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STRONG AND WEAK LIMIT POINTS OF A NORMALIZED
RANDOM WALK!

By K. BrRUCE ERICKSON AND HARRY KESTEN
University of Washington and Cornell University «

Let S, = X" X; be a random walk. A point b is called a strong limit
point of n~«S, if there exists a nonrandom sequence m; — oo such that
ny=®Su, — bw.p. 1. The possible structures for the set of strong limit points
of n-«S, are determined. We also give a sufficient condition for n-1S, to
be dense in R. In particular n-1S, is dense in R when E|Xi| = oo and 715
has a finite strong limit point.

1. Introduction and notation. In [4] the set of accumulation points of n=*S, -

for a random walk S, was studied. In this paper S, always stands for ¥} X,
where X,, X,, --- is a sequence of independent, identically distributed random
variables with common distribution function F. The random walk is then the
sequence of partial sums S,, S,, - - -, and the random set of accumulation points
of n=«S, is

(1.1) AS,, @) = Np{n~2S,:n = m}.

The bar in the right hand side of (1.1) denotes closure in the extended real line
R=RuU {— o0, + oo} and throughout “closure” and “closed” are taken in the

topology of R. It is easy to show ([4] Theorem 1) that there exists a closed
nonrandom set B(a) = B(F, «), depending on F and « only, such that

(1.2) A(S,, n*) = B(F,a) w.p. 1.

Several theorems about the possible structure of B(a) were derived in [4]. The
present paper is centered around

THEOREM A ([4] Corollary 3 and Theorem 7). If B(1) contains more than one
point, then it must contain +oco and —oo. For any closed set C C R containing
+ o0 and — oo there exists a distribution function F such that B(F, 1) = C.

By (1.2) b € B(e) if and only if there exists w.p. 1 a random sequence n, — oco
such that

(1'3) nk"“sﬁk — b .

Here we introduce also strong limit points. We call b a strong limit point of
n~=S, if there exists a nonrandom sequence n, — oo such that

(1.4) nsS, —b w.p. 1.
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554 K. BRUCE ERICKSON AND HARRY KESTEN

We denote by B,(a) = B,(F, a) the set of strong limit points of n-=S,. Clearly
B, is closed in R and it follows easily from (1.2) (see also (2.3) of [4]) that
B(F, a) C B(F, a). From the concentration function inequalities ([2] see also
Lemma 5 and Remark 3 in Section 3) it follows easily that if (1.4) holds for
some & < }and || < oo, then one must have ¢*(X,) = 0, i.e. X; must be constant
w.p. 1, and then by (1.4) this constant as well as b must equal zero. Thus B,(a)
is uninteresting for « < . For a > } we have

THEOREM 1. If a >3, a+# 1 and be B(a) for some 0 < |b| < co, then
sgn (b)[0, o] C B,(a).

Thus if @« > %, @ # 1 the finite strong limit points of n==S, (if any) either fill
up the whole line R, or one of the half lines [— oo, 0] or [0, oo], or consist of
{0} only. Each of these possibilities can occur (see Section 4). When a« = 1 no
such restrictions on B, apply since we prove

THEOREM 2. If D is any closed set in R, there exists a distribution function F
such that B(F, 1) = D.

The question arises what happens to the set of accumulation points of n~S,
which are not strong accumulation points when one forces B,(F, 1) to have a
given structure. Perhaps the most striking aspect of theorem A is that B(F, 1)
does not have to be connected. At first sight one expects that if —oco < b, <
b, < oo, b, € B(F, 1) then all points in [b,, b,] should be accumulation points of
n~'S,. By theorem A this is not necessarily the case, but in [4] it was stated as
a problem to find a n.a.s.c. for B(F, 1) = R. We do not have a n.a.s.c. here,
but we do show that if n=S, has a finite strong limit point and E|X,| = oo, then
B(F, 1) = R. This is a consequence of the stronger

THEOREM 3. If

(1.5) E|X,| = o

and

(1.6) lim sup,,_mP{ Sa = a} >0
n

for some a < co then B(F, 1) = R.
This theorem has the following analogue for } < a < 1.

THEOREM 4. If 1 < a < 1 and

(1.7) E(X, ")/ = E(X,")V" = oo,
and for some a < co
(1.8) lim supMP{ Shl < a} >0,

then B(F, a) = R.
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We shall not prove Theorem 4, because its proof is rather lengthy. We note
that (1.7) cannot be replaced by E|X;|"* = co, as shown by Example 4 in Section
4. For a > 1 the conclusion of Theorem 4 does not hold even under (1.7)
as demonstrated by Example 2. Finally we note that E|X;|V* < oo implies
n=%(S, — nc) —» 0 w.p. 1 where ¢ = EX, for } < a < 1, respectively, ¢ = 0 for
a > 1, see [5] page 243.

In Section 4 we give some more examples to illustrate the possibilities for
B(a), a # 1, as well as some conjectures.

2. Proof of Theorem 3. In this section it is very convenient to assume that
the distribution F is absolutely continuous. This causes no harm for we can
always convolve F with the normal distribution N{dx} = (27)~te~**?dx having
mean 0; then F x N is absolutely continuous and, as one may easily see from
the probabilistic meaning of convolution and the Strong Law of Large Numbers,
B(F + N, @) = B(F, a) for a > 3.

Define the following quantities:

q(t) = P{|Xy| >t} = F(—1t) + 1 — F(¢)
1
o(t) = - ¢, x*F{dx} , p(t) = §4, xFldx} .
Note that tq(f) + p(f) = 2t7! {{ xq(x) dx. As customary °F denotes the distribu-
tion of the symmetrized random variable °X = X, — X,.

LemMA 1. If (1.6) holds then we can find t, | co such that for all a sufficiently
large

2.1 inf,@lp{ Sul < a} >0
k

and

(2.2) SUP.ar {8 q(8) + p(1)} < oo

(S, = Siy). If for some t, T co we have
le(t)l + 1q(t) + o(n) = 0(1),
then lim sup P{|S, /t,| < a} > O for some a > 0.
Proor. Suppose (1.6) holds. By considering subsequences we may clearly

suppose (2.1) is true. From a concentration function inequality ([2] Theorem
3.1) we have

|
for any 0 < 2 < 2an and a universal constant ¢. Assume a > 1. On taking
A = t, = n and writing § for the left hand side of (2.1) we get for all k

2 ., 1 ca\?
= ° dx = — (tte x2°F(d Loqt) = (=) -
o Sxoqn) dn = - G R @) + 1 qn) < (%)

k

Sa

n

< a} < 08, an) < can¥{§2, y* *Fidy} + 2 q(2))*
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Now (2.2) follows from the symmetrization inequality 2P{|°X,| > x} = P{|X;| >
x + |m|}, of ([3] page 149) where m is any median for X,, and a change of
variables.

