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THE OPTIMAL REWARD OPERATOR IN SPECIAL CLASSES
OF DYNAMIC PROGRAMMING PROBLEMS!

By DaviD A. FREEDMAN
University of California, Berkeley

Consider a dynamic programming problem with separable metric state
space S, constraint set 4, and reward function r(x, P, y) for (x, P)e A and
yeS. Let Tf be the optimal reward in one move, for the reward function
r(x, P,y) + f(y). Three results are proved. First, suppose S is compact, 4
closed, and r upper semi-continuous; then 7"0 is upper semi-continuous,
and there is an optimal Borel strategy for the n-move game. Second, sup-
pose S is compact, 4 is an F,, and {r > a} is an F, for all a; then {T*0 > a}
is an F, for all a, and there is an c-optimal Borel strategy for the n-move
game. Third, suppose A4 is open and r is lower semi-continuous; then 70 is
lower semi-continuous, and there is an e-optimal Borel measurable strategy
for the n-move game.

1. Introduction. A dynamic programming problem can be specified in terms
of three objects: the state space S, the constraint set 4, and the reward function
r. Let Sbe a separable metric set, endowed with the Borel o-field o(S) generated
by the topology. Let x(S) be the set of probabilities on a(S), endowed with the
weak* topology and the Borel o-field generated by this topology. So z(S) is also
separable metric. Suppose A4 is a Borel subset of S x 7(S), whose x-section 4,
is nonempty for all x e S. Suppose ris a nonnegative extended real-valued func-
tionon 4 x S. Informally, when you are at x e S, you can select any Pe A,
move to y chosen at random from § according to P, and receive the reward
r(x, P, y).

The optimal reward operator T was defined in [1] as follows:

(1) (Tf)(x) = suppes, §s[7(x, P, y) + f(P)]P(dy)

provided the integral makes sense. Write 0 for the function which vanishes
identically. If, for instance, S is a Borel subset of a complete separable metric
space, then [1] identifies 70 as the optimal reward in n moves, and demonstrates
the existence of universally measurable c-optimal strategies. In that degree of
generality, 70 need not be Borel, although it has to be universally measurable;
and there need not be any Borel strategies whatsoever, optimal or otherwise.
This note will apply the argument of [1] to three special cases, where the
measurability issues are much easier to resolve. Before stating the conditions
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and the results, there is a review of some properties of strategies. In checking
them, remember that the Borel o-field in =(S) is generated by the sets
{¢: (B) > a}, for 0 < a < 1and Beo(S). A function ¢, into #(S) is measur-
able, then, if u — #,(B) is measurable for an algebra of B which generate o(S).
A Borel strategy s of length n is by definition a s'equence of Borel measurable
functions
Xp— S, (x, x,) — Sppmgr 7 (Xps w05 X,) — Sgrees

from S, §?, - .., $" into n(S), subject to the constraint
i
Sppsenay € Agy

The strategy s and starting state x determine a probability s, on S, by the
requirement that

§on P(xas « - 5 X, 00)8(dXy, « -+, dx, )
be the n-fold iterated integral of ¢(x,, - - -, x,,,) relative to

sxxz,'-',x,,(dxn+1) U sz(dXZ) ’
for all nonnegative Borel ¢ on S*. So x—s, is Borel. The reward of s at
(x> Xy ++ vy X, yy) €S™FL s
(S5 X1 Xay + -0y Xy yy) = H(Xy, Sp0 Xa) v A HXps Sa s Xas)

a Borel function. The expected reward of s at x e S is

0a(Ss X) = §gn 1S5 X, Xgy - Xy py)S,(dXy, -+, dx, ),

a Borel function of x. For xe S, the x-section of s is this Borel strategy of
length n — 1:

X, — sxxl’ (xl’ x2) - sxxlzz’ R} (xl’ R | xn—l) - sxml,-u,zn_l .

So (x, y) — s,? is Borel, as is (x, y) — p,_,(s%, ). As usual,

2) Ou(8, %) = §5 [1(X, 8,5 ) + 0ua(s7, y)]s(dy) -

A Borel strategy s of length n is optimal if p,(s, x) = (T"0)(x) for all x e S.
It is e-optimal if

0.(8, x) > (T"0)(x) — ¢ for all x with (7T"0)(x) < oo
> 1/e for all x with (7T"0)(x) = co.
This definition is proper because 70 is-an upper bound to p,(s, x), as shown
in [1].
Here are the three sets of conditions on S, 4, and r. The conventions of the
first paragraph are to be understood to apply in all cases.

