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ON THE CENTRAL LIMIT THEOREM FOR SAMPLE
CONTINUOUS PROCESSES'

By EvARIST GINE M.
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Let {Xx};-, be a sequence of independent centered random variables
with values in C(S) (i.e., sample continuous processes in S), (S, d) being a
compact metric space. This sequence is said to satisfy the central limit
theorem if there exists a sample continuous Gaussian process on S, Z, such
that L(X5_) Xi/nt) —u+ L(Z) in C'(C(S)). In this paper some sufficient
conditions are given for the central limit theorem to hold for {Xx};"_;; these
conditions are on the modulus of continuity of the processes X, and they
are expressed in terms of the metric entropy of distances associated to {Xk}.
Then, in order to give some insight on these theorems, several results on the
central limit theorem for particular processes (random Fourier and Taylor
series, as well as more general processes on [0, 1]) are deduced.

1. Introduction. Let (S, d) be a compact metric space and let {X,};., be a
sequence of independent, centered C(S)-valued random variables (i.e., sample
continuous processes). We say, following [10], that the central limit theorem
holds for this sequence if the laws of }}%_, X,/n* converge in the weak-star to-
pology of C'(C(S)) to the law of a sample continuous Gaussian process on S.
(This type of convergence is defined in [3] as weak convergence of probability
measures).

Strassen and Dudley give in [10] a sufficient condition for the central limit
theorem to hold in terms of the ¢-entropy of § with respect to the pseudo-distance
e(s, f) = || X,(s) — X,(?)|].. in the case of identically distributed random variables;
this condition implies in particular that the random variables have equicontinuous
range. The main results in this paper consist in two central limit theorems, one
for not necessarily identically distributed random variables (Theorem 2.2) and
the other for identically distributed random variables with not necessarily equi-
continuous range (Theorem 2.4); the proof of the first follows the line of the
theorem in [10], the main difference being that we use a different exponential
bound (Lemma 2.1) and that this allows us to let the norm || X,(s) — X,(¢)||.. grow
with k; then from this theorem we obtain the second one just via a very efficient
truncation argument more or less suggested by [7]. Before describing more
explicitly the sufficient condition in Theorem 2.4, let us recall the definition of
e-entropy: if (T, e) is a metric space (or pseudo-metric), then for every ¢ > 0,
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N(T, e, ¢) is defined as the infimum of the number of sets in any covering of T
by sets of diameter less than or equal to 2¢, i.e.

N(T,e,e) = inf{n: T C U1 Vi, SUP;, ey, (X, ) < 2¢};
and the e-entropy of (T, e), H(T, e, ¢), as
H(T, e, ¢) = log N(T, e, ¢) .

The sufficient condition in Theorem 2.4 is that there exist a pseudo-distance e
on S and a real random variable M such that

|X (@, 5) — Xy(, )| < e(s, ) M(w)

with
Me Ly(Q, P) and (s H(S, e, u)du < oo .

On the other hand the condition in the theorem of Strassen and Dudley may be
expressed in the same way but with M e L(Q, P) and {} H(S, e, u)* du < oo. They
prove in [10] that their condition on H can not be improved; the same is true for
our condition on M.

Starting from the results just described, R. Dudley [5] proved a sort of inter-
polation between the theorem in [10] and Theorem 2.4; his conditions are:
Me L,(Q, P)and limsup, ,e*H(S, e, ) < oo for some p > 2and a < 2p/(p + 2).
The ¢-entropy condition can be somewhat improved but we will not treat this
question here. We will use Dudley’s theorem in some of the examples S below.

In the last section we apply the above theorems to processes defined by Fourier
and Taylor random series and also to more general ones but with stronger co-
variance conditions. We obtain sufficient conditions for the central limit theorem
for random series in terms of the moments of the summands just by using ways
of translating such conditions into conditions on the modulus of continuity
(Kahane [8]; Lemmas 3.4 and 3.9 in this paper). And for general processes we
try the classical conditions for sample continuity in terms of the moments of the
increments (Loéve, [9] page 519) combined with a lemma of Garsia et al. [6] as
suggested by A, de Araujoin[1]. These results are not necessarily best possible;
the reasons for including them are that they may give some insight on the power
of the theorems in the previous section and that they seem to be the first results
in this direction. However we will not give detailed proofs of them.

