < —t,. By (2.2) for u = §(logn)ts,,
(2.8) QMo (X, — p) < B} = Q{=Su 2 [1]/40.1}

< exp(—|tfu/g,.. + @[2)(1 + u[2nia, ,))

=< gnit.

And
(1) < exp(—1[2)/(2x)}t < 1)2x)int .

Because of R, , = C/(1 — (log n)/n)t and n > 9 this implies

|10"{(nt/0,)(X,,n — p) < 1} — QO] = R, 07
for all t < —t,. Since the same inequality also holds for all # > ¢,, (1.6) is
proved.

(2.9) Proor oF THEOREM 1.1. Let Z,, = (n¥(§,)/0,(x,. — &,) and r, =
nif (€,)/o,||f'||. First we assume that |f| < r,. Because of P{x,, <1} =
Q"{x,,» < F(f)} we obtain by (1.6) (with u(n, 1) = (nt/a,)(F(£, + (7, £[f(£,)n")) — )
|PZ,, < 1} — D)
< 107 0,) (X0 — P) < U(n, )} — D(u(n, 1)
(2.10) + [®(u(n, 1) — D(1)|
< R,,n7t + max {|O() — Ot + £[2r,)], |D(t) — Ot — £[2r,)]}
< R, .n7t 4 6||f"||o,/10nEf*(&,) -
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Let o = F(§, — f(§,)/11/|])- By Chebychev’s inequality and because of p — 2 >
SERIN

PMZ,, < —nr} = PMx,. <& — G
(2.11) = P 201 (Lo epmsiepmen(%) — £) Z nf*(E,)/2]|fI1}

= [IFIPIFEn -
Furthermore,
Q(—r) = Q(=r)/ru = |Ifllo,/2a)if*Ep)nt -

This together with (2.11) implies for all 1t < —r,

1PZ,, < 1} = @) = 6] |lo,/10/*Ent + |IFIPIFHEn -
Since the same inequality also holds for ¢ > r,, (1.4) is proved.
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