3) Suppose S is compact metric, so 7(S) is too. Suppose A is a closed subset
of § x 7(S). Suppose ris a nonnegative, real-valued upper semi-continuous func-
tion on A4 x S, that is, {r = a} is closed for all a > 0.



944 DAVID FREEDMAN

4 Suppose S is compact metric, so z(S) is too. Suppose A is an F,-subset
of S x =(S), that is, a countable union of closed sets. Suppose r is a nonnegative,
extended real-valued function on 4 x S of type F,, that is, {r > a} is an F, for
alla > 0.

%) Suppose S is separable metric, but not necessarily Borel or even analytic.
Suppose A is an open subset of S x 7(S). Suppose r is a nonnegative, extended
real-valued lower semi-continuous function on 4 x S, that is, {r > a} is open for
alla > 0.

Here are the results.

(6) THEOREM. Suppose (3). If f is a nonnegative, finite, upper semi-continuous
function on S, so is Tf. In particular, so is T"0. For each n, there is an optimal
Borel measurable strategy of length n.

@) THEOREM. Suppose (4). If f is a nonnegative, extended real-valued function
on S of type F,, so is Tf. In particular, so is T*0. For each n and positive ¢, there
is an e-optimal Borel measurable strategy of length n.

8) THEOREM. Suppose (5). If f is a nonnegative, extended real-valued lower
semi-continuous function on S, so is Tf. In particular, so is T"0. For each n and
positive ¢, there is an e-optimal Borel measurable strategy of length n.

REMARKS. (a) Suppose (3), (4), or (5) holds. Then T"0 is non-decreasing
with n. Call the limit u,,. Then u is the optimal reward for the infinite game.
If (4) holds, then u,, is of type F,. If (5) holds, then ,, is lower semi-continuous.
In all three cases, the infinite game admits an e-optimal Borel strategy which
stops everywhere.

(b) There are four classes of sets considered in [1] and here: the analytic sets,
the compact sets, the s-compact sets, and the open sets. Each class is closed
under finite unions and intersections, and under projections. If Bis in a class,
so is {¢(B) > a}—or {y(B) = a} for the compacts. Ifa set in one of these classes
is embedded in a product space, it admits a reasonable selector. These prop-
erties make the proofs go; but I do not see any other interesting class of sets
with these properties.

(c) Theorem (6) is a variation on Dubins and Savage (1965, Theorem 1,
page 36).

2. Compact metric selectors. Let S be a compact metric set. Let 25 be the
set of all nonempty compact subsets of S, in the usual compact metric topology
(Hausdorff (1957, Section 28) or Kuratowski (1968, Section 42-43)). Endow
25 with the Borel o-field generated by the topology. Each open subset U of S
generates two of the sub-basic open sets of 2°:

{K: Ke2® and K C U} and {K: Ke25 and K n U =+ ¢}.

Open sets in S are F,’s, and closed sets are G,’s, so either class of sub-basic open
sets generates the full Borel o-field in 25. So
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) Let Q be a set endowed with a o-field %". Let f, and f be functions from
Q to 25.

(a) fis F-measurable iff {0: f(w) C U} e . for all open subsets U of S.

(b) fis . -measurable iff {0: flw) N K # ¢} e & for all compact subsets K
of S.

(c) Suppose each f, is & -measurable, and f,(0) D fy(w) D .- for all o.
Then w — N, f.(®) is F -measurable.

(10) The map x — {x} is continuous and one-to-one from S into 25. This
map has a compact range, and a continuous inverse.

The next result is mentioned in Kuratowski (1968, Section 43):

(11) LEMMA. Let S be compact metric. There is a measurable function o from
25 into S, such that ¢(K) € K for all K € 25.