To prove the second assertion of the lemma let {#,} be such that for some
number d, > 0 and all k

] + p(8) + 1.9(1) < 6y < o0

where 11, = p(t,). Define X;’ = X; when |X;| < 1,, and X;” = 0 when |X;| > t,.
Then for a > 24, > 2 sup, |¢,]

k k
4 Var (S’ /t
g__%i@ 1 —[1 = g

t
s Se)+1-[1-

k

<® L1 ento,
a2

where ¢, — 0. Consequently

limsup,,_mP{ i ga} ge'30—4—52°>0
a

192

for all a sufficiently large.

REMARK 1. The following generalization of Lemma 1 is also true: If
lim sup P{|S,,/1,°| < A} > O for some 4 and « > 4, then

sup, [#'~*0(5,%) + 4 9(t%)] < oo .
If
[t + 6170(0") + Bg(t”) = O(1)
then lim sup P{|S, /1,*| < A} > 0. We omit the proof but it is analogous to that
of Lemma 5 below.

Now assume (1.5) and (1.6) hold and let 7, 1 co such that (2.2) holds. For
7 > 0 introduce the quantities

(2.3) An) = max {2: 2 < 1y, §agpase, |x|F{df‘} = 7/}
a,(7) = max {p(?): 'zk(’l) St=1t}.

By (1.5) for any > 0 2,(y) is well defined for all k sufficiently large and
A(n) — oo, k — oo, for each fixed ». From the preceding lemma one of the
following three cases must prevail.

Case 1. There exists #, 1 co and a constant §, < co such that

(2.4 le(t)] + o(te) + t.q(t) < 6, forall k
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and

(2.5) for every 5 >0, a(y) = sup,,, an) < .

Case II. There exists 7, 1 co such that (2.4) holds and there is an , > 0 such
that ,

(2.6) a,(n,) — oo.
Case I1I. There exists 7, 1 co such that (2.1) and (2.2) hold but ()| — oo

In all three cases we show that at least 0 ¢ B(F, 1). This immediately gives
the desired conclusion: B(F, 1) = R. For if a random walk {S,} with distribu-
tion F satisfies (1.5)—(1.6), then, as the reader may easily verify, so does the
random walk {S, — nb} with distribution F,{dx} = F{dx + b} for any b, Hence
if (1.5)—(1.6) implies 0 e B(F, 1) then also 0 ¢ B(F,, 1) or, equivalently, b e
B(F, 1) for every b.

Case 1. We are going to prove that under (2.4)—(2.5) {S,} is persistent, i.e.,
P{lim inf |S,| = 0} = 1, and, a fortiori, -P{lim inf |S,/n| = 0} = 1 and thus O e
B(F, 1). According to Ornstein’s recurrence criterion ([6] Theorem 4.1 or [7]
Theorem 2) we need only to verify
1

e (10

)d0 = o0
where
@(0) = =, e**F{dx} is the ch.f. of F.

Put §(x) = |u(x)| + o(x) + xg(x). Then for § > 0

11— o(0)] < |§%2 i0xFldx}| 4 (¥4 €7 — 1 — ix0|Fldx} + 2 § .1, Fldx}

< 0lu(1/6)| + 30 §¥4, X*Fldx) + 24(1/6) < 206(1/0) .

Also

Re (1 — ¢(0)) = {04 [1 — cos x01Fldx} = 16§V, x*F{dx} = L10p(1/6) .

Hence

2.7) §},Re< 1 )d@:g;lﬂl_ﬂ"("» do

1 — () [T — @)
> 1 i o(1/6) do = 1 fy p(x) dx .
= 20 " 95*(1/6) 20" x6%(x)
From (2.3) and (2.5) if 4,(y) = 4, < x < 1, then
P(¥) = ay(n) < a(y)
and
(2.8) G = 1(Y%, — Sesimse, WFIY < e(t)] + 7,
and

(2.9) xq(x) = X §yy20, Fldy} + x Sesimise, Fldy) < t.q(t) + 7.
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Consequently by (2.4)
210 () =2+ a()+d,=Clp) for L<x=t, k=k.
Let us prechoose y > 1 + 6, =1 + SUP,: 0(%,) (see (2.4)). Then, noting that

the region |y| < x, 2, < x < 1, contains 1, < V=t [y £ * < t,, we have
from (2.3)—(2.4)

X ? 1 1
@1 5 P = i (50 L FlB)) d 2 Gy, (4= o) F
1
=7 - s Sx,,sw|st,,}’2p{d)’} =1+6,—pt)=1.
k
Now let us thin out the sequence {#,} so that the intervals [4k(n), t,] become

disjoint; this can be done because 1,(7) — co. Then using (2.10) and (2.11) in
(2.7) we get

. 1
iR (=5

So much for Case 1.

Case II. Here we will prove B(F, 1) = R.

>d0 = oo ke, Vi ) gy > !

= e 1= .
000 = Zoci) Dik 1=

LeEMMA 2. Let T > 0 be any large number. If (2.4) and (2.6) hold, then we can
Jind r, 1 oo and a proper infinitely divisible law G such that

lim,_ r,q(r,) = g, < oo,
and

2.12) lim,_ P { "’;’n e I'maxiS% | < r,,} — G(I)

n

for every continuity interval I of G. G has characteristic function v given by

iz — 7
(2.13) log u(0) = i + Sy, S L = X0 ppiany
(the integrand = —46? at x = 0) for some p and canonical measure M (for defini-
tion see Feller [3] page 560) satisfying
(2.14) I <06+ 10, 0= M{—1, +1]} = |u| + T.

LemMMA 3. Let G be a distribution with characteristic function as in (2.13). Put
A= su'pp G*
o = M{[—1,1]}.
If M{[0, 1]} > O then for every ¢ > 0 and a > p — o®, there exists k > 1 with
(2.15) (k(@—e), k(@a+e) N A, + @ . '

Before proving these lemmas let us use them to show B(F, 1) = R. Let T > 0
be arbitrary but fixed and choose {r,} as in Lemma 2. By (2.14) M + 0 and
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there is no loss of generality in assuming M{[0, 1]} > 0. Leta > —T, ¢ > 0,
I=[a—¢,a+¢]. Then

P{iel i.o.}
n

= lim,,_, P {i eI for some n = m}

n

= limsup,_.. P {% € I} max,,, |X;| < r,,} P{max,,, |X;| £ r.}.
rn n n
Now 8, [kr, conditioned on {|X,| < r,, i = 1, ..., kr,} is distributed as a sum
V, + ¢-- + V, of k independent random variables where each V; is distributed
as k{(X, + .-+ + X, )/r, conditioned on {|X;| <r,,i=1,..-,r}. Hence by
(2.12)

lim inf, ., P { i’"u e I‘maxié,,,” x| < r,,} > GH{kIY)

n—oo
rn

kI’ = (k(a — ¢), k(a +¢)). Bya> —T = p — ¢*, (2.14) and Lemma 3 we may
choose k so that G*{kI°} > 0. Also, by Lemma 2, ¢(r,) ~ q,/r, as n— oo for
some g, < oo SO

P{max,g,, Xl =rn}=1[1 - qg(r)]e» — e7k, n—oco.
Putting these facts together we have for any ¢ > 0
P {ﬂ cla—e¢ a+ ¢ i.o.} > GH{kI)e-t > 0,
n
and hence?’ everya > — Tisin B(F, 1). _Since T > Ois arbitrary and since B(F, 1)
is closed in R we conclude B(F, 1) = R.