2. The theorems. As customary, we will assume without further mention
that all random variables and processes are defined on a probability space
(Q, &, P), and the elements of Q will be denoted by w. We will denote by < X)
the law of any random variable X, If X is a random variable which values are
real (or complex) functions on a metric space S, the notation for the two possible
supremum norms will be

|X(@)]|e = SUP,es |X(s, @)],  [|X(S)]| = SUPueq | X(s, @)

except if confusion may arise.
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In the first theorem below we follow as closely as possible the proof of the
theorem in [10], even in notation.

The following lemma is basic; a proof of it may be found in [2] (it contains
some inaccuracies, but it is essentially correct: (6) there is valid whenever
¢W < 1, then, for proving the lemma, take C = t/(a + tW)).

LEMMA 2.1 (Bernstein’s inequality). Let x,, ---,x, be a set of independent,
bounded real random variables with zero mean and set S = Y\*_, x,, ¢* = 6%(S), and
M = max, ||x,||..; then for every t > 0,

P{S = t} < exp[—£/(20* + 2M1/3)] .
THEOREM 2.2. Let (S, d) be a compact metric space and let {X,}:_, be a sequence
of independent, centered, C(S)-valued random variables satisfying:

(a) there exists a centered Gaussian process Z on S such that the finite dimensional
distributions of (X, + .- + X,)[nt converge in law to the ones of Z (i.e., for every
natural number k and s,, - - -, s, in S, the random vector 37_, (X,(5)), - - - » Xy(5,))/n*
converges in law to (Z(s,), - -+, Z(s},)));

(b) for every s, te S, the number

e(s, 1) = sup, || X,(s) — Xi()|z, + sup, || Xu(s) — X\(0)||/K?
is finite (thus defining a pseudo-distance on S) and moreover:
(i) the identity map 1. (S, d) — (S, €) is continuous
(i) §3 H(s, e, u) du < oo (or what is the same, Y, H(S, e, 2-™)[2™ < co).
Then, Z is sample continuous and
wh — lim, (X, + - + X,)n} = A(Z)
in C'(C(S)).

Proor. By condition (a) and Prokhorov’s theorem [3] we only need to prove
uniform tightness of the sequence {32, X,/n*)}z_,. For simplicity, set

Z”=(X1+ e —|—X,,)/n§.
The main step in the proof of tightness of {#7Z,)}s_, is the following lemma.

LEMMA 2.3. Under the conditions of the theorem, for every ¢ > 0 there exists
0 > 0 such that
2.1) PlSUp[|Z,(s) — Z,(t)|: e(s, ) S 3] > e} s e
for every ne N.
Proor oF THE LEMMA. By Lemma 2.1, if e(s, 1) < 7,
(22)  sup P{Z,(s) — Z,(0)] > ¢} < 2 exp{—(21* + 2r¢/3))

for every ¢ > 0.
For every m e N, let us cover S by N(S, e, 2~™*) sets each of diameter (with
respect to e) at most 2-"%, and take one point from each forming a set 4,, dense
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in S within 2-™-%, Now we define
a, = H(S, e, 2-™%)/2™1,
b,, = max (8a,, m™?)
so that >} b,, < oo, and )
Q,, ={o:max[|Z,(s) — Z,(t)|: 5, teA,_, U A,,e(s,t) <27™] > b,}.
The first thing to prove is that there exists M > 0 such that, for every m > M,
(2.3) P, =PQ,..<b,.
In fact, by (2.2),
P,, < 8N(S, e, 27" exp{—b,*/(2- 4™ + 2 .27 ™), /3)}
and so, for m = 4 (since b,, = m™* = 2°™)
P,, < 8N(S, e, 2™ ) exp{—3 -2"b,[8};
then
log P, < log8 4 2H(S,e,27™*) — 3.2"%,
and, by the definition of b,, and aq,,,
log P,,, < log8 + 2™%, — 3.2™%,
= log 8 — 2™%, .
Therefore, since (2™%b,, — log 8)/2 log m tends to co with m and both numerator
and denominator are positive from some m on, there exists M > 0 such that for
m> M,

logP,, < —2logm
which implies

for m > M.