Proor. For each n, construct a finite collection &, = {K,,, K,,,, - - -} of com-
pact subsets of S, with <", = {S}, and d, — 0 as n — oo, where

d, = max; diameter K,;,

nj

and this nesting property: for each n, there are positive integers j, = 1 < j, <
Js < -+ such that

Kni:K

(n4+1)4; u...u K(n+1)(ji+l—1) :

Let f,(K) = K n K,;, wherej = j(K) is the least index with K n K,,; # ¢. Then
f. is measurable by (9b), and f, D f,,,, so M, f, is measurable by (9c). But
the diameter of f,(K) is at most d,, so (N, f,(K) consists of a single point, ¢(K).

and K — ¢(K) is measurable by (10). Finally, f,(K) C K, so o(K) e K. [

(12) COROLLARY. Let S and T be compact metric sets. Let A be a compact
subset of S x T, and let B = projs A. So B is compact. There is a Borel selector
t for A, that is, a Borel function from B to T, with (x, t(x)) € A for all x € B.

ProoF. Suppose 4 is nonempty. Let 4, be the x-section of A4, for xe B. So
A, €25, and x — A, is measurable by (9b). Compose this function with the ¢
of (11): that is, let #(x) = a(A4,). [

(13) CoROLLARY. Let S and T be compact metric sets. Let A be an F -subset
of S x T, and let B = projs A. So Bisan F,. There is a Borel selector t for A.

Proor. Let 4 = |, 4,, where 4, C A4, C --- areclosed. Let B, = projs 4,
soB, C B,C ... areclosed,and B = |J, B,. Let ¢, be a Borel selector for 4,,
as constructed in (12). Lett = ,onB,and¢ = ¢t,onB, \B, forn=1,2,.... ]

(14) CoROLLARY. Let S and T be compact metric sets. Let h be a nonnegative,
real-valued, upper semi-continuous function defined on a closed subset A of S x T,
with projg A = S. Let

h*(x) = sup,c 4, k(x, ) -
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(a) For each x, the set of y € A, with h(x, y) = h*(x) is nonempty and closed.

(b) h* is a nonnegative, real-valued upper semi-continuous function on S.

(c) There is a Borel function t from S to T, with (x, {(x)) € A and h(x, {(x)) =
h*(x) foi‘ all x.

Proor. Claim (a). Let A(x, y,) — k*(x). By passing to a subsequence, sup-
pose y, —y. Then A*(x) = h(x, y) = lim k(x, y,) = h*(x).
Claim (b). Using (a),
{x:xeS and A*(x) = a} = projs{(x,y): (x,yje 4 and A(x,y) = a}.

Claim (c). Let C(x) = {y: y e A4, and h(x, y) = h(x)}. So C(x)e 2" by (a). To
show x — C(x) is measurable, use (9b): fix K € 27, and let ¢(x) = sup, . x o4, #(x, y).
Then ¢ is upper semi-continuous by (b). And

{x: C(x) N K # ¢} = {x: ¢(x) = h*(x)}
is Borel in S. []

(15) CoROLLARY. Let S and T be compact metric sets. Let h be a nonnega-
tive, extended real-valued function of type F, defined on an F,-subset A of S x T.
Suppose proj; A = S. Let

H*(x) = SUP,e 4, h(x, ) -

(a) h* is a nonnegative, extended real-valued function of type F, on S.

(b) If ¢ > 0, there is a Borel function t from S to T, with (x, {(x)) € A for all
x, and

h(x, t(x)) > h¥*(x) — ¢ when h*(x) < oo
> 1/e when h*(x) = oo .

Proor. Claim (a). Clearly, {#* > a} = projs{4 and & > a}.

Claim (b). Fix a positive integer k > 1/c. Let 4; = {4 and & > j/k}, an F,
in §$x T. Let B; = projs A;, an F,in S. Clearly, {h >0} =4, >4, > ---.
So B,o B O ---. Let B* =, B,, a Borel subset of S. Let 7 be a Borel

selector for A4, as constructed in (13). Let t; be a Borel selector for 4, as con-
structed in (13). Let

t

on S\B,
i on B; \B;, for j=0,1, ...
=1, on B*.

t
t

Clearly, ¢ is a Borel selector for 4. If x € S\B,, then k*(x) = 0, and A(x, #(x)) >
h*(x) — e. If x € B;,,\B;, then h*(x) < (j + 1)/k,and h(x, t(x)) > jlk > h*(x) — e.
Finally, if x € B*, then h*(x) = co and A(x, t(x)) > k > 1/e. 0

3. Open selectors.

(16) LEMMA. Let S and T be separable metric sets. Let A be an open subset of
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S x T. Then B = projs A is an open subset of S x T. There is a Borel selector t
for A.