Proor oF LEMMA 2. By (2.6) there exists t,/ with 2,(p) < ¢’ < t, and
lim sup,_., p(#,') = oo, consequently we can choose sequences {k,} and {r,} such
that

(2.16) () St and
T+ p + 6, < lim,_, p(r,) = 0? < o0«

(Since p is continuous we could even have p(r,) = ¢* for all n.) From (2.16),
(2.8), (2.9) and (2.4) we have

|ﬂ(rn)|'§60+7]0§02— T and rnq(rn)§60+7]0'
So by selecting a subsequence of {r,} if necessary we can assume

(2.17) lim, . p(r) =, |fl S0 —T

lim,_., 7,9(r,) = ¢, < oo .

2 Compare the proof of theorem 1 in [4].
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Now define

F{r,dx}

1 —q(r.)
=0 on R\[-1,1]

M*(x) =r,[l — F ()], M, (x)=r,F,(—x) for x>0,

M, (dx} = r,x*F {dx}, B = E(, 6l = r> ‘1_1 f(q() r)’

— Ty — ﬂ() — Ty 32 __1_ ()
bn— lﬂk,n l—q() Bn—Zlan,n—”<l_q( ))

Note that F,"»'{dx} = P{S, [r, € dx|max,, |X;| <r,}. From (2.17), (2.16) and
q(r,) — 0 we have

F”{dx}zP{§edx||Xk|§r”} = on [—1,1]

limbnzlim“_.wli(qz =
lim B, = lim — <1—(9z )>2=0

lim M {R} = lim M, {[—1, 1]} = lim p(r,) = o®.
Next using (2.9), (2.4) and (2.16) gives us, for 0 < x < 1,

russiviar, V' F{dy}

1 g’
—0 <}; p(rn)> =0 <;2_) .
Thus for each 0 < x < 1, M,*(x) and M,~(x) are bounded in n, since these
functions are non-increasing it follows that we can find non-increasing functions
M*, M- on (0, 1] so that along a subsequence of.{r,}, denoted again by {r,}, we
have

M) S (1= g

lim M,%(x) = M*(x)

at all continuity points of M*. We may now conclude from ([3] Theorem XVII.
7, page 585) that (S, /r,) — b, conditioned on max,, (X;) < r, converges in
law to an infinitely divisible distribution whose canonical measure M has support
in [—1, 1] and satisfies (2.14). This clearly implies (2.12) since b, — ¢ and

1] < oo.

REMARK 2. A proof similar to that of Lemma 2 shows that if o(r,) +
r,q(r,) = O(1) as n — oo but p(r,) — co. Then, along a subsequence of {r,}, the
law of (S, /r,) — b,, b, = E(X||X;| £ r.) = p(r.)/(1 — 4(r,)), conditioned on
{max,, |X;| <r} converges properly to an infinitely divisible law whose
mean is 0 and whose canonical measure M is concentrated on [—1, 1] with
M{[—1, 1]} = ¢® = lim p(r,). (For the proof note that it suffices to show
lim inf r,g(r,x) < oo and lim B, = 0. See ([3] pages 584-585), notation as



LIMIT POINTS OF A RANDOM WALK 561

before. But
Ra(a%) = — 0(r) + rq(r) = O(1) and
_ 1/ mr) ¥ ¢ (A) 1 2
B”_z,_(l—Q( )> < T >+0<';;‘ISAsz5r,,xF{dx,}l>

1
<0 <-r—> + P{|x| = A} -r— SA§IzI§r” x*Fldx}

n

0 (1) + g = 0 (L) + oG4y

n n

That is
lim sup B, < Cq(A)
for every 4 > 0, C independent of 4. But then we must have lim,__ B, = 0,
since g(4) — 0, A — oo. '
We shall need this remark in Case III.

Proor or LEMMA 3. If the canonical measure M in (2.13) has an atom at the
origin, say 6 = M{0} > 0, then G is the convolution of some distribution H and
the N(0, o) distribution and therefore has an everywhere strictly positive density.
In this case (2.15) holds with k = 1 so we may assume M{0} = 0, M{(0, 1]} > 0.
Put for & > 0 &, = §;, 3 M{dx}/x and let V = ¥, and W = W, be independent
random variables with

log Ee™" = §_ (_,, [ — 1 — ifx] =2 M{dx}

log Ee” = § .11 (677 — )M{dx}

Also let Y have distribution G. Since
EetfY — ew(,u—bh)EewwEeitW

A, = supp (Y) = ¢ — b, @ supp (W) @ supp (V). (Here we write supp (Y) for
the support of the distribution Gof Y,also A® B = {a + b: ac A4, b e B}.) Now
V has a compound Poisson distribution: ¥ has the distribution of

Zl + cre + Zr
where 7, Z,, Z,, - - -, are independent, ¢ has a Poisson distribution and
M{d M{d.

PIZie A} = a2 [0 Y23,
It follows that if d e supp (M), d 2 h, then jdesupp (V),j=1,2, ---, so, for
any j=0,1, ..., woesupp(W) we have p — b, + wo—l-jdesupp(Y)
This fact and A =A@ --- ® A, (k summands) gives us
(2.18) k(g — b, +wy) +jdedA,, j=0,1,...,k=1,2,.

Now if M{[—1, 0)} > 0, then supp (W) is unbounded below, see ([3] page 571(c))
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and we can pick %, w, so that M has a point of increase d > h and
(2.19) r—b+w<a.
If M{[—1, 0]} = O then

Mid
= M{(0, 1]} < Lim, b, = lim, 4 5 1 {"}

and W, — 0 in probability since

lim, , Eei®s = lim, |, exp § . [€%* — 1 — iox]) M19*} {d"}

Thus for small &, w, can be taken small and we can again pick # > 0 so that
(2.19) is satisfied (recall ¢ — ¢* < a). For 2ke > d we now see that (2.19) guar-

antees there is at least one point of the form (2.18) in (k(a — ¢), k(a + ¢)) and
(2.15) is established.