By condition (bii), }; b,, < oo; hence we can choose a number r > M such
that 33,.., b, < ¢/2. Let ussetd = 2-"~*and define B,, = Unz, Q.- By (2.3),
PB,, < ¢, hence we only need to prove that except on B,,, if e(s, f) < 6 then
|Z,(s) — Z,(t)] < ¢ for all n. In order to prove this, choose for each se S and
each m, a point s,, in A,, such that e(s, s,,) < 2-™% then, except on B,

1Z0($m) — Za(Sm-1)| < bn

for every m = r, and so, since if e(s, f).< 0 then e(s,, t,) < 36 < 27", we obtain
that, except on B,,,

1Z.(5) = Zu(D)] = |1Z0(s,) + Zmsr (ZalSm) — Za(Su-r)) — Zu(t,)
= Znsr (Za(tn) — Zu(tu-r))|
S 1Z.(s,) — Za(t)| + Zwsr [Za(Sw) — Zu(Snl1)]
+ Zmsr 1Za(tn) — Za(tu-s)l
Sb 42 n b <e
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where the first equality above is justified by the compactness of S: the metrics
e and d give rise to the same topology. [I

If the limit law of {<A(Z, (w, $))}i-1 ZL(Z(5)), is non-degenerate Gaussian, then
the sequence of distribution functions converges uniformly and therefore, given
s, for every ¢ > 0 there exists a positive number N such that

24 P{|Z,(s)] > N} < e

for all n. If Z(s) = 0 a.s. then {Z,(w, 5)};_, converges in probability to zero and
we still can find, for every ¢ > 0, a number N such that (2.4) is true for all n.

Now, by a standard argument (see, e.g., [3], page 55) it is clear that (2.1) and
(2.4) yield the tightness of {<1(Z,)}:.,. O

The above theorem is mainly intended to be used for sequences of i.i.d. rv’s
with values in C(S) and possibly of non-equicontinuous range through some kind
of truncation; when the random variables are obtained in this way, condition
(a) should not be difficult to verify: see Theorem 2.4 below. Otherwise, a good
condition ensuring (a) may be, for example, the following: for every s, tin S the
sequence {n~! 3 7_, EX,(s)X,(f)}-, converges and for every choice of k points
$,--,5 €8, k=1,2,... the sequence of random vectors {(X,(s,), - - -, X;(5¢))}is
satisfies the multidimensional form of the Lindeberg condition for the central
limit theorem in R¥; for example, the Lindeberg condition is automatically sat-
isfied if for every s e S the sequence {X,*(s)};_, is uniformly integrable.

Still following [10], given a sample continuous process X on S with EX(s) = 0,
EX*(s) < oo, we will say that Z(X) satisfies the central limit theorem if"

(a) the Gaussian process Z on Sdefined by EZ(s) = 0 and EZ(s)Z(t) = EX(s)X(¢)
for every s, ¢ € S, is sample continuous (thus, defining a probability on C(S)), and

(b) whenever {X,}2, is a sequence of i.i.d. rv’s with values in C(S) and such
that (X)) = £(X), then w* — lim, Z{(X, + --- + X,)/n}} = L(2) (in
C'(C(S))). With this definition, we have:

THEOREM 2.4. Let (S, d) be a compact metric space and let X be a process on S
with EX(s) = 0, EX*(s) < oo for every seS. Suppose that there exist a pseudo-
distance e on S and a real nonnegative random variable M such that for every s, t ¢ S
and w € Q,

(2.5) X(@, 5) — X(o, 1)] < e(s, )M(w)
and verifying

(a) the identity I: (S, d) — (S, e) is continuous and
(2.6) §s H(S, e, u) du < oo,

(b)
2.7) Me L(Q, P).

Then, (X)) satisfies the central limit theorem.
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Proor. (S, e) being compact and X(w) continuous (by (2.5) and hypothesis a)),
for every w e Q there exists s, € S such that |X(w, s,)| = || X(@)|].. and therefore,
by (2.5) and (2.7),

|1 X()]|. < |X(o, 1)] + [diameter (S, €)]M(w) e Ly(Q, P)

(X(7) € Ly(Q, P)); thus, taking max {|| X()||.., M(w)} for M(w) in (2.5) if necessary,
we may suppose that, in addition to (2.5) and (2.7), M also satisfies

2.5y X(@)]|. = M(o).