ProoF. Suppose 4 is nonempty. Let {y,, y,, - - -} be a dense subset of T. For
x € B, let t(x) be the ¥ With least n such that (x, Yo €A [

a7 CoROLLARY. Let S and T be separable metric sets. Let h be a nonnegative,
extended real-valued, lower semi-continuous function defined on an open subset A of
S x T. Suppose projs A = S. Let

B¥(x) = sup,.e., h(x, y) -
(3) h* is nonnegative, extended real-valued, lower semi-continuous function on S.
(b) If e > 0, there is a Borel function t from S to T, with (x, t(x)) e A for all
X, and
h(x, t(x)) > h*(x) — ¢ when h*(x) < oo
> 1/e when h*(x) = oo .
ProoF. Asin (15). ]

4. The weak* topology. There is a quick review of the weak* topology in
[1], and a detailed discussion in [6]. The proofs of the next three results are
omitted, being routine.

(18) LEMMA. Let X be a compact metric set. Let n(X) be the set of probabilities
on X, endowed with the weak* topology. Let r be a nonnegative, real-valued upper
semi-continuous function on X. Then pr — § , rdp is upper semi-continuous on r(X).

(19) LEMMA. Let X be a compact metric set. Let n(X) be the set of probabilities
on X, endowed with the weak* topology. Let r be a nonnegative, extended real-
valued function on X, of type F,. Then p— §, fdp is of type F, on n(X).

(20) LEMMA. Let X be a separable metric set. Let n(X) be the set of proba-
bilities on X, endowed with weak* topology. Let r be a nonnegative, extended real-
valued function on X, which is lower semi-continuous. Then p— §, rdy is lower
semi-continuous on w(X).

5. Proving the theorems. The proofs are very similar to one another and to
the argument in[1]. So I will sketch the proof of (6), and omit the other argu-
ments. Suppose condition (3).

(21) LEMMA. Let h(x, P) = {5 r(x, P, y)P(dy), for (x, P) € A. Then hisupper
semi-continuous on A. '

Proor. Let ¢ = ¢, ) map 4 into 7(A4 x S) by sending (x, P) into P installed
on the (x, P) slice of 4 x S. More formally, if ¢ = ¢(x, P, y) is a continuous
function on 4 x S,

§Saxs @ AP, py = §s B(x, P, y)P(dy) .

Then ¢ is continuous, for ¢ can be unifomly approximated by sums of functions
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of the form ¢,(x)¢,(P)$;(y), each ¢, being continuous. Now £ is the composition
of the function g — §,, s rdp, upper semi-continuous on z(4 x S) by (18), with
the continuous mapping ¢ from 4 to 7(4 x S). [

(22) CoROLLARY. If fis a nonnegative, real-valued, upper semi-continuous func-
tion on S, so is Tf.

Proor. The modified reward function r(x, P, y) + f() is still upper semi-
continuous on 4 x S. Use (21) on this modified r:

h(x, P) = {s[r(x, P, y) + f(»)]P(dy)
is upper semi-continuous on 4. Now use (14b). []
(23) CoROLLARY. Suppose (3). Then T"0 is upper semi-continuous on S.
(24) LEMMA. Suppose (3). For each n, there is an optimal Borel strategy.
Proor. The case n = 1. This is immediate from (21) and (14c).

The induction. Suppose the lemma holds for n = k. Let

r(x, P, y) = 1(x, P, y) + (T*0)(3) »

which is upper semi-continuous on 4 x Sby (23). If you integrate out y against
P, and sup out Pe A4,, you get (T*+'0)(x), by (1). Use the case n = 1 on the
reward function r, to get a Borel strategy ¢ of length one, such that

§s [r(xs 1,5 y) + (T*0)())]tady) = (TFH0)(x) -

Use the induction hypothesis to generate a Borel strategy ¢* of length k, with
px(t*, y) = (T*0)(y). There is a unique Borel strategy s of length k + 1, such
that

s, =1 and 57 = t* forall xeS.

z z

And s is optimal by (2). []

Note. The optimal Borel strategy s constructed by this induction is Markovian:
S4,.....a; depends only on i and x,.

1,

Note on proving (8). If you follow the pattern set by (21), you have to show
that ¢ is continuous. This is less obvious. However, as explained in[1], (10-12),
you can embed S into a compact metric set S*; this embeds 7(S) into the set of
¢ € ©(S*) which assign outer measure 1to S. The continuity in the general case
now follows from the continuity in the compact case.
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