Case III. Here also we will show B(F,1) = R. In view of (2.1) and (2.2)
we may suppose

(2.20) Hq(t) — go < oo
o(t) — p, < oo as k— oo
and
S,
2.21) P{t_" ga}gpo>o for all k.
k
Let {X;®, X,®, ..., Y,®, Y,®, ...} be independent random variables such that

P{X; " edx} = P{X, edx||X)| < 1,}
P{Y;® e dx} = P{X, edx||X,| > 1.} .

Put W, =V, =0, V,® = X;® 4 ... 4 X,®, W, =Y,® 4 ... L Y,®
form>1and a,” =§{j:j < m,|X;| >t} A simple calculation shows

(2:22) P(S, e} = T3 PV, + W, € Pla,® = j} .

Put b, = EX,® = pu(t,)/(1 — q(t,)). According to Remark 2 we can assume the
f, have been so chosen that (S,,/t,) — b, conditioned on {max;, |X;| < #,} con-
verges in law to a proper distribution G. Moreover

IVU‘) Vi — (h — n)b| —0
in probability by Chebyshev s inequality, whenever r,/t, — 1, so that
(2.23) lim,__ P {i V# — b, e dx} — G{dx}
n

whenever r,/t, — 1.

LemMA 4. (a) In (2.20) g, = lim,_,, 1,4(t,) > O.
(b) There is an integet j, = 1, a real number h, and a subsequence of {t,}, denoted
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again by {t,}, such that for every ¢ >0

(2.24) lim inf P {tl W + boelh— e h+ e]} =16 >0.
k
Before proving the lemma let us use it to show B(F, 1) = R. ‘Let g be a point
of increase for G, ¢ an arbitrary real number ande > 0. Put/, =[g — ¢, g + ¢],
I, =[h — ¢,k + €], hasin (2.24), and m, = (¢, + j,)/(1 — t/b,). Since |b,| — oo
(recall |u(t,)| — oo in Case IIT) we have

(1=2)n4 ey (1= Lty
, m, m, m,

Clh+g+t—4e,h+g+1t+4e]=,
for all k sufficiently large. So by (2.23) and (2.24)

yi W
IGllg—c9+er(e) <P {m_mlg_?o_ — be 11} P{ tJO + b e Ia}

E— Jo k

=Pl + Wi ed)
m,
for all k large. From m,/t, — 1, (2.20) and part (a) of the lemma
. . ) i
Play = i = (@A — gy e = €, > 0.
o!
Applying these estimates to (2.22) gives for all large enough k
1 : 1
PlSw el = Pty =P |- Vi, + W) e}
k k

2 §Cor(e)G{(9 — 6,9+ )} > 0.

In other words limsup, ., P{S,/ne[h+ ¢+t —4de,h 4+ g + t + 4¢]} > O for
every ¢ > 0; consequently® & + g + t e B(F, 1). But then B(F, 1) = R since ¢
is arbitrary.

Proor oF LEMMA 4. From (2.23)and |b,|—oco it is clear that P{(1/1,)|V{¥|<¢}—0

for every ¢ > 0, hence
V(k)
p{ Th

t,

<d <ip

for all k sufficiently large. Next as noted above P{a®’ = j} — e~%q,i/j! so there
is a j;, = 1 such that

Plag) > i} = £po .
for all k large. In (2.22) these bounds along with (2.21) give for k sufficiently

8 Compare the proof of Theorem 1 in [4].
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large

ty—i

1 .
oS ﬁ'LoP{t—kIV"" + W < o} Plag =)

= %9 + Pl < aff < /i) maxygg;, P{ti Vigls + Wi < a} + ']:To
) ,

tp—
Hence, by going over to a subsequence, we must have for some j, e[1, j,]

tg—do

lim inf, .. P(1 S aff S JP{ ViR, + Wil <a} 222> 0.
k
From this we can see firstly that ¢, 0, since lim P{l < & <jj} <

J19, max {1, g,17'}. Secondly for all k sufficiently large we must have

PV, + Wl S af 2 4.
k

tg—do
From (2.23) we can find a d so that for all £
Pl L, s,

— Vil
tk k=0

<dlz1-4p.

Combining these last two inequalities and using P(4 n D) = P(4) + P(D) — 1
yields
1

4

(2.25) P {

W;.';>+b,,|§a+d}z-}r1’o>0

for all k sufficiently large. Now let us select a subsequence of {#,}, still to be
denoted by {z,}, so that

lim P {ti W+ b, < x} = f(%)
k

exists at all but a countable set of x. We get (2.24) by choosing for 4 any point
of increase of f in [—a — d, a 4+ d] which exists by (2.25). This completes the
proof of the lemma and of Theorem 3.

3. Proof of Theorems 1 and 2. First we derive a criterion for b e B/(F, a).
We use the notation of Section 2.

LeEMMA 5. If for a sequence of constants {c,} there is a sequence of nonrandom
numbers {t,} such that t, T co

S
(3.1 t_‘a"_——ck —,0 as k— oo
k
then
(3-2) lee — 61" p(t7)| — 0 and
(3.3) t 1§ xq(r)ax—0 as k— oo
k

Conversely if (3.3) holds for some t, | oo then (3.1) holds with ¢, = t,'~*p(t,%).



LIMIT POINTS OF A RANDOM WALK 565

CoROLLARY. For a finite b to be in B,(F, a) it is necessary and sufficient that
(3.3) hold for some sequence t, 1 co with t,)~*u(t,*) — b. (Recall that (3.1) implies
a.s. convergence of 1,7°S, — c, to 0 along a subsequence.) For b = +oco to be in
B(F, a) (3.3) with t,)~*p(t,*) — b is sufficient.

REMARK 3. For 0 < a < 4 liminf £-%* {{ xg(x) dx > 0 unless F is degenerate.
Hence B(F,a) N R = @ when 0 < a < 4 and F is not concentrated at the
origin.

REMARK 4. To see that (3.3) is not necessary for co € B(F, a) let F{dx} =
C,x%dx for x=1, C; >0, and F{dx} =0, x < 1. Then EX, = +co so
u(t) — o0 and S,/n— +oo a.s. Thus B(F,1) = B(F, 1) = {4+c0}. However
lim,_ (1/¢) {{xq(x)dx = C, > 0. We do not have a good criterion for
+ o0 € B(F, a).

Proor oF LEMMA 5. Suppose first that (3.3) holds. An integration by parts
shows that (3.3) is equivalent to
(3.4) lim,_., t,q9(t,*) =0 and lim,_, #,**o(t,*) = 0.