Let {X,]}i., be a sequence of i.i.d. rv’s with values in C(S) and such that
LX) = Z(X). We may suppose that there exists a sequence of nonnegative
independent random variables (M.}, with ZAM,) = F(M), k = 1,2, ..., and
such that
2:8) X0, ) — X0, )] < e(s, DM (0) s [[Xy(@)]l < My(0) -

We define

Y (0) = X (o) for My(w) < kt
=0 for My(w) > kt,
R(0) = X,(0) — Yy(0) and g, = §o |[Ry(@)]]. dP(0) .

First we prove
(2.9) L tlkt < oo
We have
oo > M dP = i, kt Suigucsny M dP

= Vuaa MdP + limy o [ 10, (K — (k — DY) Swars MdP — Nt Swzovan MdP]

and since
limy o, Nt §,o vy MdP < limy ., §yons M?dP =0

we have

Diat (bt — (k — 1)) §00 MdP < oo
and so
(2.10) ikt Sy MdP < o0,

but by (2.8),
te = § ||Ry(@)|| dP(0) = §y, 211 [ Xi(0)]] dP(0) < Supart My dP = §yps MdP,
hence, (2.10) implies (2.9).

By (2.9)
(2.11) 2t ||Ry(@)||o/kt < o0 aus.
Applying Kronecker’s lemma to (2.9) and (2.11), we obtain
(2.12) lim, ., 31t E||Ry(0)||«/nt = 0

(2.13) lim, ., 212, [|R(@)||/nt = 0 a.s.
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By (2.12) and (2.13)
(2.14) lim, ., || 25, X,/nt — Y2, (Y, — EY))/n}]|, = 0 a.s.
(here ||+||.. means supremum over all s e S for each fixed w € Q). In fact,

|58 Xifnt — Ttes (Vs = EY)rd||o = || Dty Rifrt — Do ER o,
S Xk |R(@)]]o/n* + i E||Ry(@)]]/nt
and the last term converges to zero a.s. by (2.12) and (2.13).
The limit (2.14) proves that:

@) {<AXr. (Y, — EY)[nt}y., and {17, X,/nh)}r., are w*-convergence
equivalent in C'(C(S)); and

(b) a fortiori, the finite dimensional distributions of both sequences are also
w*-convergence equivalent, and this implies that the finite dimensional distri-
butions of the first sequence converge in law to the corresponding ones of the
Gaussian process Z (defined by EZ(s) = 0 and EZ(s)Z(t) = EX(s)X(?)) because
the same is true for the second sequence.

Hence, we need only prove the central limit theorem for the sequence {Y, —
EY,}7_, which we already know satisfies hypothesis (a) of Theorem 2.2; hypothesis
(b) of that theorem for this sequence is consequence of the following two esti-
mates: if we set ||M(w)||,, = C, by (2.5) and (2.7) we have

sup, || Yi(s) — EY,(s) — V(1) + EY, ()],
(2.15) < 2sup, ||Yi(9) — Yi()ll, = 2 sup, [|Xi(s) — Xu()l,

< 2e(s, 1) sup, || My(@)|z, = 2Ce(s, 1) ,
and moreover, by (2.5), (2.15) and the definition of Y,
sup, [|Yu(s) — EYy(s) — Y,(1) + EY,(0)||./k*
(2.16) < sup, [EYy(s) — EY,(0)|/k* + sup, [|[Yi(s) — YD)l Kt

< Ce(s, 1) + sup, ||(X(@, 8) — Xi(@, D)) skhi (@) |/ K
< (C + De(s, o) .

(2.15)and (2.16), together with the hypotheses of this theorem prove condition
(b) of Theorem 2.2 for {Y, — EY,};_, and therefore this sequence satisfies the
central limit theorem and the proof is completed. []

The method for estimating the difference between Y, — EY, and X, in this
theorem is inspired in the method used by Hartman and Wintner in [7] for
handling a truncation problem.

One question that may be asked is whether the kind of hypotheses we have
been considering for the central limit theorem are too strong. R. Dudley ([5]
and [10]) has counterexamples showing that hypotheses only on E|X(s) — X()|*
may not be adequate: there are sample continuous processes on [0, 1] with
E(X(s) — X(1))* < |s — t]i=* for every ¢ > 0 for which the central limit theorem
does not hold. On the other hand, as a corollary to the above theorems one can
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prove that the Kolmogorov conditions for sample continuity are also sufficient
for the central limit theorem ([1], [5] and next section in this paper).

3. Examples. In this section we present some applications of the theorems
in Section 2.

A. Random Fourier series. We consider first subgaussian series [8]. A real
random variable ¢ is called subnormal if

Eexp(4€) < exp(4/2), —0 <AL 00

if £ is subnormal then E¢ = 0, E€* < 1 and more generally, for every p > 0 there
exists a constant a, independent of ¢ such that |§]|,, < a, (e.g., Exercises 8 and
9, Chapter VI, [8], and use of symmetrization). Let T be the circle of length 1
and ¢ arc length from some origin, then the process F defined on T as

3.1) Fo, 1) = Y5, &.(0)x, cos 2znt 4+ ¢,)

where x, and ¢,, n = 1,2, ..., are real numbers and {£,}7_, is a sequence of
independent subnormal random variables, is called a subgaussian series ([8]
page 63).

For continuous functions f: T — R the modulus of continuity W, is defined as

W (k) = $UPau,nan [S(5) — fN)] -

The following lemma, due to Kahane, gives properties of Wy, in terms of
properties of the moments of the summands in (3.1) and will allow us to apply
Theorem 2.4 to Z£(F).

LeEMMA 3.1. Let F(w) be as defined in (3.1); if
(3'2) (22f5n<2f+1 x”Z)i = er

for some y < —1 and constant C, then, for every p > 0 there exists a constant C,
such that

(3.3) Plw: Wy(27%) < C ki1} = 1 — 2274,

k=1,2,...; moreover C, = C, - C where C, does not depend on C, F or k,
but only on p and 7.

ProOF. We can use the proof of Theorem 2, Chapter VII of [8] if it is modified
just by using a slightly different version of Theorem 2, Chapter VI: if P(r) =
37 €, f.(f) where {f,} is a sequence of real or complex trigonometric polynomials
of degree less than or equal to N, {£,} is a sequence of independent subnormal
random variables and ] is a finite sum, then for every p > 0 there exists a con-
stant C, such that

P{||Pll. = C)(Z |Ifullz log M)} < N°7.

C, may be taken to be 3(7 + p)t. Using this fact instead of Theorem 2, Chapter
VI, in the proof of Theorem 2, Chapter VII, and carrying the constants through
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all the computations, we obtain Lemma 3.4 with any constant C;'T such that
C,., = (log2)~=#(1 — 21“)’16",, . 0

(3.3), by application of the Borel-Cantelli lemma, proves sample continuity
of F for y < —1 (and gives an estimate of the modulus of continuity: Theorem
2, Chapter VII, [8]). To give an idea of how good a sufficient condition for
sample continuity of F is (3.2) for y < —1, we just note that there exist non-
sample continuous subgaussian series for which 33 ; (2 sicngait1 X,5)? < oo ([8]
page 65). On the central limit theorem for .~ (F) we can prove the following:

PRroPOSITION 3.2. Let F be a subgaussian series as defined in (3.1) and suppose
that F satisfies (3.2) for some y < —%. Then the central limit theorem holds for
A(F) (in C'(C(T))).-

Proor. By (3.2)and the properties of subnormal random variables, EF(s) = 0
and EF?*(s) < oo for every se T. Then, by the theorem in [5] we only need to
prove