Define X = X, if |X;| < t,*and X! = O for |X;| > ¢,*. PutS,/ = X,/ +...+X/,
let ¢, = t,)~*p(#,*). Then E(S}, /1,%) = ¢, and

S’
Var <—t’?‘7) = 7% Var (X)) < )7 (%« X*Fldx} = ,'"%0(1,") .
Hence

S’
wo_ c,,] > e} + 1, PX, # X}

[

S

1 1-a a a
= 'E.;tk o(4%) + tg(t”) -

From this inequality it follows that if (3.4) holds then (3.1) holds with

¢ = ().
Now suppose (3.1) is true. Let °X, °S, = °X; + ... 4+ °X, denote the sym-
metrized random variables. Then by ([3] page 149)

2P(S, — t,7cy| > et} = P{|°S,,| > 2¢1,%)
2 3[1 — exp[—1,°q(2et,)]]
where °q(f) = P{|°X,| > t}. From this we see that (3.1) implies

3.5) t,°q(yt,*) — 0 forall y >0
and

St" —,0

tka

as k — oo. If @, denotes the characteristic function of °X, then -

cD*%(i)_u k— oo

1
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Since 0 < @ (0) < 1 for all ¢
1 on(2) = mare(2) (- o (2)
[ 1 [
= 02(2) (-0 (8).
12 1=

k

and thus

(3.6) umbm@[1_.®*62)]:0 for all 4.
k

But

2 l:l -, (5;):] Z 4 Sz, [1 — ¢0s <$>] °F{dx}

= CO1 72 § g ye e X OFdx])

= C[r,)726" §3"" x°q(x) dx — 1,°9(y1")] »
where y = || and C > 0 is independent of ¢,. Therefore by (3.5) and (3.6)
3.7 lim,_,, 272 §¥%* x°q(x)dx = 0 forall y >0.

In view of Remark 3 we may assume a > 4 now. Moreover, if m is any
median for X, then ([3] page 149),

°q(x) = P{|°X| > x} = $P{|X| > x + |m|} = 39(x + |m]) .

Using this inequality in (3.7) and a change of variables gives (3.3).

We have now proved that (3.1) implies (3.3) and that (3.3) implies (3.1) with
¢, = t2*u(t,). Hence if {c,} is any sequence of constants for which (3.1) holds
then (3.2) must necessarily also hold.

PrOOF oF THEOREM 1. Assume a =+ 1 and suppose

(3.8) ik_—»},b, k— oo
[

where 0 < [b| < oo. If ris an integer, r > 1, (3.8) implies S,, /(rt,)* — r'~“b

in probability as one may easily verify. We want to establish this for any real

r> 0. Let m, ] oo so that

™ _,r>o0, k— oo .
tk
By Lemma 35, (3.8) implies _
t.q(t)— 0,
1,12 S[—tk“-tk"‘l x*Fldx} — 0,

trep(t) — b as k— oo.

Write ¢, = E(X,||X| < %) = w(t,%)/[1 — q(¢,%)] and let ¢ > 0. For all k
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sufficiently large [m,'~*c, — r*-*b| < ¢/2 and
S,

S,
P{ —Tk — plep| > 5} = P{ Tk — mytoe,| > = X £ 650 < mkl’
m® m.® 2
+ P{X;| > t,* for some i < m} .
4
= = m 72 Var (X, || X < 6.%) + mq(t%)
= O(t,'~* S[*‘k“-tk“] xX*Fldx} + t,9(t,*) >0 k— 0.
Hence
Smk 1—
—prieh k— oo,

a
k

and r'-¢b ¢ B(F, a). Since this is true for any r > 0 it follows that
sign (b)[0, co] C B,(F, a) .
Proor oF THEOREM 2. D is the given closed set in R and we want to construct

a distribution F so that B(F, 1) = D. Select a sequence {c,};_, D R so that
¢, =0, and

(3.9) Ne-i{Cus Cagrs -2} =D
Assume also that ¢, = ¢,_,, k = 1. Next set
(3.10) b, = 8 + max {lc, — ¢, |c; — ¢y, -+ € — €}

and then choose {4} so that

(3.11) =1, ap.=kabt,, Dm<%  ang
A1 a
2b
Spa e o1,
ay

Note that {a,} and {b,} are non-decreasing and a, | co. Define the distribution
F of a random variable X by

(3.12) P{X = a,} = (2b, + ¢, — ¢,_1)[2a,,

PX = —a) = @b, + ¢,y — €24, , k=1.
F is a genuine probability distribution by (3.10) and (3.11); moreover
(3.13) p(t) = S XFldx} = 25 (e, —¢;) =@
for a, < t < a,,,. Hence by the corollary to Lemma 5, (« = 1) and by (3.9)
(3.14) BJ(F, 1) C (=00, 0) Mso (0 1 > T)

= (— o0, ) nnzl {co:k=zn) =D

where for any set B ¢ R, B/ = {finite points of B} = B n (— oo, oo).
Let 1, = (a,a,,,) € (a,, a,,,). If we can show

1
t— S[—'tk,tk] sz{dx} + tk q(tk) — 0 ’ k— oo N
k
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then by Lemma 5
(3.15)

—,0, k— oo,

S
?tk— — p(t)

k

and consequently by (3.9), (3.13) and (3.14),
(3.16) DcC B(F,1) and D/ = BJ(F,1).
First by (3.12)

2 3
tl Si-ty.e X'Fldx} = 2(a,a,,,) 7t Do a;6; < % kla;b; + 2 (ak——b"“) .
3

i=1%j a
k k+1

By (3.11)
(3.17) <"L”i_+l>* <1 0.

11 k*
Also
(3.18) PSS B AR S Ty, 5 <,

J+1 J+1
so by Kronecker’s Lemma
3.19 Ll kla;b; —0, k— .
J 379

k-

It follows from (3.17) and (3.19) that
1
—t—— S[-'tk’tk] XZF{dX} hand 0 .
k

It remains to prove t,4(¢,) — 0. But

b.
6.9(t) = 2(8,8,4) X5k :Zi

i

<2 <akbk+1> +2 X s a;_,b;
ak+l 3
by (3.17) and (3.18). This proves (3.16).
Now we must show B,(F, 1) = D. Suppose first that D is compact inR,i.e.,
D is closed and bounded, and hence by (3.13), (3.9) and (3.10)

i 50, k— oo,

(3.20) SUPys [(8)] < 00 »

(3.21) : SUPsy b, = b < 0.