SUPse 0,11 Wi (R)|log h|7+27274% e L(Q, P)

for some d > 0 and for some p > 2 (if e(s, ) = |log |s — t||~»*»/22=% then the
e-entropy condition for (7', e) in that theorem is satisfied). Using Lemma 3.1 we
obtain that for every ¢ > 1 and « = —1 — 7 (hence, a > (p + 2)/2p for some

large p),
Plo: sup,e o,y Wrw(B)log | < 20-2741. C} = 1 — 4. 274,

It is easy to see that if g is a nonnegative function satisfying P{w: g(0) = 2¥} <
¢ - 27* for some positive constant ¢ and every k € N, then g € L (2, P) for every
r<gsinfact, {o97dP <1 + 27 + ¢(2" — 1) 25,29 < co. Hence,

Suphe(o,i] WF(w)(h),log hla € LT(Q’ P)

for every positive r (in fact, E[sup,. .41 Wrw(h)|log A|*] < 27«0 C rC where
the constants only depend on their subindices). [J

If in the above proof we use Theorem 2.4 instead of the theorem in [5], then
we obtain the proposition only for y < —2. The fact that the ¢-entropy condi-
tion in the theorem in [10] can not be improved makes it difficult to think that
we can obtain stronger results than Proposition 3.2 for subgaussian series with
our methods.

Kahane in [8] also considers series of the form
(3.4 H(w) = 374 X, (@) cos 2wnt + ¢,(w))

where X,, ¢, are real valued and {X, exp (ig)};_, is a sequence of complex valued
independent symmetric random variables. The distribution of H is equal to the
distribution of the series Y}, ¢,(w,) X, (»,) cos 2znt + ¢,(w,)) where {¢,}=_, is a
sequence of Rademacher functions independent of { X, exp(i¢,)} (so that the series
may be supposed to be defined in a product space); this series has the property

7.q,a°
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of being subgaussian for every fixed ,. In [8] this fact is called “reduction
principle” and is used for reducing the study of the series (3.4) to the subgaussian
case. Using this reduction principle and Proposition 3.2, we can prove:

PRroPOSITION 3.3, Let H be the process defined on T by (3.4) and let

S; = (Lsign<airt X .
Suppose
ESp?+ < Cjr

for some 6 >0, C >0, and y < —5 — 20. Then, H is sample continuous and
A(H) satisfies the central limit theorem.,

Proposition 3.3 imposes conditions on the moments of order 2 + ¢ of the
terms of the series (3.4). Now we obtain a central limit theorem for general
Fourier series just imposing conditions on the second moments of the terms
(rather strong conditions). We will use the following lemma which is not too
far from the Sobolev lemma for the circle.

LEmMMA 3.4, Let f(t) = X v-_. a, exp(2rint) be defined on the circle T and
suppose
Zn%o |an||log nla < oo, a > 0;
then, for every s, teT,

|f(5) — ()] = Cllog |s — ¢||==
where

C= Zﬂ(a/e)"‘ Zlnls[expa] |n||an| + 2z Z|n|>[expa] |an|(l°g |”|)a .

Proor. We use without further mention the bounds |exp(2zink) — 1| < 2
and |exp(2wink) — 1| < 2xn|nk| and the fact that the function y = x~*log x is
decreasing on (exp @™, co) and its maximum, attained at x = expa~'is y = (ae)™".
Then, defining N = max ([exp a] + 1, 1/h), and taking 4 € (0, 4], we have

|t 4 k) — f(r)|[log A"
= Xnso |a,||exp (2mink) — 1||log A|*
< 2n(a/e)” Xipmi<toxva [1]1@u] + Zinzw |au]lexp(2ink) — 1[log A|*
+ Zini>texpal i<t [4a|€XP(2ink) — 1][log k| ;
the second summand is bounded by 2 ¥}, .~ |a,|(log |n])* because in this case
(log |n|)* = |log k|*; as for the third summand, we have
Ziimi>expal,mik<1 9] [XP (2wink) — 1][log h|*
= 27 Dnistoxpat i |G| (B7) 77| log A[)*(jn|"/* log |n])=*(log |n[)*
= 27 Zjni>oxpal,nin<1 |9 (10g 1)) |
by the properties of the function y = x~/# log x (since in this case exp a < |n| <

K. [
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ProrosiTION 3.5. Let F(w, t) be the process defined on T by
F(w, t) = 3, Y, (») exp(int)

where (Y, ). _., is a sequence of independent, centered, square integrable random
variables satisfying

Zinso ”YnHL,(IOg |n[)+* < oo

for some 6 > 0. Then F is sample continuous and the central limit theorem holds
for SF) (in C'(C(T))).
Proor. This is a direct consequence of Lemma 3.4 and Theorem 2.4. []

By considering moments of order greater than 2 in the above proposition, we
are only able to reduce somewhat the power of log|s|. The condition in Propo-
sition 3.5 is much stronger than Hunt’s condition for sample continuity of Fourier
series (see [8], notes to Chapter VII).