Now (3.21) implies

(3.22) SUPisa| - S0 XF(dx) + 19(0) | < o0

To see this note that
oo b'
SUP,50 19(f) = SUP, SUP,, <i<ay ., 19(F) = SUP, @pyy 205 a—’

= sup, (b, + 0(1)) < oo,
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where the O(1) is from (3.18), and

1 1
sup, r §_t,q X*F{dx} = sup, SUP,, st<aysy - Xtaa;b;

= sup, {6, + 1 Diztazb,} = supy b, + O} < oo
k
by (3.19). It follows from (3.20), (3.21) and the second assertion of Lemma 1

in Section 2 that

(3.23) sup, P {

S,

ga}:&(a)>0

k

for any sequence n, 1 co and all a > 0 sufficiently large. On the other hand if

"k — ;00 Or '—oo0 a.s.
ny
then
lim,‘_,,,P{ Sul s al =1
n

for every a, contradicting (3.23). Hence in this case B,(F, 1) is a bounded closed
set and our construction leads to

B(F,1) = B/(F,1)=D/ =D.
Next suppose +oo € D and —oo € D. Then D = B,(F, 1) is immediate from
(3.16).

Finally, for the last case, suppose +oco €D but —oco ¢ D. Again by (3.16)
+co € B(F,1). To show that —oo ¢ B,(F, 1) put

N,%(f) = number of i<t with X,= +a,, Ny(1) =N+ No(1),
U(t) = Zise L[| X = ai] s
Vi(t) = Y XX < @] = 2 Un(0) 5

and
d = inf{x: xe D}.

By assumption d > —co, and therefore we may assume
(3.24) —co<d—-1=Z¢, K.
For any integer ¢ € [a,, a,,,) We have the identity
Sy = Vi(t) + Ue(®) + Upsa(?) + Zizera Ui(0) -
Thus, we will have S, = d — 2 as soon as
V)
t

(3.25) <1,

— Cp1

(3.26) N(@) =0 forall 1=k +2



570 K. BRUCE ERICKSON AND HARRY KESTEN

and
(3.27) LAY () < 3 1 Ut) 2 Hew — )
a, a,c t
bIc+l bk+1 1. 1
<N, () ) —Upn(t) 2 Hew — @) -
Gjia i1 t
Now, as k — co
(3.28) P{(3.26) fails} < tP{|X,| > a,.,}
2b,

—4
= Qg Dizies ——a S2 -0,
f

Moreover, N,(f) has a binomial distribution with parameters ¢, 2a,7'5,. Thus

EN(f) = % . Var (V) < 2

k a

and by Chebyshev’s inequality and (3.10)

(%

{tbk SN L 3tb, }21_ﬂ21__2_ 3.
a a, )~ th, — b,
Similarly

(3.29) P{ Dy <Ny 3 s N < 3tbk+1} 5.

a, a, 27 A1

In addition when the values of N,(r) and N, () are given, say m and n, then
N,*(¢) and N{,,(7) are independent, and they have binomial distributions with
parameters m, p, = (2b, + ¢, — ¢,_,)/4b, = }, respectively n, p,,,. Therefore,

since N,- = N, — N, *,
(330 P{NS() = No() 2 5 N [ Nit) = m, New() = )
k
= PINA() Z pum| Ny(0) = m, Ny (1) = n)
= Zizpem P —p)" 726 >0

for some 4 > 0, independent of k, m, n and . If N(t) = m e [tby/a,, 3tb,[a,]
and the event in (3.30) occurs, then clearly

U(t) = a{N,* (1) — N ()} = $1(e, — €42y) -
Therefore, from (3.30)

1
P {T Ut) = $(er — ciy)
and slightly more generally

@30 PLLU0 2 He - o),

b, < N1) < 3tb,
a,

k

N} 23,

1 b
— Uk+1(t) Z 3 — ck) L SN —* p
&
thyyy < Npu) < 3tbk+1} > 5.
Q11 (A
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(3.30) together with (3.31) shows that

(3.32) P{(3.27) occurs} = 1o*.
Lastly, given that (3.27) occurs and that N,(f) = O for / = k + 2 we know that
(3.33) DNl < 30 (24 D) < 6,

a; A1 k*

Given the conditions (3.26)—(3.27) and given

L N() =7,
the conditional distribution of V() is that of the sum of  — r independent
random variables, each with the conditional distribution of X, given |X;| < a,_,.
Thus under these conditions the conditional expectation of 1=V ,(¢) is

! : ! {1 — g9(ar-)} (@) = ! : 4

=c¢,—2 {% + q(ak—l)} [Choma] = €1y — %

{1 — g(ar-1)} "ern

(for k large; see (3.11), (3.24), (3.33)), and the conditional variance of 'V ()
is at most

1 1
{1 = g@ )} Tigsa 20, = 0 (Z_ k-1 a,b,) — o(l)
k

(see (3.19)). An application of Chebyshev’s inequality together with (3.32) and
(3.28) now shows

P {r% >d— 2} > P{(3.25), (3.26) and (3.27) hold} = 18" > 0

for all sufficiently large . Thus — oo ¢ B,(F, 1) as we wanted to show. The case
where —oo € D but 4 oo € D is treated by interchanging positive and negative.

4. Examples, miscellaneous remarks and problems.

Examples related to Theorem 1.

B(F, a) = @. Take X, symmetric stable with exponent 1/a. Then S,/n* has
the same distribution as X, for all n and therefore S, /n,* — . b is impossible (see
also, Example 3). Clearly B(F, a) = R for these examples.

B(F, a) = {0}. Take X, symmetric and such that (log n/n)*S, has a stable
limit distribution with exponent 1/a. Then §,/n*—,0. (e.g., P{X, = +k} ~
c/k+V=log k. In this example B(a) = R for @ > 4. This follows from Theorems
3 and 4, Corollary 2 of [4] and the estimate P{|n==S, — b| < ¢} = c(log n)~%.)

B,(F, a) = [0, o0]. For { < a < 1 see Example 1. For a = 1 see Theorem 2
and for &« > 1 see Example 2.

B(F,a) = R. For } < a < 1 see Example la. For @ = 1 see Theorem 2
and for & > 1 see Example 2a.
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Example related to Theorem 3. Example 3 shows that (1.6) is not necessary
for B(F, 1) = R.

Examples related to Theorem 4. Example 4 shows that we cannot replace (1.7)
by E|X,|V* = oo for } < @ < 1. Example 2 shows that for « > 1 not even (1.7)
and (1.8) together guarantee B(F, a) = R. ‘

Lastly Example 5 has for a > 1, B(F, a) = [0, o] but B(F, a) = {+ oo}.
Thus, the examples can be summarized in the following table

TABLE 1
@ B(F, a) By(F, )
As above i<a R @
As above }<a R {0}
Example 1 iI<acxl R [0, o]
Example 1a t<a<l R R
Example 2 l<a [0, o] [0, o0]
Example 2a I<ea R R
Example 3 as1 R %)
Example 4 t<acxl [0, oo] {0}
Example 5 l<ea [0, 0] {+ 0}

The method of Theorem 7 in [4] can be used to construct an F with B(F, a) =
{—00,0, + o0} for @ > 4, but we do not know if B(F, a) = {0, oo} is possible
for @ = 1. The table above and Theorem 1 suggest the following;

ConJECTURE. If @ # 1 and b € B(F, a) for some 0 < |b| < oo then

sign (b)[0, o] C B(F, a) .

As a further conjecture and problem we mention

ConJeCTURE. If § < @ < 1 and E(X,*)V* = E(X,")Y* = oo and B(F, a) con-
tains at least two points then {—oco, + oo} C B(F, a). (Note that for a« = 1 the
truth of this statement follows from [4] Theorem 6 and Corollary 3.)

ProsLEM. Find a necessary and sufficient condition for +oco or —oo to be a
strong accumulation point. In particular when is the condition (3.1) with ¢, — oo
necessary for 4 co € B,(F, a). (Note that [1] gives a n.a.s.c. for + o0 € B(F, 1).)

ExampLE 1. For { < a@ < 1 we construct an F for which B,(F, a) = [0, o]
(and B(F, a) = R). Pick a, > 1, increasing so rapidly that

4.1) (@L8)"* DTt % -0, k— oo,
and ’
(4.2) (3@0)"* 7 X1 0; >0, k— oo .
This can be done because 1/2a — 1 < 0; at the same time we can make

zrl =1
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Now put #,* = (a,a;,1)! € (@ a,4,) and
ap+9) =1, k=1
ap — q) = B — 1L k=2, a(p—q)=1t".
Note that p,, g, = 0 because [£,** — #57}| < £,** < 1. Let F be the distribution
which assigns mass p, to a, and ¢, to —a, i.e.

P{Xl=ak}=p,,, P{X1=_ak}=qka k=1,2,....

From the preceding it follows that F is a genuine probability distribution, and
from (4.1), (4.2) that

©0 1 -
thk+11;‘+tkl ik a;—0, k— oco.

J

Thus (3.4), or equivalently (3.3) holds. In addition

nmept) = 67 Niaai(ps — ) =1,
so that by Lemma 5 1 € B,(F, ). By Theorem 1 we then have [0, o] C B,(F, ).
Moreover fora, < t < @, k =2

(4.3) mt) = Liap; —q4;) =1u"">0,
so that again by Lemma 5 no point of (— oo, 0) lies in B,(F, ). Finally we note
that p, — g, = o(p, + ¢.) so that
(4.4) Pr 1.

9
Essentially the same argument as used in Theorem 2 to prove that —oo ¢ B,(F, 1)
when — oo ¢ D now shows that —oo ¢ B,(F, «). Thus B(F, a) = [0, o] in this
example. Finally we note that (4.4) and

E|X\|V* =z E|X)| = 27 (Pr + qu)a, = oo
show that
E(/Yl"')l/“ — E(Xl_)l/“ = 00 .
Thus, by Theorem 4, B(F, a) = R in this example.

ExAMPLE 1a. A minor modification of the above example yields an F with
B(F,a) =R for 4 < @ < 1. With the notation of Example 1 again put
a p, + q.) = 1, k = 1. However, we change a,(p, — q,) as follows: We pick
a sequence k, = 1 < k; < k;,, < oo of indices and keep

apr — qp) = B — 1301
for .
ko < k < kyjpns j=0,1,....
However, we put

ay(pe — q) = — (K57 — 14
for

k2j+1<k<kzj+z’ j=0,1,‘ .
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Also a(p, — q) = t,*'and for I =1,2, .-

@, (P, — qu) = (=D + 15724}
Since we left a,(p, + ¢,) unchanged, (3.3) is still valid. However p(z,*) has
been changed. For k < k, we still have (with #, = 0)

() = Ziaa(p; — ;) = D5 (57 — 152D = o7
However,
uity) = Zihai(p; — q;) = it (0 — 50 — 67 — 6
= —t,‘:]_l
and then
pte) = =47, ky < k <k, p(t,‘z) = ’|"t;‘:2—l
and in general
ﬂ(tka) = +tka_l for kzj < k < kzj+1
w(t®) = —t for k2j+1 <k<L k2j+z .
Thus, by Lemma 5, +1 and —1 belong to B(F, a) and then by Theorem 1,
B(F, a) = R.
ExaMPLE 2. For a > 1 we construct an F with

E(X*)V/* = E(X,")V" = oo

limsupP{ S. < a} >0
nzx
B(F, a) = B(F, @) = [0, oo].
Let
a, = e, b, = exp[(1 — 1/a)(k + 6)*]
Pk=coﬁ’ qk=coe_k2/a’ k=1t2""s
a,

where ¢, > 0 is chosen such that

(P +4q0) =1
and 0 < 0 < 1/a. Take
P(X, = +a,} =ps, P{X, = —a,} = q,,
and, finally write
t, = eark+8)?
Note that .
Pr = coexp_—k2 + <1 — i) (k + 5)“’]
L o R

= ¢, exp —’?‘}+25<1 - D+ (1 _l)az]

a

— d, exp —l;f +25(1- _l_>k:| = L expl:25 (1 — %) k:l

L
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where d, = c,exp[(1 — 1/a)d?]. In particular

Penr _, ¢, Pr _, o and Pt _ b .
P 9 Pr-1% b
It is easy to check from this that

(4.5)  EX*z EXGY)e=oco and  EX; 2 E(X) = oo,

and for a, < t < a,,

(4.6) m(0) = §[1 — F()ldx 2 m(a,)

~ (e — a;y) I %b_, ~ ¢b, ,
1

and consequently

(4.7) .. |x| dF(x) _ DIk LIPS

m(x) m,(a)
It follows from (4.5) and (4.7) and Ceorollary 1 of [1] that

&——) + o0 w.p. 1.
n

Thus S, = 0 eventually and

(4.8) B(F, @) C B(F,a) C [0, o] .

To show that we have equality in (4.8) we note that q, < 1,* < a,,,,
w(t) = Db (P; — 45)8; ~ Py = Coby = 1,7

so that

4.9) et — ¢

In addition, with ¢, = 0,

§o xq(x)dx = Yh_ 3@ — a%y) Xz (P + q0)

575

+ 3t — @) Zizers (P + 90) ~ 3a°pe + $62Pen

=o(,2*Y) (recalldo < 1/a).

It follows from (4.9), (4.10) and Lemma 5 that c¢,e B,(F, @) and then from
Theorem 1 that [0, co] C B,(F, a). Thus all the sets in (4.8) are the same, and

lim sup P{|S,/n*| < a} > 0 also follows from ¢, € B,(F, a).