B. Random Taylor series. As a close look at Proposition 5 of Chapter V,
Theorems 1 and 2 of Chapter VI and Theorem 2 of Chapter VII in [8] proves,
Lemma 3.1 above depends only on Bernstein’s inequality for trigonometric
polynomials and on the properties of subgaussian series; the crucial fact is that,
as a consequence of this inequality, if p(f) = 24, b, cos (nt + ¢,), then there
exists, on the circle, an interval of length N-? where |p(t)| > 4||p|/. Moreover
N-* may be substituted by aN-", (a, r, positive numbers) and the circle by some
other set of finite measure, say, an interval of finite length. These considerations,
together with the next lemma, will give us results for random Taylor series
analogous to the ones obtained for Fourier series. We give the lemma and present
the results without proof in order to avoid repetition.

LeEMMA 3.6. Let p(t) = 1V, a,t*, t e[ —1, 1]; then there exists a subinterval of
[—1, 1] of length at least 2-*N=* where |p(t)| > 4||p||w-

Proor. The change of variables t = cos ¢ gives a bijection between [—1, 1]
and [0, z]; p(?) is transformed into ¢(f) = Y4, b, cos nf and as a consequence
of Bernstein’s inequality for trigonometric polynomials (see Proposition 5, Chap-
ter V [8]), there exists an interval of length 2-'N-! where |¢(6)| > 4||g||... Since
1 — cos (2N)~! = 2-*N-%, we obtain the lemma. []

ProposiTION 3.7. For te[0, 1], define the process Y(w, t) = }iw_q (@)X, t"
where (£,}5., is a sequence of independeht subnormal random variables. Then, if
there exist constants C > 0 and y < —§ such that (Xsigucairn X)) < Cj7, Y is
sample continuous and the central limit theorem holds for Z(Y) (in C'(C[—1, 1])).

ProrosiTION 3.8. If Y(o, t) = Yo, X,(0)t" where {X, )., is a sequence of inde-
pendent symmetric random variables such that if S, is defined by S; = (Ll sgn<sirt X,")}
then there exist 8 > 0,1 < —5 — 28 and C > 0 such that ES?+ < Cjr, then Y
is sample continuous and the central limit theorem holds for <(Y) (in C'(C[—1, 1])).
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Lemma 3.4 and hence Proposition 3.5 have also analogues for random Taylor
series. For > 0 define the following distance on [—1, 1]: set 4, = [—1, —3}],
A, = [—4%, 3], and 4, = [4, 1], then, e,(s, t) = |t — 5| on A,, e,(s, t) = |log |t —
s||7-* on 4, and on 4, (not on A4, U 4,), for sc A, and t € A, e,(s, 1) = e,(s, —%) +
e,(—3,1),forse A,and t e Ay e,(s, t) = e,(s, %) + e,(3,f)and for se 4,and 1€ 4,
e;(s, 1) = 1 + e;(s, —3%) + e,(3, 1). Then:

LemMA 3.9. Let f(t) = XY 5., a,t" and suppose
2.7 la|(log n)**? < oo (6>0).
Then, for every s, te[—1, 1],
If(s) — f()] = Cey(s, 1)

where C may be taken to be ’
C =2((1 + d)fey** T nla,|
+ 4 Yrpavers |ag|(log n)tte 4 3 n27"Ha, | .

Proor. Similar to the proof of Lemma 3.4, using the bounds |* — 5| < 2
and |* — s"| < n|t — s| for s, te A, and |* — 5" < n27*t — s|fors, te 4, (]

PROPOSITION 3.10. Let Y be the process on [—1, 1] defined by Y(w,!t) =
2o Ya(w)t™ where {Y,}r_, is a sequence of centered, square integrable, independent
random variables. Then, if for some d > 0, 35,.||Y,||.,(log n)'*? < oo, the process
Y is sample continuous and £ (Y) satisfies the central limit theorem in C'(C[—1, 1]).

Again, the condition in this proposition is stronger than what is needed for
just sample continuity: using Kolmogorov’s inequality and Abel’s lemma on
convergence of series, we may easily prove that 3} ||Y,]|2, < oo is sufficient for
.sample continuity of the process Y.

C. Processes on [0, 1]. The following proposition has been suggested by an
example in [1].

PRrOPOSITION 3.11. Let X(w, t) be a process on [0, 1]with EX(f) = 0 and EX* < oo
for every t € [0, 1] and such that for some p =2, ||X(s) — X(1)||., = K|s — ¢]'*/
[log |s — #||®+V/2+c with K > 0, © > (p + 2)[2p; then the process is sample continu-
ous and the central limit theorem holds for £(X) e C'(C[0, 1]).

Proor. If only r > 0, then X(¢) is sample continuous by virtue of a classical
result (Loéve, [9] page 519). In Lemma 1.1 of Garsia, Rodemich and Rumsey,
[6] page 566, take ¢(u) = |u|* and P(u) = |u|*?/|log |s — f||***~¢ where 0 < p <
min (p~', ¢ — (p + 2)/2p). Then, assuming K = 1,

§a 33 E|(X(s) — X(0)/P(|s — 1))|” dsdt
< o Sils — ¢ Ylog|s — t]|" PP dsdt < oo .
Hence the random variable B = §{} {3 |(X(s) — X(¢))/P(]s — t|)|? dsdt is in L,(Q, P)
and in particular, is a.s. finite. By Lemma 1.1 in [6] we then have that, almost
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surely,
| X(s) — X(1)] < 8- 4vr . BYP (= =¥ d(u?[|log u|'*+*=¢)
< C.Bvr|log|s — t||°~*

for some positive C and s, ¢ in any interval of length less than, say, 4. Then, if
p = 2, we apply Theorem 2.4, and if p > 2, the theorem in [5].

The example in Proposition 7.1 of [4], for the case k = 1, satisfies E|x, — x,|* <
|s — t] as it is easily verified, and x, has all its versions with almost all their
sample functions unbounded; hence, at least for p = 2, the best possible power
of |s — | for sample continuity gives also the central limit theorem for the
process X.
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and, in general, for his valuable advice. I am also indebted to the referee for
suggestions that helped to improve the paper.

REFERENCES

[1] ArAuJO, A. DE (1973). On the central limit theorem for C(I*)-valued random variables.
Preprint, Univ. of California, Berkeley.

[2] BeNNET, G. (1962). Probability inequalities for the sum of independent random variables.
J. Amer. Statist. Assoc. 57 33-45.

[3] BILLINGSLEY, P. (1968). Convergence of Probability Measures. Wiley, New York.

[4] DubLEY, R. M. (1973). Sample functions of the Gaussian process. Ann. of Probability 1
66-103.

[5] DubLEY, R. M. (1974). Metric entropy and the central limit theorem in C(S). To appear
in .inn. Inst. Fourier.

[6] GARsiA, A., RoDEMICH, E., RuMsEy, H. (1970). A real variable lemma and the continuity
of paths of some Gaussian processes. Indiana Math. J. 20 565-579.

[7]1 HARTMAN, P. and WINTNER, A. (1941). On the law of iterated logarithm. Amer. J. Math.
63 169-176.

[8] KAHANE: J. P. (1968). Some Random Series of Functions. D. C. Heath, Lexington.

[91 Lokve. M. (1963). Probability Theory. Von Nostrand, Princeton.

[10] STRASSEN, V. and DUDLEY, R. (1969). The central limit theorem and e-entropy. Lecture

Notes in Math. 89. Springer-Verlag, Berlin, 224-231.

DEPARTAMENTO DE MATEMATICAS
INSTITUTO VENEZOLANO DE
INVESTIGACIONES CIENTIFICAS
APARTADO 1827

CARACAS 101, VENEZUELA