EXAMPLE 2a. Again a minor modification of the last example yields an F
with B,(F, a) = R for « > 1. Again we take a sequence of indices 1 = k, <

k, < k.., but now take p,, g, as in Example 2 for

k2j§k<kaj+;, j:'o’l"“

and
b

k2 — k
Pi = ¢, G = Co—
a,
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when k;; ., < k < ky;,, for some j > 0. Thus for kyj 1 = k < ky;,, the defini-

tions of p, and ¢, have been interchanged. This does not affect (4.10), but now
L) — —c

when k — oo such that k,;,, < k < k,;,, for some j whereas (4. 9) remains valid
if k — oo with k,; < k < ky;,,. As in Example 1a we find B,(F, a) =

ExaMPLE 3. (1.6) is not necessary for B(F, 1) = R. Note that B (F, a) =
for a < 1in this example (by (4.11)). Let F be the symmetric discrete dlStI‘lbu-
tion given by

P(Xlzik)zc(l_O%IfX k=2

for some C > 0. Then as shown in ([4] page 1182) B(F, a) = Rfor0 < a < 1.
Also, by ([4] page 1182) for C* = #C and any ¢ > 0

{% < a} - {C*nl(lglg n)? = C*nl‘“?log n)”}

=P{ l l _ } '_‘S-e dx
n(log n X
Cn(log ny: e

as n — oo. Since ¢ > 0 is arbitrary

(4.11) limP{ S| <

a}=o forall a>0.
na

ExAMPLE 4. Thisshows that (1.8) and E|X,[V* = co do not guarantee B(F, a) =
Rif} < a < 1. This example has B(F, a) = [0, oo] instead, and B,(F, a) = {0}.

Let X, have the characteristic function

(4.12) @(0) = exp§r ey — 1 — y]w I<ac<l.

Standard arguments show that the exponent of (4.12) behaves as

e

(4.13) fog 17[0]

when 60,

where

- foin .oodu T ] a? 1
b= §r (e — 1 — i) B expl:—z—al:ll « al‘(z ——a—>-
It follows that ’
<log n)“ S,
n

convergesinlaw to an asymmetric stable distribution with characteristic function
I'2 — 1/a) { T . . }
exp —————~ |0|V* {cos — — isign (§) sin—} .
P a1 2q  'sign(6)sin—

In particular n~=S, —, 0, (1.8) holds and B,(F, a) = {0}. By pages 540-545 of
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[3] this also implies

C
PX,>x}~ ",
= x) xV«log x

1
P{Xlg—x}=o<w), . x—o,

for some C > 0. (Actually P{X; < —x} decreases exponentially in x by (4.14)
below.) Thus E(X,*)* = co. But also for & — 2¢ >0

P{%‘e(b-—Ze, b+ 25)}

> Z;‘=1P{1Yie(b—e,b—|—e), S — X
n“ n*

2

X, X.
- leiqs»P{-n—:e(b—5,b+6),;fe(b—e,b+e)}

~ nP{n*(b —¢) < X, < n°(b + ¢)} ~ logn {(b —le)"“ RC -I-IE)”"{ '

Consequently
Z}_I_P{.S_”e(b — 25,5+ 29 = oo
n n*

for all b >0, 0 < 2e < b. It follows from this and Corollary 2 in [4] that
[0, o] C B(F, a). To show that B(F, a) contains no points on the negative axis,
we note that (4.12) implies

i S dy
(4.14) Eer**1 = exp{7[e ™ — 1+ My—m/aTgy’ 120

and as in (4.13), the exponent in (4.14) behaves as
AV
log 12
This of course implies E(X;)W < oo, but more importantly, for ¢ > 0,
0<2< 4,

6] when 410.

P {& é _c} é e—lc'n“(Ee—lX])n
na
< Aen® 4 2|bjn 2 }
=< expq—A4cn® L O
- p{‘ | log 1/2
If we take
d

= na(log n)a/(a—l)

for 0 < d < d(c) we obtain for large n

P {% = —c} < exp{—g_c(log n)“/“‘“’} .
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Since § < a < 1 it follows for every ¢ > O that

Z P {i é —C} < oo,
na
and therefore

S0 w1

na

Of course (4.15) proves B(F, a) C [0, co] as desired.

(4.15) lim inf, ,

ExaMPLE 5. This example has B(F, a) = [0, oo] and B(F, a) = {+ oo} for
a > 1. Take @ > 1 and
(4.16) F(dx) = ¢, 198108 %)’ 4, x> 10,

1+1/zx

F(dx) = Cydx : x< —10,
|x[**** log |x| log log || -

for some 0 < 8 < (@ — 1)/a, C,, C, > 0 for which {*3 F(dx) = 1. Itiseasy to
check from (4.16) and Corollary 1 of [1] that

i—» 4o w.p. 1.
n

so that S, = 0 eventually and B(F, a) C [0, co]. It follows from pages 540-545
in [3] that

n~%(log log n)~**S,
converges in law to a stable distribution with exponent 1/a < 1 concentrated
on (0, o). Thus n=*S, —, co and B,(F, a) = {+oo0}. However, to show that

B(F, a) = [0, co] we need the following estimate for b > 0, 0 < 2¢ < b and
some fixed d > 0:

P{n==S,e (b — ¢, b + ¢)}
n Pln-aX,e (b — e, b + <), 17| X,| < d(log log n)-=#-D
(4.17) for 1 <j<nj+#in%0usis Xi| < €}
— nP{n="X, e (b — ¢, b + )[P{|X] < dn*(log log n)-=#-}]-1
P{IS, .| < en*||X;| < dne(log log ny=“~,j < n — 1} .

It is easy to see from (4.16) that the product of the first two probability factors
in the last member of (4.1) is at least

(4. 1 8) Kl(b, e) M [ K (log log n)ﬂ'ﬂ/(a 1) :|n 1
n dYen
(log log n)? 2K, e < Ki(b,©)
= K(b, ¢) BT exp 3 (log log m)#/«=b 2 = Ao

for some K, K, independent of d and all large n (recall that af/(a — 1) < 1).
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(4.16) also yields
E{|X,|||X,| < dn*(log log n)=e#/a=b} < K,di~Vapa-1
for some K, independent of d, so that for d < (¢/2K;)*/*~"
(4.19)  P{S, | < en*[|X;| < dn*(log log ny~*#«=D, j < n — 1}
> 1 — (en®)B{|S, || |X;| < dn*(log log n)=#==b,j < n — 1} = }
(4.17)—(4.19) yield

1
n(log n)t

so that by Corollary 2 of [4], b € B(F, «). Since this holds for all 5 > 0 we have
indeed B(F, a) = [0, oo].

5 _’11_ P8, e (b — 2, b + 2¢)} = $Ku(b, ¢) 3.
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